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Article

Reinforcement Learning for the Face Support
Pressure of Tunnel Boring Machines

Enrico Soranzo * , Carlotta Guardiani and Wei Wu

University of Natural Resources and Life Sciences, Vienna
* Correspondence: enrico.soranzo@boku.ac.at

Abstract: In tunnel excavation with boring machines, the tunnel face is supported to avoid collapse
and minimise settlement. This article proposes the use of reinforcement learning, specifically the Deep
Q-Network algorithm, to predict the face support pressure. The approach is tested both analytically
and numerically. By using the soil properties ahead of the tunnel face and the overburden depth as
the input, the algorithm is capable of predicting the optimal tunnel face support pressure, adapting
to changes in geological and geometrical conditions.

Keywords: tunnelling; tunnel boring machine; support pressure; face stability; reinforcement
learning; machine learning; Deep-Q-Network

1. Introduction

Face stability is critical in shallow tunnels to avoid collapse. In mechanised tunnels, the face
support is provided by the tunnel boring machine (TBM), e.g. slurry (SPB) or earth pressure balance
(EPB) shields. An estimate of the support pressure is required for safe and efficient construction.

The problem of face stability can be solved with analytical, numerical and experimental
approaches. The analytical methods are mainly based on the limit state analysis [1–9]. Face stability
can also be investigated by numerical analysis [10–17]. Alternatively, the problem can be studied
experimentally at 1g [13,14,18–21] or with centrifuge model tests [22–24].

Recently, machine learning has emerged as a promising technique for predictive assessment in
geotechnical engineering, in general [25–31], and in tunnelling, in particular [32–38]. Some promising
research domains for machine learning in tunnelling are the geological prognosis ahead of the face, the
interpretation of monitoring results, automation and maintenance [32]. At present, however, research
appears to be focussed on the following topics: prediction of TBM operational parameters [34,39–46],
penetration rate [47–63], pore-water pressure [64], ground settlement [65–67], disc cutter replacement
[68–70], jamming risk [71,72] and geological classification [73–76]). Few authors estimated the face
support pressure of TBMs with machine learning [35,52].

The previous studies developed models that are trained after tunnel construction and thus pertain
to the domain of supervised learning, the machine learning paradigm where the predictions are based
on labelled datasets [77]. This study proposes a method to determine the face support pressure of
TBMs with reinforcement learning. Within the realm of artificial intelligence, reinforcement learning
is a generic framework for representing and solving control tasks in which the actions performed by
the algorithm at one time are influenced by past decisions. Reinforcement learning algorithms are
trained by incentivising them to accomplish a goal. Although reinforcement learning research is still in
its infancy, there have been recently some exciting developments, most notably those showcased by
the Google’s DeepMind research group [78–82], which demonstrated the ability to master Atari video
games and popular board games such as chess and go. The transition of reinforcement learning from
academia to industry is gaining momentum. Noteworthy examples are dynamic job shop scheduling
[83], memory control optimisation [84,85], personalised web services [86,87], self-driving cars [88],
algorithmic trading [89], natural language summaries [90] and healthcare applications such as dynamic
treatment regimes and automated medical diagnosis [91]. Reinforcement learning industrial products
include Google Translate, Apple’s Siri and Bing Voice Search [92].
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Unfortunately, only few such studies are found in geotechnical engineering, especially in
tunnelling. In particular, Erharter and Marcher presented a framework for the application of
reinforcement learning to NATM tunnelling in rock [93] and to the TBM disc cutter replacement
[68]. Zhang et al. [94] employed reinforcement learning to predict tunneling-induced ground response
in real time.

In this study, the capability of the reinforcement learning algorithm to choose the best sequence
of face support pressures is investigated by adapting the algorithm used by the DeepMind research
group [80] and testing it on random geologies. The novelty of our method resides in the reinforcement
learning approach, where the machine has no previous knowledge of the environment which it
explores and is educated through the rewards defined by the user, as well as in the simulation of the
environment with the finite difference method (FDM). This study shows that our model is capable of
optimising the face support pressure, provided that a sufficient number of episodes are played.

In the following, the proposed method is presented (Section 2). The method is tested in
environments of growing complexity, from analytical calculations to numerical analysis (Section
3). Its performance, limitations and possible improvements are discussed in Section 4. Finally, Section
5 concludes the paper.

2. Methods

In this section, the reinforcement learning algorithm is described. It is implemented with the
interpreted high-level general-purpose programming language Python [95]. The algorithm is tested
against analytical calculations (Section 2.1) and numerical analysis (Section 3.4).

One of three basic machine learning paradigms alongside supervised and unsupervised learning,
reinforcement learning involves learning optimal actions that maximize a numerical reward [96].
In other words, reinforcement learning deals with the way (the policy) an intelligent agent (an
algorithm) takes the actions that maximise a user-defined reward in a particular setting (the state of
the environment).

The policy defines how the algorithm behaves in a certain situation. More precisely, it connects the
states of the environment to the actions to be taken. As such, the policy is the core of a reinforcement
learning agent, given that it determines its behaviour [96]. The well-established “epsilon greedy
strategy”, one of the oldest policies [96], is selected in this study. An action is considered “greedy” if
it is expected to return the maximum reward for a given state. However, since the environment is
unknown a priori, an initial exploration of the environment is necessary to determine these actions.
This exploration begins with the first TBM excavation where the face support pressure is randomly
chosen at every round. The randomness decreases after every episode as the environment knowledge
is exploited.

At each excavation round i, the agent chooses a random action na with probability ε and the action
associated with the highest expected reward Qmax(Si+1, a) with probability 1 − ε. ε is initialised at 1,
which corresponds to a completely random selection, and decremented by 1/N after each episode,
where N is the total number of excavations (the episodes). For N episodes, ε decreases by 1/N

per episode until it reaches 0. In mathematical terms, let r ∈ R ∩ (0, 1) be a random number and
ε = 1 − j/N at episode j, the agent takes the action Ai at the state i according to equation (1), where
na ∈ N∩ (0, 4) is a random integer.

At :=

{

Qmax(Si+1, a) if r ≥ ε

na if r < ε
(1)

Hence, the random choice of the face support pressure is initially the dominant pattern that is slowly,
but steadily, abandoned over time as the agent gains some experience of the environment in which it
operates. In other words, the face support pressure pf becomes more of a “conscious” choice based
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on the rewards collected and represented by the value function Q(s, a), which returns the reward
expected for the action a in the state s.

The rewards are user-defined and determined by the support pressure, the excavation rounds and
the surface settlement. They reflect the definition of efficient construction: a safe process (consisting
in the minimisation of surface settlement) executed with the least possible effort (determined by the
lowest possible support pressure). The actual reward values are irrelevant, as long as the algorithm
can maximise the expected reward, given the input data. The relative weight of the rewards, however,
has an impact on the results [97].

A +1 reward is collected at each excavation round. The lower the face support pressure applied
by the TBM, the lower the building effort. Hence, a reward corresponding to −

pf
200 kPa is assigned to

every action. The surface settlement at every round causes a −1 reward for each mm of additional
settlement. A −100 reward is assigned if the surface settlement is larger than 10 cm (in the analytical
environment) or if the calculations diverges (in the finite difference environment). These outcomes
terminate the episode (game over). A +100 reward is assigned at excavation completion. Each
completed or terminated tunnel excavation defines an episode. The rewards are listed in Table 1.

The “playground” of the agent is named environment [98]. The actions are chosen and the
rewards are received by the agent in the environment. In the present case, two classes of environments
are created. First, an environment consisting of simple analytical calculations of the required face
support pressure and expected settlements is considered (Section 2.1). The second environment is
simulated numerically via the FDM as described in Section 3.4.

Table 1. Summary of the rewards associated with the outcomes of the actions.

Outcome Reward

Excavation round +1
Choice of the tunnel face support pressure −

pf
200 kPa

Additional soil surface settlement −1/mm
Soil surface settlement > 10 cm or

−100 and game over
divergence of the calculation

Completed excavation +100 and end of the episode

2.1. Analytical training environment

In the following, the initial training environment of the algorithm is described. For a tunnel
with diameter D = 10 m, a random 2000 m long geological profile is generated (Figure 1). The
pseudorandom number generator is initialised with a constant seed so that the results can be replicated.
The 2000 m length corresponds to the break-even point for the choice of mechanised over NATM
tunnelling [99]. At first, this geology is kept constant and is thus the same for all the 100 training
episodes. In the second instance, different random geological profiles are created at each episode
(Section 3.2). The soil cover C is randomly initialised in the interval (0.5, 3)D. The soil cover to diameter
ratio is capped at C/D = 3. At every 2 m (the excavation step or round length), a random slope is
selected from the interval (−1,+1), corresponding to the interval of slope angles (−45◦,+45◦). The
soil unit weight γ, friction angle ϕ, cohesion c and Young’s modulus E are randomly initialised in the
intervals shown in Table 2. The soil property values slightly change from their initial values at every
excavation step (Table 1). The soil properties are re-initialised with a 1% probability at every 2 m to
simulate soil stratification.

By moving across states of these environments, the agent collects the rewards and stores them in
the so-called value function Q(s, a). The state representation is described in the next section.
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Figure 1. Random soil property values of the analytical environment with constant geology: (a) Unit
soil weight. (b) Cohesion. (c) Friction angle. (d) Young’s modulus.
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Table 2. Range of the intervals of soil properties and their coefficient of variation for every 2 m
excavation step.

Soil parameter Symbol Unit Minimum value Maximum value % Variation/m

Unit weight γ (kN/m³) 11 24 ±10%
Cohesion c (kPa) 0 20 ±6.3%

Friction angle ϕ (◦) 20 40 ±1.25%
Young’s modulus E (MPa) 10 100 ±1.25%

2.2. State representation

The state is a representation of the information necessary and relevant to take an action. It is not
the physical state of the environment, but rather a representation of the information for the algorithmic
decision-making [100].

Since there are no rules to determine the state variables, domain knowledge, i.e. “the knowledge
about the environment in which the data is processed” [101], must be used. According to the literature
[4,7,12,16,22], face stability primarily depends on the soil unit weight, cohesion, friction angle and the
depth of the overburden. Furthermore, soil settlement depends on the soil Young’s modulus E and
the stress release [102]. Hence, the soil properties γ, c, ϕ, E directly ahead of the tunnel face and the
overburden C are normalised by dividing them by their maxima γmax, cmax, ϕmax, Emax, Cmax (Table
2) and selected as the state variables. The stress release is determined by the choice of the support
pressure.

Generally, TBMs cannot estimate the soil properties ahead of the tunnel face [103]. However,
boreholes are retrieved prior to soil excavation and analysed in the laboratory to obtain the material
properties for the engineering design. Unfortunately, due to the soil heterogeneity, the property values
cannot perfectly match reality, but are rather mean values that can be nonetheless used as a first
approximation.

2.3. Face support pressure and settlement

TBMs provide face support pressures up to approximately 200 to 300 kPa in soft soils [104]. At
every excavation step, the proposed model searches the optimal support pressure within the interval
(50, 250) kPa. According to the guidelines [4], based on a limit equilibrium approach for drained
conditions, the required support pressure is calculated with

pf,req =
1
A

(G + PV)(sin ϑ − cos ϑ tan ϕ′)− 2T − c′ D2

sin ϑ

sin ϑ tan ϕ′ + cos ϕ′
(2)

where A = π D2

4 is the cross-sectional area of the tunnel, G is the self weight of the sliding wedge, PV

is the vertical load from the soil prism, and T is the shear force on the vertical slip surface (Figure 2).
The critical value of the sliding angle ϑ that maximises pf,req is searched iteratively with the Python
package scipy [105]. Note that the guidelines differentiate between c′1 and ϕ′

1 above the tunnel tunnel
and c′2 and ϕ′

2 at the level of the tunnel. In this simulation, however, c′1 = c′2 = c′ and ϕ′
1 = ϕ′

2 = ϕ′.
The proposed model estimates the support pressure pf at every step to maximise the expected

outcome according to the following criteria and compares it with the required pressure pf,req. In this
simplified environment, the surface settlement occurs if pf < pf,req and the stress release λ is calculated
as the ratio of the provided to the required tunnel face support pressure, so that λ = 1 −

pf
pf,req

. The

corresponding soil settlement is then calculated as follows [102].

u =
λγ

E

(

D

2

)2

(3)
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In reality, the settlement occurs not only due to the stress release at the tunnel face, but also due to
other factors, such as the overcutting and ring gap [102]. Furthermore, an experience factor K < 1
depending on ground stress and conditions, and tunnel geometry is generally considered in equation
3.

Since the model has no prior information about the required support pressure pf,req, the support
pressure is chosen randomly during the first episode. Then, the model learns the optimal support
pressure based on the rewards collected, as explained in the next section.

pf,req
pf,req + D/2

D G

T

PV

ϑ

c', φ', γ

pf,req - D/2

C

Figure 2. Tunnel face failure mechanism and forces acting on the sliding wedge according to [4].

2.4. Deep Q-Network

In this section, the algorithm to maximise the rewards collected during the TBM excavation
is elucidated. Since the material properties have continuous values, the number of possible states
as described in Section 2.2 is infinite. Hence, the model cannot have a complete knowledge of the
expected reward associated with the actions at each state and the knowledge of the value function
Q(s, a) is thus incomplete. This is where the Deep Q-Network (DQN) comes into play.

The DQN uses deep neural networks to approximate the value function Q(s, a) [106]. This
algorithm was developed by DeepMind, the Google research group, and was able to play six Atari
games at record levels [78,80–82,107]. DQN is a particular approach to Q-learning, a method of learning
optimal action values, whose main idea is to predict the value of a state-action pair, compare this
prediction to the observed rewards and update the parameters of the algorithm to improve future
predictions. Q-learning algorithms are formally described by equation (4).

Q(Si, Ai) = Q(Si, Ai) + λr[Ri+1 + Γ · Qmax(Si+1, a)− Q(Si, Ai)] (4)

In the present example, the DQN is trained to choose the best tunnel face support pressure based
on the state variables. The DQN receives the state vector Si as the input and delivers the vector of the
expected rewards associated with every action as the output. After the action Ai is taken and the agent
moves to the new state Si+1, the reward Ri is observed. The algorithm is run again with Si+1 as the input
and returns the action with the highest value Qmax(Si+1, a). Finally, the learning algorithm is updated
to reflect the actual reward, using the mean squared error as loss function and minimising the difference
between the predicted and target prediction of Q(Si, Ai) + λr[Ri+1 + Γ · Qmax(Si+1, A)− Q(Si, Ai)].

In equation (4), λr and Γ are the hyperparameters that influence the algorithm learning process.
λr is the learning rate. The algorithm makes only small updates at each step with a low value of λr and
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large ones with a high value. The hyperparameter Γ is the discount factor and controls how much our
agent discounts future rewards when making a decision. Given that the discount factor is less than 1
(Table 3), future rewards are discounted more than immediate rewards.

The deep neural network is implemented using the PyTorch library [108] of the Facebook AI
Research lab and its higher-level interface nn, as explained in [109]. Figure 3 shows the architecture of
the neural network. The input layer is the state vector whose elements are γi/γmax, ci/cmax, ϕi/ϕmax,
Ei/Emax and Ci/Cmax. The support pressure pf is comprised in the discrete interval of natural integers
(50, 250) kPa and is assigned in 50 kPa steps. Hence, the output layer is a vector with five elements, one
for each possible support pressure (50, 100, 150, 200 and 250 kPa). The first and second hidden layers
have each 50 neurons. This architecture has been previously applied to slope stability and tunnelling
[36,110] and is the result of a trade-off between learning capabilities and computational effort.

However, DQNs are generally prone to training instability [78]. Hence, the following sections
describe two common techniques used to stabilise the DQN, namely experience replay [111] and target
memory [78].

Input layer Hidden layer 1 Hidden layer 2 Output layer
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Figure 3. Architecture of the Deep Neural Network used for the choice of the support pressure based
on the expected rewards and given the state of the TBM in the environment.

2.4.1. Experience replay

Since the soil properties are variable in nature, the algorithm cannot simply memorize a sequence
of support pressures pf. It must find the maximum support pressure that cause little to no surface
settlement regardless of the geological setting.

However, reinforcement learning is essentially a trial-and-error process, which could lead to
unstable solutions. This instability is particularly evident if learning is slow, which occurs when
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the rewards are sparse. This problem is deemed “catastrophic forgetting” [112] and is a common
issue of gradient descent-based training methods in online training, i.e. when backpropagation is
performed after each state. The essence of catastrophic forgetting is the push-pull between very similar
state-action pairs that results in the inability to train the algorithm.

To this end, experience replay can be used to accelerate the learning process [111] by adding batch
updating to the online learning scheme, as follows:

1. In state i, the algorithm takes action a, and observes the new state si+1 and reward ri+1,
2. it stores this as a tuple (s, a, si+1, ri+1) in a list and
3. continues to store each experience until the list is filled to a specific length, called “memory size”

(sm).
4. Once the experience replay memory is filled, a subset with a predefined batch size (sb) is randomly

selected.
5. The algorithm iterates through this subset and calculates the value updates for each subset; it

stores these in the target array Y and the state s of each memory in X.
6. Finally, it uses X and Y as a mini-batch for training and overwrites the old values in the experience

replay memory when the array is full.

Thus, in addition to learning the value of the actions, a random sample of past experiences is also used
for training. A further refinement is represented by the target memory.

2.4.2. Target memory

In DQNs, instabilities can arise by updating the parameters after each action. This instability
is caused, inter alia, by the correlation between subsequent observations and can be overcome by
updating the value function Q(s, a) only after a prescribed number of episodes [78].

In the present problem, the rewards are “sparse”, i.e. they are significantly higher at the end
of each episode than after every action. To solve this problem, the Q-network is duplicated. The
parameters of this copy, i.e. the target Q̂-network, are not up-to-date and lag behind the regular
Q-network [78]. The Q̂-network is implemented as follows:

1. The Q-network is initialised with parameters θQ and
2. the Q̂-network is a copy of the Q-network with distinct parameters θT. At first, θT = θQ.
3. The epsilon-greedy strategy is used with the Q-values of the Q-network to select the action a.
4. The reward and new state ri+1 and si+1 are observed.
5. The Q̂-values of the Q̂-network are set to ri+1 at the end of the episode or to ri+1 + λr · Q̂max(Si+1)

otherwise.
6. The Q̂-value is backpropagated through the Q-network (not the Q̂-network).
7. After a certain number of iterations, called synchronisation frequency ( f ), θT is again set equal to

θQ.

Up to this point, all the features of the algorithm 1 have been presented. In the next section, the results
of the analytical environment are presented. The values of the hyperparameters λr, Γ, f , sm and sb are
chosen based on the sensitivity analysis of Section 3.1.

3. Results of the analytical environment

In this section, the results of the analytical environment are presented. The cumulative reward
collected at every episode is shown in Figure 4a. The orange line represents the moving average of 10
episodes and the orange band is the range of ±1 standard deviations. Since the algorithm is trained
on the geology of Figure 1 only, the reward increases steadily, barely oscillating around the moving
average. In Figure 4b, the cumulative rewards obtained from the 1st, 25th, 50th and 100th episodes are
highlighted. As expected, the reward increases more rapidly for the last episodes. Also, approximately
at the “chainages” x = 200 and 700 m, slight drops in the cumulative reward occur due to the abrupt
changes in geology (Figure 1).
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Algorithm 1 Workflow of the Reinforcement Learning algorithm

i = 0 ⊲ Episode number
while i < N do

i = i + 1
x = 0
t = 0
S0 = ( γ(0)

γmax
, c(0)

cmax
, ϕ(0)

ϕmax
, E(0)

Emax
, C(0)

Cmax
) ⊲ Initial state

while done 6= True do ⊲ Move across states
if r < ε then ⊲ Epsilon-greedy policy At = na
else if r ≥ ε then At = Qmax(St, a)
end if
if pf(t) < pf,req(t) then

λ = 1 − pf(t)/pf,req(t) ⊲ Stress release
ut =

λγ(t)
E(t)

(

D
2

)2
⊲ Settlement

else
λ = 0
ut = 0

end if
Rt = 1 − pf(t)

200 kPa ⊲ Reward for lower support pressures
Rt = Rt − ut | Rt = Rt − max(∆ut,j) ⊲ Penalty for settlement
if ut > 100 mm | FDM calculation diverges then

Rt = −100 ⊲ Game over penalty
done = True

end if
if x > tunnel length then

done = True
end if
St = ( γ(t)

γmax
, c(t)

cmax
, ϕ(t)

ϕmax
, E(t)

Emax
, C(t)

Cmax
) ⊲ New state

Update replay list
Select a random subset of the list
Recompute Q for the subset
Backpropagate
x = x + dx ⊲ Advance TBM
t = t + 1 ⊲ Move to next state

end while
end while ⊲ Go to next episode

The support pressures and the resulting settlement at the episodes 1, 50 and 100 are shown at the
left side and right sides of Figure 5, respectively. As the support pressure is randomly chosen at the
first episode, Figure 5a exhibits a chaotic behaviour. As the agent learns the optimal support pressures,
this behaviour is mitigated and the support pressure becomes more stable (Figure 5c). Figure 5c also
proves that the algorithm is able to choose the support pressure in such a way that it almost encases the
required pressure. Furthermore, even when pf < pf,req, the resulting settlement is negligible (Figure
5f). The model sensitivity to changes in the values of the hyparameters is studied in the next section.
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Figure 4. Rewards of the analytical environment with constant geology: (a) Cumulative reward vs.
no. of episode; moving average and interval of range ±one standard deviation of ten episodes. (b)
Cumulative reward vs. excavation step for all episodes.
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Figure 5. Required and provided support pressures and settlement in the analytical environment with
constant geology at episode (a) 1, (b) 50 and (c) 100.

3.1. Sensitivity analysis

Contrary to the parameters of the deep neural networks depicted in Figure 3 that are learnt by the
algorithm, hyperparameters are set by the user. In Section 2, a number of hyperparameters have been
introduced, such as the discount factor Γ, learning rate λr, synchronisation frequency f , the memory
sm and batch sb sizes.

The model sensitivity to these hyparameters is summarised in Table 3. Obviously, the results
are not very sensitive to the discount factor and Γ = 0.15 returns the highest cumulative reward. A
low value of Γ implies that the action taken at one state has little impact on the actions taken in the
following states. This seems plausible for tunnelling where the settlement caused by an excessively
low support pressure cannot be possibly offset by a later support pressure increase. The optimal
learning rate is a matter of numerical stability. In this study, λr = 0.001 appears to be the optimal value
and, if the learning rate is set at λr = 0.01, the cumulative reward cannot be properly maximised. The
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cumulative reward is not very sensitive to the synchronisation frequency where the optimal value is
5 episodes. The memory size has a more pronounced effect and the optimal value is 10. Finally, the
batch size of 2 episodes provides the best results.

In summary, the proposed model is not very sensitive to the discount factor and the
synchronisation frequency, it is starkly affected by the learning rate and the memory size in this
particular problem. After the hyperparameters are optimised, the algorithm is tested against random
geologies in the next section.

Table 3. Results of the analysis of sensitivity to the hyperparameters.

Hyperpameter Values Max. Reward

Discount factor Γ 0.01 621.0
0.15 657.2
0.2 622.2

Learning rate λr 10−4 637.1
10−3 657.2
10−2 536.3

Synchronisation frequency f 5 657.2
10 644.2
15 652.1

Memory size sm 5 647.3
10 657.2
15 562.8

Batch size sb 5 630.0
2 657.2
1 609.3

3.2. Random geologies

Prompted by the initial success in optimising the cumulative reward with constant geology, the
algorithm is further tested against random geologies. Hence, the depth of the overburden and the
material properties are no longer fixed as depicted in Figure 1, but change at every episode. Figure 6
exemplarily shows the profiles of the cohesion values at the episodes 2, 3, 4 and 5.

Clearly, since the environment changes at every episode, the cumulative reward shown in Figure
7a does not increase steadily as in Figure 4a, but swings markedly. The model is able to forecast the
support pressure increases to accommodate for larger pf,req in different settings (Figure 8). Furthermore,
even when the support pressure provided fall below the required one, the resulting settlement is lower
than about 4 mm.

The previous results are obtained with no additional model training. This means that the initial
value of ε is set to zero. By starting from different values of ε, it is shown in the following that no
additional exploration is needed. Note that, strictly speaking, even if ε0 = 0 the Q-value is slightly
updated as rewards are collected along the way. The agent, however, would perform the same action,
given a certain state, until its expected rewards falls below that of other actions. The results of this
analysis are shown in Table 4 where the mean cumulative reward and standard deviation are listed for
different ε0. The highest mean cumulative reward and the lowest standard deviation are achieved for
ε0 = 0. Therefore ε0 = 0 is selected as the optimum value, meaning that no additional exploration is
required to optimise the algorithm performance in the random analytical environment. The numerical
environment is described in the next section.
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Figure 6. Cohesion values of the analytical environment with random geologies. (a) Episode 2. (b)
Episode 3. (e) Episode 4. (d) Episode 5.
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Figure 7. Rewards of the random environment: (a) Cumulative reward vs. no. of episode; moving
average and interval of range ±one standard deviation of ten episodes. (b) Cumulative reward vs.
excavation step for all episodes.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 February 2023                   doi:10.20944/preprints202302.0236.v1

https://doi.org/10.20944/preprints202302.0236.v1


15 of 28

250 500 750 1000 1250 1500 1750 2000
x (m)

0

100

200

300

Fa
ce

 su
pp

or
t p

re
ss

ur
e 

(k
Pa

)

pf pf, req

0 250 500 750 1000 1250 1500 1750 2000
x (m)

10

8

6

4

2

0

Su
rfa

ce
 se

ttl
em

en
t (

m
m

)

250 500 750 1000 1250 1500 1750 2000
x (m)

0

100

200

300

Fa
ce

 su
pp

or
t p

re
ss

ur
e 

(k
Pa

)

pf pf, req

0 250 500 750 1000 1250 1500 1750 2000
x (m)

10

8

6

4

2

0

Su
rfa

ce
 se

ttl
em

en
t (

m
m

)

250 500 750 1000 1250 1500 1750 2000
x (m)

0

100

200

300

400

Fa
ce

 su
pp

or
t p

re
ss

ur
e 

(k
Pa

)

pf pf, req

0 250 500 750 1000 1250 1500 1750 2000
x (m)

10

8

6

4

2

0

Su
rfa

ce
 se

ttl
em

en
t (

m
m

)

Figure 8. Required and provided support pressures and settlement in the analytical environment with
random geologies at episode (a) 1, (b) 50 and (c) 100.

Table 4. Mean rewards and standard deviation of the random environment for different values of ε0.

ε0 Mean reward Standard deviation

0.00 458.1 124.9
0.25 453.6 130.1
0.50 315.8 138.4
0.75 326.2 169.5
1.00 221.2 212.0

3.3. Effect of the number of episodes

When more episodes are played, the environment is explored more thoroughly. Hence, it is
expected that the maximum cumulative reward increases with the number of episodes. Figure 9
shows that the maximum cumulative reward grows asymptotically up to approximately 683 after 400
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episodes. It also shows that, the maximum cumulative reward obtained after 50 episodes already
represents approximately 90% of the maximum reward achieved after 400 episodes.
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Figure 9. Effect of the number of episodes on the maximum cumulative reward.

3.4. Finite difference environment

Due to the simplified analytical formulations, the previous environment is not very realistic. It
is, however, useful to demonstrate the capability of the model and to optimise its hyperparameters.
Tunnels are often simulated with numerical analysis [113–116]. Hence, a more realistic finite difference
environment is outlined in the following based on the finite-difference program FLAC3D [117].

The mesh grid is 100 m wide, between 27 and 44 m high, and 100 m long. The tunnel diameter is
10 m and the distance between the tunnel axis and the bottom is 15 m. The soil surface slope changes at
every 10 m of projected distance. The grid consists of 16,932 gridpoints and 15,300 elements with target
dimensions of 2 × 2 × 1.5 m (Figure 10). The linear elastic material law with Mohr-Coulomb failure
criterion is considered. The soil properties are assigned within the intervals of Table 2 to randomly
inclined layers. The property values are listed in Table 5. The displacements are fixed in the horizontal
direction at the vertical boundaries and in the vertical direction at the bottom. The excavation is
performed by removing the elements corresponding to the excavated soil. The support provided by
the tunnel lining is simulated by fixing the displacement at the excavation boundaries. The support
pressure is provided by applying a linearly increasing external pressure onto the tunnel face (Figure
11). This pressure is equal to 50, 100, 150, 200 or 250 kPa at the tunnel axis and increases linearly with
depth according to the unit weight of the support medium γsm = 12 kN/m³. The support medium
consists of excavated soil and additives for EPB machines or slurry suspension for SPB and mixshield
machines [118]. The surface settlement is measured at the gridpoints situated on the surface every 10
m.

In the analytical environment, the surface settlement is calculated at every excavation round.
In reality, the cumulative surface settlement depends on the previous excavation steps. Hence, the
settlement increase is considered in the finite difference environment to account for the effect of the
tunnel face support pressure at each step. The settlement reward for state t is thus expressed as the
maximum settlement difference between the excavation steps max(∆ut,j) of all the j-th measuring
point along the soil surface.

Finally, the game over condition is not triggered by excessively large settlements, such as in the
analytical environment, but by the divergence of the numerical solution.

Within the framework of transfer learning, the application of a machine learning model to a
similar but unrelated problem [119], it is worth studying if and to what extent the algorithm used
for the analytical environment can be deployed on the finite difference environment. The cumulative
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reward of 64.5 is obtained in this environment if the support pressure is predicted with the algorithm
trained in the analytical environment. This result is compared by retraining the model with ε0 = 1 in
the finite difference environment. As it takes approximately 30 minutes to complete one episode, this
training is computationally costly. Therefore, the model is trained only for 50 episodes or about 90% of
the expected peak cumulative reward according to Figure 9.

The cumulative reward obtained at each episode is shown in Figure 12. For the first 20 episodes,
the cumulative reward oscillates across approximately 65, corresponding to the reward obtained by
using the model trained in the analytical environment. The cumulative reward oscillates across 75
between episodes 20 and 37 and stabilises at about 90 from episode 40.

Figure 13 shows the support pressures chosen along the chainage at each episode. This
visualisation shows how the initial randomness begins to vanish at episode 20 where the first patterns
start to emerge. In particular, the agent learns that the optimal support pressure between chainage
65 and 100 m is 250 kPa. It is also interesting to notice, that, between episodes 20 and 37, the agent
preferably chooses a support pressure of 150 kPa between chainage 0 and 65 m. Starting from episode
37, it is evident that the optimal support pressure for the first 65 m is 100 kPa. This is consistent with
Figure 12, where the cumulative reward starts increasing after episode 20 and increases again after
episode 37.

Figure 14 shows the settlement after the last episode is completed. The surface settlement is up to
1 cm in the first 65 m of excavation and up to 2 cm in the last 35 m. Hence, it is evident that the actions
chosen by the agent keep the settlement within reasonable limits.

From the previous analysis, it seems that the model developed in the analytical environment can
be transferred to the finite difference environment provided that the model is retrained. These results
are discussed in the next section.

44

100
100

27

Figure 10. FLAC3D three-dimensional model. The colours represent the randomly generated soil layers
1 (yellow), 2 (green) and 3 (orange)
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Figure 11. Detail of the horizontal displacement at the tunnel face and linearly increasing support
pressure.
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Figure 12. Rewards of the finite difference environment. Cumulative reward vs. no. of episode; moving
average and interval of range ±one standard deviation for the last ten episodes.
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Figure 13. Support pressure chosen by the agent along the chainage for every episode.

Figure 14. Computed vertical displacement at the last episode (in metres).

Table 5. Soil property values assigned to the soil layers 1 (yellow), 2 (green) and 3 (orange) of Figure
10.

Soil parameter Symbol Unit Layer 1 Layer 2 Layer 3

Unit weight γ (kN/m³) 23.0 13.7 15.9
Cohesion c (kPa) 14 1 11

Friction angle ϕ (◦) 25 23 34
Young’s modulus E (MPa) 11 32 13

4. Discussion

The results show that our model can optimise the support pressure by simultaneously control
surface settlement within a reasonable threshold in both analytical and finite difference environments.
Implementing model training in an analytical environment is relatively simple and a large number of
episodes can be completed fairly fast. Moreover, this class of environments allows for hyperparameter
tuning. On the other hand, reinforcement learning training in the finite difference environment (or,
more generically, in numerical environments) is rather costly, see also [36]. Therefore, transfer learning
is employed for hyperparameter tuning. As shown in the previous section, the model architecture and
hyperparameters can be generally transferred to the finite difference environment, on the condition
that retraining is performed starting from ε0 = 1.0.
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Some limitations of this study can be highlighted and a strategy to amend them is outlined in
the following. Firstly, albeit its use in engineering design, the finite difference environment cannot
completely match reality. This is especially true in light of the simplifications considered in this study,
such as the linear-elastic material law with Mohr-Coulomb failure criterion, the simulation of the
tunnel lining as a zero displacement boundary condition, the absence of the ring gap and mortar and
the deterministic soil properties values. These limitations can be overcome as follows:

1. The adoption of more advanced constitutive models, the simulation of the lining with shell
elements and the simulation of the ring gap and mortar [120,121]. It is perhaps worth noting that
different types of segments (in terms of concrete class and reinforcement) and ring gap mortar
pressures are chosen in practice. Hence, two additional agents could be implemented to predict
the segment types and mortar pressures.

2. The consideration of the spatial variability of soil properties with random fields, by varying
the soil properties according to certain statistical distributions and correlation lengths [122].
Since random fields further complicate the environment, more advanced reinforcement learning
algorithms might be adopted, such as the C51 [123]. Also, the definition of the state variables can
be improved, e.g. by considering the soil properties in more than one point at each epoch.

The results match the expectation that the agent can be trained to predict the tunnel face support
pressure. However, it is striking that the agent does not appear to need any additional training when
deployed on random geologies (Section 3.2). This feature could be also theoretically tested with
the finite difference environment. However, hyperparameter tuning with this environment is still
computationally costly.

The results show that the DQN algorithm can be successfully used to control the tunnel support
pressure and adapt to changes in the soil properties, such as variations in unit weight, cohesion, friction
angle and Young’s modulus. One added value of the DQN in this context is that it can be used to
develop more efficient and effective control strategies for maintaining tunnel face stability compared
to traditional methods. The DQN has the capability to generalise to new situations, which can be
useful in the case of changes in soil properties or overburden height. Furthermore, the DQN algorithm
allows for an efficient use of the available data as it is not heavily dependent on its quality, which is a
common problem with traditional methods.

5. Conclusions

In this study, the Deep Q-Network reinforcement learning algorithm is applied to control the
tunnel face support pressure during excavation. The algorithm is tested against analytical as well
as numerical environments. The analytical environment is used for hyperparameter tuning. The
optimised model is used in the numerical environment.

It is found that:

1. The algorithm is capable of predicting the tunnel face support pressure that ensures stability
and minimise settlements among a prescribed range of pressures. The algorithm can adapt to
geological (soil properties) or geometrical (overburden) changes.

2. An analytical environment is used to optimise the algorithm. The optimal hyperparameters are
found as Γ = 0.15 (discount factor), λr = 10−3 (learning rate), f = 5 (synchronisation frequency),
sm = 10 (memory size) and sb = 2 (batch size). These hyperparameter values are effective also in
the numerical environment.

3. Although the algorithm is trained in a static environment with constant geology, it is also effective
with random geological settings. In particular, it is found that using the algorithm trained with a
constant geology can be used for random geologies without retraining.

4. The maximum cumulative reward plateaus after 400 training episodes and about 90% of the
peak performance is reached after 50 episodes.
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5. The algorithm proves effective both in the analytical and in the more realistic numerical
environment. Training is more computationally costly in the numerical environment. However,
the hyperparameter values optimised in the analytical environment can be efficiently adopted.

Future research can consider more refined environments (in terms of constitutive models,
simulation of the lining, ring gap and mortar and random fields), provide more advanced state
definitions (by considering the soil property values of various points) and use more refined
reinforcement learning algorithms.

In spite of some limitations of this method, this study shows that the tunnel face support pressure
can be estimated by an intelligent agent for design and possibly even during building operations.
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