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Abstract: Deep learning technologies for skin cancer detection have been dramatically advanced
based on high resolution dermoscopic images. The low-cost approach based on clinical skin images
of low resolution is promising but remains technically challenging due to their undermined image
quality. In this paper, we propose a coarse-to-fine efficient super resolution transformer (CF-ESRT)
network to reconstruct the dermoscopy-level high resolution skin image from a low resolution clinical
image. By connecting the refinement network to the original super resolution transformers and
applying perceptual and gradient losses, our framework noticeably improves the finer texture details
of skin lesions in the super resolution (SR) images, and is effective to elevate the perceptual quality of
the SR images. Quantitative and qualitative evaluations show that our method outperforms ESRT the
basis model as well as the other state-of-the-art SR models.
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1. Introduction

Dermoscopy is a diagnostic imaging tool used by dermatologists to increase the
reliability of skin disease diagnosis. Using huge datasets of dermoscopic images which are
publicly available, a diversity of deep learning models have been dramatically developed
to detect skin cancers from dermoscopic images[1,2].

On the other hand, the dermoscopy is not always available in local clinics due to the
high cost of dermoscopes. Instead, lots of dermatologists exploit clinical skin images which
can be acquired even using a general-purpose camera, in order not only to diagnose skin
lesions directly from them but also to simplify the cumbersome process of choosing the
best lesion from multiple lesions whose dermoscopic image should be finally taken for a
dermatologist’s review.

Taking into account such benefits of clinical skin images as lower cost yet a wider field
of view compared to dermoscopic images, a few machine learning models based on clinical
skin images have been introduced for skin disease classification. Pacheco et al. assessed
four convolutional neural networks (CNNs) including GoogleNet, VGGNet, ResNet, and
MobileNet, for skin cancer detection from a clinical image dataset they had collected[3,4].
The clinical image-based approach to skin disease detection is valuable to increase the
possibility for telediagnosis and self-diagnosis that will be available without an expensive
dermoscope before visiting a clinic.

Nonetheless, the clinical image-based approach to skin disease detection is technically
challenging. It is likely to have worse performance than the dermoscopic image-based
approach, since a clinical image is expected to have lower resolution and consequently to
be less informative for accurate skin diagnosis than the corresponding dermoscopic image
due to the lack of dermatologist-level microscopic features of skin lesions.

Reconstructing the dermoscopy-level high resolution skin image from a given clinical
skin image can be taken into consideration as an efficient technical strategy to cope with
the limitations of clinical image-based methods. As a substitute to genuine dermoscopic
images, a synthetic dataset of dermoscopy-level super resolution (SR) images may be effec-
tively exploited to train a machine learning model for skin disease detection. In addition,
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the methodology of clinical-to-dermoscopic reconstruction is practically instrumental for
dermatologists to make better skin diagnosis without any dermoscope. It would also lead
to the reduction in medical costs by referring to AI-based pre-diagnosis in advance before
taking dermoscopic images of high cost.

The clinical-to-dermoscopic image generation can be understood as the problem of
single image super resolution (SISR) by which a high resolution (HR) image is reconstructed
from the corresponding low resolution (LR) image. Although SISR is an ill-posed problem
which is intrinsically intractable, the most state-of-the-art deep learning models for SISR
have achieved remarkable improvements in their performance[5]. Since a super resolution
model using deep convolutional networks (SRCNN) was introduced by Dong et al. in
2014[6], a diverse of convolutional neural networks (CNNs) have been developed including
the enhanced deep residual network (EDSR)[7], wise-activated deep residual network
(WDSR)[8], residual dense network (RDN)[9], large receptive field network (LRFNet)[10],
residual channel attention network (RCAN)[11], cascading residual network (CARN)[12],
and information distillation network (IDN)[13].

The other class of SISR networks has been developed based on the generative ad-
versarial network (GAN). The pioneering SRGAN framework [14] has been extended to
ESRGAN[15], cycle-in-cycle GAN[16], and SRFeat[17]. In contrast to the CNN-based meth-
ods which focus on pixel-level accuracy (measured by PSNR), the perceptual quality was
more emphasized in the GAN-based methods. Both classes of SISR networks were effective
to restore the local features, however they are still restrictive to recover global texture
details with long-range dependency which cannot be easily inferred from neighboring
pixels.

To make up for the weakness of existing networks, a novel SISR network based
on vision transformers, so called the efficient super-resolution transformer (ESRT), was
suggested by Lu et al. in 2021, where a sequence of transformer blocks were added to
restore the texture details of local regions referring the global information from distant
regions after extracting high frequency features using the CNN backbone[18].

Despite the rapid growth of SR technologies, few SISR networks have been reported to
generate dermoscopic SR images from clinical LR skin images to the best of our knowledge.
We evaluated a few representative SISR models including ESRT, and we found their
limitations in recovering minute textures of skin lesions from LR skin images. Indeed, while
ESRT is effective to preserve the long-range dependence of local features using transformers,
there still exists a high risk that the perceptual quality and local texture details might be
deteriorated since it is based on the L1 loss to minimize pixel-wise errors[19].

In this paper, we propose a coarse-to-fine SR framework (CF-ESRT) based on efficient
super resolution transformers for clinical-to-dermoscopic image reconstruction. In our
proposed method, the coarse network based on the ESRT backbone is followed by the
refinement network to further improve finer local textures and perceptual quality, and both
networks were jointly trained in an end-to-end fashion[20]. While only the L1 loss was
used in ESRT, the perceptual loss and gradient loss were additionally applied to improve
perceptual similarity and texture details (as difference gradient) between the predicted SR
image and the corresponding ground truth.

In summary, our contribution is to show that such simple strategies as coarse-to-fine
network architecture, perceptual and gradient loss were effective for the transformer-based
SISR network ESRT to enhance local texture details as well as perceptual quality in SR skin
images.

2. Materials and Methods

As illustrated in Figure 1, the proposed super resolution framework for clinical-to-
dermoscopic image reconstruction consists of a coarse network based on the ESRT backbone
and a refinement network. The output image generated by the coarse network goes through
the refinement network to achieve better perceptual quality and finer texture details. Both
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networks are trained in an end-to-end fashion by employing both perceptual and gradient
losses to improve perceptual quality and minute texture details.

Figure 1. The proposed framework of coarse-to-fine ESRT consisting of the coarse network and the
refinement network. The loss functions include perceptual loss (LVGG) and gradients loss (Lgrad) as
well as L1 loss.

2.1. Coarse network

The coarse network aims to reconstruct the coarse features of the input image. The
basic architecture of the coarse network was adopted from ESRT whose main parts are the
lightweight CNN backbone (LCB) and the lightweight transformer backbone (LTB)[18]. In
the original ESRT, both elements are sequentially connected where the potential SR features
extracted from LCB is sent to LTB to restore local texture details which can be inferred from
the other image regions using transformers.

We made two minor changes from the original network architecture of ESRT. First,
the sequential pathway of LCB and LTB was parallelized, as shown in Figure 1, assuming
that both features from LCB and LTB had better be simultaneously used for SR image
reconstruction. Second, the multi-level residual connection architecture of LCB was simpli-
fied by removing redundant residual connections. LCB comprises of a sequence of high
preserving blocks (HPBs) to extract high frequency features. HPB is composed of a series
of adaptive residual feature blocks (ARFBs) as well as high-frequency filtering module
(HFM), that is designed to reduce computational costs by applying the reduction-expansion
scheme (i.e., downsampling-upsampling) to several network levels. The conventional HPB
in ESRT has multi-level residual connections in that HPB, its element ARFB, and ARFB’s
sub-units have residual connections[18]. Supposing that the multi-level residual connection
architecture has no effects on extracting potential SR features which are valuable to improve
the performance, we used a simplified HPB (sHPB) by removing the residual connection
from the superior level of HPB.

LTB is composed of a series of efficient transformers (ETs) which are the encoder parts
of the standard transformer[18]. After a feature map is unfolded into a set of overlapping
2D patches in a similar manner as convolution, each patch is sent to the ETs after being
flattened and all patches encoded by ETs are folded together to reconstruct the feature map.

2.2. Refinement network

The refinement network aims to reduce the discrepancy in perceptual quality and
texture details between the draft SR image predicted from the coarse network and the
corresponding ground truth. As shown in Figure 2, the refinement network has an encoder-
decoder architecture with residual connections which may be beneficial to propagating
information over layers, in a similar manner with the framework introduced by Kim
et al.[20]. Max pooling with a 2 window and nearest neighbor interpolation were used for
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downsampling and upscaling respectively. All convolution filters are of size 3× 3 and
stride 1, and the number of channels was indicated for each convolution layer.

Figure 2. The overall architecture of the refinement network. The numbers of channels are notated
above each layer, and the + sign indicates a residual connection.

2.3. Loss function

The loss function Lc for the coarse network consists of the L1 loss reflecting pixel-wise
errors and the perceptual loss reflecting VGG16 feature domain errors, as given in the
equation

Lc = ‖X̂c − X‖+ λ
φ
c · ‖φ(X̂c)− φ(X)‖ (1)

where X ∈ RH×W×3 is an input image, Xc ∈ R4H×4W×3 is the output image from the coarse
network, λ

φ
c is a constant and φ(·) is a feature map from the third convolution layer at the

fifth block in VGG16[21].
On the other hand, the loss function Lr for the refinement network consists of not

only the L1 loss and the perceptual loss but also the gradient loss reflecting errors in high
frequency details, which is given as

Lr = ‖X̂r − X‖+ λ
φ
r · ‖φ(X̂r)− φ(X)‖+ λ∇r · L∇ (2)

where X̂r ∈ R4H×4W×3 is the output image from the refinement network, and both λ
φ
r and

λ∇r are constants. The gradient loss L∇ is given as

L∇ =
1
2
(‖∇x(X̂r − X)‖2 + ‖∇y(X̂r − X)‖2) (3)

where ∇x and ∇y denote image gradients in horizontal and vertical directions respectively.
Then, the entire coarse-to-fine framework is trained in an end-to-end fashion with the total
loss L = Lc + Lr[22].

3. Results
3.1. Implementation and datasets

The dermoscopic image dataset ISIC2019 of 25,331 images was used as a training
dataset, and 20% of the dataset was used for quantitative evaluation[23]. The clinical skin
image dataset PAD-UFES-20 was used for qualitative evaluation[4].

Our method was implemented in Pytorch by extending the original ESRT, and trained
on 8 NVIDIA RTX A6000 with the mini-batch size of 112. The learning rate was initially
set to be 0.0002 and reduced in half every 20 epochs. The Adam optimizer was utilized
to optimize the training process[24]. The proposed network was compared with bicubic
interpolation, SRCNN[6], SRGAN[14], and ESRT[18].

In the first phase of training, both coarse and refinement networks are jointly trained
in an end-to-end fashion. As a training image dataset, each dermoscopic image was
downsampled into the size of 256× 256 and used as ground truth. The corresponding
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input LR images of 64× 64 were generated by downsampling the ground truth images
using the bicubic method. In the second phase, the coarse network is frozen but only
the refinement network is additionally trained using image patches of 256 × 256 split
from original dermoscopic images as ground truth. Unlike the first phase of training, the
perceptual loss was excluded from the refinement loss Lr defined in equation 2.

3.2. Quantitative and qualitative evaluations

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were used
to assess the quantitative performance, while the Frechet Inception Distance (FID) and
the learned perceptual image patch similarity (LPIPS) were used to assess the perceptual
quality[25,26].

In Table 1, the pixel-wise errors (PSNR) and the structural similarity (SSIM) in the
proposed method were similar to SRCNN and ESRT. On the other hand, the perception-
related metrics FID and LPIPS were significantly improved using the proposed coarse-to-
fine ESRT network.

Model PSNR↑ SSIM↑ FID↓ LPIPS↓ MOS↑
Bicubic 36.7± 2.5 0.888± 0.01 82.97 0.32± 0.10 2.84± 1.44
SRCNN 37.6± 2.7 0.901± 0.06 40.76 0.20± 0.09 3.11± 1.35
SRGAN 32.6± 2.5 0.776± 0.15 54.46 0.18± 0.06 3.75± 1.07
ESRT 37.1± 2.4 0.902± 0.05 64.88 0.24± 0.08 3.52± 1.26
CF-ESRT (ours) 37.4± 2.5 0.903± 0.05 24.7024.7024.70 0.14± 0.050.14± 0.050.14± 0.05 4.08± 1.094.08± 1.094.08± 1.09

Table 1. Quantitative evaluations with SISR models for clinical-to-dermoscopic image reconstruction.
The best results were highlighted in bold.

Indeed, Figure 3 shows the visual comparison of SR skin images which were recon-
structed from the LR skin images downsampled from dermoscopic images in ISIC2019.
Figure 4 shows SR skin images reconstructed from real clinical images in PAD-UFES-20.
In both results, our proposed method accurately recovers minute texture details of skin
lesions as well as global structure while the other state-of-the-art methods tend to produce
either blurry or erroneous results.

We also conducted a survey on visual quality of 10 SR images from 15 users. Users
were asked to give a grade between 1 and 5 on how much realistic the given image is. Table
1 shows that the mean opinion score (MOS) of the proposed network was prominently
superior to the other methods.

3.3. Ablation study

We analyzed the effect of perceptual and gradient losses on the model performance.
As shown in Table 2, PSNR and SSIM were slightly decreased but both FID and LPIPS
were significantly improved by using the full loss including perceptual and gradient losses
defined in Section 2.3, compared to the case of using L1 loss only. This indicates that
both perceptual and gradient losses have a significant impact on improving the perceptual
quality of the generated SR images.

Model PSNR↑ SSIM↑ FID↓ LPIPS↓
L1 only 37.2± 2.4 0.90± 0.05 60.3 0.22± 0.08
Full losses 36.4± 2.5 0.89± 0.07 34.834.834.8 0.15± 0.050.15± 0.050.15± 0.05

Table 2. The quantitative comparison of ablation studies between L1 loss only and full losses. The
best results were highlighted in bold.
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Figure 3. Visual comparison of the proposed model with other SISR models for LR skin images
down-sampled from dermoscopic images in ISIC2019.

Figure 4. Visual comparison of the proposed model with other SISR models for real clinical skin
images in PAD-UFES-20.

4. Conclusion

We proposed an extension of the efficient super resolution transformers (ESRT) for
clinical-to-dermoscopic image reconstruction by adding the refinement network to the
original ESRT and enforcing the perceptual and gradient losses. The proposed coarse-to-fine
ESRT network exhibited a significant improvement in perceptual quality metrics.

Limitations of the proposed method deserve to be mentioned. First, the quantitative
performance of the proposed network was not significantly improved as shown in PSNR
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and SSIM. Despite the outstanding enhancement of perceptual quality, the quantitative
metrics should not be negligible in that the pixel-wise accurate reconstruction of dermo-
scopic images is of dermatologists’ great interest especially for clinical purpose. Second,
the SR image reconstructed from a clinical skin image was not directly assessed compared
to the real dermoscopic image due to the absence of ground truth. The model assessment
for clinical skin images is meaningful because dermoscopic images are acquired through
microscopic imaging devices and consequently have different optical interpretations from
clinical skin images[27]. However, few public datasets including both dermoscopic images
and the corresponding clinical images are currently available to evaluate a super resolution
model.

In those reasons, the clinical-to-dermoscopic image reconstruction remains still chal-
lenging, nevertheless our study lays an important and pioneering foundation for realizing
an AI-assisted low-cost skin disease diagnosis tool which may be practically useful in
underdeveloped countries.
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