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Abstract: Modern hyperspectral imaging technologies generate enormous datasets that could poten- 1

tially transmit a wealth of information, but such a resource presents numerous difficulties for data 2

analysis and interpretation. Deep learning techniques undoubtedly provide a wide range of potential 3

for solving both traditional imaging tasks and exciting new problems in the spatial-spectral domain. 4

This is true in the primary application area of remote sensing, where hyperspectral technology origi- 5

nated and has made the majority of its progress, but it may be even more true in the vast array of now 6

existing and developing application areas that make use of these imaging technologies. The current 7

review advances on two fronts: on the one hand, it is directed at domain experts who desire an 8

updated overview of how deep learning architectures might work in conjunction with hyperspectral 9

acquisition techniques to address specific tasks in various application sectors. On the other hand, 10

by providing them with a picture of how deep learning technologies are applied to hyperspectral 11

data from (near)real-time perspective. The contributions of this review include the existence of these 12

two points of view and the inclusion of opportunities and important problems associated with the 13

development of future CHIME mission to be launched by European Space Agency (ESA). 14

Keywords: Hyperpectral; Deep learning; Neural networks; image processing; classification ; segmen- 15

tation; hardware accelerators; CHIME mission 16

1. Introduction 17

Imaging spectroscopy in the visible to short-wave infrared (VSWIR) portion of the 18

electromagnetic spectrum is a powerful Earth observation tool that evolved tremendously 19

in the last 40 years (for a review see Rast and Painter [1]). A broad range of research fields 20

and operational applications benefit from the unique capability of imaging spectroscopy 21

sensors to accurately measure the spectral signature of Earth surface from remote sensing 22

platforms, such as but not limited to monitoring of industrial activities, agriculture, ocean 23

colour, as well as pre- and post-monitoring of natural hazards. Nowadays, several hyper- 24

spectral sensors are producing an almost continuous stream of data from airborne and 25

spaceborne platforms i.e., AVIRIS-NG [2], EnMAP [3], PRISMA [4], EMITS [5] and future 26

to-be-launched CHIME [6] and SBG [7]. Nearly all hyperspectral spaceborne sensors cap- 27

ture data with a bandwidth of ≈10 nm and a spatial resolution of ≈30 m. When combined 28

with a relatively large swath (≈30 km to ≈150 km), and repeated acquisition schemes, the 29

produced data will need huge storage and computational power to be processed. Because 30

of this and the increasing demand for rapid information and insights from Earth obser- 31

vation sensors, there is an urgent need for near real-time information extraction which is 32

hardware friendly and can be embedded into airborne andor space-borne sensors. While 33

multi-spectral sensors capture information in few spectral bands, HS sensors are capable 34

of recording hundreds of spectral bands for each pixel. Therefore, an HS image can be 35

considered as a multi-dimensional data cube which d(dimension)>150. Hence, the spectral 36

signature [8], or fingerprint, of each pixel can be obtained. This signature can be used to 37
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extract information on the underlying surface and its properties in a quantitative way (e.g. 38

quantitative retrieval of geop-physical properties) or for image classification (Figure 1). 39

Figure 1. Comparison between different visible-spectrum recording sensors, (a)in pixels,
(b)wavelength representation. Image courtesy of Mehta et al.2018 [9]

For many applications i.e., Security, natural hazards, chemical leak detection, etc., is 40

necessary to do the pixel-wise classification of Imaging spectroscopy. Pixel-wised classi- 41

fication is also known as image segmentation or semantic segmentation [10]. Hereafter 42

throughout the document image segmentation and classification have been used inter- 43

changeably. It has been a recent trend to develop algorithms that can process data (near) 44

real-time, and extract required information to prevent huge down-linking of data and 45

further storage/processing costs [11]. For this goal, traditional machine learning techniques 46

that require manual feature extraction are not a suitable candidate thus deep learning 47

has found its place within the hyperspectral community [12,13]. Moreover, deep learning 48

techniques can design features that are rarely possible by humans analyses [14]. Deep 49

learning algorithms for on-board processing of HS data can be focused on data volume 50

reduction [15,16], feature extraction [17], and target detection from raw data [18]. 51

One should consider the limited memory and power supply on board as well as the quality 52

of acquired data from the satellite to successfully deploy deep learning algorithms. The 53

segmentation algorithms for HS imagery are often referred as supervised segmentation 54

and using mainly spectral information that results in super-pixels [19] or homogeneous 55

regions. In contrary, in computer vision and image processing community refer to both 56

supervised and unsupervised methods and image classification normally is referred to 57

assigning a label to every pixel in the whole imagery [18]. 58

In early studies, Imaging spectroscopy segmentation was performed using a K-nearest 59

neighbor classifier [20], support vector machines (SVMs) [21] and Gaussian un-mixing 60

models [22]. Moreover, sparse signal representation methods have been used to classify 61

noisy data with help of a learned dictionary [15]. These methods were extensively used 62

before the emergence of deep learning techniques. 63

The objective of this paper is to evaluate various deep learning techniques in terms of 64

network architecture, reliability, and the ability to handle noisy data. These factors play a 65

crucial role in the implementation of deep learning for on-board applications. Additionally, 66

the study will assess the capability of networks to be trained with limited training samples. 67

The outcome of this analysis will inform the decision on which network architecture and 68

configurations are optimal for onboard Imaging Spectroscopy segmentation. 69
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2. Deep Learning for Imaging spectroscopy segmentation/classification 70

We start with Convolutional Neural Networks (CNN) in different approaches (spectral, 71

spatial, spectral–spatial). Other significant architectures we consider are Autoencoders, 72

Deep Belief Networks, Generative Adversarial Networks, and Recurrent Neural networks. 73

These architectures are flexible and adaptable to onboard Imaging spectroscopy processing 74

as well. Discussion about challenges and new trends to handle them will be followed later 75

in this section. 76

2.1. Spectral and spatial dimensions in Imaging spectroscopy processing 77

Hyperspectral data can be processed using different viewpoints. In early studies, pixel- 78

wise processing was preferred using deep learning methods. This is done by extracting 79

the spectral signature from each pixel and then comparing it to a known object’s spectral 80

signature. We require some prior knowledge about the desired target in this approach. an 81

example of such a study can be found in [23]. To reduce correlated information in spectral 82

signature and remove redundant data, we can perform dimensionality reduction methods 83

i.e.PCA [24], ICA [25], and autoencoders[26]. 84

Dimensionality reduction is usually applied in addition to extracting features from the 85

whole spectral span or on defined 2-dimensional patches (both spectral and spatial dimen- 86

sion dimensions). Extracting features in spectral-spatial dimensions requires extracting 87

information from raw hyperspectral data cubes without applying prior knowledge and/or 88

dimension reduction. This is heavy in computation thus there is a preference to work on 89

sub-volumes instead of the whole data cube. 90

2.2. Convolutional Neural Networks 91

Artificial Neural Networks (ANNs) stemmed from biological neural systems. They 92

contain an input layer, one or more hidden layer(s) and an output layer [27]. Historically, 93

the development of neural networks has been based on the mathematical modeling of 94

neurons in biological systems. Neurons are defined as the basic computational units in 95

brains. Input is given to the neuron from the dendrite, the output is sent out via axon and 96

the transmission is done through the synapse. A comparison of a biological neuron and the 97

mathematical model in the neural network is provided in Figure 2. 98

Figure 2. Comparison between biological neuron in the brain and artificial neural networks (a)a single
neuron in brain (b) A single neuron network (c)Synapse connection between neurons (d)multi-layer
network with multiple neurons. Image courtesy of Jain et al.1996 [28].
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A network with multiple hidden layers is called a deep neural network [29]. A simple 99

drawing of a deep neural network is pictured in Figure 3. 100

Figure 3. Simple representation of deep neural network. Image courtesy of Larochelle et al.2009 [30].

For extracting information from images, Convolution Neural Networks (CNNs) have 101

been introduced [31]. This type of network has been extensively used so far for different 102

imagery analyses [32]. In CNN, the input image is constrained by its architecture. Normally, 103

the neurons are arranged in three dimensions width (w), height (h), and depth (d). Depth 104

is the input depth, in the case of hyperspectral imagery, depth is the number of bands. By 105

proceeding deeper into the network, it refers to the number of features of the input layer. 106

In each layer, the neurons are connected to a selected number of neurons from the previous 107

layer. This is to decrease the number of weights that needs to be defined [32]. 108

CNN’s have also been combined with machine learning methods i.e.SVM to extract features 109

and increase robustness toward over-fitting [33]. In this study, a target pixel and the spectral 110

information of its neighbors are organized into a spectral–spatial multi-feature cube without 111

extra modification of the CNN to classify land cover. Another example in [34] is a 2-channel 112

deep CNN that has been used to do land cover classification combining spectral-spatial 113

features. A hierarchical framework has been used for this purpose in [35]. Similarly, in [36] 114

a method is proposed in which spatial and spectral features are extracted through CNNs 115

from Imaging spectroscopy and Lidar. A pixel-wise classification using a 2-channel CNN 116

and multi-source feature extraction was done in [37]. In [38] a framework for Imaging 117

spectroscopy classification has been proposed that uses a fully-convolutional network to 118

predict spatial features starting from multiscale local information and to fuse them with 119

spectral features through a weighted method. This approach later performs classification 120

using SVM. 121

2.2.1. Spectral dimensional CNN 122

one-dimensional CNN (1D-CNN) is used to perform pixel-wise classification for Imag- 123

ing spectroscopy processing. These networks apply to the spectral or spatial dimension. 124

These networks are affected by noise easily thus making it challenging to use them for 125

remote sensing, in general [39]. One solution is to use averaged spectrum from a group of 126

neighboring pixels. This method best suits small-scale analyses such as crop segmentation 127

[40]. Another solution is to perform PCA analyses before running CNN however, in the 128

case of near real-time image processing, there is no room for heavy pre-processing tasks 129

such as PCA. A different solution described in [41] uses a multi-scale CNN that applies to a 130
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pyramid of data that contains spatial features in multiple-scale. For small training samples, 131

a band selection before CNN analysis has been proposed [42]. 132

2.2.2. Spectral-spatial dimensions CNN 133

Working with both spectral and spatial features generally leads to better results in 134

Imaging spectroscopy processing. In [43] a dual-stream channel CNN has been used that 135

gets spectral features from the approach of [39], spatial features using the approach of [44] 136

and a softmax regression classifier to combine those features. In [45] a combination of L2 137

norm and sparse constraint have been used with a similar combination of spectral-spatial 138

features. In other studies, AlexNet [46] have been employed to do spatial-spectral analyses 139

i.e. Densenet and architecrures like VGG-16 [38,47]. In [48] few-shot learning approach 140

[49] has been used to learn a metric space that causes the samples of the same class to be 141

close to each other to deal with the problem of a few training samples. Another way to 142

improve accuracy while having a shortage of training information has been proposed in 143

[50]. In this approach, the redundant information in the hidden layer is explored to find 144

connections and improve the training process. Other examples of using spatial-spectral 145

features together and improving the learning process can be found in [51–53]. They have 146

used a variety of methods based on the super-pixel reconstruction of different features to 147

improve the accuracy of segmentation and classification. The sensor-based feature learning 148

is another method proposed by [54] in which five layers of spectral-spatial features were 149

reconstructed according to sensor specifications. Another improvement to sensor-based 150

training was explained in [55] which uses a novel architecture that actively processes input 151

features into meaningful response maps for classification. All of the mentioned studies 152

have used complex multi-step procedures that make them not suitable for (near)real-time 153

processing of Imaging spectroscopy, however, the better performance of using multi-scale 154

and multi-feature approaches has been proved according to mentioned studies in this 155

section. 156

2.3. Auto-encoders 157

To deal with the issue of limited training samples when processing Imaging spec- 158

troscopy, auto-encoders in different variations have been tested. For the first time in [56] 159

PCA in spectral dimension was combined with auto-encoder in the other two dimensions 160

to improve feature extraction for classification. In [57] and [58] stacked auto-encoders were 161

employed in combination with PCA to flatten spectral dimension and followed by SVM and 162

multi-layer perceptron (MLP) to perform classification. In [59] stacked auto-encoder was 163

optimized for anomaly detection in Imaging spectroscopy. A combination of auto-encoders 164

and CNN have been also tested in multi-scale approaches to extract features [60]. Another 165

important point of using a stacked auto-encoder is the capability of handling noisy input. 166

An example described in [61] used a stacked auto-encoder to generate feature maps from 167

noisy input and then used super-pixel segmentation and majority voting. Another study 168

used a pre-trained network by stacked encoders combined with logistic regression on noisy 169

input to do supervised classification [62]. A framework based on stacked auto-encoders 170

has been proposed to perform unsupervised classification on noisy input [63], this later 171

was improved to an end-to-end classification pipeline for Imaging spectroscopys [64]. 172

2.4. Deep belief networks, Generative Adversarial Networks, Recurrent Neural networks 173

Deep belief networks (DBNs) have the capability of dimension reduction which makes 174

them a good candidate to extract features. In [65] a DBN was combined with logistic 175

regression to perform feature extraction. A combination of one- and two-layer DBN was 176

combined with PCA. To perform (near)real-time anomaly detection DBN has been tested 177

that also delivered promising results in extracting local objects [66]. A combination of 178

DBN and wavelet transform has been also proposed by [67]. In [68,69] unsupervised 179

classification was performed using DBNs and in the later study, an end-to-end classifica- 180

tion framework based on DBNs and spectral angle distance metric were proposed. In 181
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Generative Adversarial Networks (GANs) two competing neural networks are used as 182

generator and discriminator [70]. These networks have been used to perform classification 183

when dealing with small training samples [71]. In similar cases, GANs have been employed 184

to perform the final phase of Imaging spectroscopy classification using the discriminator 185

agent [72–74]. Recurrent Neural Networks (RNNs) are mainly used to process time series. 186

In the case of this, they are considered as sequences of a video series (each spectral band 187

as a sequence), and RNNs are used to find similarities between time frames [75,76]. A 188

combination of RNN to explore the spectral domain and LSTM(Long Short Term Memory) 189

for exploring spatial features was proposed in [77]. RNNs have also been used to process 190

mixed pixels in spectral dimension affected by noise [78]. 191

2.5. Unsupervised and semi-supervised approaches 192

Based on the fact that usually we face the problem of having limited training samples 193

at hand semi-supervised and unsupervised approaches are getting more popular in the do- 194

main of Imaging spectroscopys. Examples can be found in [79,80] that use semi-supervised 195

and layer-wise classification to process large-scale Imaging spectroscopys. Another ex- 196

ample of performing pixel-wise classification can be found in [81] using an unsupervised 197

method with CNN. First, inaccurate training samples were used and the classification 198

was improved with a small set of accurately labeled training samples. In [82] to handle 199

the limited training sample problem, a convolution-deconvolution network was used for 200

unsupervised spectral-spatial feature learning. The convolution network was used to 201

reduce dimensionality and deconvolution was used to reconstruct input data respectively. 202

Another possibility that has been explored to deal with a few training samples is improving 203

the training procedure as explained in [83] where unlabeled data is used in combination 204

with a few labeled samples and RNN to classify Imaging spectroscopys. Another approach 205

that was tested is using ResNet to learn spectral-spatial features from unlabeled data which 206

also showed promising results [84]. 207

2.6. Challenges in Imaging spectroscopy processing and new trends for handling them 208

2.6.1. Limited training sets 209

The issue of having limited training samples remains a constant problem so far in 210

the world of Imaging spectroscopy processing. New approaches have been explored in 211

the direction of using semi-supervised techniques [85], self-supervising approaches [86] 212

and domain adoption [87] which explores the discriminative input information to feed 213

the neural network. Another approach is active transfer learning which used the most 214

discriminative features from unlabeled input training samples [88]. 215

2.6.2. Handling noisy data 216

To reconstruct high-quality input data for classification, some approaches are getting 217

noticed. One study has explored super-resolutions in combination with transfer learning to 218

reduce noise and improve the quality of the input training samples [89]. Other studies have 219

used CNN with sparse signal reconstruction [90] and Laplacian pyramid network (LPN) 220

[91] for enhancing input data. Another method explored presented in [92] uses structure 221

tensors with a deep convolutional neural network to improve the quality and reduce noise. 222

2.7. Increase speed and accuracy 223

A new trend in the field of computer vision is using CapsuleNets (CapsNet) [93] which 224

uses a set of nested neural layers. These networks increase the scalability of the model 225

while increasing the speed of computation. Examples can be found in [94–96]. It was 226

shown that by using spectral-spatial Capsnet the model converged quickly while avoiding 227

over-fitting [97]. 228
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2.8. Hardware accelerators 229

To increase the performance of HS data processing different hardware has been tested, 230

such as computing clusters [98], GPUs and FPGAs (Field Programmable Gate Arrays) [99]. 231

Recent advances in FPGAs have made them a suitable candidate to perform on-board 232

image processing in both airborne and spaceborne platforms [100]. 233

FPGA is a hardware unit consisting of an array of logic blocks, RAMs, hardcopy IPs, I/O 234

pads, routing channels, etc [101]. It can be customized to perform different functions to 235

be performed at different times and levels. A previous generation of similar technology 236

was called ASICs [102]. FPGAs are more flexible and easier to program. It has shown 237

lower power consumption and improved performance compared to on-board processing 238

of hyperspectral imagery [103]. A few studies recently have performed different functions 239

related to onboard HIS processing including data compression and image segmentation 240

[104]. 241

Older versions were using FPGAs for end-member extractions [103], another one used 242

Xilinx Virtex-5 FPGA for automatic target detection [105] and Xilinx FPGA was used to 243

perform end-member extraction for multiple targets [106]. Spectral signature un-mixing 244

has been also tested on FPGA and graphical processing units (GPUs). Results have been 245

competitive in terms of accuracy. 246

One study has used FPGA to demonstrate onboard processing capability to detect chemical 247

plumes [107]. This study has been a pilot phase for developing an AI unit for the upcoming 248

hyperspectral satellite to be launched by NASA JPL. A main drawback of using FPGA is 249

the difficulty of its configuration and programming. For solving this OpenCL package 250

from Intel and VITIS library (previously VHDL) from Xilinx have been developed [108]. 251

Therefore, there have been limited studies on implementing deep learning for FPGA. Thus, 252

our future step is going to be implementing deep learning on FPGA on the proposed 253

hardware architecture for future CHIME missions [109]. 254

3. Summary and discussion 255

We explored the most recent trends in using deep learning for hyperspectral imagery. 256

Almost all of the reviewed studies referred to limited training samples as a main limiting 257

factor to employing deep learning widely in the HS image processing field. Another 258

mentioned limiting factor is the lack of computation infrastructure and hardware in remote 259

sensing-related studies. According to the review, there are many studies on using deep 260

learning for land cover classification however there is still a gap in the studies on target 261

and anomaly detection as well as data fusion and spectral unmixing. Segmentation of 262

Imaging spectroscopy using deep learning is still a path less walked. Network architectures 263

such as UNet, ResNet, and VNet are proven to be good choices to start with, although the 264

application-based scenarios still need more work to be defined. Regarding the classification 265

of Imaging spectroscopys, deep learning has shown to be effective, however since a lot 266

of computational resources are required to perform deep learning and satisfactory results 267

can be obtained from traditional classification approaches i.e.SVM, there is still reluctance 268

in many users to employ deep learning. To handle the problem of limited training sets 269

and noisy input data using GANs can be a good option to produce an augmented dataset 270

and reduce noise in training samples. reinforcement learning can also be a good candidate 271

that is worth further exploration. Since there is a trend to process Imaging spectroscopy 272

onboard (using hardware accelerators) for both remote sensing and non-remote sensing 273

applications, a summary of the most common methods according to their suitability for 274

on-board implementation is provided in Table 1. 275
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Table 1. A summary of the most commonly used image segmentation of hyperspectral imagery
according to the most important features for onboard implementation.

pixel-wise
segmenta-
tion

noise-
robustness lightweight*

easy imple-
mentation on
board

training-
samples
required

K-nearest
neighbours No No Yes Yes high

SVM Yes No Yes Yes high
Spectral
un-mixing Yes No Yes Yes high

Sparse signal
representa-
tion [110]

Yes No No No low

RNN Yes No No No high
CNN Yes No No Yes high
FCN [111] No Yes No Yes high
3D-kernel
CNN [112] No Yes No No low

SVM-CNN No Yes No No high
multi-branch
CNN No Yes No No low

deep CNN Yes Yes Yes Yes high
GhostNet
[113] Yes Yes Yes No low

* low power and low latency

According to Table 1, conventional methods are easy to implement but need many 276

training samples and traditional processing and updating procedures. Therefore, us- 277

ing CNN-based methods has found its place within the hyperspectral users’ community. 278

Several versions of neural networks have been tested and in total deep CNN and 3D- 279

kernel-CNN networks have shown very good results. Since we are focusing on optimizing 280

network structure for onboard processing, GhostNets might be a good option as well. 281

However, the accuracy might not be optimal. Other challenges when aiming for on-board 282

processing of Imaging spectroscopy are noisy data and no atmospheric correction available 283

at level zero data as a well limited training set. Therefore, we should focus on testing 284

different network structures on simulated and real data similar to the upcoming CHIME 285

mission shortly [114]. Overall, on-board processing of HS imagery is the new area of study 286

that will open many new possibilities in the remote sensing domain. 287

4. Conclusion 288

Particularly in industries that profit from the computer-assisted interpretation of both 289

visible and unseen (to the human sight) occurrences, the depth of information present in 290

Imaging spectroscopy data is unquestionably attractive. However, cost-benefit analyses 291

of industrial and professional Imaging spectroscopy technologies make it necessary for 292

enabling elements to be present to activate their deployment potential. Machine learning 293

technologies are expanding quickly in scope these days, and with the introduction of Deep 294

Learning, they are changing the field of digital data analysis. By using a multidisciplinary 295

approach and making our work accessible to practitioners, machine learning scientists, and 296

domain experts, we attempted to examine what is currently occurring with the conver- 297

gence of Imaging spectroscopy and deep learning technologies in this study. One of the key 298

problems that developed as a barrier to high-quality scientific production is the publicly 299

available datasets, even though pixel- and spectral-based analysis jobs may count on an 300

order of thousands of training samples for Imaging spectroscopy volume. More generally, 301

the quantity and caliber of data collected across the spectrum of disciplines continue to be a 302

major obstacle to the creation of solid, efficient, and comprehensive Imaging spectroscopy- 303

DL solutions. The provision of high-quality Imaging spectroscopy datasets can instead be 304
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encouraged by the investigation of various DL techniques for the RS field. Additionally, 305

the ability to approach difficult visual tasks via DL solutions can be beneficial for other 306

application domains where the penetration of Imaging spectroscopy technology is still far 307

behind. 308
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