Pre prints.org

Article Not peer-reviewed version

The M-basis Functions and Their
Application

Mehran Emadi Andani ~

Posted Date: 13 February 2023
doi: 10.20944/preprints202302.0208.v1

Keywords: M-basis function; Fourier basis function; optimization; minimum jerk

E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

EF-'J-' Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2759303

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 February 2023 doi:10.20944/preprints202302.0208.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

The M-Basis Functions and Their Application

Mehran Emadi Andani

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy;
mehran.emadiandani@univr.it

Abstract: A new set of basis functions is presented. The foundation in mathematics is established.
To reconstruct a signal, it is compared to the Fourier basis functions. The M-basis functions' potential
applications are also presented.
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1. Introducing M-basis functions

The M-basis functions of the n"-order are defined as the arguments for optimizing the following
objective function:
2
_ . ty (d™(6(1))
{M} = arg min (fo (—dtn ) dt (1)
Subject to knowing the boundary conditions, i.e., the values of 8 and up to the (n-1)* derivative
of O at t =0 and t = t;, we will show that the solution to (1) is a linear combination of 21 basis functions

that we call M-basis functions. First, the third-order (n = 3) is discussed because (1) results in
minimum jerk patterns [1-16].

1.1. The third-order M-basis functions (minimum jerk)

As shown in [2], the solution of this problem is a quintic spline, or 5t-order polynomial, which
can be described as (2).

6(t) = ATX(t) )
where, t is the time variable, and A and X are the following vectors.
A = [a a a a3 a; as] 3)
X® =1 ¢ ¢ 8 ¢+ ¢85 4)

A vector defined by (5) shows the boundary conditions at the initial (t = 0) and final (t = #)
moments.

BT = [0(0) 6(t) 6(0) 6(tp) 6(0) 6(tp)] (5

where, tf represents the total time duration, B describes the boundary conditions, and the dot on top
of 6 indicates the first derivative of 6 with respect to time. We can change (5) to (6) using (2).

BT = AT[X(0) X(tr) X(0) X(ty) X(0) X(t)]
Q

=A"Q (6)

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0208.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 February 2023 doi:10.20944/preprints202302.0208.v1

2
r1 1 0 0 0 0 1
0t 1 1 0 0
0 tf 0 2t 2 2
Q= 2
0 tf 0 3t} 0 6t
3 2
0 tf 0 4t} 0 12t
0 t7 0 5tf 0 20t}
We can write (7) using (2) and (6).
00 =AXO= F0KO gy ()
B
1 0 0 -—10/t7 15/t} —6/tp ]
0 0 0 10/t} —15/tf 6/}
01 0 —6/t? 8/t3 -3/t}
Q= A I (8)
00 0 —4/t2 7/t =3/t
0 0 05 =15/t 15/t —05/tf
0 0 0 05/t —1/tf 05/t} |

Using (3) and (7), we can write (8).

[1 0 0 =10/ 15/t —6/t7] [ 1-106% /e +15¢* je} —6t° /t7 ]

lo o 0 105 15/t e/t Ir I 10¢* /3t)§:15t44/t]i‘3+ 6t55/tf54 I
O B ) R ey any A I

00 0 =4 g s e —483 J¢7 + 7t Jt] — 3¢5 /t} I

[0 0 05 —15/t; 15/t —0.5/tf3|[§5J [0.5¢% — 1.5¢% /t; + 1.5t /t7 — 0.5t5 /7 |

lo o o o5/t -1/t2 05/t ] L 0.5t% /t; —t* /t7 +0.5¢% /t} |

It is possible to convert (9) to (10).
Q7 X(t)=TM (10)

where, T and M are defined as follows:

T = diag(1,1,t;, ty, 7, t7) (11)

[ 1—10t3 + 15t} —6t> ]
10t3 — 15t} + 6t
t, — 6t3 + 8t} — 3¢t
—4t3 + 7t} — 3¢t
0.5t2 — 1.5t3 + 1.5t} — 0.5t
I 0.5t3 — t} + 0.5t |

M(ty) =TQ7X(t) = (12)

where, t. is the normalized time variable, i.e., t. = t/tr. Each row of the M describes one of the M-basis
functions. The M-basis functions are normalized in terms of time and can be calculated simply by
using (12). Third-order M-basis functions are illustrated in Figure 1.
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Normalized Time Normalized Time Normalized Time
Figure 1. The third-order M-basis functions. Six 3'-order M-basis functions are illustrated, two in

each plot. The third-order M-basis functions are movement elements as derived in [1].

Finally, we can write (13) from (5), (11), and (12).
0(t) = BTTM(t,) (13)

Equation (13) shows that the solution of (1) is a linear combination of the M-basis functions
scaled by the time duration (T) and boundary conditions (B).

1.2. The n'-order M-basis functions

Similar to [2], it is easy to prove that the solution to (1) is a (2n-1)t-order polynomial. Therefore,
inspired by what is written above, it is possible to show that the solution of (1) can be described
simply by (13) for any order of n.

In this case, X, B, T, and M are as follows:

X@t) = [1 t ¢ ¢ .. 217 (14)
B = [0(0) o) 60) 6(t) .. 6(0) Bt (15)
T =diag(11,ts, tr, .., t} 57 (16)
[ My () T
M, (ty)
M(t,) = ' (17)
| My ()]

It should be mentioned that the Q matrix can be created using (18).

n—-1dot n-1dot

Q= [x<0) X(t) X0) X(t) .. X(0) X(ty) (18)

Finally, having Q' makes it easy to calculate M using (19).
M(ty) =T7'Q7'X (1) (19)

Finally, O can be calculated using (13) with the help of (15), (16), and (17).
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1.3. The 4t"-order M-basis (minimum snap)

In this case, X, B, T, and M are as follows:

X® = [1 ¢ & 3 ¢+ ¢5¢6 ¢7]" (20)
BT = [6(0) 6(t;) 6(0) 6(ty) 6(0) 6(t) 0(¢p) 6(tp)] (21)
T = diag(1,1, ty, ty, t7, 7, 7, t7) (22)

The Q and Q7! can be written as (23) and (24) respectively.

1 1.0 0 0 0 0 0
0t 1 1 0 0 0 0
0t 02 2 2 0 0
0t 0 3t 0 6t; 6 6
C=lo 2 0 a4 0 122 0 24t @3
0 t¢ 0 5t 0 20t 0 60tf
0 tf 0 6t 0 30tf 0 120t}
0 ¢t/ 0 7t 0 42t 0 210t7]
1 —-35/t¢  84/tp  —=70/tp 20/t ]

35/tf =84/t 70/t —20/t]
—20/t} 45/t} —=36/t7 10/tf
—15/t}  39/tf =34/t 10/t}
=5/t 10/t =75/t  2/t}
0 0 25/tf =7/t 65/tf —2/t}
0 1/6 -—2/3t 1/t =2/3t} 1/6t}
0 0 —1/6t 05/t7 —1/2t} 1/6t} |

(24)

S O O o O

S O ©O O ©O »r O O
o
vl

o o o o ©o o o©

Finally, using (20), (22), and (24) as shown below, the M-basis functions can be derived from
(19).
[ 1 —35tF + 84t3 — 70t + 20t]
35t — 84t> + 70tS — 20t
tp — 20t} + 45t — 36t + 10t]
—15t} + 39t> — 34t8 + 10t]
M(t,) = 0.5t?— 5t +10t3 — 7.5t5 + 2t (25)
2.5t — 7t + 6.5t8 — 2t]

1 2 5 2 1
gtg—gt;:+tn—§tg+gtg

1.4 ,1 5 1.4 ,1.7
S i A o 24

where, t: is the normalized time variable, i.e., t: = t/ts. In the end, similarly, 6 can be computed by (13)
using (21), (22), and (25). Each row of the M describes one of the fourth-order M-basis functions. The
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M-basis functions from the first to seventh-order are illustrated in Figure 2. The application of the
third-order M-basis functions has already been investigated in human movement [1,3-8].

0.04
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Figure 2. The M-basis functions. The first to seventh rows represent the first to seventh-order M-basis
functions, respectively. The horizontal axis is the normalized time. In each window, two M-basis

functions are illustrated by solid and dashed lines.

2. The frequency specification of the M-basis functions

According to the definition of the objective function, i.e., equation (1), it can be imagined that
the M-basis functions are the low-frequency signals. Considering ¢ = 1 sec, the Fourier transforms of
the M-basis functions from the first to seventh orders are calculated. It should be added that the two
M-basis functions shown in the same window in Figure 2 have the same absolute Fourier transforms.
The cutoff frequencies of the M-basis functions for various orders are depicted in Figure 3.

It should be mentioned that the shorter the #;, the higher the cutoff frequency, and vice versa. It
is proportional to the length of time, so the cutoff frequency for a ¢ of 0.5 sec is twice that of 1 sec. It
means that for the shorter time length, the bandwidth of the M-basis functions is higher. The
bandwidth of the M-basis functions, on the other hand, is lower for longer time lengths due to their

low-frequency nature.

1.2

0 1 2 3 4 5 6 7
Order of M-basis function

Figure 3. The cutoff frequency. Black circles represent the first- to seventh-order M-basis functions’
cutoff frequencies. For the first-order, there are two M-basis functions with the same absolute Fourier
transform and therefore the same cutoff frequency. Similarly, there are n cutoff frequencies for the
nth-order M-basis functions. The lowest and highest values of the cutoff frequencies are highlighted
by blue and red lines, respectively.

3. The applications of the M-basis function

3.1. Human movements

As shown in [1-8], one of the applications of the third-order M-basis functions is in human motor
planning. Moreover, it can also be applied to humanoid robots [3,6,7].

3.2. Slow signals

With almost the same number of basis functions, the error of reconstructing a signal using the
Fourier basis functions and the M-basis functions is compared. The original signal (Y) is created with
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a duration of 1 sec and a sampling frequency of 100 Hz. The results show that a signal with low-
frequency information can be represented better by a linear combination of M-basis functions than
by Fourier-based functions. Different examples are depicted in Table 1 to show the performance of
M-basis functions compared to the Fourier transform. Because the signal has a time length of one
second and the resolution of the Fourier basis functions is 1 Hz, the Fourier basis function produces
better results for pure sinusoidal signals with integer frequency. For the non-integer frequencies, the
Fourier basis functions are not efficient to reconstruct the original signal; however, the M-basis
functions can reconstruct these kinds of signals with a limited number of basis functions. For signals
with a wider frequency range, the order of the M-basis functions should obviously be higher to
reconstruct the signal at higher frequencies, as seen in Fig. 3.

Table 1. The number of basis functions of the Fourier and M transforms needed to reconstruct the
signal with a maximum error of 5% is depicted in different cases. Different cases were considered as
examples to show the effect of the integer and non-integer values of frequency. The duration of the
signal is set at 1 sec (t= 1 sec), and the sampling frequency is set at 100 Hz. Since the duration of the
signal is 1 sec, the resolution of the Fourier transform is 1 Hz. That is why, in these cases, the number
of Fourier basis functions will be increased to compensate for the lack of frequency resolution. The
variability in the number of basis functions in the Fourier transform is huge; instead, it is more robust
in the M transform. For the signals including non-integer frequencies, the results of M-basis functions
are much better, i.e., it needs a much smaller number of basis functions to represent the original data
with less than 5% error. In those cases, even with more than 51 of the Fourier basis functions, the
represented data had more than 15% error.

The number of basis functions needed to reconstruct the
Original signal

original signal with an error rate under 5%

Fourier-basis M-basis
cos(2mxt) 3 8
sin(2mxt) 3 8
cos(2mx2t) 5 14
sin(2mx2t) 5 14
sin(2mxt) + sin(2m=2t) 5 14
2sin(2mtxt) + sin(2mx2t) 5 14
cos(27=0.5t) >51 4
cos(27=0.53t) >51 6
cos(2m x0.53t - 1t/8) >51 6
cos(2m=1.38t) >51 12
cos(2mx1.38t + 1/12) >51 12
cos(2m=1.38t + 11/12) + cos(2m x0.53t - 11/8) >51 10
cos(2mx1.38t + m/12) + cos(2m x0.53t - m/8) + | >51 10
cos(2m x0.17t + 1t/3)
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sin(2m xt) + cos(2mx1.38t + m/12) + cos(2m | >51 10
x0.53t - 11/8) + cos(2m x0.17t + 11/3)

sin(27t xt) + sin(2m x2t) + cos(2m=1.38t + 1/12) | >51 14
+ cos(2m x0.53t - Tt/8)
+ cos(27t x0.17t + 11/3)

cos(2mx2.5t) >51 18

4. Discussion and conclusion

In this article, I introduced novel M-basis functions. As shown in different examples,
representing a signal by M-basis functions can preserve the frequency nature of the signal, especially
if the time window is short.

As the future work, the combination of the Fourier and M-basis functions can be studied. The
M-basis functions can better represent the boundary of the signal than the middle of the signal, while
the Fourier basis functions can better represent the middle of the signal because of the Gibbs effect.
The M-basis functions can also be applied to estimate the frequency of the single frequency signals
with non-integer value.
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