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Abstract: We consider a new model of a branching random walk on a multidimensional lattice with
continuous time and one source of particle reproduction and death, as well as an infinite number
of sources in which, in addition to the walk, only absorption of particles can occur. The asymptotic
behavior of the integer moments of both the total number of particles and the number of particles at
a lattice point is studied depending on the relationship between the model parameters. In the case of
the existence of an isolated positive eigenvalue of the evolution operator of the average number of
particles, a limit theorem is obtained on the exponential growth of both the total number of particles
and the number of particles at a lattice point.
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1. Introduction

We consider a continuous-time branching random walk (BRW) on the multidimensional lattice 74,
d € N, with one source of particle reproduction and death located at the origin and an infinite number
of absorbing sources located at all other points of the lattice in which, in addition to walk, the particle
can only disappear.

The behavior of a BRW with a single source of particle generation (branching) located at the
origin and no absorption at other points under the assumption of a finite variance of jumps has been
studied, for example, in [1], and with infinite variance in [2,3]. The random walk underlying the
processes under consideration is defined using the transition intensity matrix A = (a(x, y))x,yezd and
satisfies conditions of regularity, symmetry, spatial homogeneity (which allows us to consider a(x, y)
as a function of one argument a(y — x)), homogeneity in time and irreducibility. In these models the
operator that specifies the evolution of the average number of particles has the form

H = A+ BAg,

where the operator A : [P (Z%) — IP(Z%) generated by the matrix A acts on the function ¢ € IP(Z%) by
the formula

(Ap)(x) = Y a(x—y)ely), xe€Z, )
yezZd

and the operator A is defined by the equality Ag = 506L, where 6y = do(+) denotes a column-vector
on the lattice taking the unit value at the point 0 € Z? and vanishing at other points. The parameter
B in the definition of the operator H is given by the equality B := },~1(n — 1)b, — by, where b, is
the intensity of occurrence of n > 1 descendants of the particle, including the particle itself, by is

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0003-3715-6896
https://orcid.org/0000-0002-6615-4315
https://doi.org/10.20944/preprints202302.0229.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2023 doi:10.20944/preprints202302.0229.v1

20f 15

the absorption intensity of the particle. Thus, the operator BAg determines the process of particle
branching at the origin.

In a BRW with an infinite number of absorbing sources the evolution operator of the average
number of particles is modified as follows

E=A+ B "Ny —bol,

where [ is the identity operator and the last term specifies the process of absorption of particles at every
lattice point. Note that the parameter f* := Y, (n — 1)b, in the considered BRW differs from the
parameter § = B* — by in that for by > 0 the parameter f can take values from the interval (—oo, 4+0),
while the parameter 8* is non-negative: §* > 0.

Let the parameter . be determined by the formula . := 1/Gy(0,0), where G, (x, y) is the Green’s
function of the random walk. Many properties of the transition probabilities of a random walk p(t, x, )
are expressed in terms of the Green’s function, while the Green'’s function can be defined as the Laplace
transform of the transition probability p(t, x,y) by the formula:

Gi(x,y) == /Ooo e Mp(t,x,y)dt, A>0. 2)

As shown, for example, in [1], when the relation §* > B. holds, the operator A + f*Aj has an
isolated positive eigenvalue Ag, which is the solution of the equation 8*G, (0,0) = 1. The asymptotic
behavior of the integer moments of the total number of particles and the number of particles at every
point of the lattice in the process under consideration depends on the dimension of the lattice d,
the relation between the parameters f* and B, and for f* > B. also on the relation between A and by.

In the case of B > B, a BRW with one source of particle generation and no absorbing sources
is called supercritical. The operator H in this case has an isolated positive eigenvalue and there is an
exponential growth in the number of particles at every point and in the total number of particles [1].
In the process under consideration, if the relation f* > B, holds, the operator £ has an isolated
eigenvalue Ag = Ay — by, where Ay > 0 is an isolated eigenvalue of the operator A + p*Ap. Note
that the eigenvalue A¢ of the operator £ is not always positive, so the behavior of the process differs
significantly depending on the relation between the parameters A and by.

The structure of the paper is as follows. In Section 2 we give a formal description of a BRW with
particle reproduction at the origin and absorption at every point of the lattice. Section 3 presents the
key equations. Section 4 gives a complete classification of the asymptotic behavior of the first moments
of particle numbers. In Section 5 the limit Theorem 7 is obtained, which states that despite the infinite
number of absorbing sources an exponential growth of both the total number of particles and the
number of particles at every point can be observed in the considered BRW. This happens when A¢ > 0,
which is equivalent to Ay > by. In Section 6 we study the asymptotic behavior of the particle number
moments for f* > B, and Ag = 0 (Ag = bp), it is found that the integer moments both the total number
of particles and the number of particles at every point grow in a power-law manner as t — oo, with the
first moments behaving as constants at infinity. In Section 7 we consider the remaining cases, that is,
the case when * > B. and Ag < 0 (A9 < byp), and also, when the operator £ does not have an isolated
eigenvalue, that is, when * < .. Theorems 9-11 are obtained, stating that the moments of particle
numbers in these cases decrease exponentially as t — co. It turned out that the results of Sections 5
and 6 as well as Theorem 9 of Section 7 do not depend on the conditions imposed on the variance of
random walk jumps, while the behavior of the process for f* < . turns out to be different for finite
and infinite variance of jumps (Theorems 10 and 11).

We will call the considered BRW supercritical if B* > B. and Ag > O, critical if B* > B and Ag =0
and subcritical if B* > B. and Ag < 0or p* < ..

Note that there is no exponential decrease of moments in a BRW with a single source of particle
generation (and the absence of other absorbing sources) [1]. The classification of the asymptotic
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behavior of the BRW with possible absorption of particles at every point Z¢ turns out to be closer to
the classification of the behavior of the Markov branching process (t) with continuous time, where
the average number of particles Ej(t) = e™. A branching process is called supercritical if Eu(t) > 1
(a > 0), critical if Eu(t) = 1 (a = 0) and subcritical if Eu(t) < 1 (a < 0), that is, the average number
of particles in the supercritical branching process increases exponentially, in the critical it tends to a
constant and in the subcritical it decreases exponentially [4].

2. Description of the Model

Let us proceed to a formal description of the BRW with one source of particle reproduction and
death located at the origin of coordinates and an infinite number of absorbing sources located at the
remaining points of the lattice Z4, d € N.

The random walk underlying the process is specified using the transition intensity matrix
A = (a(x,y)), yeza and satisfies the conditions regularity, symmetry, spatial homogeneity (which
allows us to consider a(x,y) as a function of one argument a(y — x)), time homogeneity and
irreducibility (a particle can be at any point of the lattice).

The transition probability of a random walk, that is, the probability that at time ¢ > 0 the particle
is at point y, provided that at time t = 0 it was at point x, is denoted by p(t, x,y). Asymptotically for
h — 0 the transition probabilities are expressed in terms of the transition intensities as follows

p(hxy) =a(x,y)h+o(h), x#y,
p(h,x,x) =14+a(x,x)h+o(h).

Note that the condition for the finite variance of jumps in terms of the transition intensity matrix
is written as Y, 74 |z|2a(z) < oo. In situations where the finiteness of the variance of jumps turns out
to be essential we will separately consider the case when the function 4(z) has the following behavior
at infinity

H(z/|z])

a(z) ~ e |z] = oo, ©)

where | - | is Euclidean norm on RY, H(z/|z|) = H(—z/|z|) is a positive continuous function on
St ={z e R?:|z| =1}, « € (0,2) and the symbol ~ here and below will denote the asymptotic
equivalence of functions. Under this assumption the variance of jumps becomes infinite (see [5]).
Random walks with infinite variance of jumps are commonly referred to in the literature as random
walks with heavy tails. We will consider the simplest case, when H(z/|z|) = C > 0, and use the results
obtained in [2,3], where a BRW with one particle generation center and the absence of absorbing
sources was considered under condition (3).

To describe the behavior of a random walk it is convenient to use the Green’s function G, (x,y),
which, as mentioned in the introduction, can be defined as the Laplace transform of the transition
probability p(t, x,y) by the Formula (2).

As in [1] we will call the random walk recurrent if Go(0,0) = oo and nonrecurrent or transient if
Go(0,0) < co. In the case of finite variance of jumps the random walk is transient for d > 3 and is
recurrent for d = 1,2, while in the case of infinite variance of jumps (when the condition (3) is satisfied)
the transience of a random walk turns out to be possible in the dimensiond = 1 for « € (0,1) and in
the dimension d = 2 for a € (0,2).

The branching process at the particle generation center is specified using the infinitesimal
generating function f(u) = Y> (byu", 0 < u <1, whereb, > Oforn # 1,b; <0, Y _oby, = 0.


https://doi.org/10.20944/preprints202302.0229.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2023

40f 15

The coefficients b, determine the main linear part of the probability p. (I, n) of having n particles at
time i provided that there was one particle at the initial time t = 0:

p«(h,n) = byh+o(h) forn # 1,

The coefficients by, for n > 1 can be interpreted as the intensities of appearance of n descendants of the
particle, including the particle itself, while by is interpreted as the intensity of death, or absorption,
of the particle. The generating function at other points of the lattice has a simpler form: f(u) =
bo + byu = by(1 — u). Further, we assume that the intensity of death is the same at all lattice points.

The evolution of particles in the system occurs as follows: a particle located at some time f > 0
at the point x € Z% in a short time dt — 0 can either jump to the point y # x,y € Z“, with probability
a(x,y)dt + o(dt), or die with probability bydt + o(dt). If the point x is the center of particle generation
(x = 0), then the particle can also produce n > 1 descendants, including itself, with probability b,dt +
o(dt). Otherwise, with probability 1 + a(x, x)dt + o (x)b1dt + (1 — do(x)) (—bodt) 4 o(dt), the particle
remains at the point x during the entire time interval [t, + dt]. We assume that each new particle
evolves according to the same law, independently of other particles and of the entire prehistory.

The main objects of study in BRW are the number of particles at the time t > 0 at the
point y € Z? (the local number of particles), denoted by u(t,y), the total number of particles
(particle population), denoted by pu(t) = Lyezd 1(t,y), and their integer moments, which are denoted
as my(t,x,y) = Exp"(t,y) and my(t, x) := Expu"(t), n € N, where E, is the mean on condition
1(0,y) = 6(x —y), 6(-) is the Kronecker delta on Z¢. We will assume that at the initial moment
of time t = 0 the system consists of one particle located at the point x € Z9, so the expectations of the
local and total number of particles satisfy the initial conditions m (0, x,y) = d,(x) and m;(0,x) =1
respectively.

3. Key Equations

Let us present the key equations that will be required to study the behavior of the considered
BRW. The proofs of the theorems presented in this Section are based on the methods developed in [1]
and follow the same scheme, so the corresponding theorems will be presented below without proof.

We introduce the Laplace generating functions of the random variables y(t,y) and p(t) forz > 0:

F(z;t,x,y) == E e H(ty) F(z;t,x) := Eye 2t

Taking into account the evolution of particles in the system and using the Markov property of the
process, the following statement can be proved for the generating functions.

Theorem 1. The functions F(z;t,x) and F(z; t, x,y) are continuously differentiable with respect to t uniformly
with respect to x,y € 72 for all 0 < z < oo. They are the solutions to the following Cauchy problems:

0tF(z;t,x) = (AF(zt,-))(x) + do(x) f(F(z £, x))+
+ (1 —d0(x))bo(1 — F(z;t,x)),
0tF(z;t,x,y) = (AF(z;t,-,y))(x) + do(x) f(F(z:t, x, )+
)

)
+ (1= 00(x))bo(1 = F(zt,x,y))

with the initial conditions F(z;0,x) = e % and F(z;0,x,y) = e~ %y(%) respectively. Here A : IV (Zd) —
1P(Z%),1 < p < oo, is a walk operator that acts on the function ¢ € 1P (Z%) by the formula (1).

Note that the proof of this theorem repeats the arguments from the proof of Lemma 1.2.1 in [1]
and differs only in technical details.

doi:10.20944/preprints202302.0229.v1
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The following theorem turns out to be true for the moments of particle numbers.

Theorem 2. The moments my(t,-,y) € 12(Z%) and m,(t,-) € 1°(Z*) satisfy the following differential
equations in the corresponding Banach spaces for all natural n > 1:

dm1

At Emy = Amy + B*Nomy — bomy, @)
d
Z;'n :577’171+5O(')gn(m1/-'-/mn71)/ n 22’ (5)

with the initial conditions my(0,-,y) = d,(-) and my(t,-) = 1 respectively. Here B* := Y ,~1(n —1)by,
the operator A : IP(Z%) — IP(Z%) is given by the formula (1), the operator Ay is defined by the equality
Ny = (5050T , where &y = &y (-) denotes a column-vector on the lattice taking the unit value at the point 0 € z4
and vanishing at other points and the function g, (my, ..., m,_1) is given by the formula

n 'B(r) n!
gn(m, . my 1) =), o Z P M My
r=2 " i,..ip>0 10 re
i1t tip=n

where B = (1),

The proof of this theorem repeats the argument of the proof of Theorem 1.3.1 from [1]. It also uses
equations for generating functions, the Faa di Bruno’s formula and the following property:

my(t,x) = (—1)" lim 9'F(z;t,x),
z—0+

— (_1\" 15 n .
my(t,x,y) = (—1) Zgrél+azF(z,t,x,y).

Consider separately the case f* = 0, this condition is equivalent to the fact that all b, forn > 1
are equal to zero. That is, in this case the particle does not produce new descendants and only the
death and movement of the particle along the lattice is possible. The operator describing the evolution
of the average number of particles in this particular case has the form £ = A — byl and the equations
for the moments for all n € N take the form

omy = Amy, — bomy,.

Making the change of variables 1, = g,e~%* in the last equation, we get that the functions g, satisfy
the equation

atﬂn = -AQn‘

The equation for the transition probabilities of a random walk p(t, x, y) has the same form, whence we
get that

my(t,x,y) = e‘botp(t, X,Y), my(t,x) = e bot,

foralld,n € N.

Further, we will assume that the parameter p* is strictly positive (a particle in the generation
source can produce at least one new particle).

Integral equations for the moments will play an important role in the further analysis,
the derivation of which is carried out according to the same scheme as in Theorem 1.4.1 from [1].
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Theorem 3. The moment my(t, x,y) satisfies both integral equations
m(t,3,y) = plt )+ [ (B plt = 5,%,0) — boe Ay (5,0,9) s, ©
m(t,3,y) = plt )+ [ (Bp(t = 5,0,y) — boe A s (53,0 s )
The moment my (t, x) satisfies both integral equations
my(t,x) =1+ /Ot(ﬁ*p(t —5,%,0) — boe =5 )y (s,0) ds,
my(t,x) =1+ /Ot(,B* — boe™ =) )y (s, x,0) ds. o
For k > 1 the moments my(t, x,y) and my(t, x) satisfy the equations
m(t,x,y) = my(t,x,y)+
+ /Ot my(t —s,x,0)8k(m1(s,0,y),. .., me_1(s,0,y)) ds, o

my(t,x) = my(t, x)+

t
+ [ it =5, %,0)gc(m (5,0), ..., w1 (s,0)) ds:

Note that the derivation of the differential and integral equations presented in this Section does
not depend on the conditions imposed on the variance of random walk jumps, as noted, for example,
in [3,6].

4. Classification of the Asymptotic Behavior of the First Moments

Let us first study the asymptotic behavior of the first moments. To do this we pass from the
functions mj (t,-,y) and my(t,-) to the functions q(t, -,y) and 4(t,-), making a change of variables
my = ge~ . We obtain an equation for the functions q(t,-,y) and 4(t, -) of the form

% = Ag+ B Bog
with the initial conditions q(0, -, y) = d,(-) and q(0, -) = 1 respectively.

Note that the resulting equation has exactly the same form as the equation for the first moments
in the BRW without absorbing sources, considered in [1] (or in [2] for the case of heavy tails), which
greatly simplifies the study. The classification of the asymptotic behavior of the first moments of the
local number of particles and the total number of particles for arbitrary d—dimensional lattices in the
considered BRW can be obtained using the classification of the asymptotic behavior for the functions
q(t,x,y) and q(t, x), obtained in [1,2], and the relation m; = ge~0".

As in [1] we denote B := 1/Gy(0,0), where G, (x,y) is the Green’s function of the random walk.
When p* > B, the operator A + $*Ag has a single isolated positive eigenvalue Ay, which is a solution
of the equation $*G,(0,0) = 1. However, the eigenvalue A¢ of the operator £ that arises in this case is
equal to Ag — by and is not always positive, which complicates the problem. In contrast to the BRW
considered in [1], the asymptotic behavior of the process considered in this paper differs significantly
depending on the relation between the parameters A and by, namely, for Ag > by, Ag = bp and Ay < by.

So, in the case of a finite variance of jumps we obtain the following classification of the asymptotic
behavior of the first moments.

doi:10.20944/preprints202302.0229.v1
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Theorem 4. Let the variance of jumps of the random walk be finite, then for t — oo the asymptotic behavior of
the first moments can be represented as

m(t,x,y) ~ Clx,y)ut(t), m(tx) ~ C(x)o*(t),

where C(x,y),C(x) are some positive functions, whose explicit form was obtained in [1], and the functions
u*(t) and v*(t) have the following form

a) for B* > Be: u*(t) = eret, v¥(t) = eet

b) for B* = Be:
d=3:u(t) =t 12 Wt v*(t) = t1/2e 0ot
d=4u(t) = (Int)"'e 1 *bof v (t) = t(Int) " le~bot;
d > 5:u*(t) = e f, v*(t) = te” e

c) for B* < Be,d > 3: u*(t) =t/ 2e7bot ¥ (t) = e~ bot,

Note that for a recurrent random walk B. = 0, and since the parameter 8* is assumed to be
positive, then assuming a finite variance of jumps for d < 2 the relation f* > B, always holds, due to
which in the above classification, in contrast to [1], there are no cases of d = 1,2 for f* < B,.

We also note that for p* < B, for all d an exponential decrease in the first moments of both the
local number and the total number of particles is observed.

Let us separately consider the result obtained for g* > B.. In this case, since A¢ = Ag — by,
the asymptotic behavior of the first moments depends on the relation between Ay and by: three different
cases are possible. For Ay > by an exponential growth of the first moments is observed, for Ag = by
the first moments tend to a constant and for Ay < by an exponential decrease is observed, these cases
correspond to supercritical, critical and subcritical cases in the theory of branching processes [4].

The classification of the asymptotic behavior of the first moments in the case of heavy tails uses
the classification of the behavior of the functions (¢, x,y) and g(t, x) obtained in [2].

Theorem 5. Under the condition (3) the asymptotic behavior of the first moments for a € (0,2) and t — oo
can be represented as

my(t,x,y) ~ C(x,y)u*(t), my(t,x) ~ C(x)v*(t),
where C(x,y),C(x) > 0 and the functions u*(t) and v*(t) have the following form
a) for B* > Be: u*(t) = etet, v* (t) = eMel;
b) for B* = B.:

*(t) — pd/a=2 fhot ( ) pd/a—1 fhot lbfd/“ 6 1 2
ut(t) = (1nt2 bof v*(2 = t(Int)~ zfd/ac—Z
u*(t) = e~bof, v*(t) = te~bot 1fd/oc e ( +00)

¢) for B* < Be: u*(t) =t~ ae=bt p*(t) = et d/a € (1, +00).
Note that for f* > B, the obtained asymptotic relations do not depend on the conditions imposed
on the variance of random walk jumps (see [6]). In addition, f* > 0, while . = 0 ford/a € (1/2,1],

so in the above classification for f* < B, there are no cases where d/a € (1/2,1], in contrast to the
classification of the asymptotic behavior of the first moments in [2].

5. Supercritical Case

Theorem 6. Let f* > B.and Ag > 0. Then for t — oo and all n € N the following statements hold:

my(t,x,y) ~ Cn(x,y)e")‘ft, my (£, x) ~ Cn(x)e"/\ft,
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where
C] (x y) _ G/\O (X,O)GAO(O,y) _ G/\O (X,O)
’ 1GA (0, )27 Aol|Gp,y (0,0) |2

and the functions C,(x,y), Cy(x) > 0 for n > 2 are defined as follows:

Ci(x)

Cu(x,y) = &n(C1(0,y),.-.,Cr-1(0,)) Dn(x),
Cn (x) = gn(cl (0)/ ce rCnfl(O))Dn(x)r

where Dy, (x) are certain functions satisfying the estimate Dy, (x)| < ﬁ for n > n, and some n, € N.

Proof. In the case under consideration the operator £ has an isolated positive eigenvalue Ag = Ag — by,
where Ag is an isolated positive eigenvalue of the operator H = A + *Ay.

For n € N we consider the functions v, := v, (t, x,y) = m,(t,x, y)e’")‘f t. From Theorem 2 we
obtain the following equations for v:

divr = Evp — Agvy,
Oy = Evp — nAgy + 8o(X)gn(v1, ..., Vy—1), n>2
with the initial conditions v, (0, -, y) = &y(-), n € N.

We define the operator &£, by setting &£, := £ —nAgl. Since A¢ is the largest eigenvalue of £,
the spectrum of &, for n > 2 is included into (—oo, —(n — 1)A¢], that is, it is on the negative semiaxis,
since A¢ > 0.

Further, arguments similar to those given in [6] in the proof of a similar theorem remain valid.

The value of 7, from the statement of the theorem is determined by the formula 7, := %ﬁ“
The theorem is proved. O

For the number of particles in the case under consideration the following limit theorem is true,
the proof of which is carried out according to the scheme of proof of the limit theorem obtained in [6],
so we present only the main parts of the proof.

Theorem 7. Let * > Beand Ag > 0. If B7) = O(r!¥" 1) for all sufficiently large r € N, then the following
statements hold in the sense of convergence in distribution

lim p(ty)e ™' =gy(y),  Jim p(ne e =g,

t—ro00

where Y(y) is some non-negative function and ¢ is a nondegenerate random variable.

Proof. Let us define the functions

T M IRT mn(t/ x/y) Cn(x/y)
m(Tl, X1y> Ca tli{rolo m?(t, x,y) o t—y00 m}il(t, x,y) o C«T(x,y)r
B omu(tx) Culx)
m(n,x) = tlggo m (£, x) = mi (t,x) o C{l(x).

As shown, for example, in [6], the functions C,(x,y) and C,(x) for g* > B, for all n € N are related
by the relation C,(x,y) = 9" (y)Cn(x), where ¢(y) is some function, from which the next equalities
follow

From Theorem 6 we have this theorem statements in terms of convergence of the moments of the
random variables ¢(y) = ¥(y)¢ and ¢.

doi:10.20944/preprints202302.0229.v1
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The distributions of the limit random variables ¢(y) and ¢ to be uniquely determined by their
moments if the Carleman condition is satisfied

2 m(n,x,y)fl/(zn) = 0, Z m(n,x)*l/(z”) — .
n=1 n=1

n—1 n

Assuming N = 1 in the notation from [6] and defining 7, as in Theorem 6, we obtain C,(x) < " 'n!n",

where v is some constant, from here and from the estimate n! < ((n +1)/2)" we get

o0 1en) 1) Cn(X) —1/(2n) .
Xm0/ = 3 (G5) '

n=1

The proof for m(n, x, y) is similar.
Thus, the Stieltjes moment problem has a unique solution, hence the relations from the formulation
of the theorem are valid in terms of convergence in distribution. The theorem is proved. O

Note that the obtained limit theorem is true without restrictions on the variance of random walk
jumps, see [6].

6. Moments in a Critical Case

Theorem 8. Let p* > B.and Ag = 0. Then for t — oo and all n € N the following statements hold

mu(t,2%,y) ~ Ju(x, )Y ma(tx) ~ ()",
where Jy(x,y) and J,(x) are some constants.

Proof. The proof will be carried out for m,(t, x, y) using the asymptotic relation for the first moment
and the equations for the higher moments. The limit relations for m, (¢, x) follow from the form of the
integral Equation (3) and the asymptotics for m, (¢, x,y).

In the case p* > B, the operator £ has a unique isolated eigenvalue A¢ = Ay — by, which is zero
in this case, consider its corresponding eigenfunction f(x) € 12(Z%).

Consider first the second moment m;(t, x, ), which satisfies the equation

ormy(t,x,y) = Emy(t, x,y) + do(x)g2(m1(t, x,y)).
Multiplying this equation scalarly by f, we get
I (f,ma(t,x,y)) = f(0)g2(m1(t,0,y)).
Denote h(t,y) := (f, ma(t,x,y)), then the function h(t, y) satisfies the equation
Ih(t,y) = f(0)g2(m1(t,0,y))

with the initial condition

h(0,y) = (f,m2(0,%,y)) = {f,do(x —y)) = f(y),

whose solution has the form

Wy) = F) + [ f0)g20m(2,0,y)) d.

doi:10.20944/preprints202302.0229.v1
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Since for my(t,0,y) we have m;(t,0,y) ~ C(0,y) as t — oo, then for h(t,y) as t — co the following
limit relation holds
h(t,y) ~ t£(0)g2(C(0,y))-

Denote by E the eigensubspace of the operator £ corresponding to the eigenvalue Ag, i.e., Ef :=
{tf: t € R}. Via E fL we will further denote the orthogonal complement to the subspace E¢. Then
12(7%) = Ef & Ej%, that is, for any v € 1?(Z*) there are unique « € C and v; € EJ% such thatv = af + v1.
Since f is an eigenfunction of the self-adjoint operator £, then E Jﬁ- is an eigensubspace of the operator
&, that is, EEJ% - Ef.

Since A¢ = 0 is a simple eigenvalue corresponding to the eigenfunction f, it is not a point of
the spectrum of the operator £ restricted to E JJ;, so the spectrum of this operator lies on the negative
semiaxis and is separated from zero. Let’s use the property, which was noted, for example, in [1]: if the
spectrum of a self-adjoint continuous operator H on a Hilbert space is included into (—co, —s|, s > 0,
and also f(t) — f. as t — oo, then the solution of the equation

dv

satisfies v(t) — —H ™! f. condition.
Since my(t, x,y) satisfies the equation

drma(t,x,y) = Ema(t, x,y) + do(x)g2(m1(t, x,y))

and for t — oo we have the relation

do(x)g2(m1(t,x,y)) ~ do(x)g2(C(x,y)),

we obtain the limit relation that holds on E j;:

ma(t,x,y)) ~ —€ 1 (6(x)g2(C(x,y))) =: 0 (x,y).

We have m2(t, X, y) = p(f+ v1, where & = <f’771<21((;;c'y)> = }2'(;,?)) and v; ~ UT. For t — co we get the

relation
my(t,x,y) ~ tf(x)f((z}jf;g(:(()ry))_

Denoting J>(x,y) := W, we get that my (¢, x,y) ~ Jo(x, y)t.

Further, we continue similarly, using the asymptotics for the moments obtained at the previous
step. On the subspace Ey, carrying out similar reasoning, for 11, (t, x,y) we obtain the asymptotics

my(t,x,y) ~ JV 1,

where ],S” is some constant. On the subspace E+ we use the following property: if the spectrum
of a self-adjoint continuous operator H on a Hilbert space is included into (—oo, —s], s >0,
and f(t) = P,(t), where P,(t) is a polynomial of degree , then the solution of the equation

% =Hv+ f(t)
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satisfies v(t) = Qn(t) + u(t) condition, where Qy (t) is a polynomial of degree n and u(t) is a function
that decreases exponentially in . We get that on the subspace E }- the asymptotics my (¢, x,y) ~ ],ﬁz) pr=2

is true, where ]7(,2) is some constant. So, for m,(t, x, y) we have

mu(t,x,y) ~ Ju(x, y)tn_l
as t — oo. The theorem is proved. [

7. Moments in a Subcritical Case

To study the asymptotic behavior of the particle number moments for A¢ < 0 we need an
auxiliary lemma.

Lemma 1. If the spectrum of a self-adjoint continuous operator H on a Hilbert space is included into (—oo, —c/,
o > 0,and f(t) is a function such that || f(t)|| < Ce™*!, where C,a > 0 are some constants, then the solution

of the equation

dv

satisfies |v]| < Cre~ ™M@t for ¢ £ o and ||v|| < Cote™* otherwise, where Cy, Cy are some constants.

Proof. The solution of the considered equation with the given initial condition v(0) = vy can be
represented explicitly

v(t) = eMtyy + /Ot eM=9) £(5) ds. (10)

Let us estimate the norm of each of the terms. To estimate the norm of the first term we recall some
properties of the spectrum of a self-adjoint continuous operator on a Hilbert space, denoting the
operator’s spectrum as spec(-).

1. [7], Theorem 7.2.6: for any self-adjoint operator H on a Hilbert space the following equality holds
|H]] = sup{|A| : A is the point of the spectrum H }.

2. [7], Corollary 7.8.10: let H be a self-adjoint operator and f be a continuous complex function on
spec(#). Then
spec(f(#)) = f(spec(H)).

In particular, spec(e?t) = espec(H)t,

Using these properties, we obtain that the first term in (10) satisfies the estimate
e g || < |le™||||lvoll = e~t||vo]|. And for the second term for a # ¢ we have:

‘/Otemts)f(S)ds S/OtHe?-[(tfs)

=Ce 7! /te(‘f_"‘)5 ds =
0

t
1f ()]l ds < / e (=5 Ce g5 =
0

Ce—(rt

g—un

Ce 7t o—a)t C —ot _ _—at
:ﬂ(l_E( )):m((e —e ) <

< C\e* min(a,0)t

In the case & > o we set C; = ||vg|| + C and in the case & < 0: C; = C. It remains to note that fora = ¢
the following equality holds

Ce 7t /t elT=1s gg — Cte~ 7t
0
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so we can put C; = ||vg|| + C, which completes the proof of Lemma 1. [J

Theorem 9. Let §* > B.and Ag < 0. Then for t — co and all n € N the following statements hold
m(t, x,y) ~ Dp(x,y)e*e!,  my(t,x) ~ Dy(x)etet,

where Dy, (x,y) and Dy (x) are some constants.

Proof. The proof will be carried out for m,(t,x,y). The limit relations for m,(t, x) follow from the
form of the integral Equations (3) and the asymptotics for m,(t, x,y).

As in the proof of Theorem 8 we consider the eigenfunction f(x) € 12(Z%) with the eigenvalue A¢
of the operator £ and denote by E j% the subspace in 12(Z), which orthogonal to the element f (see the
corresponding definition in the proof of Theorem 8).

Multiplying the equation for m; (¢, x, y) scalarly by f, we get

U (f,mat, x,y)) = Ae(f,ma(t, x,y)) + f(0)g2(mi(£,0,y)).

Let h(t,y) := (f, ma(t,x,y)), this function satisfies the equation

oth(t,y) = Aeh(t,y) + f(0)g2(m1(t,0,y))

with the initial condition h(0,y) = (f,m2(0,x,y)) = (f,do(x —y)) = f(y), whose solution
has the form

ty) = () + [ @ fO)ga(m (5,0,) ds.

Since the relation my(t,0,y) ~ C(0,y)e*¢! holds for m(t,0,y), and this and the explicit form of
the function g»(111y) implies the relation g»(m1(t,0,y)) ~ Ke?*¢!, where K is some constant, then h(t, i)
satisfies the limit relation
h(t,y) ~ Kq(y)eet + Kpe?het,

where K (y), K, are constant.
Consider now the subspace E J% The function m;(t, x, y) satisfies the equation

ormy(t,x,y) = Emy(t, x,y) + do(x)g2(m1(t, x,y))

and the spectrum of the operator £ restricted to E f is included into (—o0, —¢], ¢ > 0. Using Lemma 1,

we obtain that on the subspace E fl for —2A¢ # o the following estimate holds

||1’I12(f, X, y) || < 616_ min(—2Ag,0)t

and ||ma(t, x,y)|| < Cate* ¢! otherwise, with some constants C;, Cy.

As in the proof of Theorem 8, taking into account the representation 1?(Z4) = E FOE +, we obtain
for my(t, x,y) as t — oo the relation

ma(t, x,y) ~ Dy(x,y)ee,

It remains to note that for all n > 2 and t — oo the relation g, (m1,...,m,_1) ~ K,e?*¢t holds, where
K}, is some constant. This follows from the explicit form of the function g, (m,...,m,_1). And the
above reasoning remains true for m,(t,x,y) for alln € N.

So, for my(t, x,y) for all n € N and for t — co we have

mu(t, x,y) ~ Dn(x,y)e)‘ft.
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The theorem is proved. [

Note that in proving Theorems 8 and 9 in addition to the asymptotic behavior of the first moments,
which for g* > B, does not depend on the variance of jumps of the random walk, we also use
differential equations for higher moments, which, as noted above, also do not depend on the conditions
imposed on the variance of jumps. Consequently, all the results obtained for the case §* > . do not
depend on the variance of jumps of the random walk.

To study the asymptotic behavior of the particle number moments in the case f* < B, when there
is no isolated eigenvalue A¢, we need the following auxiliary lemma.

Lemma 2. Let continuous functions ¢(t), x(t) > 0, t > 0, satisfy the following asymptotic relations as t — oo
@(t) ~ got*(Int)Pe !, x(t) ~ xof** (Int)?Pe 2",

wherea, p € R, by € Ry and let W(t) := fot @(t —s)x(s) ds. Then for W(t) the following asymptotic relation

holds as t — oo

W(t) ~ Wot* (In t)Pe=b0t,

Proof. It follows from the form of the asymptotics for the functions ¢(t) and x(t), that for any ¢ > 0
there exists 6 > 0 such that the following relations hold for t > ¢

(1—e)t*(Int)Pe 0" < (t) < (1+€)t*(Int)Pe ",
(1— &) (Int)Pe 200" < x(t) < (14¢)2 (Int)?Pe 20",

We choose t > 24 and represent the function W(t) as a sum
W(t) = Wis(t) + Wau(t),
where s ,
Wist) = [t =s)xo)ds,  Wast) = [ plt—s)x(s)ds.
To estimate W 5(t), note that for 0 < s < t — ¢ the inequality t — s > ¢ holds. Hence we get that
t—46
/ (1—¢)(t—s)*(In(t — 5))Pe P05 x (s) ds < Wy 5(t) <
0
t—4
< / (1+€)(t —s)*(In(t — s))Pe20(=%) x () ds.
0
Notice, that

/ow(f —8)"(In(t —s))Pe =) x(s) ds =

t—5 _ B
_ e_bott“(ln f)‘B‘/O (1 B S/t)a <lnt+ lrllrglt S/t)) ebosx(s) ds,

Int+In(1-s/t)

B .
o ) tend monotonically to 1 as t — co and

in this case the functions (1 —s/t)* and (

elosx(s) ~ xos2(Ins)?Pe=t% as s — oo, i.e., e%°x(s) € L]0, +00).
So, we get

/0 (= 5 (In(t — s))Pe005) y(5) ds = ¢~Pota (In )8 ( /O " gy (s) ds + 0(1)> :

doi:10.20944/preprints202302.0229.v1
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Consider now W, 5(t). Since t > 24, we have

Waalt) = [ plt=s)x(s)ds <
< (11— 8 (n(t —5)Pe ) [ g(5)ds =
= e Pt (Int)Po(1).

Finally, denoting Wy := f e’ x(s) ds, we obtain the required asymptotic relation and Lemma 2
is proved. O

Theorem 10. Let the variance of jumps of the random walk be finite, then for t — oo and all n € N the following
statements hold

a) for B* = B
d=3:my(t,x,y) ~ A,(x,y)t1/2ebot tx) ~ Ay(x)tl/2e~bot
d =4 Zinﬁt, i% ~ By, ((;C, yy))(ln tle bot (,1 (Jlf)x) ~ B(nx() )t (fnt)—le—hof,
d > 5: my(t,x,y) ~ Culx,y)e 0!, my(t, x) ~ Cy(x)te 00",
b) for p* < B

d > 3: my(t,x,y) ~ Dy(x,y) =270t m, (t,x) ~ Dy(x)e !,
where An(x,Y), An(x), Bu(x,y), Bu(x), Cu(x,y), Cu(x), Du(x,y) and D, (x) are some constants.

Proof. The limit relations for the first moments are obtained in Theorem 4. The second moments are
expressed in terms of the first moments and their convolutions with the functions g (m(t,0,y)) and
g2(my(t,0)) using the integral Equation (3). Note that the asymptotic relations for the first moments
for all d in the case p* < B, have the form m; ~ C;t*(Int)Pe~t! and for the functions g, (nm;) the
following asymptotic relations hold: gp(m7) ~ ~ Got?*(Int)?Pe=2b0t where G, is some constant and &
and p are the same, as in the asymptotics of the corresponding first moment m;. Using Lemma 2 for
the functions m4 and g,, we get that

/Ot my (t —s)g2(my(s))ds ~ Wot*(Int)Pe~!,

Finally, we obtain that for the second moments the relation m; ~ ézt"‘ (In t)/3 e~ ot holds, i.e., the second
moments behave at infinity in the same way as the corresponding first moments, up to a constant.
To complete the proof we note that for all n>2 the following relation will hold
Qu(my, ... ,my_q1) ~ éntz“(lnt)zﬁe_%ot, where G, is some constant. This means that for all n € N
and t — oo the following limit relations will hold: n,, ~ C,t*(In t)Pe~t, The theorem is proved. [J

When the condition (3) is satisfied, which leads to an infinite variance of jumps, the following
theorem turns out to be true.

Theorem 11. Under the condition (3) for t — oo and all n € N the following statements hold

a) for p* = Be:
mn(tr x,y) ~ Bn,d/tx(xr]/)u*(t)r mn(trx) ~ Bn,d/a(x)v*(t)r

where By, 4/4(%,Y), Bya/a(x) > 0and
“(t)
t

“(t)

— pd/a=2 —hgt v¥(t) = /a1 —hof zbfd/oz € (
= (Int)~le e bot v*(tg—tlnt lfd/'%—2
— ool vt (t) = te ot Lifd/a’e (2 +oo)

===
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b) for B* < Be:
il %) ~ An( ) (), ma(E,2) ~ An(x)0" (8),

where Ay (x,y), An(x) >0, u*(t) = t~4/%e~bot y*(t) = e~bot,

Proof. Asymptotic relations for the first moments in the case of the condition (3) are obtained in
Theorem 5. Note that for all possible values of the parameter d/a for B* < B these relations have
the form

my ~ Ct*(Int)Pe~t,

where « and 8 are some known constants.

Further, carrying out the arguments from the proof of the Theorem 10 without changes, we obtain
that all integer moments in the case under consideration behave at infinity in the same way as the
corresponding first moments, up to a constant. The theorem is proved.
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