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Abstract: We consider a new model of a branching random walk on a multidimensional lattice with

continuous time and one source of particle reproduction and death, as well as an infinite number

of sources in which, in addition to the walk, only absorption of particles can occur. The asymptotic

behavior of the integer moments of both the total number of particles and the number of particles at

a lattice point is studied depending on the relationship between the model parameters. In the case of

the existence of an isolated positive eigenvalue of the evolution operator of the average number of

particles, a limit theorem is obtained on the exponential growth of both the total number of particles

and the number of particles at a lattice point.

Keywords: branching random walks; moments of particle numbers; evolution operator;

Green’s function
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1. Introduction

We consider a continuous-time branching random walk (BRW) on the multidimensional lattice Zd,

d ∈ N, with one source of particle reproduction and death located at the origin and an infinite number

of absorbing sources located at all other points of the lattice in which, in addition to walk, the particle

can only disappear.

The behavior of a BRW with a single source of particle generation (branching) located at the

origin and no absorption at other points under the assumption of a finite variance of jumps has been

studied, for example, in [1], and with infinite variance in [2,3]. The random walk underlying the

processes under consideration is defined using the transition intensity matrix A = (a(x, y))x,y∈Zd and

satisfies conditions of regularity, symmetry, spatial homogeneity (which allows us to consider a(x, y)

as a function of one argument a(y − x)), homogeneity in time and irreducibility. In these models the

operator that specifies the evolution of the average number of particles has the form

H = A+ β∆0,

where the operator A : lp(Zd) → lp(Zd) generated by the matrix A acts on the function ϕ ∈ lp(Zd) by

the formula

(Aϕ)(x) = ∑
y∈Zd

a(x − y)ϕ(y), x ∈ Z
d, (1)

and the operator ∆0 is defined by the equality ∆0 = δ0δT
0 , where δ0 = δ0(·) denotes a column-vector

on the lattice taking the unit value at the point 0 ∈ Zd and vanishing at other points. The parameter

β in the definition of the operator H is given by the equality β := ∑n>1(n − 1)bn − b0, where bn is

the intensity of occurrence of n > 1 descendants of the particle, including the particle itself, b0 is
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the absorption intensity of the particle. Thus, the operator β∆0 determines the process of particle

branching at the origin.

In a BRW with an infinite number of absorbing sources the evolution operator of the average

number of particles is modified as follows

E = A+ β∗∆0 − b0 I,

where I is the identity operator and the last term specifies the process of absorption of particles at every

lattice point. Note that the parameter β∗ := ∑n>1(n − 1)bn in the considered BRW differs from the

parameter β = β∗ − b0 in that for b0 > 0 the parameter β can take values from the interval (−∞,+∞),

while the parameter β∗ is non-negative: β∗ ≥ 0.

Let the parameter βc be determined by the formula βc := 1/G0(0, 0), where Gλ(x, y) is the Green’s

function of the random walk. Many properties of the transition probabilities of a random walk p(t, x, y)

are expressed in terms of the Green’s function, while the Green’s function can be defined as the Laplace

transform of the transition probability p(t, x, y) by the formula:

Gλ(x, y) :=
∫ ∞

0
e−λt p(t, x, y) dt, λ ≥ 0. (2)

As shown, for example, in [1], when the relation β∗
> βc holds, the operator A+ β∗∆0 has an

isolated positive eigenvalue λ0, which is the solution of the equation β∗Gλ(0, 0) = 1. The asymptotic

behavior of the integer moments of the total number of particles and the number of particles at every

point of the lattice in the process under consideration depends on the dimension of the lattice d,

the relation between the parameters β∗ and βc, and for β∗
> βc also on the relation between λ0 and b0.

In the case of β > βc a BRW with one source of particle generation and no absorbing sources

is called supercritical. The operator H in this case has an isolated positive eigenvalue and there is an

exponential growth in the number of particles at every point and in the total number of particles [1].

In the process under consideration, if the relation β∗
> βc holds, the operator E has an isolated

eigenvalue λE = λ0 − b0, where λ0 > 0 is an isolated eigenvalue of the operator A + β∗∆0. Note

that the eigenvalue λE of the operator E is not always positive, so the behavior of the process differs

significantly depending on the relation between the parameters λ0 and b0.

The structure of the paper is as follows. In Section 2 we give a formal description of a BRW with

particle reproduction at the origin and absorption at every point of the lattice. Section 3 presents the

key equations. Section 4 gives a complete classification of the asymptotic behavior of the first moments

of particle numbers. In Section 5 the limit Theorem 7 is obtained, which states that despite the infinite

number of absorbing sources an exponential growth of both the total number of particles and the

number of particles at every point can be observed in the considered BRW. This happens when λE > 0,

which is equivalent to λ0 > b0. In Section 6 we study the asymptotic behavior of the particle number

moments for β∗
> βc and λE = 0 (λ0 = b0), it is found that the integer moments both the total number

of particles and the number of particles at every point grow in a power-law manner as t → ∞, with the

first moments behaving as constants at infinity. In Section 7 we consider the remaining cases, that is,

the case when β∗
> βc and λE < 0 (λ0 < b0), and also, when the operator E does not have an isolated

eigenvalue, that is, when β∗ ≤ βc. Theorems 9–11 are obtained, stating that the moments of particle

numbers in these cases decrease exponentially as t → ∞. It turned out that the results of Sections 5

and 6 as well as Theorem 9 of Section 7 do not depend on the conditions imposed on the variance of

random walk jumps, while the behavior of the process for β∗ ≤ βc turns out to be different for finite

and infinite variance of jumps (Theorems 10 and 11).

We will call the considered BRW supercritical if β∗
> βc and λE > 0, critical if β∗

> βc and λE = 0

and subcritical if β∗
> βc and λE < 0 or β∗ ≤ βc.

Note that there is no exponential decrease of moments in a BRW with a single source of particle

generation (and the absence of other absorbing sources) [1]. The classification of the asymptotic
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behavior of the BRW with possible absorption of particles at every point Zd turns out to be closer to

the classification of the behavior of the Markov branching process µ(t) with continuous time, where

the average number of particles Eµ(t) = eat. A branching process is called supercritical if Eµ(t) > 1

(a > 0), critical if Eµ(t) = 1 (a = 0) and subcritical if Eµ(t) < 1 (a < 0), that is, the average number

of particles in the supercritical branching process increases exponentially, in the critical it tends to a

constant and in the subcritical it decreases exponentially [4].

2. Description of the Model

Let us proceed to a formal description of the BRW with one source of particle reproduction and

death located at the origin of coordinates and an infinite number of absorbing sources located at the

remaining points of the lattice Zd, d ∈ N.

The random walk underlying the process is specified using the transition intensity matrix

A = (a(x, y))x,y∈Zd and satisfies the conditions regularity, symmetry, spatial homogeneity (which

allows us to consider a(x, y) as a function of one argument a(y − x)), time homogeneity and

irreducibility (a particle can be at any point of the lattice).

The transition probability of a random walk, that is, the probability that at time t ≥ 0 the particle

is at point y, provided that at time t = 0 it was at point x, is denoted by p(t, x, y). Asymptotically for

h → 0 the transition probabilities are expressed in terms of the transition intensities as follows

p(h, x, y) = a(x, y)h + o(h), x 6= y,

p(h, x, x) = 1 + a(x, x)h + o(h).

Note that the condition for the finite variance of jumps in terms of the transition intensity matrix

is written as ∑z∈Zd |z|2a(z) < ∞. In situations where the finiteness of the variance of jumps turns out

to be essential we will separately consider the case when the function a(z) has the following behavior

at infinity

a(z) ∼
H(z/|z|)

|z|d+α
, |z| → ∞, (3)

where | · | is Euclidean norm on Rd, H(z/|z|) = H(−z/|z|) is a positive continuous function on

Sd−1 = {z ∈ Rd : |z| = 1}, α ∈ (0, 2) and the symbol ∼ here and below will denote the asymptotic

equivalence of functions. Under this assumption the variance of jumps becomes infinite (see [5]).

Random walks with infinite variance of jumps are commonly referred to in the literature as random

walks with heavy tails. We will consider the simplest case, when H(z/|z|) ≡ C > 0, and use the results

obtained in [2,3], where a BRW with one particle generation center and the absence of absorbing

sources was considered under condition (3).

To describe the behavior of a random walk it is convenient to use the Green’s function Gλ(x, y),

which, as mentioned in the introduction, can be defined as the Laplace transform of the transition

probability p(t, x, y) by the Formula (2).

As in [1] we will call the random walk recurrent if G0(0, 0) = ∞ and nonrecurrent or transient if

G0(0, 0) < ∞. In the case of finite variance of jumps the random walk is transient for d ≥ 3 and is

recurrent for d = 1, 2, while in the case of infinite variance of jumps (when the condition (3) is satisfied)

the transience of a random walk turns out to be possible in the dimension d = 1 for α ∈ (0, 1) and in

the dimension d = 2 for α ∈ (0, 2).

The branching process at the particle generation center is specified using the infinitesimal

generating function f (u) = ∑
∞
n=0 bnun, 0 ≤ u ≤ 1, where bn ≥ 0 for n 6= 1, b1 < 0, ∑

∞
n=0 bn = 0.
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The coefficients bn determine the main linear part of the probability p∗(h, n) of having n particles at

time h provided that there was one particle at the initial time t = 0:

p∗(h, n) = bnh + o(h) for n 6= 1,

p∗(h, 1) = 1 + b1h + o(h).

The coefficients bn for n ≥ 1 can be interpreted as the intensities of appearance of n descendants of the

particle, including the particle itself, while b0 is interpreted as the intensity of death, or absorption,

of the particle. The generating function at other points of the lattice has a simpler form: f (u) =

b0 + b1u = b0(1 − u). Further, we assume that the intensity of death is the same at all lattice points.

The evolution of particles in the system occurs as follows: a particle located at some time t > 0

at the point x ∈ Zd in a short time dt → 0 can either jump to the point y 6= x, y ∈ Zd, with probability

a(x, y)dt + o(dt), or die with probability b0dt + o(dt). If the point x is the center of particle generation

(x = 0), then the particle can also produce n > 1 descendants, including itself, with probability bndt +

o(dt). Otherwise, with probability 1 + a(x, x)dt + δ0(x)b1dt + (1 − δ0(x))(−b0dt) + o(dt), the particle

remains at the point x during the entire time interval [t, t + dt]. We assume that each new particle

evolves according to the same law, independently of other particles and of the entire prehistory.

The main objects of study in BRW are the number of particles at the time t ≥ 0 at the

point y ∈ Zd (the local number of particles), denoted by µ(t, y), the total number of particles

(particle population), denoted by µ(t) = ∑y∈Zd µ(t, y), and their integer moments, which are denoted

as mn(t, x, y) := Exµn(t, y) and mn(t, x) := Exµn(t), n ∈ N, where Ex is the mean on condition

µ(0, y) = δ(x − y), δ(·) is the Kronecker delta on Zd. We will assume that at the initial moment

of time t = 0 the system consists of one particle located at the point x ∈ Zd, so the expectations of the

local and total number of particles satisfy the initial conditions m1(0, x, y) = δy(x) and m1(0, x) ≡ 1

respectively.

3. Key Equations

Let us present the key equations that will be required to study the behavior of the considered

BRW. The proofs of the theorems presented in this Section are based on the methods developed in [1]

and follow the same scheme, so the corresponding theorems will be presented below without proof.

We introduce the Laplace generating functions of the random variables µ(t, y) and µ(t) for z ≥ 0:

F(z; t, x, y) := Exe−zµ(t,y), F(z; t, x) := Exe−zµ(t).

Taking into account the evolution of particles in the system and using the Markov property of the

process, the following statement can be proved for the generating functions.

Theorem 1. The functions F(z; t, x) and F(z; t, x, y) are continuously differentiable with respect to t uniformly

with respect to x, y ∈ Zd for all 0 ≤ z ≤ ∞. They are the solutions to the following Cauchy problems:

∂tF(z; t, x) = (AF(z; t, ·))(x) + δ0(x) f (F(z; t, x))+

+ (1 − δ0(x))b0(1 − F(z; t, x)),

∂tF(z; t, x, y) = (AF(z; t, ·, y))(x) + δ0(x) f (F(z; t, x, y))+

+ (1 − δ0(x))b0(1 − F(z; t, x, y))

with the initial conditions F(z; 0, x) = e−z and F(z; 0, x, y) = e−zδy(x) respectively. Here A : lp(Zd) →

lp(Zd), 1 ≤ p ≤ ∞, is a walk operator that acts on the function ϕ ∈ lp(Zd) by the formula (1).

Note that the proof of this theorem repeats the arguments from the proof of Lemma 1.2.1 in [1]

and differs only in technical details.
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The following theorem turns out to be true for the moments of particle numbers.

Theorem 2. The moments mn(t, ·, y) ∈ l2(Zd) and mn(t, ·) ∈ l∞(Zd) satisfy the following differential

equations in the corresponding Banach spaces for all natural n ≥ 1:

dm1

dt
= Em1 = Am1 + β∗∆0m1 − b0m1, (4)

dmn

dt
= Emn + δ0(·)gn(m1, . . . , mn−1), n ≥ 2, (5)

with the initial conditions mn(0, ·, y) = δy(·) and mn(t, ·) ≡ 1 respectively. Here β∗ := ∑n>1(n − 1)bn,

the operator A : lp(Zd) → lp(Zd) is given by the formula (1), the operator ∆0 is defined by the equality

∆0 = δ0δT
0 , where δ0 = δ0(·) denotes a column-vector on the lattice taking the unit value at the point 0 ∈ Zd

and vanishing at other points and the function gn(m1, . . . , mn−1) is given by the formula

gn(m1, . . . , mn−1) :=
n

∑
r=2

β(r)

r! ∑
i1,...,ir>0

i1+···+ir=n

n!

i1! · · · ir!
mi1 · · ·mir ,

where β(r) := f (r)(1).

The proof of this theorem repeats the argument of the proof of Theorem 1.3.1 from [1]. It also uses

equations for generating functions, the Faà di Bruno’s formula and the following property:

mn(t, x) = (−1)n lim
z→0+

∂n
z F(z; t, x),

mn(t, x, y) = (−1)n lim
z→0+

∂n
z F(z; t, x, y).

Consider separately the case β∗ = 0, this condition is equivalent to the fact that all bn for n > 1

are equal to zero. That is, in this case the particle does not produce new descendants and only the

death and movement of the particle along the lattice is possible. The operator describing the evolution

of the average number of particles in this particular case has the form E = A− b0 I and the equations

for the moments for all n ∈ N take the form

∂tmn = Amn − b0mn.

Making the change of variables mn = qne−b0t in the last equation, we get that the functions qn satisfy

the equation

∂tqn = Aqn.

The equation for the transition probabilities of a random walk p(t, x, y) has the same form, whence we

get that

mn(t, x, y) = e−b0t p(t, x, y), mn(t, x) = e−b0t,

for all d, n ∈ N.

Further, we will assume that the parameter β∗ is strictly positive (a particle in the generation

source can produce at least one new particle).

Integral equations for the moments will play an important role in the further analysis,

the derivation of which is carried out according to the same scheme as in Theorem 1.4.1 from [1].
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Theorem 3. The moment m1(t, x, y) satisfies both integral equations

m1(t, x, y) = p(t, x, y) +
∫ t

0
(β∗p(t − s, x, 0)− b0eA(t−s))m1(s, 0, y) ds, (6)

m1(t, x, y) = p(t, x, y) +
∫ t

0
(β∗p(t − s, 0, y)− b0eA(t−s))m1(s, x, 0) ds. (7)

The moment m1(t, x) satisfies both integral equations

m1(t, x) = 1 +
∫ t

0
(β∗p(t − s, x, 0)− b0eA(t−s))m1(s, 0) ds,

m1(t, x) = 1 +
∫ t

0
(β∗ − b0eA(t−s))m1(s, x, 0) ds.

(8)

For k > 1 the moments mk(t, x, y) and mk(t, x) satisfy the equations

mk(t, x, y) = m1(t, x, y)+

+
∫ t

0
m1(t − s, x, 0)gk(m1(s, 0, y), . . . , mk−1(s, 0, y)) ds,

mk(t, x) = m1(t, x)+

+
∫ t

0
m1(t − s, x, 0)gk(m1(s, 0), . . . , mk−1(s, 0)) ds.

(9)

Note that the derivation of the differential and integral equations presented in this Section does

not depend on the conditions imposed on the variance of random walk jumps, as noted, for example,

in [3,6].

4. Classification of the Asymptotic Behavior of the First Moments

Let us first study the asymptotic behavior of the first moments. To do this we pass from the

functions m1(t, ·, y) and m1(t, ·) to the functions q(t, ·, y) and q(t, ·), making a change of variables

m1 = qe−b0t. We obtain an equation for the functions q(t, ·, y) and q(t, ·) of the form

dq

dt
= Aq + β∗∆0q

with the initial conditions q(0, ·, y) = δy(·) and q(0, ·) ≡ 1 respectively.

Note that the resulting equation has exactly the same form as the equation for the first moments

in the BRW without absorbing sources, considered in [1] (or in [2] for the case of heavy tails), which

greatly simplifies the study. The classification of the asymptotic behavior of the first moments of the

local number of particles and the total number of particles for arbitrary d−dimensional lattices in the

considered BRW can be obtained using the classification of the asymptotic behavior for the functions

q(t, x, y) and q(t, x), obtained in [1,2], and the relation m1 = qe−b0t.

As in [1] we denote βc := 1/G0(0, 0), where Gλ(x, y) is the Green’s function of the random walk.

When β∗
> βc the operator A+ β∗∆0 has a single isolated positive eigenvalue λ0, which is a solution

of the equation β∗Gλ(0, 0) = 1. However, the eigenvalue λE of the operator E that arises in this case is

equal to λ0 − b0 and is not always positive, which complicates the problem. In contrast to the BRW

considered in [1], the asymptotic behavior of the process considered in this paper differs significantly

depending on the relation between the parameters λ0 and b0, namely, for λ0 > b0, λ0 = b0 and λ0 < b0.

So, in the case of a finite variance of jumps we obtain the following classification of the asymptotic

behavior of the first moments.
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Theorem 4. Let the variance of jumps of the random walk be finite, then for t → ∞ the asymptotic behavior of

the first moments can be represented as

m1(t, x, y) ∼ C(x, y)u∗(t), m1(t, x) ∼ C(x)v∗(t),

where C(x, y), C(x) are some positive functions, whose explicit form was obtained in [1], and the functions

u∗(t) and v∗(t) have the following form

a) for β∗
> βc: u∗(t) = eλE t, v∗(t) = eλE t;

b) for β∗ = βc:

d = 3: u∗(t) = t−1/2e−b0t, v∗(t) = t1/2e−b0t;
d = 4: u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t;
d ≥ 5: u∗(t) = e−b0t, v∗(t) = te−b0t;

c) for β∗
< βc, d ≥ 3: u∗(t) = t−d/2e−b0t, v∗(t) = e−b0t.

Note that for a recurrent random walk βc = 0, and since the parameter β∗ is assumed to be

positive, then assuming a finite variance of jumps for d ≤ 2 the relation β∗
> βc always holds, due to

which in the above classification, in contrast to [1], there are no cases of d = 1, 2 for β∗ ≤ βc.

We also note that for β∗ ≤ βc for all d an exponential decrease in the first moments of both the

local number and the total number of particles is observed.

Let us separately consider the result obtained for β∗
> βc. In this case, since λE = λ0 − b0,

the asymptotic behavior of the first moments depends on the relation between λ0 and b0: three different

cases are possible. For λ0 > b0 an exponential growth of the first moments is observed, for λ0 = b0

the first moments tend to a constant and for λ0 < b0 an exponential decrease is observed, these cases

correspond to supercritical, critical and subcritical cases in the theory of branching processes [4].

The classification of the asymptotic behavior of the first moments in the case of heavy tails uses

the classification of the behavior of the functions q(t, x, y) and q(t, x) obtained in [2].

Theorem 5. Under the condition (3) the asymptotic behavior of the first moments for α ∈ (0, 2) and t → ∞

can be represented as

m1(t, x, y) ∼ C(x, y)u∗(t), m1(t, x) ∼ C(x)v∗(t),

where C(x, y), C(x) > 0 and the functions u∗(t) and v∗(t) have the following form

a) for β∗
> βc: u∗(t) = eλE t, v∗(t) = eλE t;

b) for β∗ = βc:

u∗(t) = td/α−2e−b0t, v∗(t) = td/α−1e−b0t, if d/α ∈ (1, 2);
u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t, if d/α = 2;
u∗(t) = e−b0t, v∗(t) = te−b0t, if d/α ∈ (2,+∞);

c) for β∗
< βc: u∗(t) = t−d/αe−b0t, v∗(t) = e−b0t, d/α ∈ (1,+∞).

Note that for β∗
> βc the obtained asymptotic relations do not depend on the conditions imposed

on the variance of random walk jumps (see [6]). In addition, β∗
> 0, while βc = 0 for d/α ∈ (1/2, 1],

so in the above classification for β∗ ≤ βc there are no cases where d/α ∈ (1/2, 1], in contrast to the

classification of the asymptotic behavior of the first moments in [2].

5. Supercritical Case

Theorem 6. Let β∗
> βc and λE > 0. Then for t → ∞ and all n ∈ N the following statements hold:

mn(t, x, y) ∼ Cn(x, y)enλE t, mn(t, x) ∼ Cn(x)enλE t,
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where

C1(x, y) =
Gλ0

(x, 0)Gλ0
(0, y)

‖Gλ0
(0, y)‖2

, C1(x) =
Gλ0

(x, 0)

λ0‖Gλ0
(0, 0)‖2

,

and the functions Cn(x, y), Cn(x) > 0 for n ≥ 2 are defined as follows:

Cn(x, y) = gn(C1(0, y), . . . , Cn−1(0, y))Dn(x),

Cn(x) = gn(C1(0), . . . , Cn−1(0))Dn(x),

where Dn(x) are certain functions satisfying the estimate |Dn(x)| ≤ 2
nλE

for n ≥ n∗ and some n∗ ∈ N.

Proof. In the case under consideration the operator E has an isolated positive eigenvalue λE = λ0 − b0,

where λ0 is an isolated positive eigenvalue of the operator H = A+ β∗∆0.

For n ∈ N we consider the functions νn := νn(t, x, y) = mn(t, x, y)e−nλE t. From Theorem 2 we

obtain the following equations for νn:

{
∂tν1 = Eν1 − λEν1,

∂tνn = Eνn − nλEνn + δ0(x)gn(ν1, . . . , νn−1), n ≥ 2

with the initial conditions νn(0, ·, y) = δy(·), n ∈ N.

We define the operator En by setting En := E − nλE I. Since λE is the largest eigenvalue of E ,

the spectrum of En for n ≥ 2 is included into (−∞,−(n − 1)λE ], that is, it is on the negative semiaxis,

since λE > 0.

Further, arguments similar to those given in [6] in the proof of a similar theorem remain valid.

The value of n∗ from the statement of the theorem is determined by the formula n∗ := 2‖E‖
λE

.

The theorem is proved.

For the number of particles in the case under consideration the following limit theorem is true,

the proof of which is carried out according to the scheme of proof of the limit theorem obtained in [6],

so we present only the main parts of the proof.

Theorem 7. Let β∗
> βc and λE > 0. If β(r) = O(r!rr−1) for all sufficiently large r ∈ N, then the following

statements hold in the sense of convergence in distribution

lim
t→∞

µ(t, y)e−λE t = ξψ(y), lim
t→∞

µ(t)e−λE t = ξ,

where ψ(y) is some non-negative function and ξ is a nondegenerate random variable.

Proof. Let us define the functions

m(n, x, y) := lim
t→∞

Exµn(t, y)

mn
1 (t, x, y)

= lim
t→∞

mn(t, x, y)

mn
1 (t, x, y)

=
Cn(x, y)

Cn
1 (x, y)

,

m(n, x) := lim
t→∞

Exµn(t)

mn
1 (t, x)

= lim
t→∞

mn(t, x)

mn
1 (t, x)

=
Cn(x)

Cn
1 (x)

.

As shown, for example, in [6], the functions Cn(x, y) and Cn(x) for β∗
> βc for all n ∈ N are related

by the relation Cn(x, y) = ψn(y)Cn(x), where ψ(y) is some function, from which the next equalities

follow

m(n, x, y) = m(n, x) =
Cn(x)

Cn
1 (x)

=
Cn(x, y)

Cn
1 (x, y)

.

From Theorem 6 we have this theorem statements in terms of convergence of the moments of the

random variables ξ(y) = ψ(y)ξ and ξ.
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The distributions of the limit random variables ξ(y) and ξ to be uniquely determined by their

moments if the Carleman condition is satisfied

∞

∑
n=1

m(n, x, y)−1/(2n) = ∞,
∞

∑
n=1

m(n, x)−1/(2n) = ∞.

Assuming N = 1 in the notation from [6] and defining n∗ as in Theorem 6, we obtain Cn(x) ≤ γn−1n!nn,

where γ is some constant, from here and from the estimate n! ≤ ((n + 1)/2)n we get

∞

∑
n=1

m(n, x)−1/(2n) =
∞

∑
n=1

(
Cn(x)

Cn
1 (x)

)−1/(2n)

= ∞.

The proof for m(n, x, y) is similar.

Thus, the Stieltjes moment problem has a unique solution, hence the relations from the formulation

of the theorem are valid in terms of convergence in distribution. The theorem is proved.

Note that the obtained limit theorem is true without restrictions on the variance of random walk

jumps, see [6].

6. Moments in a Critical Case

Theorem 8. Let β∗
> βc and λE = 0. Then for t → ∞ and all n ∈ N the following statements hold

mn(t, x, y) ∼ Jn(x, y)tn−1, mn(t, x) ∼ Jn(x)tn−1,

where Jn(x, y) and Jn(x) are some constants.

Proof. The proof will be carried out for mn(t, x, y) using the asymptotic relation for the first moment

and the equations for the higher moments. The limit relations for mn(t, x) follow from the form of the

integral Equation (3) and the asymptotics for mn(t, x, y).

In the case β∗
> βc the operator E has a unique isolated eigenvalue λE = λ0 − b0, which is zero

in this case, consider its corresponding eigenfunction f (x) ∈ l2(Zd).

Consider first the second moment m2(t, x, y), which satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y)).

Multiplying this equation scalarly by f , we get

∂t〈 f , m2(t, x, y)〉 = f (0)g2(m1(t, 0, y)).

Denote h(t, y) := 〈 f , m2(t, x, y)〉, then the function h(t, y) satisfies the equation

∂th(t, y) = f (0)g2(m1(t, 0, y))

with the initial condition

h(0, y) = 〈 f , m2(0, x, y)〉 = 〈 f , δ0(x − y)〉 = f (y),

whose solution has the form

h(t, y) = f (y) +
∫ t

0
f (0)g2(m1(τ, 0, y)) dτ.
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Since for m1(t, 0, y) we have m1(t, 0, y) ∼ C(0, y) as t → ∞, then for h(t, y) as t → ∞ the following

limit relation holds

h(t, y) ∼ t f (0)g2(C(0, y)).

Denote by E f the eigensubspace of the operator E corresponding to the eigenvalue λE , i.e., E f :=

{t f : t ∈ R}. Via E⊥
f we will further denote the orthogonal complement to the subspace E f . Then

l2(Zd) = E f ⊕ E⊥
f , that is, for any v ∈ l2(Zd) there are unique α ∈ C and v1 ∈ E⊥

f such that v = α f + v1.

Since f is an eigenfunction of the self-adjoint operator E , then E⊥
f is an eigensubspace of the operator

E , that is, EE⊥
f ⊆ E⊥

f .

Since λE = 0 is a simple eigenvalue corresponding to the eigenfunction f , it is not a point of

the spectrum of the operator E restricted to E⊥
f , so the spectrum of this operator lies on the negative

semiaxis and is separated from zero. Let’s use the property, which was noted, for example, in [1]: if the

spectrum of a self-adjoint continuous operator H on a Hilbert space is included into (−∞,−s], s > 0,

and also f (t) → f∗ as t → ∞, then the solution of the equation

dν

dt
= Hν + f (t)

satisfies ν(t) → −H−1 f∗ condition.

Since m2(t, x, y) satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y))

and for t → ∞ we have the relation

δ0(x)g2(m1(t, x, y)) ∼ δ0(x)g2(C(x, y)),

we obtain the limit relation that holds on E⊥
f :

m2(t, x, y)) ∼ −E−1(δ0(x)g2(C(x, y))) =: v∗1(x, y).

We have m2(t, x, y) = α f + v1, where α = 〈 f ,m2(t,x,y)〉
〈 f , f 〉

= h(t,y)
〈 f , f 〉

and v1 ∼ v∗1 . For t → ∞ we get the

relation

m2(t, x, y) ∼
t f (x) f (0)g2(C(0, y))

〈 f , f 〉
.

Denoting J2(x, y) := f (x) f (0)g2(C(0,y))
〈 f , f 〉

, we get that m2(t, x, y) ∼ J2(x, y)t.

Further, we continue similarly, using the asymptotics for the moments obtained at the previous

step. On the subspace E f , carrying out similar reasoning, for mn(t, x, y) we obtain the asymptotics

mn(t, x, y) ∼ J
(1)
n tn−1,

where J
(1)
n is some constant. On the subspace E⊥

f we use the following property: if the spectrum

of a self-adjoint continuous operator H on a Hilbert space is included into (−∞,−s], s > 0,

and f (t) = Pn(t), where Pn(t) is a polynomial of degree n, then the solution of the equation

dν

dt
= Hν + f (t)
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satisfies ν(t) = Qn(t) + u(t) condition, where Qn(t) is a polynomial of degree n and u(t) is a function

that decreases exponentially in t. We get that on the subspace E⊥
f the asymptotics mn(t, x, y) ∼ J

(2)
n tn−2

is true, where J
(2)
n is some constant. So, for mn(t, x, y) we have

mn(t, x, y) ∼ Jn(x, y)tn−1

as t → ∞. The theorem is proved.

7. Moments in a Subcritical Case

To study the asymptotic behavior of the particle number moments for λE < 0 we need an

auxiliary lemma.

Lemma 1. If the spectrum of a self-adjoint continuous operator H on a Hilbert space is included into (−∞,−σ],

σ > 0, and f (t) is a function such that ‖ f (t)‖ < Ce−αt, where C, α > 0 are some constants, then the solution

of the equation
dν

dt
= Hν + f (t)

satisfies ‖ν‖ ≤ C̃1e−min(α,σ)t for α 6= σ and ‖ν‖ ≤ C̃2te−σt otherwise, where C̃1, C̃2 are some constants.

Proof. The solution of the considered equation with the given initial condition ν(0) = ν0 can be

represented explicitly

ν(t) = eHtν0 +
∫ t

0
eH(t−s) f (s) ds. (10)

Let us estimate the norm of each of the terms. To estimate the norm of the first term we recall some

properties of the spectrum of a self-adjoint continuous operator on a Hilbert space, denoting the

operator’s spectrum as spec(·).

1. [7], Theorem 7.2.6: for any self-adjoint operator H on a Hilbert space the following equality holds

‖H‖ = sup{|λ| : λ is the point of the spectrum H}.

2. [7], Corollary 7.8.10: let H be a self-adjoint operator and f be a continuous complex function on

spec(H). Then

spec( f (H)) = f (spec(H)).

In particular, spec(eHt) = espec(H)t.

Using these properties, we obtain that the first term in (10) satisfies the estimate

‖eHtν0‖ ≤ ‖eHt‖‖ν0‖ = e−σt‖ν0‖. And for the second term for α 6= σ we have:

∥∥∥∥
∫ t

0
eH(t−s) f (s) ds

∥∥∥∥ ≤
∫ t

0

∥∥∥eH(t−s)
∥∥∥ ‖ f (s)‖ ds ≤

∫ t

0
e−σ(t−s)Ce−αs ds =

= Ce−σt
∫ t

0
e(σ−α)s ds =

Ce−σt

σ − α
e(σ−α)s

∣∣∣
t

0
=

=
Ce−σt

−(σ − α)

(
1 − e(σ−α)t

)
=

C

−(σ − α)

(
e−σt − e−αt

)
≤

≤ Ĉe−min(α,σ)t.

In the case α > σ we set C̃1 = ‖ν0‖+ Ĉ and in the case α < σ: C̃1 = Ĉ. It remains to note that for α = σ

the following equality holds

Ce−σt
∫ t

0
e(σ−α)s ds = Cte−σt,
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so we can put C̃2 = ‖ν0‖+ C, which completes the proof of Lemma 1.

Theorem 9. Let β∗
> βc and λE < 0. Then for t → ∞ and all n ∈ N the following statements hold

mn(t, x, y) ∼ Dn(x, y)eλE t, mn(t, x) ∼ Dn(x)eλE t,

where Dn(x, y) and Dn(x) are some constants.

Proof. The proof will be carried out for mn(t, x, y). The limit relations for mn(t, x) follow from the

form of the integral Equations (3) and the asymptotics for mn(t, x, y).

As in the proof of Theorem 8 we consider the eigenfunction f (x) ∈ l2(Zd) with the eigenvalue λE

of the operator E and denote by E⊥
f the subspace in l2(Zd), which orthogonal to the element f (see the

corresponding definition in the proof of Theorem 8).

Multiplying the equation for m2(t, x, y) scalarly by f , we get

∂t〈 f , m2(t, x, y)〉 = λE 〈 f , m2(t, x, y)〉+ f (0)g2(m1(t, 0, y)).

Let h(t, y) := 〈 f , m2(t, x, y)〉, this function satisfies the equation

∂th(t, y) = λEh(t, y) + f (0)g2(m1(t, 0, y))

with the initial condition h(0, y) = 〈 f , m2(0, x, y)〉 = 〈 f , δ0(x − y)〉 = f (y), whose solution

has the form

h(t, y) = eλE t f (y) +
∫ t

0
eλE (t−s) f (0)g2(m1(s, 0, y)) ds.

Since the relation m1(t, 0, y) ∼ C(0, y)eλE t holds for m1(t, 0, y), and this and the explicit form of

the function g2(m1) implies the relation g2(m1(t, 0, y)) ∼ K̃e2λE t, where K̃ is some constant, then h(t, y)

satisfies the limit relation

h(t, y) ∼ K1(y)e
λE t + K2e2λE t,

where K1(y), K2 are constant.

Consider now the subspace E⊥
f . The function m2(t, x, y) satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y))

and the spectrum of the operator E restricted to E⊥
f is included into (−∞,−σ], σ > 0. Using Lemma 1,

we obtain that on the subspace E⊥
f for −2λE 6= σ the following estimate holds

‖m2(t, x, y)‖ ≤ C̃1e−min(−2λE ,σ)t

and ‖m2(t, x, y)‖ ≤ C̃2te2λE t otherwise, with some constants C̃1, C̃2.

As in the proof of Theorem 8, taking into account the representation l2(Zd) = E f ⊕ E⊥
f , we obtain

for m2(t, x, y) as t → ∞ the relation

m2(t, x, y) ∼ D2(x, y)eλE t.

It remains to note that for all n ≥ 2 and t → ∞ the relation gn(m1, . . . , mn−1) ∼ K̃ne2λE t holds, where

K̃n is some constant. This follows from the explicit form of the function gn(m1, . . . , mn−1). And the

above reasoning remains true for mn(t, x, y) for all n ∈ N.

So, for mn(t, x, y) for all n ∈ N and for t → ∞ we have

mn(t, x, y) ∼ Dn(x, y)eλE t.
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The theorem is proved.

Note that in proving Theorems 8 and 9 in addition to the asymptotic behavior of the first moments,

which for β∗
> βc does not depend on the variance of jumps of the random walk, we also use

differential equations for higher moments, which, as noted above, also do not depend on the conditions

imposed on the variance of jumps. Consequently, all the results obtained for the case β∗
> βc do not

depend on the variance of jumps of the random walk.

To study the asymptotic behavior of the particle number moments in the case β∗ ≤ βc, when there

is no isolated eigenvalue λE , we need the following auxiliary lemma.

Lemma 2. Let continuous functions ϕ(t), χ(t) ≥ 0, t ≥ 0, satisfy the following asymptotic relations as t → ∞

ϕ(t) ∼ ϕ0tα(ln t)βe−b0t, χ(t) ∼ χ0t2α(ln t)2βe−2b0t,

where α, β ∈ R, b0 ∈ R+ and let W(t) :=
∫ t

0 ϕ(t − s)χ(s) ds. Then for W(t) the following asymptotic relation

holds as t → ∞

W(t) ∼ W0tα(ln t)βe−b0t.

Proof. It follows from the form of the asymptotics for the functions ϕ(t) and χ(t), that for any ε > 0

there exists δ > 0 such that the following relations hold for t ≥ δ

(1 − ε)tα(ln t)βe−b0t ≤ ϕ(t) ≤ (1 + ε)tα(ln t)βe−b0t,

(1 − ε)t2α(ln t)2βe−2b0t ≤ χ(t) ≤ (1 + ε)t2α(ln t)2βe−2b0t.

We choose t ≥ 2δ and represent the function W(t) as a sum

W(t) = W1,δ(t) + W2,δ(t),

where

W1,δ(t) =
∫ t−δ

0
ϕ(t − s)χ(s) ds, W2,δ(t) =

∫ t

t−δ
ϕ(t − s)χ(s) ds.

To estimate W1,δ(t), note that for 0 ≤ s ≤ t − δ the inequality t − s ≥ δ holds. Hence we get that

∫ t−δ

0
(1 − ε)(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds ≤ W1,δ(t) ≤

≤
∫ t−δ

0
(1 + ε)(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds.

Notice, that

∫ t−δ

0
(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds =

= e−b0ttα(ln t)β
∫ t−δ

0
(1 − s/t)α

(
ln t + ln(1 − s/t)

ln t

)β

eb0sχ(s) ds,

in this case the functions (1 − s/t)α and
(

ln t+ln(1−s/t)
ln t

)β
tend monotonically to 1 as t → ∞ and

eb0sχ(s) ∼ χ0s2α(ln s)2βe−b0s as s → ∞, i.e., eb0sχ(s) ∈ L[0,+∞).

So, we get

∫ t−δ

0
(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds = e−b0ttα(ln t)β

(∫ +∞

0
eb0sχ(s) ds + o(1)

)
.
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Consider now W2,δ(t). Since t ≥ 2δ, we have

W2,δ(t) =
∫ t

t−δ
ϕ(t − s)χ(s) ds ≤

≤ (1 + ε)(t − δ)2α(ln(t − δ))2βe−2b0(t−δ)
∫ δ

0
ϕ(s) ds =

= e−b0ttα(ln t)βo(1).

Finally, denoting W0 :=
∫ +∞

0 eb0sχ(s) ds, we obtain the required asymptotic relation and Lemma 2

is proved.

Theorem 10. Let the variance of jumps of the random walk be finite, then for t → ∞ and all n ∈ N the following

statements hold

a) for β∗ = βc:

d = 3: mn(t, x, y) ∼ An(x, y)t−1/2e−b0t, mn(t, x) ∼ An(x)t1/2e−b0t,
d = 4: mn(t, x, y) ∼ Bn(x, y)(ln t)−1e−b0t, mn(t, x) ∼ Bn(x)t(ln t)−1e−b0t,
d ≥ 5: mn(t, x, y) ∼ Cn(x, y)e−b0t, mn(t, x) ∼ Cn(x)te−b0t,

b) for β∗
< βc:

d ≥ 3: mn(t, x, y) ∼ Dn(x, y)t−d/2e−b0t, mn(t, x) ∼ Dn(x)e−b0t,

where An(x, y), An(x), Bn(x, y), Bn(x), Cn(x, y), Cn(x), Dn(x, y) and Dn(x) are some constants.

Proof. The limit relations for the first moments are obtained in Theorem 4. The second moments are

expressed in terms of the first moments and their convolutions with the functions g2(m1(t, 0, y)) and

g2(m1(t, 0)) using the integral Equation (3). Note that the asymptotic relations for the first moments

for all d in the case β∗ ≤ βc have the form m1 ∼ C̃1tα(ln t)βe−b0t and for the functions g2(m1) the

following asymptotic relations hold: g2(m1) ∼ G̃2t2α(ln t)2βe−2b0t, where G̃2 is some constant and α

and β are the same, as in the asymptotics of the corresponding first moment m1. Using Lemma 2 for

the functions m1 and g2, we get that

∫ t

0
m1(t − s)g2(m1(s)) ds ∼ W0tα(ln t)βe−b0t.

Finally, we obtain that for the second moments the relation m2 ∼ C̃2tα(ln t)βe−b0t holds, i.e., the second

moments behave at infinity in the same way as the corresponding first moments, up to a constant.

To complete the proof we note that for all n ≥ 2 the following relation will hold

gn(m1, . . . , mn−1) ∼ G̃nt2α(ln t)2βe−2b0t, where G̃n is some constant. This means that for all n ∈ N

and t → ∞ the following limit relations will hold: mn ∼ C̃ntα(ln t)βe−b0t. The theorem is proved.

When the condition (3) is satisfied, which leads to an infinite variance of jumps, the following

theorem turns out to be true.

Theorem 11. Under the condition (3) for t → ∞ and all n ∈ N the following statements hold

a) for β∗ = βc:

mn(t, x, y) ∼ Bn,d/α(x, y)u∗(t), mn(t, x) ∼ Bn,d/α(x)v∗(t),

where Bn,d/α(x, y), Bn,d/α(x) > 0 and

u∗(t) = td/α−2e−b0t, v∗(t) = td/α−1e−b0t, if d/α ∈ (1, 2);
u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t, if d/α = 2;
u∗(t) = e−b0t, v∗(t) = te−b0t, if d/α ∈ (2,+∞);
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b) for β∗
< βc:

mn(t, x, y) ∼ An(x, y)u∗(t), mn(t, x) ∼ An(x)v∗(t),

where An(x, y), An(x) > 0, u∗(t) = t−d/αe−b0t, v∗(t) = e−b0t.

Proof. Asymptotic relations for the first moments in the case of the condition (3) are obtained in

Theorem 5. Note that for all possible values of the parameter d/α for β∗ ≤ βc these relations have

the form

m1 ∼ Ctα(ln t)βe−b0t,

where α and β are some known constants.

Further, carrying out the arguments from the proof of the Theorem 10 without changes, we obtain

that all integer moments in the case under consideration behave at infinity in the same way as the

corresponding first moments, up to a constant. The theorem is proved.
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