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Abstract: Motivated from the theory of Hilbert-Schmidt morphisms between Hilbert C*-modules over

commutative C*-algebras by Stern and van Suijlekom [J. Funct. Anal., 2021], we introduce the notion

of p-absolutely summing morphisms between Hilbert C*-modules over commutative C*-algebras. We

show that an adjointable morphism between Hilbert C*-modules over monotone closed commutative

C*-algebra is 2-absolutely summing if and only if it is Hilbert-Schmidt. We formulate version of

Pietsch factorization problem for p-absolutely summing morphisms and solve partially.
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1. Introduction

In his Resume, A. Grothendieck studied 1-absolutely and 2-absolutely summing operators between

Banach spaces [1] (also see [2]). In 1967, for each 1≤ p< ∞, A. Pietsch introduced the notion of

p-absolutely summing operators which became an area around the end of 20 century [3–20]. In 1979,

Tomczak-Jaegermann studied p-summing operators by fixing by fixing number of points [21]. In 1970,

Kwapien defined the notion of 0-summing operators [22]. In 2003, Farmer and Johnson introduced the

notion of Lipschitz p-summing operators between metric spaces [23] (also see [24–27]).

Definition 1. [7,28] Let X and Y be Banach spaces, X ∗ be the dual of X and 1 ≤ p < ∞. A bounded linear

operator T : X → Y is said to be p-absolutely summing if there is a real constant C > 0 satisfying following:

for every n ∈ N and for all x1, . . . , xn ∈ X ,

(
n

∑
j=1

‖Txj‖p

) 1
p

≤ C sup
f∈X ∗ ,‖ f ‖≤1

(
n

∑
j=1

| f (xj)|p
) 1

p

. (1)

In this case, the p-absolutely summing norm of T is defined as

πp(T) := inf{C : Csatisfies Inequality(1)}.

The set of all p-absolutely summing operators from X to Y is denoted by Πp(X ,Y).

Following are most important results in the theory of p-absolutely summing operators.

Theorem 1. [7,11] Let 1 ≤ p < ∞ and X , Y be Banach spaces. Then (Πp(X ,Y), πp(·)) is an operator ideal.

Theorem 2. [7,28] Let H and K be Hilbert spaces. Then a bounded linear operator T : H → K is 2-absolutely

summing if and only if it is Hilbert-Schmidt. Moreover, ‖T‖HS = π2(T).
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Theorem 3. [7,28] (Pietsch Factorization Theorem) Let X and Y be Banach spaces. A bounded linear

operator T : X → Y is p-absolutely summing if and only if there is a real constant C > 0 and a regular Borel

probability measure on BX ∗ := { f : f ∈ X ∗, ‖ f ‖ ≤ 1} in weak*-topology such that

‖Tx‖ ≤ C



∫

BX∗

| f (x)|p dµBX∗ ( f )




1
p

, ∀x ∈ X . (2)

Moreover, πp(T) = inf{C : C satisfies Inequality (2)}.

In this paper, we define the notion of p-absolutely summing morphisms between Hilbert

C*-modules over commutative C*-algebras (Definition 2). We derive in Theorem 5 that an adjointable

morphism between Hilbert C*-module over a monote closed C*-algebra is 2-summing if and only if

modular Hilbert-Schmidt. We then formulate version of Pietsch factorization problem for p-absolutely

summing morphisms and solve partially.

2. p-absolutely summing morphisms

We define modular version of Definition 1 as follows. For the theory of Hilbert C*-modules we

refer [29–31].

Definition 2. Let 1 ≤ p < ∞. Let M and N be Hilbert C*-modules over a commutative C*-algebra A. An

adjointable morphism T : M → N is said to be modular p-absolutely summing if there is a real constant

C > 0 satisfying following: for every n ∈ N and for all x1, . . . , xn ∈ M,

∥∥∥∥∥
n

∑
j=1

〈Txj, Txj〉
p
2

∥∥∥∥∥

1
p

≤ C sup
x∈M,‖x‖≤1

∥∥∥∥∥
n

∑
j=1

(〈x, xj〉〈xj, x〉)
p
2

∥∥∥∥∥

1
p

. (3)

In this case, the p-absolutely summing norm of T is defined as

πp(T) := inf{C : C satisfies Inequality (3)}.

The set of all p-absolutely summing morphisms from M to N is denoted by Πp(M,N ).

In 2021, Stern and van Suijlekom introduced the notion of modular Schatten class morphisms

[32].

Definition 3. [32] Let 1 ≤ p < ∞. Let A be a C*-algebra and Â be its Gelfand spectrum. Let M and N be

Hilbert C*-modules over A. Let T : M → N be an adjointable morphism. We say that T is in the modular

p-Schatten class if the function

Tr |T|p : Â ∋ χ 7→ Tr |χ∗T|p ∈ R∪ {∞}

lies in A. The modular p-Schatten norm of T is defined as

‖T‖p := ‖Tr |T|p‖
1
p

A.

Modular 2-Schatten (resp. 1-Schatten) class morphism is called as modular Hilbert-Schmidt (resp. modular

trace class). We denote ‖T‖2 by ‖T‖HS.

Using the theory of modular frames for Hilbert C*-modules (see [33]) Stern and van Suijlekom

were able to derive following result.
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Theorem 4. [32] Let M and N be Hilbert C*-modules over A. Let T : M → N be an adjointable morphism.

Then T is modular Hilbert-Schmidt if and only if for every modular Parseval frame {τn}n for M, the series

∑
∞
n=1〈|T|pτn, τn〉 converges in norm in A and

Tr |T|p =
∞

∑
n=1

〈|T|pτn, τn〉.

We now derive modular version of Theorem 2 with the following notion.

Definition 4. [34] A C*-algebra A is said to be monotone closed if every bounded increasing net in A has

the least upper bound in A.

Theorem 5. Let M and N be Hilbert C*-modules over a commutative C*-algebra A. Assume A is monotone

closed. Let T : M → N be an adjointable morphism. Then T ∈ Π2(M,N ) if and only if T is modular

Hilbert-Schmidt. Moreover, ‖T‖HS = π2(T).

Proof. (⇒) Let T ∈ Π2(M,N ). Let {τn}∞
n=1 be a modular Parseval frame for M. Then

〈x, x〉 =
∞

∑
n=1

〈x, τn〉〈τn, x〉, ∀x ∈ M, (4)

where the series converges in the norm of A. To show T is modular Hilbert-Schmidt, using Theorem

4, it suffices to show that the series ∑
∞
n=1〈Tτn, Tτn〉 converges in norm in A. Note that the series

∑
∞
n=1〈Tτn, Tτn〉 is monotonically increasing. Since the C*-algebra is monotone closed, we are done

if we show the sequence {∑
n
j=1〈Tτj, Tτj〉}∞

n=1 is bounded. Let n ∈ N. Since T is 2-summing, using

Equation (4) we have

∥∥∥∥∥
n

∑
j=1

〈Tτj, Tτj〉
∥∥∥∥∥ ≤ π2(T)

2 sup
x∈M,‖x‖≤1

∥∥∥∥∥
n

∑
j=1

〈x, τj〉〈τj, x〉
∥∥∥∥∥ ≤ π2(T)

2 sup
x∈M,‖x‖≤1

∥∥∥∥∥
∞

∑
j=1

〈x, τj〉〈τj, x〉
∥∥∥∥∥

= π2(T)
2 sup

x∈M,‖x‖≤1

‖x‖2 = π2(T)
2.

(⇐) Let n ∈ N and x1, . . . , xn ∈ M. Let {ωn}∞
n=1 be an orthonormal basis for M. Define

S : M ∋ x 7→
n

∑
j=1

〈x, ωj〉xj ∈ M.

Then

‖S‖2 = ‖S∗‖2 = sup
x∈M,‖x‖≤1

‖S∗x‖2 = sup
x∈M,‖x‖≤1

∥∥∥∥∥
∞

∑
n=1

〈S∗x, ωn〉ωn

∥∥∥∥∥

2

= sup
x∈M,‖x‖≤1

∥∥∥∥∥
∞

∑
n=1

〈x, Sωn〉ωn

∥∥∥∥∥

2

= sup
x∈M,‖x‖≤1

∥∥∥∥∥
n

∑
j=1

〈x, xj〉ωj

∥∥∥∥∥

2

= sup
x∈M,‖x‖≤1

∥∥∥∥∥
n

∑
j=1

〈x, xj〉〈xj, x〉
∥∥∥∥∥ .

Hence
∥∥∥∥∥

n

∑
j=1

〈Txj, Txj〉
∥∥∥∥∥ =

∥∥∥∥∥
n

∑
j=1

〈TSωj, TSωj〉
∥∥∥∥∥ = ‖TS‖2

HS ≤ ‖T‖2
HS‖S‖ = ‖T‖2

HS sup
x∈M,‖x‖≤1

∥∥∥∥∥
n

∑
j=1

〈x, xj〉〈xj, x〉
∥∥∥∥∥ .
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Note that we have not used monotonic closedness of C*-algebra in “if” part. In view of Theorem

3, we formulate following problem.

Question 6. Whether there exists a modular Pietsch factorization theorem?

We solve Question (6) partially in the following theorem. Integrals in the following theorem is in

the Kasparov sense [35].

Theorem 7. Let M and N be Hilbert C*-modules over a commutative C*-algebra A. Let T : M → N be an

adjointable morphism. Assume that there exists a Lie group G ⊆ BM := {x : x ∈ M, ‖x‖ ≤ 1} satisfying

following.

(i) µG(G) = 1.
(ii) For each x ∈ M, the map G ∋ y 7→ 〈x.y〉〈y, x〉 is continuous.

(iii) There exists a real C > 0 such that

〈Tx, Tx〉
p
2 ≤ Cp

∫

G
(〈x.y〉〈y, x〉)

p
2 dµG(y), ∀x ∈ M.

Then T modular p-absolutely summing and πp(T) = C.

Proof. Let n ∈ N and x1, . . . , xn ∈ M. Then

∥∥∥∥∥
n

∑
j=1

〈Txj, Txj〉
p
2

∥∥∥∥∥ ≤ Cp

∥∥∥∥∥
n

∑
j=1

∫

G
(〈xj, y〉〈y, xj〉)

p
2 dµG(y)

∥∥∥∥∥ = Cp

∥∥∥∥∥

∫

G

n

∑
j=1

(〈xj, y〉〈y, xj〉)
p
2 dµG(y)

∥∥∥∥∥

≤ Cp
∫

G

∥∥∥∥∥
n

∑
j=1

(〈xj, y〉〈y, xj〉)
p
2

∥∥∥∥∥ dµG(y) ≤ Cp
∫

G
sup

y∈M,‖y‖≤1

∥∥∥∥∥
n

∑
j=1

(〈xj, y〉〈y, xj〉)
p
2

∥∥∥∥∥ dµG(y)

= Cp sup
y∈M,‖y‖≤1

∥∥∥∥∥
n

∑
j=1

(〈xj, y〉〈y, xj〉)
p
2

∥∥∥∥∥ µG(G) = Cp sup
y∈M,‖y‖≤1

∥∥∥∥∥
n

∑
j=1

(〈xj, y〉〈y, xj〉)
p
2

∥∥∥∥∥ .

3. Appendix

In this appendix we formulate some problems for Banach modules over C*-algebras based on the

results in Banach spaces which influenced a lot in the modern development of Functional Analysis. Our

first kind of problems come from the Dvoretzky theorem [36–50]. Let X and Y be finite dimensional

Banach spaces such that dim(X ) = dim(Y). Remenber that the Banach-Mazur distance between X
and Y is defined as

dBM(X ,Y) := inf{‖T‖‖T−1‖ : T : X → Y is invertible linear operator}.

For n ∈ N, let (Rn, 〈·, ·〉) be the standard Euclidean Hilbert space.

Theorem 8. [28,51] (John Theorem) If X is any n-dimensional real Banach space, then

dBM(Y , (Rn, 〈·, ·〉)) ≤
√

n.

Theorem 9. [28,52] (Dvoretzky Theorem) There is a universal constant C > 0 satisfying the following

property: If X is any n-dimensional real Banach space and 0 < ε <
1
3 , then for every natural number

k ≤ C log n
ε2

| log ε| ,
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there exists a k-dimensional Banach subspace Y of X such that

dBM(Y , (Rk, 〈·, ·〉)) < 1 + ε.

Let A be a unital C*-algebra with invariant basis number property (see [53] for a study on such

C*-algebras) and E , F be finite rank Banach modules over A such that rank(E) = rank(F ). Modular

Banach-Mazur distance between E and F is defined as

dMBM(E ,F ) := inf{‖T‖‖T−1‖ : T : E → F is invertible module homomorphism}.

Given a unital C*-algebra A and n ∈ N, by An we mean the standard (left) module over A. We equip

An with the C*-valued inner product 〈·, ·〉 : An ×An → A defined by

〈(aj)
n
j=1, (bj)

n
j=1〉 :=

n

∑
j=1

ajb
∗
j , ∀(aj)

n
j=1, (bj)

n
j=1 ∈ An.

Hence norm on An is given by

‖(aj)
n
j=1‖ :=

∥∥∥∥∥
n

∑
j=1

aja
∗
j

∥∥∥∥∥

1
2

, ∀(aj)
n
j=1 ∈ An.

Then it is well-known that An is a Hilbert C*-module. We denote this Hilbert C*-module by (An, 〈·, ·〉).

Problem 1. (Modular Dvoretzky Problem) Let A be the set of all unital C*-algebras with invariant

basis number property. What is the best function Ψ : A ×
(

0, 1
3

)
× N → (0, ∞) satisfying the

following property: If E is any n-rank Banach module over a unital C*-algebra A with IBN property

and 0 < ε <
1
3 , then for every natural number

k ≤ Ψ(A, ε, n),

there exists a k-rank Banach submodule F of E such that

dMBM(F , (Ak, 〈·, ·〉)) < 1 + ε.

A particular case of Problem 1 is the following conjecture.

Conjecture 10. (Modular Dvoretzky Conjecture) Let A be a unital C*-algebra with IBN property.

There is a universal constant C > 0 (which may depend upon A) satisfying the following property: If

E is any n-rank Banach module and 0 < ε <
1
3 , then for every natural number

k ≤ C log n
ε2

| log ε| ,

there exists a k-rank Banach submodule F of E such that

dMBM(F , (Ak, 〈·, ·〉)) < 1 + ε.

Our second kind of problems come from the type-cotype theory of Banach spaces [8,12,13,18,19,

28,54,55]. Let H be a Hilbert space, n ∈ N. Recall that for any n points x1, . . . , xn ∈ H, we have

1

2n ∑
ε1,...,εn∈{−1,1}

∥∥∥∥∥
n

∑
j=1

ε jxj

∥∥∥∥∥

2

=
n

∑
j=1

‖xj‖2. (5)
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It is Equality (5) which motivated the definition of type and cotype for Banach spaces.

Definition 5. [28] Let 1 ≤ p ≤ 2. A Banach space X is said to be of (Rademacher) type p if there exists

Tp(X ) > 0 such that


 1

2n ∑
ε1,...,εn∈{−1,1}

∥∥∥∥∥
n

∑
j=1

ε jxj

∥∥∥∥∥

p



1
p

≤ Tp(X )

(
n

∑
j=1

‖xj‖p

) 1
p

, ∀x1, . . . , xn ∈ X , ∀n ∈ N.

Definition 6. [28] Let 2 ≤ q < ∞. A Banach space X is said to be of (Rademacher) cotype q if there exists

Cq(X ) > 0 such that

(
n

∑
j=1

‖xj‖q

) 1
q

≤ Cq(X )


 1

2n ∑
ε1,...,εn∈{−1,1}

∥∥∥∥∥
n

∑
j=1

ε jxj

∥∥∥∥∥

q



1
q

, ∀x1, . . . , xn ∈ X , ∀n ∈ N.

Let E be a (left) Hilbert C*-module over a unital C*-algebra A, n ∈ N. We see that for any n points

x1, . . . , xn ∈ E , we have

1

2n ∑
ε1,...,εn∈{−1,1}

〈
n

∑
j=1

ε jxj,
n

∑
k=1

εkxk

〉
=

n

∑
j=1

〈xj, xj〉. (6)

Problem 2. (Modular Type-Cotype Problems) Whether there is a way to define type (we call

modular-type) and cotype (we call modular-cotype) for Banach modules over C*-algebras which

reduces to Equality (6) for Hilbert C*-modules?

Problem 3. Whether there is a notion of type and cotype for Banach modules over C*-algebras such

that Kwapien theorems holds?, In other words, whether following statements hold?

(i) A Banach module M over a unital C*-algebra A has modular-type 2 and modular-cotype 2 if and only if

M is isomorphic to a Hilbert C*-module over A.
(ii) If M and N are Banach modules over a unital C*-algebra A of modular-type 2 and modular-cotype 2,

respectively, then a bounded module morphism T : M → N factors through a Hilbert C*-module over A.

Problem 4. (Modular Khinchin-Kahane Inequalities Problems) Whether there is a Khinchin-Kahane

inequalities for Banach modules over C*-algebras which reduce to Equality (6) for Hilbert

C*-modules?

Our third kind of problems come from Grothendieck inequality [1,2,28,56–63].

Theorem 11. [1,2,28,56–58] (Grothendieck Inequality) There is a universal constant KG satisfying the

following: For any Hilbert space H and any m, n ∈ N, if a scalar matrix [aj,k]1≤j≤m,1≤k≤n satisfy

∣∣∣∣∣
m

∑
j=1

n

∑
k=1

aj,ksjtk

∣∣∣∣∣ ≤ 1, ∀sj, tk ∈ K, |sj| ≤ 1, |tk| ≤ 1,

then
∣∣∣∣∣

m

∑
j=1

n

∑
k=1

aj,k〈uj, vk〉
∣∣∣∣∣ ≤ KG, ∀uj, vk ∈ H, ‖uj‖ ≤ 1, ‖vk‖ ≤ 1.

Problem 5. (Modular Grothendieck Inequality Problem - 1) Let A be the set of all unital C*-algebras.

Let E be a Hilbert C*-module over a unital C*-algebra A. Let A+ be the set of all positive elemnts
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in A. What is the best function Ψ : A × N × N → A+ satisfying the following property: If

[aj,k]1≤j≤m,1≤k≤n ∈ Mm×n(A) satisfy

〈
m

∑
j=1

n

∑
k=1

aj,ksjtk,
m

∑
p=1

n

∑
q=1

ap,qsptq

〉
≤1, ∀sj, tk ∈ A,

sjs
∗
j = s∗j sj = 1, ∀1 ≤ j ≤ m, tkt∗k = t∗k tk = 1, ∀1 ≤ k ≤ n,

then

〈
m

∑
j=1

n

∑
k=1

aj,k〈uj, vk〉,
m

∑
p=1

n

∑
q=1

ap,q〈up, vq〉
〉

≤Ψ(A, m, n), ∀uj, vk ∈ E ,

〈uj, uj〉 = 1, ∀1 ≤ j ≤ m, 〈vk, vk〉 = 1, ∀1 ≤ k ≤ n.

In particular, whether Ψ depends on m and n?

Problem 6. (Modular Grothendieck Inequality Problem - 2) Let A be the set of all unital C*-algebras.

Let E be a Hilbert C*-module over a unital C*-algebra A. Let A+ be the set of all positive elemnts

in A. What is the best function Ψ : A × N × N → A+ satisfying the following property: If

[aj,k]1≤j≤m,1≤k≤n ∈ Mm×n(A) satisfy

〈
m

∑
j=1

n

∑
k=1

aj,ksjtk,
m

∑
p=1

n

∑
q=1

ap,qsptq

〉
≤ 1, ∀sj, tk ∈ A, ‖sj‖ ≤ 1, ∀1 ≤ j ≤ m, ‖tk‖ ≤ 1, ∀1 ≤ k ≤ n,

then

〈
m

∑
j=1

n

∑
k=1

aj,k〈uj, vk〉,
m

∑
p=1

n

∑
q=1

ap,q〈up, vq〉
〉

≤ Ψ(A, m, n), ∀uj, vk ∈ E ,

‖uj‖ ≤ 1, ∀1 ≤ j ≤ m, ‖vk‖ ≤ 1, ∀1 ≤ k ≤ n.

In particular, whether Ψ depends on m and n?

We believe strongly that Ψ depends on A.

Remark 1. Modular Bourgain-Tzafriri restricted invertibility conjecture and Modular

Johnson-Lindenstrauss flattening conjecture have been stated in [64,65].
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