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Abstract: The DEP force is usually calculated from the object’s point of view using the interaction of the object’s 

induced dipole moment with the inducing field. Recently, we described the DEP behavior of high‐ and low‐

conductive 200‐μm 2D spheres in a square 1x1‐mm chamber with a plane‐versus‐plane electrode configuration 

from the system’s point of view. Here we extend our previous considerations to the plane‐versus‐plane and 

pointed‐versus‐pointed electrode configurations. The trajectories of the sphere center and the corresponding 

DEP  forces were calculated  from  the gradient of  the  system’s overall energy dissipation  for given  starting 

points. The dissipation’s dependence on the sphere’s position  in the chamber  is described by the numerical 

“conductance field”, which is the DC equivalent of the capacitive charge‐work field. While the plane‐versus‐

plane  electrode  configuration  is  field‐gradient  free without  an  object,  the  presence  of  the  highly  or  low‐

conductive spheres generates structures in the conductance fields, which result in very similar DEP trajectories. 

For both electrode configurations, the model describes trajectories with multiple endpoints, watersheds, and 

saddle points, very high attractive and repulsive forces in front of pointed electrodes, and the effect of mirror 

charges. Because the model accounts for inhomogeneous polarization within the objects, the approach allows 

the modeling  of  the  complicated  interplay  of  attractive  and  repulsive  forces  near  electrode  surfaces  and 

chamber  edges. Non‐reversible DEP  forces  or  asymmetric magnitudes  for  the  highly  and  low‐conductive 

spheres in large areas of the chamber indicate the presence of higher‐order moments, mirror charges, etc. 

Keywords: inhomogeneous object polarization; AC electro‐kinetics; high force; DEP trajectory; micro‐fluidics; 

MatLab® model; mirror charges; edge effects; LMEP; μTAS 

 

1. Introduction 

In this paper, we continue our previous work on the dielectrophoresis (DEP) behavior of highly 

and low conductive 2D spheres, which we modeled from the system’s‐perspective  in the classical 

plane‐versus‐pointed electrode configuration [1]. The model also accounts for experimental findings 

of very high  forces observed  in  the  trapping of viruses and proteins  in  field cages or at electrode 

edges, where  the dipole approach  cannot explain  sufficiently high  forces  to overcome disruptive 

Brownian motion [2–6].   

Our new model considers DEP as a “conditioned polarization process”  that causes a steady, 

irreversible  increase  in  the  total  polarizability  of DEP  suspension  systems  following  the  law  of 

maximum entropy production (LMEP) [7,8]. While the field energy invested in the polarization of 

usual  dielectrics,  e.g.,  that  of  a  capacitor,  is  stored  and  recovered  during  discharge,  the  energy 

invested  in  the “conditioned polarization”  is dissipated.  It cannot be recovered during discharge, 

although the polarizability of the system has been increased. 

We were  able  to  show  that  the  LMEP  provides  a  powerful  phenomenological  criterion  for 

describing AC‐electrokinetic torques and forces [1,9,10]. The criterion is the basis of our new DEP 

model that simplifies the computation of the DEP behavior in complex field environments, something 

which  is  especially  important  in  microchambers,  where  complicated  field  distribution  and 

inhomogeneous  object  polarization  are  typical,  because  the  objects  are  relatively  large  for  the 
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chamber  [11–16].  The  simple CMF  (induced  dipole)  description  becomes  problematic  [5,6,17,18] 

because the total force results from the superposition of contributions from the entire volume of the 

inhomogeneously polarized object with the inhomogeneous field.   

In  the  first DEP model  from  the  system’s perspective, we derived  the  classical dipole  force 

expression  from  the  capacitive  charge‐work  gradient  on  a  suspension  of  a  single  object  in  an 

inhomogeneous  field  [10].  In  the  previous  paper, we  extended  this  approach  by  introducing  a 

conductance field for the entire DEP chamber, which describes the effective polarizability of the DEP 

system in the form of the DC conductance dependent on the object’s position [1]. The conductance 

field is one version of a “polarizability field”, which can be calculated from a matrix containing the 

overall chamber conductance for each accessible position of the object center. The capacitance field is 

the high‐frequency equivalent of the conductance field.   

Both fields are identical for the same conductance or permittivity ratios between the object and 

medium. The same ratios would also reflect the same effective polarizability differences at the low‐ 

and high‐frequency  limits,  respectively. At  these  limits no out‐of‐phase  (imaginary)  components 

occur and the conductance and capacitance fields describe the DEP behavior of the objects in full. The 

fields inherently account for inhomogeneous object polarization, mirror charges, electrode shielding 

effects, etc. However, out‐of‐phase components may contribute  to  the  system’s overall capacitive 

charge work and dissipation at frequencies between the limiting cases. In such cases, the DEP force 

cannot simply be calculated from the difference in the overall capacitive charge work or dissipation 

between the two DEP positions because the dissipation of out‐of‐phase components, which do not 

contribute to DEP, depend on the position of the object. Therefore, these components are not nullified 

in the charge work or dissipation differences used to calculate the DEP force and must be considered 

separately [10].   

Here,  we  use  “conductance  fields”  calculated  using  the  conductance  matrix  values  as 

interpolation  points  for  the MatLab®  quiver‐line  function  [1].  For  each  given  start  position,  the 

complex trajectories of the sphere’s center follow the conductance gradient, i.e., each step increases 

the overall conductance of the DEP system and hence the dissipation of electric field energy.   

In the classical dipole model, objects with an effective conductivity lower or higher than that of 

the suspension medium usually show negative or positive DEPs; in other words, they move counter 

to or in the direction of the field gradient. In the dipole model, the DEP force is: 

𝐹⃗஽ா௉ ൌ ℜሺ𝑚ሬሬ⃗ ሻ ∙ 𝑔𝑟𝑎𝑑൫𝐸ሬ⃗ ൯ ൌ ℇ଴ℇ௘𝑉଴𝑓஼ெ
ℜ 𝐸ሬ⃗ ∙ 𝑔𝑟𝑎𝑑൫𝐸ሬ⃗ ൯          (1) 

where 𝑚ሬሬ⃗ , 𝐸ሬ⃗ ,  ℇ଴,  ℇ௘,  𝑉଴  and  𝑓஼ெ
ℜ   are the induced dipole moment, the effective external field, the 

permittivities of vacuum and external medium, the volume of an ellipsoidal object, and the real part 

of its Clausius‐Mossotti factor along the semiaxis oriented in field direction [10]. The small level of 

inhomogeneity induced in the object by the weakly inhomogeneous external field is neglected. The 

shape  and  frequency  dependence  of  the  dipole moment  of  ellipsoidal  or  cylindrical  objects  is 

summarized  by  the  unitless  (usually  complex)  Clausius‐Mossotti  factor.  Its  real,  in‐phase  part 

governs DEP. Moreover, 3D cylinders oriented perpendicular to the field plane and 2D spheres have 

depolarizing coefficients of 1/2. Using  the effective conductivities  for  the external  ሺ𝜎௘ሻ  and object 
ሺ𝜎௜ሻ media, then according to [19,20] the real part of the Clausius‐Mossotti factor is: 

𝑓஼ெ
ℜ ൌ 2 ఙ೔ିఙ೐

ఙ೔ାఙ೐
                    (2) 

Eq.  1  contains  the  complete  volume  term  to  clearly  reflect  the DEP  force’s  ponderomotive 

(bodily) nature. Accordingly,  the Clausius‐Mossotti  factor of Eq.  2  is  three  times  larger  than  the 

common  expression  because  the  depolarizing  coefficient  of  the  3D  sphere  of  1/3  has  not  been 

extracted and canceled out for the 1/3 in the volume term; a step that is only a simplification for 3D 

spheres [5]. 

However, any real polarization ratio of an object and external medium, as well as the resulting 

Clausius‐Mossotti factors occurring for frequency‐dependent properties of homogeneous objects at 

a given frequency can be obtained by combinations of appropriate DC conductivities for the external 

and object media. As in the previous manuscript, we combine a tenfold ratio of external conductivity 
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and object conductivity (1.0 S/m with 0.1 S/m and vice versa) corresponding to 2D conductances of 

1.0 S and 0.1 S for the sphere and external medium. These parameters yield Clausius‐Mossotti factors 

of ‐1.64 and 1.64 for 2D spheres. 

Eq. 2 suggests  the perfect reversal of  the DEP  force  (Eq. 1)  for  inverse object and suspension 

medium properties. We have used this property for a “reversibility criterion” to check our model for 

consistency with  the  classical dipole model. We  found  that outside DEP  chamber  regions where 

dipole effects dominate, mirror charges may prevail, leading to the attraction of the highly polarizable 

object  by  the  plane  electrode  against  the  field  gradient.  In  the  vicinity  of  the  pointed  electrode, 

inhomogeneous  polarization  of  the  2D  spheres  resulted  in  extraordinarily  high  attractive  and 

repulsive forces for the high and low‐conductive spheres that were more than a thousand and five 

hundred  times  higher  than  in  the  dipole  range,  respectively.  These  high  forces  may  explain 

experimental findings such as the accumulation of viruses and proteins in field cages or at electrode 

edges, where  the dipole approach  cannot account  for  forces high enough  to overcome Brownian 

motion [2–6]. 

2. Theory: Conductance Change and DEP Force 

The effective conductivity and the effective dielectric constant are measures of the polarizability 

of a suspension. DEP leads to a steady increase in both parameters [10]. At the low (𝜔 → 0) and high 
(𝜔 → ∞)  frequencies,  the  imaginary parts  of  the parameters  and  the  reactive  components  in  the 

conductive work and the capacitive charge work disappear, simplifying  the modeling of the DEP 

force  with  either  of  the  two  work  approaches.  The  following  brief  derivation  introduces  the 

parameters for the conductive work approach. A detailed derivation can be found in [1].   

A chamber of cuboid shape with plane‐parallel rectangular  𝑦  by  𝑧 electrodes of distance  𝑥  is 
to be filled with a medium of specific conductivity  𝜎௘. The conductance of the chamber is: 

𝐿௘ ൌ 𝜎௘
௬௭

௫
ൌ 𝜎௘𝑘                    (3) 

The cell constant  𝑘  is the generalized geometry factor relating the conductance for chambers of 

any given geometry to the conductivity of the measured medium. For example, by combining the 3D 

suspension conductivity with a thickness of  𝑧 ൌ 1 𝑚, we obtain the specific sheet conductance  𝐿௘ଶ஽ ൌ
𝜎௘𝑧  in Siemens and the unitless 2D cell constant  𝑘ଶ஽. Eq. 3 reads:   

𝐿௘ ൌ 𝐿௘ଶ஽𝑘ଶ஽                    (4) 

For  a  2D‐DEP  system with  a  single object  suspended  at  locations  𝑖   and  𝑖 ൅ 1,  for  example, 

before and after a DEP  step,  the  effective  conductance of  the 2D  suspension  is  𝐿ௌሺ௜ሻ
ଶ஽ ൌ 𝜎ௌሺ௜ሻ𝑧  and 

𝐿ሺ௜ାଵሻ
ଶ஽ ൌ 𝜎ௌሺ௜ାଵሻ𝑧. The system conductance is: 

𝐿ௌሺ௜ሻ ൌ 𝐿ௌሺ௜ሻ
ଶ஽ 𝑘ଶ஽  and 𝐿ௌሺ௜ାଵሻ ൌ 𝐿ௌሺ௜ାଵሻ

ଶ஽ 𝑘ଶ஽           (5) 

The  electrical work  exerted on  the  system  can  induce DEP, which  causes  the dissipation of 

electrical energy to increase steadily. The difference in the total power dissipation at the two locations 

can be attributed to the DEP [10]:   

𝛥𝑃஽ா௉ ൌ ൫𝐿ௌሺ௜ାଵሻ െ 𝐿ௌሺ௜ሻ൯𝑉ଶ ൌ Δ𝐿஽ா௉𝑉ଶ ൌ ൫𝐿ௌሺ௜ାଵሻ
ଶ஽ െ 𝐿ௌሺ௜ሻ

ଶ஽ ൯𝑘ଶ஽𝑉ଶ     (6) 

𝑉  is the DC or rms AC voltage applied  to  the electrodes of the DEP chamber. For the fastest 

increase in the overall polarizability of the system, the DEP step from location  i   to  𝑖 ൅ 1 must be 

oriented in the direction of the maximum differential quotient of the electric work or, more generally, 

in the direction of the conductive work gradient, i.e., the power dissipation (cf. LMEP). With the step 

width  Δ𝑟 ൌ |𝑟௜ାଵ െ 𝑟ଵ| ൌ 𝑟௜ାଵ െ 𝑟௜  calculated from the  location vectors  𝑟௜  and  𝑟௜ାଵ, the DEP force  is 
proportional to:   

𝐹⃗஽ா௉~𝑔𝑟𝑎𝑑ሺ𝑃஽ா௉ሻ ൌ 𝑔𝑟𝑎𝑑ሺ𝐿஽ா௉ሻ𝑉ଶ ൎ 𝑀𝐴𝑋 ቀ
୼௅ವಶು
୼௥

ቁ 𝑉ଶ
௥⃗೔శభି௥⃗೔
୼௥

      (7) 
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where  ሺ𝑟௜ାଵ െ 𝑟௜ሻ/𝛥𝑟  defines the unit vector pointing  in  the direction of DEP  translation. The 
DEP‐induced differences in the Rayleigh dissipation (Joule’s heat) and in the overall conductance of 

the DEP system are always positive.   

Numerically,  the DEP  trajectory of a  single object  can be calculated  from  the maxima of  the 

differential  quotients  of  the  DC  conductance  (Eq.  7).  To  compare  forces  between  the  different 

chamber setups, Eq. 7 was normalized to the square of the chamber voltage, the depth of  𝑧 ൌ 1𝑚 
perpendicular to the sheet plane, and  𝐿஻௔௦௜௖

ଶ஽   the system’s sheet conductance without object.   

𝐹⃗஽ா௉ଶ஽ ~ ௭

௅ಳೌೞ೔೎
మವ MAX ൬

୼௅ವಶು
మವ

୼௥೔
൰
௥⃗೔శభି௥⃗೔
୼௥

              (8) 

Here, a unit less, normalized force is obtained. However, obtaining a “Newton” force to interpret 

experiments is important. This can be achieved either by normalizing the 3D version of Eq. 7 to the 

force obtained at a location where the classical dipole approach remains applicable [1] or by deriving 

the force directly from the capacitive charge work of the system [10]. 

A  linear  counter  force  can  initially be  assumed  throughout  the bulk medium, generated by 

Stokes’  friction  in  order  to  interpret  experimental  DEP  velocities.  This  approach  neglects  the 

nonlinear friction effects in the immediate vicinity of the electrode and chamber surfaces. However, 

once the object attaches to the surface, the hard surface generates the counterforce to the normal force 

component. In this case, the normal, attractive force component cannot be calculated with Eq. 8.   

3. Material and Methods 

3.1. Software, data processing and presentation 

A  2D  numerical  solver  based  on  the  finite‐volume method was  implemented  in MatLab® 

(version R2018b). It was developed to simulate the potential distributions, current paths, and total 

conductance for arbitrary geometries and conductivity distributions with current sources [21]. The 

total conductance data for the 2D system with 199x199 2D voxels were stored in a matrix and used 

as interpolation points for the MatLab® quiver‐line function to calculate the conductance field. 

SigmaPlot 14.0  (Systat Software GmbH, Germany) was used  for postprocessing and plotting 

data  in  line  graphs.  Inkscape  1.2.2  (GNU General Public License,  version  3) was used  to  create 

graphical images and overlays of graphs with matrix images. 

In  the plots, 21 equipotential  lines have been combined with 21 current  lines  instead of  field 

lines. This permits a more precise presentation of the inhomogeneous polarization inside the objects 

because the streamlines do not end on interfacial charges as the field lines. Accordingly, their mutual 

distance does not encode  the  field strength. A specific x‐coordinate between  the electrodes of  the 

square volume was chosen where the current lines have been equidistantly distributed. 

3.2. Numerical 2D Model 

Without an object, a square chamber of  𝑥 ൌ 𝑦 ൌ 1𝑚  confined by plane‐parallel electrodes with 

a depth of 1 m perpendicular to the sheet plane has a (sheet) conductance of 0.1 and 1 S for volume 

conductivities of 0.1 and 1 S/m, respectively. The same sheet conductance results for square cm‐ or 

μm‐size chambers with a depth of 1 m (Figure 1). Since only the conductance and no size‐related, 

frequency‐dependent  polarizabilities  are  considered,  the  2D model  is  independent  of  a  specific 

dimension on the x‐y plane. We assume an area of 1x1‐mm2 for the DEP chamber, which is formed 

by 199x199 square elements to recognize microfluidic geometries. Each element, which we refer to as 

“2D voxels” was assigned a homogeneous sheet conductance. 

The electrodes are located outside the chamber volume. The pointed and plane electrodes were 

formed  by  a  single  and  a  row  of  199  highly  conductive  500‐S  voxels,  respectively.  The  sheet 

conductance of the chamber was calculated for all positions accessible to a single 200‐μm 2D sphere 

with a diameter of 39 voxels [1]. The odd number symmetry defines a single central voxel and allows 

precise localization with respect to the electrodes.   
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Equipotential lines and current streamlines were used to characterize the field distributions in 

the chambers. The basic conductance values  𝐿஻௔௦௜௖
ଶ஽   of the chamber without an object were calculated 

with media of 0.1 S and 1.0 S from voltage and current using a MatLab® routine. The cell constants of 

the  chambers  𝑘ଶ஽  were  calculated  from  Eq.  4 with  negligible  numerical  differences  for  the  two 

conductances. 

 

Figure 1. Field characterization  in  the plane‐versus‐plane electrode chamber. A: Equipotential  line 

and current line distributions in the 1x1‐mm2 chamber calculated without the sphere. The chamber is 

energized with 1 V at the right electrode (vertical gray bar on the right) compared to 0 V at the left 

electrode (vertical gray bar on the left). B: The potential changes linearly between the electrodes. The 

potential plots along the x‐coordinate are identical for all y‐coordinates. The basic sheet conductance 

𝐿𝐵𝑎𝑠𝑖𝑐
2𝐷   is 1 S and 100 mS for the 1 S and 100 mS media, respectively, corresponding to a cell constant 

of  𝑘2𝐷 ൌ 1.0. 

4. Results and Discussion 

4.1. DEP Chambers without a Sphere 

4.1.1. Plane‐versus‐plane Electrodes 

Intuitively,  the  field  between  two  plane  electrodes  is  constant  and  gradient‐free  (Figure  1). 

Numerically, no edge effects could be detected, although this must be expected when describing the 

media by their permittivities in the alternative capacitive work approach. 

4.1.2. Pointed‐versus‐Pointed Electrode 

The  field between  the  two pointed electrodes  is  inhomogeneous and symmetrical  to  the  two 

center planes  (Figure 2). Despite  the high  field strength and current density  in  the vicinity of  the 

electrodes  the  current  injection  into  the  chamber  medium  through  the  pointed  electrodes  is 

geometrically  restricted,  leading  to almost  five  times  lower basic sheet conductances  than  for  the 

plane‐versus‐plane electrode chamber with the same medium.   
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Figure 2. Field characterization  in  the pointed‐versus‐pointed electrode chamber. A: Potential and 

current line distributions in the 1x1‐mm2 chamber of two pointed electrodes calculated without the 

sphere. The chamber is energized with 1 V at the right electrode versus 0 V at left electrode. The basic 

sheet  conductance  𝐿𝐵𝑎𝑠𝑖𝑐
2𝐷   is  211.5 mS  and  21.15 mS  for  the  1  S  and  100 mS media,  respectively, 

corresponding to a cell constant of  𝑘2𝐷 ൌ 0.2115. B: Sequence of potential profiles along horizontal 
lines with y=0 (solid  line), 100, 200 and 500 μm (short dashed  line). C: Field gradient plots for  the 

potential profiles in B. The insert is a zoom‐out for y=0 μm. Field gradients of 1945.3 V/m2 have been 

calculated before the pointed electrodes. 

4.2. Conductance Fields, Trajectories and Forces 

The 160x160 matrix elements of  the conductance matrix were  calculated as  the overall  sheet 

conductances of the system, with the sphere’s center located at each of the 160x160 accessible voxel 

coordinates. The basic sheet conductance determines the upper and lower boundary of the overall 

conductance of  the DEP chamber with  the  low‐ and high‐conductance spheres, respectively. As a 

reference,  the mean chamber conductance  𝐿തଶ஽ was calculated  from all values  in  the conductance 

matrix.  It  corresponds  to  the  average  start  conductance  obtained  in  a  field‐free DEP  system  for 

infinitely many random starting positions of the sphere.   

We applied  the quiver‐line  function of MatLab®  to generate  the  conductance  field using  the 

elements of the conductance matrix as interpolation points. The conductance field provided smooth 

trajectories, watersheds, saddle points and normalized DEP forces. When constructing a trajectory, 

positions with object voxels outside the chamber area were excluded, i.e., the sphere was deflected 

by the chamber walls moving along the interface until reaching an endpoint. 

The double mirror  symmetries with mirror planes  through  the  centers of  the  two  chambers 

allows for their description by four quadrants. Moreover, the DEP behavior described by trajectories 

and forces in a given quadrant is found in exactly the same way or mirrored by a symmetry plane in 

the  other  three  quadrants. While  these  trajectories  have  three  siblings  in  the  other  quadrants, 

trajectories within the symmetry planes have only one sibling. 

4.3. Plane‐versus‐Plane Electrodes: Field Distribution and Chamber Conductance   

4.3.1. High‐Conductance Sphere 

The presence of the high‐conductance 2D sphere increases the chamber conductance compared 

to the empty chamber. The increase and, thus the electric work conducted on the chamber depends 

on the sphere’s position inside the chamber (Figure 3). Note the difference between a field‐line plot 

and the current‐line plot used in Figures 3 and 4 and in the corresponding figures on the pointed‐

versus‐pointed electrode chambers. 
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In Figure 3, the conductance of the chamber increases in the order w/o<B<D<A<C, where w/o 

(100 mS) is the basic conductance without the sphere and B and C are the least and most favorable, 

respectively, of the four positions according to LMEP. In Figure 3D, the inhomogeneity of the external 

field is symmetric, and the sphere is primarily homogeneously polarized. The four conductances of 

A‐D are elements of  the 160x160 conductance matrix  (Table S1,  supplementary materials), which 

were used as interpolation points to generate the “conductance field” in Figure 5. 

 

Figure 3. Potential and current  line distributions for different positions of the 1.0‐S sphere  in 0.1‐S 

medium, in front of the plane electrode (A: at the edge; C: at the center) and on the watershed (B: at 

the edge; D: at the saddle point in the center). The overall conductances of the chamber are A: 105.7 

mS, B: 104.5 mS, C: 107.0 mS, and D: 105.3 mS. For an  improved visibility of  the  inhomogeneous 

polarization of  the sphere, equidistant current  lines were used at  the  left electrode (B, D) or  in  the 

center plane (A, C). 

To  explain  the  B<D<A<C‐sequence  in  the  chamber  conductance,  the  effect  of  the  high‐

conductance  sphere  on  the  enhancement  of  the  electric  current  through  the  chamber must  be 

considered  in  dependence  on  the  sphere’s  position.  In  A  and  C,  the  high‐conductance  sphere 

“prolongs” the left electrode, resulting in a virtually lower electrode distance and increased current. 

With the sphere on the electrode, the current can enter the sphere directly or after bridging the narrow 

gap between the electrode and the sphere. In the corner position A, the current transition from the 

electrode into the sphere is less efficient from the side, which is attached to the chamber’s edge. The 

central position C acts for both sides of the sphere and is more effective than the edge position A. 

This  argument  also  holds when  comparing  positions  B  and D. However,  both  positions  at  the 

electrode (A and C) are more efficient than either of the central positions (B and D). 

4.3.2. Low‐Conductance Sphere 

The presence of the low‐conductance 2D sphere reduces the overall conductance compared to 

the  empty  chamber.  The  sphere’s  position  inside  the  chamber  alters  the  current  distribution, 

conductance, and, accordingly, the electric work conducted in the chamber differently than on the 

high‐conductance sphere.   

In Figure 4, the conductance of the chamber increases in the order B<A<D<C<w/o, where w/o (1 

S) is the basic conductance without the sphere. Interestingly, B and C are again the least favorable 
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and the most favorable, respectively, of the four positions according to LMEP. The four conductances 

are elements of a second 160x160 conductance matrix (Table S2 in supplementary materials), used as 

interpolation points to create the conductance field in Figure 6. As in Figure 2D, the inhomogeneity 

of the external field in Figure 4D is symmetric and the sphere is essentially homogeneously polarized.   

 

Figure 4. Potential and current  line distributions for different positions of the 0.1‐S sphere  in 1.0‐S 

medium, in front of the plane electrode (A: at the edge; C: at the center) and on the watershed (B: at 

the edge; D: at the saddle point in the center). The overall conductances of the chamber are A: 943.7 

mS, B: 933.3 mS, C: 955.8 mS, and D: 949.3 mS. Equidistant current lines were used at the left electrode 

(A, C) or in the center plane (B, D) to improve the visibility of the inhomogeneous polarization of the 

sphere. 

To explain the B<A<D<C sequence, which corresponds to the order in dissipation and reflects 

the DEP force directions (Figure 6), current necking effects by the low‐conductance sphere between 

the plane electrodes can be considered. Current reduction is greatest in B and A when the sphere is 

at  the  edge  of  the  chamber,  necking  the  chamber  volume  and  “blocking”  the  current  from  the 

electrode, respectively. The two middle positions C and D allow a more efficient current flow, with 

the current passing the sphere on both sides (compare with Kirchhoff’s laws). 

4.4. Plane‐versus‐Plane Electrodes: Trajectories and Forces 

4.4.1. General Remarks 

Figures 5 and 6 show trajectories for the high‐ and low‐ conductance spheres, respectively. In 

both conductance scenarios, the chamber conductance increases monotonously along each trajectory 

toward a specific endpoint (Figures 5B and 6B). Normalized DEP forces have been calculated with 

Eq. 8 (Figures 5C and 6C). The 19‐voxels wide, white frames in Figures 5A and 6A are geometrically 

inaccessible to the center of the sphere. In Figures 5B,C and 6B,C, sheet conductance and normalized 

DEP force, respectively, are plotted over the same abscissas. 

For  better  comparability,  trajectories  with  the  same  starting  points  were  chosen  in  both 

conductance scenarios. Due to the double‐mirror symmetry of the chambers, in Figures 5A and 6A 

trajectories b and e have one, and a, c, and d each have three sibling trajectories. Despite the different 

conductance sequences in Figures 3 and 4 (w/o<B<D<A<C versus B<A<D<C<w/o) for the high‐ and 
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low‐conductance  spheres,  the  same  endpoints  E1,  E2  and  E3  are  reached  along  almost  identical 

trajectories, with E2 being an unstable saddle point in the middle of the watersheds in both cases.   

In both conductance scenarios, the forces along the trajectories parallel to the plane electrodes 

are very low in the bulk regions (trajectories b and c), and the forces are higher in the redder regions 

while moving in an approximately normal direction toward the electrode surface (trajectories a, d, 

and e). However, the force behavior along the trajectories differs. Force peaks are observed before the 

high‐conductance sphere touches the wall close to an endpoint (Figure 5; trajectories d and e). For the 

low‐conductance sphere, force peaks are observed at the starting points at the chamber edges (Figure 

6; trajectories a, b, c, and d). In both conductance scenarios, force peaks distant from the endpoint are 

observed when the sphere approaches the wall (trajectory a in Figures 5 and 6). 

 

Figure 5. Single 200‐μm, 1.0‐S sphere  (reddish circles  in A)  in  the chamber of Figure 1 with 0.1‐S 

medium. A: Conductance  field plot with  trajectories  (a‐e). A watershed  (vertical white  line  in  the 

center) separates the two caption areas of the stable endpoints E1 and E3. E2 is an unstable saddle point 

in the middle of the watershed. B: Chamber conductance along the trajectories. The basic, minimum, 

mean and maximum conductances are 100 mS (w/o sphere), 105.7 mS (Figure 3B), 105.3 mS and 107.0 

mS (Figure 3C; E1, E3), respectively. Trajectories a, c and e end at E1. Trajectories b and d end at E2 and 

E3, respectively. C: Normalized DEP  forces calculated from  the conductance values  in B. The DEP 

force is zero at the saddle point E2 but not at E1 and E3. The arrows for a and b|c mark the end of the 

trajectories. 

4.4.2. High‐Conductance Sphere 

The trajectory b starts at a ̋ hiddenʺ position where the smallest increase in chamber conductance 

is induced (Figure 3B). It runs along the watershed to the saddle point E2. While the first steps increase 

the conductance of the chamber slightly, they generate a  low force. The conductance  increase and 

force become negligible in the second half of trajectory b and disappear at E2. The trajectory e starts 

slightly off the saddle point with negligible force and approaches E1 on a straight line. The trajectory 

ends in a force peak when the sphere reaches E1. 

Force peaks are generated when  the electrode  is  touched, before  the object moves along  the 

electrode surface to the end point (trajectories a and d). This movement does not drastically change 

the overall  conductance of  the  chamber  and  results  in moderate  force  (trajectories a and d). The 

trajectories a, b, c and d start at  the  top edge of  the chamber  leaving  the blue conductance range 
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(Figures 5A). For trajectories a, b and d, the related conductance increase curves are almost parallel 

(Figure  5B)  generating  almost  identical  DEP  force  declines  (Figure  5C)  over  the  first  100  μm. 

Trajectories a, b and c run out with a DEP force continuously declining to zero. Along trajectory d, 

the sphere touches the electrode slightly off endpoint E3 exhibiting a peak force comparable to that 

of  trajectory e. The short correction step  to  the endpoint generates negligible  force  in  the moving 

direction. However, this force is only a low vectorial component of the total DEP force (see 5.). 

 

Figure 6. Single 200‐μm 2D sphere of 0.1 S (reddish circles in A) in the chamber of Figure 1 with 1.0‐S 

medium. A: Conductance  field plot with  trajectories  (a‐e). A watershed  (vertical white  line  in  the 

center) separates the two caption areas of the stable endpoints E1 and E3. E2 is an unstable saddle point 

in the middle of the watershed. B: Chamber conductance along the trajectories. The basic (w/o sphere), 

minimum, mean and maximum conductances are 1000 mS, 933.3 mS (Figure 4B), 948.73 mS and 955.8 

mS (Figure 4C; E1, E3), respectively. The trajectories a, c and e end at E1. Trajectories b and d end at E2 

and E3, respectively. C: Normalized DEP forces calculated from the conductance values in B. The DEP 

force is zero at the saddle point E2 but not at E1 and E3. 

4.4.3. Low‐Conductance Sphere 

In the central top‐edge position, the low conductance sphere blocks the current flow between 

the electrodes most efficiently, resulting in the lowest possible conductance of the chamber (Figure 

4B). Interestingly, for the high‐conductance sphere, this is the “hidden” position, where the smallest 

increase in the conductance of the chamber is caused (Figure 3B). 

Trajectory  b  starts  at  this  position  in  the  dark  blue  conductance  region  (Figure  6A). While 

trajectory b runs along the watershed and ends at the saddle point E2, trajectory d runs in parallel for 

approx. 300 μm before it diverts toward endpoint E3. In the parallel range, both trajectories show very 

similar conductances  (Figure 6B) and  force behavior  (Figure 6C). While  the  first steps along both 

trajectories significantly increase the conductance of the chamber and generate relatively high forces, 

the conductance increase and force become negligible and disappear at saddle point E2. Finally, the 

trajectory e starts slightly off E2 with negligible force and then approaches endpoint E1 on a straight 

line, where a low‐force peak appears. 

Trajectories  a,  b,  and d  start  at  the  top  edge  of  the  chamber,  rapidly  leaving  the dark blue 

conductance range  (Figure 6A). The related  increases  in conductance  (Figure 6B) and  falls  in DEP 

force (Figure 6C) almost coincide. While the DEP force of trajectory b continuously declines to zero, 
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force peaks are generated for trajectories a and d when the electrode is touched and before the object 

moves along the electrode surface to the endpoint with a lower force. This movement along trajectory 

a  and  the  final  correction  steps  in  trajectory  d  change  the  overall  conductance  of  the  chamber 

insignificantly, resulting in a very low force. This  is also true for the second half of trajectory b in 

direction E2.   

4.5. Pointed‐versus‐Pointed Electrodes: Field Distribution and Chamber Conductance 

4.5.1. High‐conductance sphere 

The presence of  the 1.0‐S  sphere  increases  the  conductance of  the  chamber  compared  to  the 

empty chamber. The conductance of the chamber increases in the order w/o<A<B<D<C, where w/o is 

the conductance without the sphere (Figure 7). A and C are the least and most favorable of the four 

positions according to LMEP. In Figure 7D, the inhomogeneity of the external field is symmetric, and 

the sphere is largely homogeneously polarized. The four conductances are elements of the 160x160 

conductance matrix (Table S3 in supplementary materials) used as interpolation points to create the 

conductance field.   

 

Figure 7. Potential and current  line distributions for different positions of the 1.0‐S sphere  in 0.1‐S 

medium at the left edge (A: at the top; C: at the electrode) and on the watershed (B: at the edge; D: at 

the saddle point in the center). The overall sheet conductances of the chamber are A: 21.20 mS, B: 21.30 

mS, C: 32.74 mS, and D: 21.47 mS. In all plots, current lines were selected, which are equidistant in the 

vertical center plane of the chamber. 

To explain the A<B<D<C sequence for the high‐conductance sphere, one can think of different 

current amplification effects depending on the sphere’s position. In C, the current flows directly from 

the  electrode  into  the  high‐conductance  sphere,  “extending”  the  left  electrode,  thereby  partly 

“bridging”  the electrode gap, which results  in apparently smaller electrode spacing. The bridging 

effect is almost negligible in the corner position (Figure 7A) and more efficient on the symmetry plane 

(Figures 7B and D). 

4.5.2. Low‐Conductance Sphere 

The presence of the low‐conductance 2D sphere reduces the conductance compared to the empty 

chamber. The  current distribution,  conductance,  and,  thus,  the  electrical work  conducted  on  the 
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chamber depends on the sphere’s position in a different way than for the high‐conductance sphere. 

The order in the chamber conductances of Figure 7 is reversed with C<D<B<A<w/o (Figure 8), where 

w/o (211.5 mS) is the conductance without the sphere and A and C are the most and least favorable, 

respectively, of the four positions. Obviously, the sphere positions bridging the chamber volume for 

the  current most  efficiently  are blocking  it  the most. As  in Figure  7D,  the  inhomogeneity  of  the 

external field in Figure 8D is symmetric, and the sphere is largely homogeneous polarized. The four 

conductances are elements of a 160x160 conductance matrix (Table S4 in supplementary materials) 

used as interpolation points to create the conductance field in Figure 10.   

 

Figure 8. Potential and current  line distributions for different positions of the 0.1‐S sphere  in 1.0‐S 

medium, at the left vertical edge (A: at the top; C: at the electrode) and on the watershed (B: at the 

edge; D: at the saddle point in the center). The overall sheet conductances of the chamber are A: 210.8 

mS, B: 209.1 mS, C: 53.21 mS, and D: 208.2 mS.  In  the plots,  the current  lines were selected  to be 

equidistant at the left edge (A) and the chamber’s vertical center plane (B, C and D). 

To explain the C<D<B<A sequence, one can consider current blocking (Figure 8C) and necking 

effects (Figures 8A, B, and D) by the low‐conductance sphere. In C, the sphere blocks the current flow 

directly at the left electrode, reducing the chamber conductance by a factor of four compared to the 

chamber without a sphere. Current reduction by necking is slightly higher when the sphere is in the 

center (Figures 8D) than at the edge of the chamber (Figure 8A,B). In Figure 8A, the necking effect 

almost wholly disappears,  similar  to  the bridging  effect  in Figure 7A. The necking and blocking 

properties  of  the  pointed‐versus‐pointed  electrode  chamber  differs  from  the  plane‐versus‐plane 

where the two middle positions C and D allow a more efficient current flow. 

4.6. Pointed‐versus‐Pointed Electrodes: Trajectories and Forces 

4.6.1. General Remarks 

Figures  9  and  10  show  examples  of  trajectories  of  high  and  low‐conductance  spheres, 

respectively. The chamber has  the same symmetry properties as  the plane‐versus‐plane electrode 

chamber. Accordingly, there are three other trajectories with the same DEP behavior in the volume 

of the quadrants and one other trajectory for each trajectory calculated in the mirror planes. While 

the high conductance sphere reaches the same endpoints E1, E2 and E3 as in the plane‐versus‐plane 

electrode  chambers,  even  along broadly  similar  trajectories,  completely different  endpoints were 
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found for the low‐conductance sphere. The peak forces near the pointed electrodes are approx. two 

orders of magnitude higher than in the plane‐versus‐plane electrode chamber. 

4.6.2. High‐Conductance Sphere 

 

Figure 9. Single 200‐μm, 1.0‐S sphere  (reddish circles  in A)  in  the chamber of Figure 2 with 0.1‐S 

medium. A: Conductance field plot with trajectories (a‐e). A watershed (vertical white line) separates 

the two caption areas of the stable endpoints E1 and E3. E2 is an unstable saddle point in the middle of 

the watershed.  B: Chamber  conductance  along  the  trajectories.  The  basic, minimum, mean,  and 

maximum conductances are 21.15 mS  (w/o sphere), 21.20 mS  (Figure 7A), 21.52 mS, and 32.74 mS 

(Figure  7C;  E1,  E3),  respectively.  The  system’s  chamber  conductance  reaches  peak  values  at  the 

endpoints E1 (trajectories a and e) and E3 (trajectory b). Trajectory b ends at E2. C: Normalized DEP 

forces calculated from the conductance values in B. Force peaks are generated at the touch of chamber 

surfaces  and  again  before  (trajectories  a, d,  and  c)  or  at  the  touch  of  the  electrode  (trajectory  e). 

Trajectory b ends at the saddle point in the middle of the watershed with zero DEP force. 

Near a pointed electrode, the high‐conductance sphere efficiently increases the conductance of 

the chamber  (cf. color distribution around  the pointed electrodes). The chamber conductances are 

equal at E1 and E3 and much higher than at E2. 

Forces along trajectories near the vertical symmetry plane are very low. They are higher when 

the  sphere  enters  the more  reddish  areas while  approaching  the  electrodes  in  a  roughly normal 

direction (Figure 9; trajectories a, c, d, and e). Force peaks are observed before the sphere touches the 

wall. The force is highest for trajectory e where the last step is the direct attachment to the electrode 

and slightly lower for trajectory c where the sphere touches the wall very close to the electrode.   

Trajectory b starts at the central top‐edge position (Figure 7B) and runs along the watershed to 

the saddle point E2 where the force completely disappears. The induced conductance changes and 

DEP forces are negligible compared to the peak values at the pointed electrodes. Where trajectories 

b and c run in parallel, the conductance increases (Figure 9B) and the related DEP forces (Figure 9C) 

are almost identical. Close to E2 the trajectory c diverts toward E3. A high‐force peak evolves before a 

minor correction step toward the electrode at reduced force (Figure 9C). The trajectory e starts slightly 

off the saddle point with negligible force and approaches E1 in a straight line. The direct hit of the 

electrode generates the highest force peak in the setup (Figure 9C, cf. Figure 7C). 
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In contrast to  trajectory c  in Figure 5A, which proceeds along  the electrode, which forms  the 

edge of the chamber, trajectories a and d enter the bulk volume before reattaching to the chamber 

edge near an endpoint, exhibiting a minor force peak and moving along the edge of the chamber. The 

correction steps to the endpoints at the pointed electrodes in trajectories a and d generate negligible 

forces in the moving direction.   

 

Figure 10. Single 200‐μm sphere of 0.1 S (reddish circles in A) in the chamber of Figure 2 with 1.0‐S 

medium. A: Conductance  field plot with  trajectories  (a‐g). The  two  symmetry  lines  (vertical  and 

horizontal white lines through the center), which are watersheds, separate four catchment areas with 

the equivalent, stable endpoints E1, E3, E5, and E7. The endpoints E2, E4 and E6 are unstable saddle 

points. B: Sheet  conductance along  the  trajectories. The basic  (w/o  sphere), minimum, mean, and 

maximum conductances are 211.47 mS, 53.21 mS (Figure 8C), 207.20 mS, and 210.8 mS (Figure 8A; E1, 

E3, E5, E7), respectively. Trajectories d and e end at E1, and trajectory b at E3. Trajectory g ending at E5 

is largely equivalent to trajectory e. The instable saddle points E2, E4, and E6 can be reached only along 

one of  the symmetry  lines, e.g., by  trajectories a, c, and  f, respectively. C: Normalized DEP  forces 

calculated from the conductance values in B. Each curve’s starting points and endpoints are marked 

with a straight line and an arrow, respectively. 

4.6.3. Low‐Conductance Sphere 

The  low‐conductance sphere efficiently decreases  the conductance of  the chamber when  it  is 

near a pointed electrode (cf. color distribution around the pointed electrodes). The basic conductance 

and the mean conductance of the chamber are very similar and close to the conductance at the four 

stable end points (E1, E3, E5, E7) and three saddle points (E2, E4, E6) (Figure 10B). The DEP force is zero 

at the three saddle points but not at the four endpoints. Interestingly, the trajectories run so that the 

sphere travels in the chamber volume to the endpoints and does not touch the wall before reaching 

the endpoint. Because the first steps cause a larger increase in conductance than the movement in the 

volume  of  the  chamber,  force  peaks  are  observed  for  starting  points  at  or  near  the  electrodes 

(trajectories c, e, and g).   

The  trajectory c starts at  the pointed electrode and runs with a continuously decreasing DEP 

force. The trajectories a and f run along the watershed where the DEP forces are negligible. The DEP 

forces vanish  at  the unstable  saddle points E2, E4, and E6. Trajectories  closely passing  the  saddle 

points, such as b, e, or g are diverted to one of the stable endpoints. Interestingly, no final “correction 

steps” are observed near the endpoints as in the case of the high‐conductance sphere. 
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4.7. DEP Force Reversibility   

While the conductance of the system increases steadily along each trajectory, the magnitude of 

the force can rise or  fall. When  induced medium streaming  is neglected, DEP velocities would be 

proportional  to  the  driving DEP  forces  obtained  from  the model.  In  the  pointed‐versus‐pointed 

electrode  chamber,  the  forces  are  significantly  higher  than  in  the  plane‐versus‐plane  electrode 

chamber and highest near the pointed electrodes, where the polarization of the sphere is extremely 

inhomogeneous (Figures 7C and 8C). In addition, there are systematic differences in the peak force 

magnitudes. While the peak force in the plane‐versus‐plane electrode chamber is approx. 20% higher 

for  the  high‐conductance  sphere  (Figures  5C  vs.  6C).  In  the  pointed‐versus‐pointed  electrode 

chamber, it is approx. 30% higher for the low‐conductance sphere (Figures 9C vs. 10C), suggesting 

additional contributions to the DEP force. 

For 2D spheres, the exchange of the external medium and the object conductances reverses the 

sign of the Clausius‐Mossotti factor without changing its magnitude (Eq. 2). Accordingly, the induced 

dipole moment  is  inverted  for  any  position  in  the DEP  chamber  if  dipole  forces  prevail. Every 

trajectory would be exactly reversed and the quotient of the DEP force magnitudes must be minus 

one  everywhere  in  the  chamber  [1]. However, a  comparison of  the  trajectories  shows a different 

picture. There is no force reversal in the plane‐versus‐plane electrode chamber. Both the high and 

low conductance spheres are attracted to the plane electrode and their trajectories are almost identical 

(Figures 5A vs. 6A). In the pointed‐versus‐pointed electrode chambers, the two spheres behave totally 

differently  in  the  volume  of  the  chamber  (Figures  9A  vs.  10A,  trajectories  e  and d). Here,  only 

trajectories  along  the horizontal  and vertical  symmetry  lines of  the  two  chamber geometries  are 

considered for reasons of simplicity. 

Plane‐versus‐plane electrode chamber: Figure 11 shows the ratio of the DEP forces acting on 

the 1.0‐S sphere divided by those acting on the 0.1‐S sphere along trajectories on the horizontal and 

vertical symmetry lines in Figures 5A and 6A. The ratio is always positive since all forces have the 

same signs. While the forces on both spheres change by orders of magnitude (Figure 11A and B), their 

ratios are not too far from unity in the volume of the chambers. The force magnitudes divert near the 

electrode and the top edge of the chamber, increasing more strongly for the 1.0‐S and 0.1‐S spheres, 

respectively. 

The  positive  branch  results  from  the  attraction  of  the  1.0‐S  and  0.1‐S  spheres  to  the  plane 

electrode. While the force magnitudes in the volume of the chamber are small, the quotient of seven 

at the plane electrode indicates a more efficient induction of mirror charges by the highly conductive 

sphere.   
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Figure 11. On the DEP force reversibility along the horizontal (A, B) and vertical (C, D) symmetry 

lines in the plane‐versus‐plane electrode chambers. For the force ratio the normalized forces of the 

1.0‐S sphere (Figure 5) were divided by those of the 0.1‐S sphere (Figure 6). A: along the horizontal 

trajectories e. C: along the vertical trajectories b. For both conductance cases the forces are zero in the 

center of the chamber (x=y=0). 

Pointed‐versus‐pointed electrode chamber: Figure 12 shows the ratio of the DEP forces acting 

on the 1.0‐S sphere divided by those acting on the 0.1‐S sphere along trajectories on the horizontal 

and vertical symmetry lines in Figures 9A and 10A. The ratios are negative, except for a short distance 

near  the edge on  the vertical  symmetry axis  (Figure 10A;  trajectories a and  i). On  the horizontal 

symmetry axis, the forces on both spheres change by orders of magnitude (Figures 12A and B), while 

their ratio is not too far from minus one in the volume of the chambers up to distances of 250 μm 

from the center. Near the electrode, the forces divert slightly (Figures 12A) and the repelling force 

magnitude acting on the 0.1‐S sphere is higher than the attractive force for the 1.0‐S sphere. Along 

the  vertical  symmetry  axis,  both  spheres  experience  negligible  force  near  the  chamber’s  center, 

reaching the same force magnitudes above 100 μm from the center. While the force magnitude of the 

1.0‐S sphere stays low and constant, the force for the 0.1‐S sphere declines above 200 μm before the 

force direction inverts at 359 μm and reaches a low peak at the edge (Figure 10C, trajectories a and f).   

 

Figure 12. On the DEP force reversibility along the horizontal (A, C) and vertical (B, D) symmetry 

lines in the pointed‐versus‐pointed electrode chambers. A, B: log‐plots of the forces from Figures 9 

and 10. C, D: Ratio of forces (1.0‐S sphere divided by the 0.1‐S sphere). Except for the short trajectory 

a in Figure 10A, the forces for the 1.0‐S and the 0.1‐S spheres have opposite orientations. The long‐

dashed lines at ‐1 in C and D mark the force reversibility. For both conductance cases, the forces are 

zero in the center of the chamber (x=y=0). 

4.8. DEP Force Generation and Mirror Charge Effects 

4.8.1. Polarization 

We see several qualitatively different polarization effects:   

i) Largely homogeneous object polarization  in an  inhomogeneous  field corresponding  to  the 

classical DEP model approach (cf. dipole regions in [1]). A special case is the homogeneous object 

polarization in a homogeneous external field (Figures 3D and 4D). It should be noted that the object 

itself  causes  its  inhomogeneous  polarization  at  other  locations  in  the  chamber.  We  also  see 
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symmetrical object polarization in a symmetrically inhomogeneous field, e.g. on the watershed where 

no DEP force is induced (Figures 7D and 8D).   

ii) Inhomogeneous object polarization in a homogeneous field, e.g. in the chamber with plane‐

versus‐plane electrodes (plate capacitor) (Figures 3A, B, C and Figures 4A, B, C). 

iii) Inhomogeneous object polarization  in an  inhomogeneous field, which  is  the most general 

case (Figures 7A, B, C and Figures 8A, B, C). 

In  the  following, we  consider  the  charges  at  the  electrodes and  the media  interfaces  for  the 

electrostatic case. Note that for a given half‐wave in an AC field, the same charge relationships would 

exist  for  the  low  and  high‐frequency  regions  if  the  relationships  between  the  conductivity 

(conductance) and permittivity (capacitance) properties of the media were the same [10]. For the sake 

of brevity, only object motions along the horizontal axis of symmetry between the electrode centers 

are considered in detail below by discussing the force contributions in terms of charge interactions. 

Special DEP force effects arising from edge effects are not discussed (Figure 7A, B and Figure 8A, B). 

4.8.2. Plane‐versus‐plane electrode chamber 

Interestingly, both the 1.0‐S sphere and the 0.1‐S sphere travel on the same trajectories between 

the electrodes along the chambers’ horizontal axes of symmetry, and are attracted to the center of the 

plane electrodes, with the peak force about 10 times higher for the 1.0‐S sphere than for the 0.1‐S one 

(trajectories e  in Figures 5 and 6). At  these  trajectories, edge effects can  largely be neglected  (see 

Figures 3C, 3D, 4C, 4D). The question arises as to how DEP forces arise at all if the homogeneous 

external  field  (Figure 1)  induces mirror‐symmetric  reverse  charges with  respect  to  the  symmetry 

plane of the spheres. If anything, according to classical “DEP wisdom,” the orientation of the forces 

acting  on  the  high‐conductivity  and  low‐conductivity  spheres  should  be  opposite.  The  same 

orientation of the forces suggests qualitatively different DEP mechanisms in the two cases. 

However,  the attraction  to  the plane electrode  in both cases was also observed  in  the plane‐

versus‐pointed electrode system, where it was interpreted by mirror charge effects that exceeded the 

dipole effect in the weak gradient in front of the plane electrode [1].   

High‐conductance  sphere:  The  charges  on  both  electrodes  induce  charges  with  mirror‐

symmetric reverse signs with respect to the sphere’s symmetry plane. In the volume of the chamber, 

tiny asymmetries result in a minimal DEP force that drives the sphere toward the closer left electrode 

(Figure 5C;  first 300 μm of trajectory e). As the object approaches the electrode, other  interactions 

come into play, which are considered in Figure13 A and B. The highest charge concentration is located 

in the electrodes (1) and as reverse charges inside the left hemisphere (4) at the  interface with the 

external medium [22]. The number of charges is lower in the low‐conductance medium in front of 

the electrodes (2) and in front of the high‐conductance sphere (3).   
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Figure 13. Schematic charge distributions for  the 1.0‐S (A, B) and 0.1‐S spheres (C, D)  in 0.1‐S and 

1.0‐S media, respectively, approaching the left electrode of the plane‐versus‐plane electrode chamber. 

The charge views were drawn in line with Figures 3C, D and 4C, D. 

As  the distance between  the  sphere  and  the  electrode decreases,  the  charges  in  front of  the 

electrode (2) and in front of the highly conductive sphere (3) tend to cancel each other out, and the 

counter‐charges  inside  the  hemisphere  (4)  interact  more  directly  with  the  electrode  charges. 

Additional  charges  must  accumulate  inside  the  electrode  at  the  contact  zone  to  ensure 

equipotentiality along  the highly  conductive  electrode  (Figure 13 B). These processes  lead  to  the 

formation of a mirror image of the charged object inside the electrode and create a strong attraction 

(path e in Figure 5C). 

Low‐conductance sphere: Here, too, the charges on both electrodes induce charges with mirror‐

symmetric reverse signs with respect to the symmetry plane of the sphere. For the first 300 μm from 

the center, tiny asymmetries cause a very small DEP force driving the sphere toward the nearer left 

electrode (Figure 6C, trajectory e). Then, additional interactions come into play, which are considered 

in Figure14 A and B. Before the close approach of the left hemisphere to the electrode, the highest 

number of charges and reverse charges is present in the electrode (1), in the outer medium in front of 

the  electrode  (2)  and  in  front  of  the  sphere  (3).  According  to  the  classical  ʺDEP wisdomʺ,  the 

interaction of the like‐charges of the electrode (1) and in front of the sphere produce a high repulsive 

force. Inside the low conductive hemisphere, the number of charges at the interface is small (4, 5).   

Low‐conductance sphere: Here, the charges on both electrodes also induce charges with mirror‐

symmetric reverse signs with respect to the symmetry plane of the sphere. For the first 300 μm from 

the center, tiny asymmetries cause a very small DEP force driving the sphere toward the nearer left 

electrode (Figure 6C, trajectory e). Then, additional interactions come into play, which are considered 

in Figure14 A and B. Before the left hemisphere closely approaches the electrode, most charges and 

reverse charges are present in the electrode (1), in the outer medium in front of the electrode (2), and 

in front of the sphere (3). According to classical “DEP wisdom”, the interaction of like charges of the 

electrode  (1)  and  before  the  sphere  produces  a  high  repulsive  force.  Inside  the  low‐conductive 

hemisphere, the number of charges at the interface is small (4, 5).   

However,  the  homogeneous  field  induces  largely  inversely  symmetric  charges  in  both 

hemispheres,  and  the  sphere  experiences  almost  equal  opposing  forces  on  the  left  and  right 

hemispheres (Figure 4D). The approach of the object to the electrode narrows the gap between the 

object and the electrode, resulting in mutual cancellation of charges in the external medium between 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 February 2023                   doi:10.20944/preprints202302.0190.v1



  19 

 

them. In addition, the low‐conductance object repels positive charges within the region of the high‐

conductance electrode facing the object, ensuring an equipotential electrode surface. 

At closer distances, the attraction between the charges outside the opposite hemisphere of the 

object can  interact more effectively with  the electrode charges  that are outside  the region directly 

facing the object (cf., the current lines in Figure 4C that surround the object). Each charge on the object 

induces a mirror charge. Together, these processes help to form a “mirror charge object” behind the 

electrode surface, which is the main reason for the attraction of the low‐conductivity sphere by the 

electrode. However, the attraction force is about nine times less than for the high‐conductivity sphere, 

where a more “classical” attractive DEP force acts in the same direction as the attractive mirror charge 

force (Figure 11A). 

4.8.3. Pointed‐versus‐pointed Electrode Chamber 

Both the 1.0‐S sphere and the 0.1‐S sphere are attracted and repelled by the pointed electrodes, 

consistent with classical “DEP wisdom”. However, in the volume of the chamber, the behavior of the 

0.1‐S sphere,  in particular,  is very complex, and  reversibility  is observed only along paths on  the 

horizontal  axis  of  symmetry  between  the  pointed  electrodes.  There,  edge  effects  can  largely  be 

neglected (see Figures 7C, 7D, 8C, 8D). On the symmetry axes, the DEP force magnitude for the 0.1‐

S sphere is always higher than for the 1.0‐S sphere (Figure 12A). Near the pointed electrodes, it is 

repelled up to 1.7 times more than the 1.0‐S sphere is attracted. 

This was not observed in the pointed‐versus‐plane electrode chamber, where the attractive force 

at the pointed electrode on the 1.0‐S sphere is stronger than the repulsive force on the 0.1‐S sphere 

[1]. Up to a distance of approx. 130 μm from the plane electrode, its attraction force on the 1.0‐S sphere 

even exceeds the attraction force of the pointed electrode.   

The higher  force systematically acting on  the  low conductance sphere  in  the pointed‐versus‐

pointed electrode chamber suggests an additional force contribution in at least one of the conductance 

cases.  In  the  following,  the  force  contributions of  the different  interfacial  charges  are  considered 

qualitatively.  The  force  and  medium  pump  effects  for  both  conductance  scenarios  have  been 

experimentally observed before and after the electropiercing of fish eggs with needle electrodes [23]. 

 

Figure 14. Schematic charge distributions for  the 1.0‐S (A, B) and 0.1‐S spheres (C, D)  in 0.1‐S and 

1.0‐S media,  respectively,  approaching  the  left  electrode  of  the pointed‐versus‐ pointed  electrode 

chamber.  The  arrows  in  C  and D  indicate  the  field‐induced  streaming  of  the  high‐conductance 

medium (bluish arrows in C and D), thereby providing an extra contribution to the DEP force. The 

charge views were drawn in line with Figures 7C, D and 8 C, D. 
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High‐conductance  sphere: The  sketches  in Figure  14 A  and B  consider  the  approach of  the 

sphere to the left electrode. The electrode charges interact with charges which are qualitatively mirror 

symmetric  inverse  to  the  symmetry  plane  of  the  sphere,  but  quantitatively much  higher  in  the 

hemisphere near the electrode due to the strongly inhomogeneous field. The highest charge numbers 

are found in the electrode (1) and as counter charges inside the left hemisphere at the interface to the 

outer medium (4) [22]. Their interaction causes the predominant attraction. In the right hemisphere, 

the charges are more evenly distributed. Their repulsive and attractive interactions with the charges 

of the left and right electrodes are much weaker (cf. the radius dependence of Coulomb’s law). Only 

a  few  charges  are  induced  in  the medium with  low  conductivity being  exhibited  in  front of  the 

electrode (2) and before the sphere (3). The significant asymmetry in the object polarization, together 

with the high field gradient, induces the strong attraction toward the left electrode (Figure 5C; first 

300 μm of trajectory e).   

Low‐conductance sphere: The sketch in Figure 14 C and D considers the repulsion of the sphere 

from the left electrode. Back charges in the outer medium (2) cover the surface of the electrode. They 

slightly reduce the effective charge of the electrode (1), but contribute little to the force on the sphere. 

The charges of the electrode (1) interact with the charges induced at the interface of the sphere; these 

are qualitatively mirror symmetric inverse to the symmetry plane of the sphere but quantitatively 

much higher in the hemisphere near the electrode due to the strongly inhomogeneous field. The high 

number of electrode charges  (1)  interacts with  the  like charges of  the external medium  (3) at  the 

interface with  the  left hemisphere [22]. However, at  the point where  the sphere  is attached  to  the 

electrode, the outer medium is displaced. Only a few charges are induced inside the low‐conducting 

(polarizable) object (4). 

Before the sphere moves away from the electrode and at a short distance from the electrode, the 

charges  near  the point  of  contact  (3)  increase  the  conductance  in  the  external medium  near  the 

electrode and in front of and around the sphere. The high current density in the narrow gap between 

the  sphere  and  the  electrode  corresponds  to  a  high  field  strength,  which  attracts  the  higher 

polarizable outer medium  into  the gap. This effect can be  seen as a positive DEP of  the external 

medium.  This  should  also  be  compared  with  electrothermal  pumps,  where  the  warm,  highly 

polarizable medium  displaces  the  cold,  low‐polarizable medium  [24].  Near  the  electrodes,  the 

repulsive force on the 0.1‐S sphere is approx. 30% greater than the attractive force on the 1.0‐S sphere 

(cf. peak forces in Figures 9C and 10C). Note that an additional force contribution may originate from 

mirror charges induced by the electrode charges inside the low‐conductivity sphere [25]. However, 

the repulsive force caused by the interaction between these charges is reduced for objects with high 

surface curvatures. 

5. Conclusion and Outlook 

It seems  to be a general phenomenon  that high  force peaks appear  in  the  final steps along a 

projected conductance gradient (e.g., trajectories d in Figures 5 and 6) before the sphere arrives at the 

surface of  the  electrode or  the  chamber wall. Movement along  a projected  conductance gradient 

causes  a  greater  increase  in  conductance  and,  consequently,  a  higher  force  than  the  deflected 

movement in the attached state. Once the sphere reaches a surface, the counterforce to the DEP force 

is split into two vectorial components, one component that generates pressure on the electrode or 

wall, and another component that drives the sphere’s motion parallel to the surface is compensated 

by surface‐ and Stokes friction. The peak forces induced in the two chamber geometries are almost 

two orders of magnitude higher in front of the pointed electrodes than in front of the plane electrodes 

and more  than  three  orders of magnitude higher  than  the  ordinary dipole  forces, which  cannot 

overcome Brownian motion for viruses and proteins. Thus, the peak forces in front of the pointed 

electrodes can explain the accumulation of viruses and proteins in field cages or at electrode edges 

[2,5,6].   

From the point of view of the system, the work conducted on a volume of material can be stored 

i)  as  electric  field  energy,  ii)  as magnetic  field  energy,  or  iii) dissipated  according  to Rayleigh’s 

dissipation  function  [19,26]. Our model  considers  the dissipation of  electrical  energy  in  the DEP 
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system,  which  increases  proportionally  to  its  total  conductance.  Only  a  small  proportion  is 

“dissipated”  in  the  friction  effects  of DEP  translation  itself, while  this  translation  increases  the 

conductance of the system. The thermodynamic aspects and approaches to explain the connections 

with  the  classical  electrostatic  approaches  in AC‐electrokinetics have been discussed  in previous 

papers [1,10]. Regarding the electroorientation of homogeneous spheroids, it has been theoretically 

demonstrated that the field‐induced torques are proportional to the induced increase in the system’s 

conductivity [9]. 

From  the  object’s  perspective,  the  DEP  force  is  generated  by  the  interaction  of  the 

inhomogeneous or, in the dipole approach, simplistically assumed homogeneous polarization of the 

object with  the  inhomogeneous  external  field. The  system’s perspective provides a more general 

picture of the DEP by, for example, also taking into account inhomogeneities of the external field that 

are only generated by the presence of the object. The approach resolves the contributions of effects 

such as induced multipoles, mirror charges, electrode shielding, etc., which are tedious to model in 

object  approaches,  for  example  in  the  case  of  inhomogeneous  object  polarization  in  the  plate 

capacitor’s homogeneous field (plane‐versus‐plane electrodes).   

To  model  the  DEP,  we  used  the  conductance  field,  the  low‐frequency  equivalent  of  the 

capacitance field. In both fields, energy gradients fully describe the object’s DEP behavior. However, 

frequency‐dependent models  require consideration of  the active and  reactive contributions  to  the 

total work done on  the system  [10]. We have used  frequency‐independent properties  to avoid,  in 

particular, the introduction of apparent (i.e., complex) permittivities and conductivities for the object 

and suspension medium. As in electrical machines, only the active components perform mechanical 

work, i.e., generate the DEP force. The reactive components (capacitively stored on the objects) are 

out of phase with the active components and are dissipated as heat. For a related discussion on the 

contributions of electronic polarization to the total field energy in lossy dielectrics, see also [27]. 

The theoretical description of electrokinetic alternating current effects such as electroorientation, 

DEP, electrorotation or mutual attraction usually  relies on electrostatic approaches. However,  for 

lossy media, the validity of the approach is not clear per se, since electrostatic systems are generally 

in an equilibrium state without energy dissipation. Moreover, the induced electrokinetic effects must 

themselves lead to energy dissipation. Despite these seemingly severe problems, the experimental 

observations interpreted via object‐oriented electrostatic models and the systems approach seem to 

agree surprisingly well. 

The  system’s  approach  will  simplify  the  calculation  of  DEP  forces  in  complex  field 

environments. It can be extended to non‐spherical objects, multi‐body systems, or Janus particles, for 

example,  to compute combined  translation, orientation, and aggregation patterns. However, such 

calculations are computationally expensive, especially for 3D systems, which will require combining 

them with  such methods  as Monte Carlo  simulations. The  behavior  of  the  2D  sphere  in  a  four‐

electrode field cage is described in a subsequent paper. 
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