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Article 

The M‐Basis Functions and Their Application   
Mehran Emadi Andani 

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; 
mehran.emadiandani@univr.it 

Abstract: A new set of basis functions is presented. The foundation in mathematics is established. 
To reconstruct a signal, it is compared to the Fourier basis functions. The M‐basis functionsʹ potential 
applications are also presented. 

Keywords: M‐basis function; Fourier basis function; optimization; minimum jerk 
 

1. Introducing M‐basis functions 

The M‐basis functions of the nth‐order are defined as the arguments for optimizing the following 
objective function: ሼ𝑀ሽ ൌ arg min ൬׬ ቀௗ೙൫ఏሺ௧ሻ൯ௗ௧೙ ቁଶ 𝑑𝑡௧೑଴ ൰               (1) 

Subject to knowing the boundary conditions, i.e., the values of θ and up to the (n‐1)th derivative 
of θ at t = 0 and t = tf, we will show that the solution to (1) is a linear combination of 2n basis functions 
that we  call M‐basis  functions.  First,  the  third‐order  (n  =  3)  is  discussed  because  (1)  results  in 
minimum jerk patterns [1–16].   

1.1. The third‐order M‐basis functions (minimum jerk) 

As shown in [2], the solution of this problem is a quintic spline, or 5th‐order polynomial, which 
can be described as (2).  𝜃ሺ𝑡ሻ ൌ 𝐴்𝑋ሺ𝑡ሻ          (2) 

where, t is the time variable, and A and X are the following vectors.   𝐴 ൌ ሾ𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎ସ 𝑎ହሿ்     (3) 

𝑋ሺ𝑡ሻ ൌ ሾ1 𝑡 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହሿ்     (4) 

A vector defined by  (5) shows  the boundary  conditions at  the  initial  (t = 0) and  final  (t =  tf) 
moments.  𝐵் ൌ ሾ𝜃ሺ0ሻ 𝜃ሺ𝑡௙ሻ 𝜃ሶሺ0ሻ 𝜃ሶሺ𝑡௙ሻ 𝜃ሷሺ0ሻ 𝜃ሷሺ𝑡௙ሻሿ    (5) 

where, tf represents the total time duration, B describes the boundary conditions, and the dot on top 
of θ indicates the first derivative of θ with respect to time. We can change (5) to (6) using (2). 𝐵் ൌ 𝐴் ሾ𝑋ሺ0ሻ 𝑋ሺ𝑡௙ሻ 𝑋ሶ ሺ0ሻ 𝑋ሶ ሺ𝑡௙ሻ 𝑋ሷ ሺ0ሻ 𝑋ሷ ሺ𝑡௙ሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥொ ൌ 𝐴்𝑄  (6) 
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𝑄 ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎡1 1 0 0 0 0

0 𝑡௙ 1 1 0 0

0 𝑡௙ଶ 0 2𝑡௙ 2 2

0 𝑡௙ଷ 0 3𝑡௙ଶ 0 6𝑡௙
0 𝑡௙ସ 0 4𝑡௙ଷ 0 12𝑡௙ଶ
0 𝑡௙ହ 0 5𝑡௙ସ 0 20𝑡௙ଷ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

We can write (7) using (2) and (6). 𝜃ሺ𝑡ሻ ൌ 𝐴்𝑋ሺ𝑡ሻ ൌ 𝐴்𝑄ถ஻೅ 𝑄ିଵ𝑋ሺ𝑡ሻ ൌ 𝐵்𝑄ିଵ𝑋ሺ𝑡ሻ      (7)

 𝑄ିଵ ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎡1 0 0 െ10/𝑡௙ଷ 15/𝑡௙ସ െ6/𝑡௙ହ
0 0 0 10/𝑡௙ଷ െ15/𝑡௙ସ 6/𝑡௙ହ
0 1 0 െ6/𝑡௙ଶ 8/𝑡௙ଷ െ3/𝑡௙ସ
0 0 0 െ4/𝑡௙ଶ 7/𝑡௙ଷ െ3/𝑡௙ସ
0 0 0.5 െ.15/𝑡௙ 1.5/𝑡௙ଶ െ0.5/𝑡௙ଷ
0 0 0 0.5/𝑡௙ െ1/𝑡௙ଶ 0.5/𝑡௙ଷ ⎦⎥⎥

⎥⎥⎥
⎥⎤

     

(8) 

Using (3) and (7), we can write (8). 

𝑄ିଵ𝑋ሺ𝑡ሻ ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎡1 0 0 െ10/𝑡௙ଷ 15/𝑡௙ସ െ6/𝑡௙ହ
0 0 0 10/𝑡௙ଷ െ15/𝑡௙ସ 6/𝑡௙ହ
0 1 0 െ6/𝑡௙ଶ 8/𝑡௙ଷ െ3/𝑡௙ସ
0 0 0 െ4/𝑡௙ଶ 7/𝑡௙ଷ െ3/𝑡௙ସ
0 0 0.5 െ.15/𝑡௙ 1.5/𝑡௙ଶ െ0.5/𝑡௙ଷ
0 0 0 0.5/𝑡௙ െ1/𝑡௙ଶ 0.5/𝑡௙ଷ ⎦⎥⎥

⎥⎥⎥
⎥⎤
⎣⎢⎢
⎢⎢⎡ 1𝑡𝑡ଶ𝑡ଷ𝑡ସ𝑡ହ⎦⎥⎥
⎥⎥⎤ ൌ

⎣⎢⎢
⎢⎢⎢
⎢⎡ 1 െ 10𝑡ଷ /𝑡௙ଷ ൅ 15𝑡ସ /𝑡௙ସ െ 6𝑡ହ /𝑡௙ହ

10𝑡ଷ /𝑡௙ଷ െ 15𝑡ସ /𝑡௙ସ ൅ 6𝑡ହ /𝑡௙ହ𝑡 െ 6𝑡ଷ /𝑡௙ଶ ൅ 8𝑡ସ /𝑡௙ଷ െ 3𝑡ହ /𝑡௙ସെ4𝑡ଷ /𝑡௙ଶ ൅ 7𝑡ସ /𝑡௙ଷ െ 3𝑡ହ /𝑡௙ସ
0.5𝑡ଶ െ 1.5𝑡ଷ /𝑡௙ ൅ 1.5𝑡ସ /𝑡௙ଶ െ 0.5𝑡ହ /𝑡௙ଷ

0.5𝑡ଷ /𝑡௙ െ 𝑡ସ /𝑡௙ଶ ൅ 0.5𝑡ହ /𝑡௙ଷ ⎦⎥⎥
⎥⎥⎥
⎥⎤
      (9) 

It is possible to convert (9) to (10). 𝑄ିଵ𝑋ሺ𝑡ሻ ൌ 𝑇𝑀              (10) 

where, T and M are defined as follows:   𝑇 ൌ 𝑑𝑖𝑎𝑔ሺ1,1, 𝑡௙ , 𝑡௙ , 𝑡௙ଶ, 𝑡௙ଶሻ          (11) 

𝑀ሺ𝑡௡ሻ ൌ 𝑇ିଵ𝑄ିଵ𝑋ሺ𝑡ሻ ൌ
⎣⎢⎢
⎢⎢⎢
⎡ 1 െ 10𝑡௡ଷ ൅ 15𝑡௡ସ െ 6𝑡௡ହ

10𝑡௡ଷ െ 15𝑡௡ସ ൅ 6𝑡௡ହ𝑡௡ െ 6𝑡௡ଷ ൅ 8𝑡௡ସ െ 3𝑡௡ହെ4𝑡௡ଷ ൅ 7𝑡௡ସ െ 3𝑡௡ହ
0.5𝑡௡ଶ െ 1.5𝑡௡ଷ ൅ 1.5𝑡௡ସ െ 0.5𝑡௡ହ

0.5𝑡௡ଷ െ 𝑡௡ସ ൅ 0.5𝑡௡ହ ⎦⎥⎥
⎥⎥⎥
⎤
      (12) 

where, tn is the normalized time variable, i.e., tn = t/tf. Each row of the M describes one of the M‐basis 
functions. The M‐basis functions are normalized in terms of time and can be calculated simply by 
using (12). Third‐order M‐basis functions are illustrated in Figure 1. 
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Figure 1. The  third‐order M‐basis  functions. Six 3rd‐order M‐basis  functions are  illustrated,  two  in 
each plot. The third‐order M‐basis functions are movement elements as derived in [1]. 

Finally, we can write (13) from (5), (11), and (12). 𝜃ሺ𝑡ሻ ൌ 𝐵்𝑇𝑀ሺ𝑡௡ሻ              (13) 

Equation  (13) shows  that  the solution of  (1)  is a  linear combination of  the M‐basis  functions 
scaled by the time duration (T) and boundary conditions (B).   

1.2. The nth‐order M‐basis functions   

Similar to [2], it is easy to prove that the solution to (1) is a (2n‐1)th‐order polynomial. Therefore, 
inspired by what  is written above,  it  is possible  to show  that  the solution of  (1) can be described 
simply by (13) for any order of n. 

In this case, X, B, T, and M are as follows: 

𝑋ሺ𝑡ሻ ൌ ሾ1 𝑡 𝑡ଶ 𝑡ଷ … 𝑡ଶ௡ିଵሿ்            (14) 

𝐵் ൌ ൤𝜃ሺ0ሻ 𝜃ሺ𝑡௙ሻ 𝜃ሶሺ0ሻ 𝜃ሶሺ𝑡௙ሻ …  𝜃ሷሺ0ሻฑ௡ିଵ ௗ௢௧ 𝜃ሷሺ𝑡௙ሻᇩᇪᇫ௡ିଵ ௗ௢௧൨      (15) 

𝑇 ൌ 𝑑𝑖𝑎𝑔ሺ1,1, 𝑡௙ , 𝑡௙, … , 𝑡௙௡ିଵ, 𝑡௙௡ିଵሻ          (16) 

𝑀ሺ𝑡௡ሻ ൌ
⎣⎢⎢
⎢⎢⎡
𝑀ଵሺ𝑡௡ሻ𝑀ଶሺ𝑡௡ሻ

.

.

.𝑀ଶ௡ሺ𝑡௡ሻ⎦⎥⎥
⎥⎥⎤                (17) 

It should be mentioned that the Q matrix can be created using (18). 

𝑄 ൌ  ൤𝑋ሺ0ሻ 𝑋ሺ𝑡௙ሻ 𝑋ሶ ሺ0ሻ 𝑋ሶ ሺ𝑡௙ሻ …  𝑋ሷ ሺ0ሻฑ௡ିଵ ௗ௢௧ 𝑋ሷ ሺ𝑡௙ሻᇩᇪᇫ௡ିଵ ௗ௢௧൨      (18) 

Finally, having 𝑄ିଵ makes it easy to calculate M using (19). 𝑀ሺ𝑡௡ሻ ൌ 𝑇ିଵ𝑄ିଵ𝑋ሺ𝑡ሻ              (19) 

Finally, θ can be calculated using (13) with the help of (15), (16), and (17).   
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1.3. The 4th‐order M‐basis (minimum snap) 

In this case, X, B, T, and M are as follows: 

𝑋ሺ𝑡ሻ ൌ ሾ1 𝑡 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହ   𝑡଺ 𝑡଻ሿ்        (20) 

𝐵் ൌ ሾ𝜃ሺ0ሻ 𝜃ሺ𝑡௙ሻ 𝜃ሶሺ0ሻ 𝜃ሶሺ𝑡௙ሻ 𝜃ሷሺ0ሻ 𝜃ሷ൫𝑡௙൯     𝜃ሸሺ𝑡௙ሻ 𝜃ሸሺ𝑡௙ሻሿ  (21) 

𝑇 ൌ 𝑑𝑖𝑎𝑔ሺ1,1, 𝑡௙ , 𝑡௙, 𝑡௙ଶ, 𝑡௙ଶ, 𝑡௙ଷ, 𝑡௙ଷሻ            (22) 

The 𝑄 and 𝑄ିଵ  can be written as (23) and (24) respectively. 

𝑄 ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡1 1 0 0 0 0 0 0

0 𝑡௙ 1 1 0 0 0 0

0 𝑡௙ଶ 0 2𝑡௙ 2 2 0 0

0 𝑡௙ଷ 0 3𝑡௙ଶ 0 6𝑡௙ 6 6

0 𝑡௙ସ 0 4𝑡௙ଷ 0 12𝑡௙ଶ 0 24𝑡௙
0 𝑡௙ହ 0 5𝑡௙ସ 0 20𝑡௙ଷ 0 60𝑡௙ଶ
0 𝑡௙଺ 0 6𝑡௙ହ 0 30𝑡௙ସ 0 120𝑡௙ଷ
0 𝑡௙଻ 0 7𝑡௙଺ 0 42𝑡௙ହ 0 210𝑡௙ସ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
       (23) 

𝑄ିଵ ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡1 0 0 0 െ35/𝑡௙ସ 84/𝑡௙ହ െ70/𝑡௙଺ 20/𝑡௙଻
0 0 0 0 35/𝑡௙ସ െ84/𝑡௙ହ 70/𝑡௙଺ െ20/𝑡௙଻
0 1 0 0 െ20/𝑡௙ଷ 45/𝑡௙ସ െ36/𝑡௙ହ 10/𝑡௙଺
0 0 0 0 െ15/𝑡௙ଷ 39/𝑡௙ସ െ34/𝑡௙ହ 10/𝑡௙଺
0 0 0.5 0 െ5/𝑡௙ଶ 10/𝑡௙ଷ െ7.5/𝑡௙ସ 2/𝑡௙ହ
0 0 0 0 2.5/𝑡௙ଶ െ7/𝑡௙ଷ 6.5/𝑡௙ସ െ2/𝑡௙ହ
0 0 0 1/6 െ2/3𝑡 1/𝑡௙ଶ െ2/3𝑡௙ଷ 1/6𝑡௙ସ
0 0 0 0 െ1/6𝑡 0.5/𝑡௙ଶ െ1/2𝑡௙ଷ 1/6𝑡௙ସ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

  

(24) 

Finally, using  (20), (22), and (24) as shown below, the M‐basis functions can be derived  from 
(19).  

𝑀ሺ𝑡௡ሻ ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 െ 35𝑡௡ସ ൅ 84𝑡௡ହ െ 70𝑡௡଺ ൅ 20𝑡௡଻

35𝑡௡ସ െ 84𝑡௡ହ ൅ 70𝑡௡଺ െ 20𝑡௡଻𝑡௡ െ 20𝑡௡ସ ൅ 45𝑡௡ହ െ 36𝑡௡଺ ൅ 10𝑡௡଻െ15𝑡௡ସ ൅ 39𝑡௡ହ െ 34𝑡௡଺ ൅ 10𝑡௡଻
0.5𝑡௡ଶ െ 5𝑡௡ସ ൅ 10𝑡௡ହ െ 7.5𝑡௡଺ ൅ 2𝑡௡଻

2.5𝑡௡ସ െ 7𝑡௡ହ ൅ 6.5𝑡௡଺ െ 2𝑡௡଻ଵ଺ 𝑡௡ଷ െ ଶଷ 𝑡௡ସ ൅ 𝑡௡ହ െ ଶଷ 𝑡௡଺ ൅ ଵ଺ 𝑡௡଻െ ଵ଺ 𝑡௡ସ ൅ ଵଶ 𝑡௡ହ െ ଵଶ 𝑡௡଺ ൅ ଵ଺ 𝑡௡଻ ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
        (25) 

where, tn is the normalized time variable, i.e., tn = t/tf. In the end, similarly, θ can be computed by (13) 
using (21), (22), and (25). Each row of the M describes one of the fourth‐order M‐basis functions. The 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2023                   doi:10.20944/preprints202302.0208.v1

https://doi.org/10.20944/preprints202302.0208.v1


  5 

 

M‐basis functions from the first to seventh‐order are illustrated in Figure 2. The application of the 
third‐order M‐basis functions has already been investigated in human movement [1,3–8]. 
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Figure 2. The M‐basis functions. The first to seventh rows represent the first to seventh‐order M‐basis 
functions,  respectively. The horizontal axis  is  the normalized  time.  In  each window,  two M‐basis 
functions are illustrated by solid and dashed lines. 

2. The frequency specification of the M‐basis functions 

According to the definition of the objective function, i.e., equation (1), it can be imagined that 
the M‐basis functions are the low‐frequency signals. Considering tf = 1 sec, the Fourier transforms of 
the M‐basis functions from the first to seventh orders are calculated. It should be added that the two 
M‐basis functions shown in the same window in Figure 2 have the same absolute Fourier transforms. 
The cutoff frequencies of the M‐basis functions for various orders are depicted in Figure 3.  

It should be mentioned that the shorter the tf, the higher the cutoff frequency, and vice versa. It 
is proportional to the length of time, so the cutoff frequency for a tf    of 0.5 sec is twice that of 1 sec. It 
means  that  for  the  shorter  time  length,  the  bandwidth  of  the M‐basis  functions  is  higher.  The 
bandwidth of the M‐basis functions, on the other hand, is lower for longer time lengths due to their 
low‐frequency nature.    

 

Figure 3. The cutoff frequency. Black circles represent the first‐ to seventh‐order M‐basis functions’ 
cutoff frequencies. For the first‐order, there are two M‐basis functions with the same absolute Fourier 
transform and therefore the same cutoff frequency. Similarly, there are n cutoff frequencies for the 
nth‐order M‐basis functions. The lowest and highest values of the cutoff frequencies are highlighted 
by blue and red lines, respectively. 

3. The applications of the M‐basis function 

3.1. Human movements 

As shown in [1–8], one of the applications of the third‐order M‐basis functions is in human motor 
planning. Moreover, it can also be applied to humanoid robots [3,6,7]. 

3.2. Slow signals   

With almost the same number of basis functions, the error of reconstructing a signal using the 
Fourier basis functions and the M‐basis functions is compared. The original signal (Y) is created with 
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a duration of 1 sec and a sampling frequency of 100 Hz. The results show that a signal with low‐
frequency information can be represented better by a linear combination of M‐basis functions than 
by Fourier‐based functions. Different examples are depicted in Table 1 to show the performance of 
M‐basis functions compared to the Fourier transform. Because the signal has a    time length of one 
second and the resolution of the Fourier basis functions is 1 Hz, the Fourier basis function produces 
better results for pure sinusoidal signals with integer frequency. For the non‐integer frequencies, the 
Fourier  basis  functions  are  not  efficient  to  reconstruct  the  original  signal;  however,  the M‐basis 
functions can reconstruct these kinds of signals with a limited number of basis functions. For signals 
with  a wider  frequency  range,  the order of  the M‐basis  functions  should obviously be higher  to 
reconstruct the signal at higher frequencies, as seen in Fig. 3. 

Table 1. The number of basis functions of the Fourier and M transforms needed to reconstruct the 
signal with a maximum error of 5% is depicted in different cases. Different cases were considered as 
examples to show the effect of the integer and non‐integer values of frequency. The duration of the 
signal is set at 1 sec (tf = 1 sec), and the sampling frequency is set at 100 Hz. Since the duration of the 
signal is 1 sec, the resolution of the Fourier transform is 1 Hz. That is why, in these cases, the number 
of Fourier basis functions will be increased to compensate for the lack of frequency resolution. The 
variability in the number of basis functions in the Fourier transform is huge; instead, it is more robust 
in the M transform. For the signals including non‐integer frequencies, the results of M‐basis functions 
are much better, i.e., it needs a much smaller number of basis functions to represent the original data 
with  less  than 5% error. In  those cases, even with more  than 51 of  the Fourier basis  functions,  the 
represented data had more than 15% error. 

Original signal 
The  number  of  basis  functions  needed  to  reconstruct  the 

original signal with an error rate under 5% 

  Fourier‐basis  M‐basis   

cos(2π×t)  3  8 

sin(2π×t)  3  8 

cos(2π×2t)  5  14 

sin(2π×2t)  5  14 

sin(2π×t) + sin(2π×2t)  5  14 

2sin(2π×t) + sin(2π×2t)  5  14 

cos(2π×0.5t)  >51  4 

cos(2π×0.53t)  >51  6 

cos(2π ×0.53t ‐ π/8)  >51  6 

cos(2π×1.38t)  >51  12 

cos(2π×1.38t + π/12)  >51  12 

cos(2π×1.38t + π/12) + cos(2π ×0.53t ‐ π/8)  >51  10 

cos(2π×1.38t  +  π/12)  +  cos(2π  ×0.53t  ‐  π/8) + 

cos(2π ×0.17t + π/3) 

>51  10 
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sin(2π  ×t)  +  cos(2π×1.38t  +  π/12)  +  cos(2π 

×0.53t ‐ π/8) + cos(2π ×0.17t + π/3) 

>51  10 

sin(2π ×t) + sin(2π ×2t) + cos(2π×1.38t + π/12) 

+ cos(2π ×0.53t ‐ π/8)   

+ cos(2π ×0.17t + π/3)   

>51  14 

cos(2π×2.5t)  >51  18 

4. Discussion and conclusion 

In  this  article,  I  introduced  novel  M‐basis  functions.  As  shown  in  different  examples, 
representing a signal by M‐basis functions can preserve the frequency nature of the signal, especially 
if the time window is short. 

As the future work, the combination of the Fourier and M‐basis functions can be studied. The 
M‐basis functions can better represent the boundary of the signal than the middle of the signal, while 
the Fourier basis functions can better represent the middle of the signal because of the Gibbs effect. 
The M‐basis functions can also be applied to estimate the frequency of the single frequency signals 
with non‐integer value. 
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