

Review

Not peer-reviewed version

Public Health Needs the Public Trust: A Pandemic Retrospective

[Matthew Halma](#) and [Joshua Guetzkow](#) *

Posted Date: 7 February 2023

doi: 10.20944/preprints202302.0111.v1

Keywords: Public Health; Public Trust; Science Communication; Pedagogy; Citizen Science; Stakeholders; Informed Consent; Uncertainty Communication

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Public Health Needs the Public Trust: A Pandemic Retrospective

Matthew T.J. Halma ^{1,2} and Joshua Guetzkow ^{3,*}

¹ Vrije Universiteit Amsterdam, 1081 De Boelelaan, 1081 HV, Amsterdam, North Holland, The Netherlands; m.t.j.halma@vu.nl

² World Council For Health, 11 Laura Place, BA2 4BL, Bath, United Kingdom

³ Institute of Criminology, Department of Sociology & Anthropology, The Hebrew University of Jerusalem, Jerusalem, Israel

* Correspondence: joshua.guetzkow@mail.huji.ac.il

Abstract: Public trust in science was tested and relied on during the SARS-CoV-2 pandemic, which has shaped global events since the WHO declaration in March 11, 2020. Public trust has been impacted through the government recommendations and mandates informed by public health guidance, including non-pharmaceutical and pharmaceutical interventions. The free-flow of ideas and information so essential to the functioning of science has faced unprecedented challenge from widespread censorship in both the media and in scientific journals. This has created a poisoned environment for the building of trust between science and society. Scientific norms and accountability must be restored in order to rebuild the vital relationship between scientists and the public they serve.

Keywords: public health; public trust; science communication; pedagogy; citizen science; stakeholders; informed consent; uncertainty communication

1. Introduction: A loss of trust

The response to the emergence of SARS-CoV-2 has had a significant impact on the relationship between the biomedical community and the public. Public perceptions impact the decision to follow health guidance set by governments and scientists [1], and so it is vital to identify the extent and sources of mistrust between the public and the scientific community and public health bodies.

Public trust in science has demonstrably declined since the beginning of the pandemic [2,3]. We review changes in three areas; vaccination, anthropogenic global warming, and regulatory decisions on chemicals. Conspiratorial thinking is negatively correlated with support for childhood vaccination [4].

Unfortunately, significant mistrust has been built, which can be exemplified by decreased desire for childhood vaccination [5], which differs from drops in vaccination due to the inaccessibility resulting from lockdowns. As a consequence of mistrust, vaccination rates have declined, and this effect cannot entirely be attributed to the direct impacts of closures [6]. Initially support for vaccination rose during the pandemic [7].

The pandemic also saw a rise in 'alternative' medicinal modalities [8–15], including Ayurveda [16], herbalism [17–19], supplementation [20]. The increase in CAM can be seen as a tacit desire to find an alternative to 'mainstream' medical practice. One contradicting piece of information found no significant increase in the use of dietary supplements [21].

Increasingly, CAM and conventional medicine are at odds; in one study, 40% of CAM practitioners surveyed in Norway said that they would not refer COVID-19 patients to a physician [22]. Antagonism has grown on both sides; increasingly, government regulations target CAM practitioners. For example, the New Zealand Labour is introducing a 'Therapeutic Products Bill', which enables the government to regulate the sale of commonly used vitamin and mineral supplements, nutraceuticals, and natural medicines [23].

Some therapeutics with strong supporting evidence, such as ivermectin for the prevention and treatment of covid-19, were restricted under legal penalty [24].

Despite the economic pressures of the pandemic on consumers, a Romanian study demonstrated an increased consumption of organic food amongst those with some organic food consumption already, but not a significant adoption of organic food consumption from those indifferent prior to the pandemic [25]. Other studies have seen an increased consumption of organic food [26–29], and entertaining heterodox beliefs on COVID-19 was a significant predictor of support for organic food [30].

Along with distrust of vaccines, distrust of GMOs, among other beliefs contrary to the alleged scientific consensus form a constellation of beliefs [31]. While running against the expressed intentions of science communicators

Vaccine refusal was very common in Africa, with willfully unvaccinated survey participants providing concerns with vaccine safety and side effects and lack of trust for pharmaceutical industries as their major motivating factors [32]. Lack of trust features highly among people's stated reasons for not intending to get vaccinated [33–47]. Furthermore, marginalized groups with significant historical reasons for mistrust of the medical establishment and the government show lower rates of vaccination; including African Americans [48,49] indigenous people [50–54], and Hispanics [6,34,55]. Trust on COVID-19 is highly partisan [56].

It is demonstrated that if people were exposed to non-mainstream sources of information on COVID vaccines, they were less likely to get vaccinated [57]. Media strategies emphasized a single unified and authoritative message [58], and negative [59], fear- and guilt-based messaging [60–63]

2. Reasons for Distrust

2.1. Censorship

In his classic work on the ethos of science, Robert K. Merton outlined four norms essential to the scientific enterprise: universalism, communism, disinterestedness, organized scepticism [64]. At least two of those norms, universalism and organized skepticism, are abrogated in a scientific environment where censorship and suppression of scientific findings and opposing views are rampant.

Censorship was also rife regarding all topics related to SARS-CoV-2 [65]. To take the example of the COVID-19 outbreak, there were several non-mainstream scientists accused of spreading 'misinformation'. While many of their arguments were sound (and predictions came true) and they frequently had a previous career marked by significant achievement, they were still unfairly marginalized, as the attempt by NIH director Francis Collins and NIAID director Anthony Fauci to "Takedown" the Great Barrington Declaration [66], a document co-authored by Dr. Martin Kulldorf, Dr. Sunetra Gupta and Dr. Jay Bhattacharya, all highly credentialed experts in epidemiology [67].

In fact, many people advancing non-mainstream views, especially those challenging the need for, safety and efficacy of products known as COVID-19 vaccines, saw censorship, not only on social media, but by scientific journals themselves. In one such episode, a manuscript for publication in the journal *Current Problems in Cardiology* by Dr. Jessica Rose and Dr. Peter A. McCullough was withdrawn after publication without explanation [68]. Several examples exist of articles retracted for ostensibly political reasons, as opposed to scientific reasons [69,70].

While the extent of censorship escapes much of the lay public, it has been acknowledged by human rights organizations, including Amnesty International [71], as well as scientists and several scientific and medical organizations established around independent science, including the Frontline Covid-19 Critical Care Alliance(FLCCC) and the British Ivermectin Recommendation Development (BIRD), two organizations advocating for the use of Ivermectin in early treatment of COVID-19 patients, which became highly politicized, which served to the detriment of covid-19 treatment [72].

Simply put, there is a large gap between what the science *is* and what it is *presented as*. Responsibility certainly falls on the media, and governments for pursuing a singular, one-size-fits-all strategy of vaccine mandates, lockdowns, and masking for entire populations, with few exceptions. These regulations were advanced often without public consultation and without disclosure of relevant conflicts of interest [73]. Education level in several surveys had little impact on holding non-mainstream beliefs [39], and even a higher level of education was associated with vaccine hesitancy

[74,75], and holders of non-mainstream views use data-centric arguments [76]. However, science and scientists are not blameless in their lack of questioning official guidance when it contradicted science. For example, a 2020 review on masking to prevent pandemic influenza found no benefit [77], yet mask mandates were a popular policy in many countries [78]. Few scientists spoke out against policies such as lockdowns, while having dubious benefit for the spread of SARS-CoV-2 [79], had significant detrimental impacts on the economy [80–83], mental health [84], education [85–87] and rates of domestic abuse [88–90].

2.2. Narrowness and inflexibility of public health response

The lived experience of individuals contrasts with what they were told by experts, about the vaccines preventing infection and transmission [91]. In fact, vaccination makes recipients more prone to serial reinfection, as the protection conferred by natural immunity lasts for significantly longer [92]. While symptomatic infection was the original endpoint of the clinical trial used in the Emergency Use Authorization (EUA) of the vaccines [93,94], it was later stated that the vaccines were primarily intended to reduce hospitalization and death [95]. Since young people carry a much lower risk from hospitalization or death due to covid, almost 10 000 times less fatality risk for those under 20 years old compared to those over 90 according to one Ontario study [96], it does not make sense to expose them to the risk of adverse events from these products, according to one analysis [97].

Procrustean policies such as general mandates not taking into account one's individual risk, including factors of age [98], prior infection [99], pre-existing conditions or lack thereof [100,101] lessened trust between the general public and the biomedical community. While booster requirements were enforced in American universities [102], studies emerged that based on conservative estimates of the number needed to vaccinate (NNTV) to prevent a single hospitalization from COVID-19, at least eighteen serious vaccine adverse events would occur [97]. These mandates contradict the approach that other nations, mostly European, have taken in restricting and discontinuing the use of Moderna for younger people [103,104]. Denmark later discontinued vaccinating individuals under 50 years old [105].

2.3. Conflicts of Interest and Regulatory Capture

These issues lay against a backdrop of known criminal malfeasance by the pharmaceutical industry [106,107], including the largest criminal fine in history given to Pfizer [108]. There is definite evidence of prior malfeasance, even at the level of academic research, as financial influences are known to impact research [109,110]. For example, one widely circulated one-paragraph letter in the New England Journal of Medicine in 1980 claimed a very low rate of opioid addiction [111,112] and was used to justify the over prescription of opioid medications, despite the letter providing no evidence.

Conflicts of interest abound in pharmaceutical research [113,114], and pharmaceutical profits not only fund scientific journals [115,116], but also medical schools [117], patient advocacy groups [118,119] and even regulatory bodies (almost half of US FDA's annual budget [120]). Trials are also increasingly funded by the pharmaceutical companies who manufacture the very products under evaluation [121], resulting in significant conflicts of interests, as contract research organizations are prone to corruption [122].

2.4. Bioethical violations

Another driver of people's move towards distrust of science has been the experience of adverse events following administration of products known as COVID-19 vaccines. The adverse event rate is significantly higher than any previously administered vaccine, and is even much higher than the rates of vaccines previously withdrawn due to safety concerns [123]. Dangers being assuaged away by public health agency without sufficient evidentiary basis to rule out these dangers violates the bedrock bioethical principle of informed consent [124]. Considering the harms that have come out as a result of research afterwards, obviously the data at the time of approval was insufficient to show

safety, meaning that informed consent of *all* recipients of the products known as COVID-19 vaccines did not give *informed* consent. Furthermore, mandates forced many reluctant people to receive vaccination, approximately 1/4 of all recipients in France were otherwise unwilling but chose to receive the vaccine due to the mandate, by one estimate [125]. As one principle of informed consent is the lack of external coercion on the subject, vaccine mandates violate the Nuremberg Code, which states [126]:

“1. The voluntary consent of the human subject is absolutely essential.

This means that the person involved should have legal capacity to give consent; should be so situated as to be able to exercise free power of choice, without the intervention of any element of force, fraud, deceit, duress, overreaching, or other ulterior form of constraint or coercion”.

Since the ‘consent’ of a significant portion of the population was only obtained through coercion, imposing a mandate and injecting an individual with a yet-experimental substance constitutes a violation of the Nuremberg Code. Beyond the ethical violation, vaccine mandates were also predicted to damage public trust [125,127] and retrospectively, penalizing non-recipients of the products damages public trust [128–130].

2.5. The price of distrust

The coronavirus pandemic has made more volatile an already strained relationship between scientists and the public. Public trust in large companies as well as other people declined during the pandemic in a US and Netherlands survey [131]. While trust in scientists rose early in the pandemic [132,133], trust is now lower than it was before the pandemic and shows significant political polarization [2,134–136]. Distrust manifested even in cases of games between peers [137].

Factors which influence trust [138–140] include ethnicity [141,142] (particularly for groups like African Americans, with a history of medical experimentation by authorities [143,144]), sex [139], education, income, perceived risk [145] and cognitive disposition [146].

The coronavirus pandemic has made more volatile an already strained relationship between scientists and the public. While trust in scientists rose during the early pandemic, trust is now lower than it was before the pandemic and shows significant political polarization [2]. Incredibly, public distrust was most often blamed on people spreading contrary views, rather than the scientific establishment itself [147]. Increasing numbers of people doubt official government narratives [38], and are unlikely to cooperate with government guidelines, presenting a challenge for public health measures.

Distrust creates an antagonistic relationship between scientists and society, and hampers cooperation. Science also becomes ineffectual in this situation, as attempts to make science-based reforms are met with hostility, and there is less support for public funding of science [148,149]. Distrust sows further distrust, as groups stop listening to each other, and retreat into their respective silos. Put simply, once trust has been broken, it is difficult to get back.

Furthermore, messaging is unable to effectively ‘land’ for a public audience unless several communicator criteria are met; expertise in the subject matter [150], and trust of the audience towards the communicator [151]. Understanding this necessitates movement away from the ‘information-deficit’ model of science communication, which is the dominant paradigm in science communication today [152], towards a different approach. The information deficit model is not even an effective strategy, even in cases when one has accurate information [153].

3. Discussion: Pedagogy in the public square

Rebuilding trust necessitates accountability for offenses and lies (both of commission and omission), as well as rectification of wrongs. It means acknowledging the limitations of results, communicating that in most studies, the measured value is a proxy of the actual metric of interest (such as mice antibody levels and no human trials used in the approval of bivalent boosters by the FDA [154]), reporting uncertainties and the possibility that the response may change with new information [155,156]. This also guards against holding onto models too tightly when they need to be updated.

It also means open communication and free speech as fundamental principles. Conflicts of interests must be disclosed and investigated where relevant, and firings, as well as legal and criminal accountability must be enforced when violations are present to maintain scientific and medical integrity.

Also, transparency and openness need to be operative principles of science. Where there is raw data, it should be accessible to an interested researcher (preserving subject confidentiality) [157], and procedures must be clearly posted to enable replicability. The FAIR guidelines (findable, accessible, interoperable and reusable) have been developed for this purpose, and they should guide publishing in the future [158]. Not only is there an added benefit for a field adopting open data policies [159], but there is also greater trust engendered by the openness [160].

We do not know the extent that such an approach would have, and it may not disabuse all members of the public of their distrust, but with the stakes at hand, it deserves our best shot. As humanity, we face multiple converging crises in health, ecology and in the wider social fabric. A continued relationship of antagonism simply will not cut it to face the challenges ahead.

Navigating the future requires an informed public, and as scientists, this is our duty.

Author Contributions: Conceptualization, M.T.J.H.; writing—original draft preparation, M.T.J.H and J.G.; writing—review and editing, M.T.J.H and J.G.; project administration, M.T.J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The author would like to thank David Charalambous for discussions related to this manuscript.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Saechang: O.; Yu, J.; Li, Y. Public Trust and Policy Compliance during the COVID-19 Pandemic: The Role of Professional Trust. *Healthcare* **2021**, *9*, 151, doi:10.3390/healthcare9020151.
2. Kennedy, B.; Tyson, A.; Funk, C. Americans' Trust in Scientists, Other Groups Declines. *Pew Research Center Science & Society* 2022.
3. Eichengreen, B.J. COVID-19 and Trust among the Young. *Finance & Development* **2022**, *59*, doi:10.5089/9781513597300.022.A013.
4. Marques, M.D.; Kerr, J.R.; Williams, M.N.; Ling, M.; McLennan, J. Associations between Conspiracism and the Rejection of Scientific Innovations. *Public Underst Sci* **2021**, *30*, 854–867, doi:10.1177/09636625211007013.
5. Sokol, R.L.; Grummon, A.H. COVID-19 and Parent Intention to Vaccinate Their Children Against Influenza. *Pediatrics* **2020**, *146*, e2020022871, doi:10.1542/peds.2020-022871.
6. Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 Vaccination Hesitancy in the United States: A Rapid National Assessment. *J Community Health* **2021**, *46*, 270–277, doi:10.1007/s10900-020-00958-x.
7. de Albuquerque Veloso Machado, M.; Roberts, B.; Wong, B.L.H.; van Kessel, R.; Mossialos, E. The Relationship Between the COVID-19 Pandemic and Vaccine Hesitancy: A Scoping Review of Literature Until August 2021. *Frontiers in Public Health* **2021**, *9*.
8. Paudyal, V.; Sun, S.; Hussain, R.; Abutaleb, M.H.; Hedima, E.W. Complementary and Alternative Medicines Use in COVID-19: A Global Perspective on Practice, Policy and Research. *Research in Social and Administrative Pharmacy* **2022**, *18*, 2524–2528, doi:10.1016/j.sapharm.2021.05.004.
9. Portella, C.F.S.; Ghelman, R.; Abdala, C.V.M.; Schveitzer, M.C. Evidence Map on the Contributions of Traditional, Complementary and Integrative Medicines for Health Care in Times of COVID-19. *Integrative Medicine Research* **2020**, *9*, 100473, doi:10.1016/j.imr.2020.100473.

10. Charan, J.; Bhardwaj, P.; Dutta, S.; Kaur, R.; Bist, S.K.; Detha, M.D.; Kanchan, T.; Yadav, D.; Mitra, P.; Sharma, P. Use of Complementary and Alternative Medicine (CAM) and Home Remedies by COVID-19 Patients: A Telephonic Survey. *Ind J Clin Biochem* **2021**, *36*, 108–111, doi:10.1007/s12291-020-00931-4.
11. Alyami, H.S.; Orabi, M.A.A.; Aldhabbah, F.M.; Alturki, H.N.; Aburas, W.I.; Alfayez, A.I.; Alharbi, A.S.; Almasuood, R.A.; Alsuhaimani, N.A. Knowledge about COVID-19 and Beliefs about and Use of Herbal Products during the COVID-19 Pandemic: A Cross-Sectional Study in Saudi Arabia. *Saudi Pharmaceutical Journal* **2020**, *28*, 1326–1332, doi:10.1016/j.jsps.2020.08.023.
12. Kretchy, I.A.; Boadu, J.A.; Kretchy, J.-P.; Agyabeng, K.; Passah, A.A.; Koduah, A.; Opuni, K.F.M. Utilization of Complementary and Alternative Medicine for the Prevention of COVID-19 Infection in Ghana: A National Cross-Sectional Online Survey. *Preventive Medicine Reports* **2021**, *24*, 101633, doi:10.1016/j.pmedr.2021.101633.
13. Lam, C.S.; Koon, H.K.; Chung, V.C.-H.; Cheung, Y.T. A Public Survey of Traditional, Complementary and Integrative Medicine Use during the COVID-19 Outbreak in Hong Kong. *PLOS ONE* **2021**, *16*, e0253890, doi:10.1371/journal.pone.0253890.
14. Lee, D.Y.W.; Li, Q.Y.; Liu, J.; Efferth, T. Traditional Chinese Herbal Medicine at the Forefront Battle against COVID-19: Clinical Experience and Scientific Basis. *Phytomedicine* **2021**, *80*, 153337, doi:10.1016/j.phymed.2020.153337.
15. Yimer, G.; Ekuadzi, E.; Fasinu, P.; de Melo, A.C.; Pillai, G. (Colin) Traditional Medicines for COVID-19: Perspectives from Clinical Pharmacologists. *British Journal of Clinical Pharmacology* **2021**, *87*, 3455–3458, doi:10.1111/bcp.14981.
16. Kolhe, R.; Pushpan, R.; Prasad, G.P.; Gurav, A.; Srikanth, N. A Survey among Ayurveda Wholesalers and Retailers in Pune City for Understanding the Demand for Ayurvedic Medicines during the COVID-19 Pandemic. *Journal of Indian System of Medicine* **2021**, *9*, 191, doi:10.4103/JISM.JISM_42_21.
17. Nguyen, P.H.; Tran, V.D.; Pham, D.T.; Dao, T.N.P.; Dewey, R.S. Use of and Attitudes towards Herbal Medicine during the COVID-19 Pandemic: A Cross-Sectional Study in Vietnam. *European Journal of Integrative Medicine* **2021**, *44*, 101328, doi:10.1016/j.eujim.2021.101328.
18. Chaachouay, N.; Douira, A.; Zidane, L. COVID-19, Prevention and Treatment with Herbal Medicine in the Herbal Markets of Salé Prefecture, North-Western Morocco. *European Journal of Integrative Medicine* **2021**, *42*, 101285, doi:10.1016/j.eujim.2021.101285.
19. Frost, R.; Bhamra, S.K.; Pendry, B.; Heinrich, M. COVID-19 and Herbal Practice: A United Kingdom Practitioner Survey. *Advances in Integrative Medicine* **2021**, *8*, 256–260, doi:10.1016/j.aimed.2021.09.003.
20. Lordan, R. Dietary Supplements and Nutraceuticals Market Growth during the Coronavirus Pandemic – Implications for Consumers and Regulatory Oversight. *PharmaNutrition* **2021**, *18*, 100282, doi:10.1016/j.phanu.2021.100282.
21. Karbownik, M.S.; Dobielska, M.; Paul, E.; Kowalczyk, R.P.; Kowalczyk, E. Health-, Medication- and Dietary Supplement-Related Behaviors and Beliefs Relatively Unchanged during the COVID-19 Pandemic Lockdown. *Research in Social and Administrative Pharmacy* **2021**, *17*, 1501–1506, doi:10.1016/j.sapharm.2020.11.015.
22. Stub, T.; Jong, M.C.; Kristoffersen, A.E. The Impact of COVID-19 on Complementary and Alternative Medicine Providers: A Cross-Sectional Survey in Norway. *Advances in Integrative Medicine* **2021**, *8*, 247–255, doi:10.1016/j.aimed.2021.08.001.

23. Therapeutic Products Bill - New Zealand Parliament Available online: https://www.parliament.nz/en/pb/sc/make-a-submission/document/53SCHE_SCF_BILL_130084/therapeutic-products-bill (accessed on 15 January 2023).

24. Administration (TGA), T.G. New Restrictions on Prescribing Ivermectin for COVID-19 Available online: <https://www.tga.gov.au/news/media-releases/new-restrictions-prescribing-ivermectin-covid-19> (accessed on 15 January 2023).

25. Brata, A.M.; Chereji, A.I.; Brata, V.D.; Morna, A.A.; Tirpe, O.P.; Popa, A.; Arion, F.H.; Banszki, L.I.; Chereji, I.; Popa, D.; et al. Consumers' Perception towards Organic Products before and after the COVID-19 Pandemic: A Case Study in Bihor County, Romania. *International Journal of Environmental Research and Public Health* **2022**, *19*, 12712, doi:10.3390/ijerph191912712.

26. Güney, O.I.; Sangün, L. How COVID-19 Affects Individuals' Food Consumption Behaviour: A Consumer Survey on Attitudes and Habits in Turkey. *British Food Journal* **2021**, *123*, 2307–2320, doi:10.1108/BFJ-10-2020-0949.

27. Organic Foods Getting Coronavirus Boost Available online: <https://www.ecoviaint.com/organic-foods-getting-coronavirus-boost/> (accessed on 11 January 2023).

28. Tariga, J.N.; Nolasco, D.P.; Barayuga, S.J.R. Food Consumption Habits of Consumers in the Philippines: Changes amidst the Pandemic. *International Journal of Public Health Science (IJPHS)* **2021**, *10*, 662–669, doi:10.11591/ijphs.v10i3.20823.

29. Cong, L.; Bremer, P.; Kaye-Blake, W.; Mirosa, M. Chinese Consumers' Perceptions of Immune Health and Immune-Boosting Remedies Including Functional Foods. *Journal of Food Products Marketing* **2020**, *26*, 55–78, doi:10.1080/10454446.2020.1720885.

30. Koswatta, T.J.; Wingenbach, G.; Leggette, H.R.; Murphrey, T.P. Factors Affecting Public Perception of Scientific Information about Organic Foods. *British Food Journal* **2022**, *ahead-of-print*, doi:10.1108/BFJ-08-2021-0874.

31. Okruszek, Ł.; Piejka, A.; Banasik-Jemielniak, N.; Jemielniak, D. Climate Change, Vaccines, GMO: The N400 Effect as a Marker of Attitudes toward Scientific Issues. *PLOS ONE* **2022**, *17*, e0273346, doi:10.1371/journal.pone.0273346.

32. Ackah, B.B.B.; Woo, M.; Stallwood, L.; Fazal, Z.A.; Okpani, A.; Ukah, U.V.; Adu, P.A. COVID-19 Vaccine Hesitancy in Africa: A Scoping Review. *Global Health Research and Policy* **2022**, *7*, 21, doi:10.1186/s41256-022-00255-1.

33. Kumar, S.; Shah, Z.; Garfield, S. Causes of Vaccine Hesitancy in Adults for the Influenza and COVID-19 Vaccines: A Systematic Literature Review. *Vaccines* **2022**, *10*, 1518, doi:10.3390/vaccines10091518.

34. Peterson, C.J.; Lee, B.; Nugent, K. COVID-19 Vaccination Hesitancy among Healthcare Workers—A Review. *Vaccines* **2022**, *10*, 948, doi:10.3390/vaccines10060948.

35. Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 Vaccine Hesitancy in a Representative Working-Age Population in France: A Survey Experiment Based on Vaccine Characteristics. *The Lancet Public Health* **2021**, *6*, e210–e221, doi:10.1016/S2468-2667(21)00012-8.

36. Ward, J.K.; Alleaume, C.; Peretti-Watel, P.; COCONE Group The French Public's Attitudes to a Future COVID-19 Vaccine: The Politicization of a Public Health Issue. *Soc Sci Med* **2020**, *265*, 113414, doi:10.1016/j.socscimed.2020.113414.

37. Hacquin, A.-S.; Altay, S.; Araujo, E. de; Chevallier, C.; Mercier, H. Sharp Rise in Vaccine Hesitancy in a Large and Representative Sample of the French Population: Reasons for Vaccine Hesitancy. 2020.

38. Freeman, D.; Waite, F.; Rosebrock, L.; Petit, A.; Causier, C.; East, A.; Jenner, L.; Teale, A.-L.; Carr, L.; Mulhall, S.; et al. Coronavirus Conspiracy Beliefs, Mistrust, and Compliance with Government Guidelines in England. *Psychological Medicine* **2022**, *52*, 251–263, doi:10.1017/S0033291720001890.
39. Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; van der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. *Royal Society Open Science* **7**, 201199, doi:10.1098/rsos.201199.
40. Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Rabin, K.; Ratzan, S.C.; Parsons Leigh, J.; Hu, J.; El-Mohandes, A. Revisiting COVID-19 Vaccine Hesitancy around the World Using Data from 23 Countries in 2021. *Nat Commun* **2022**, *13*, 3801, doi:10.1038/s41467-022-31441-x.
41. Qunaibi, E.A.; Helmy, M.; Basheti, I.; Sultan, I. A High Rate of COVID-19 Vaccine Hesitancy in a Large-Scale Survey on Arabs. *eLife* **2021**, *10*, e68038, doi:10.7554/eLife.68038.
42. Walsh, J.C.; Comar, M.; Folan, J.; Williams, S.; Kola-Palmer, S. The Psychological and Behavioural Correlates of COVID-19 Vaccine Hesitancy and Resistance in Ireland and the UK. *Acta Psychologica* **2022**, *225*, 103550, doi:10.1016/j.actpsy.2022.103550.
43. Miller, J.D.; Ackerman, M.S.; Laspra, B.; Polino, C.; Huffaker, J.S. Public Attitude toward Covid-19 Vaccination: The Influence of Education, Partisanship, Biological Literacy, and Coronavirus Understanding. *FASEB J* **2022**, *36*, e22382, doi:10.1096/fj.202200730.
44. Ruiz, J.B.; Bell, R.A. Parental COVID-19 Vaccine Hesitancy in the United States. *Public Health Rep* **2022**, *137*, 1162–1169, doi:10.1177/00333549221114346.
45. Winter, T.; Riordan, B.C.; Scarf, D.; Jose, P.E. Conspiracy Beliefs and Distrust of Science Predicts Reluctance of Vaccine Uptake of Politically Right-Wing Citizens. *Vaccine* **2022**, *40*, 1896–1903, doi:10.1016/j.vaccine.2022.01.039.
46. Stroope, S.; Kroeger, R.A.; Williams, C.E.; Baker, J.O. Sociodemographic Correlates of Vaccine Hesitancy in the United States and the Mediating Role of Beliefs about Governmental Conspiracies. *Social Science Quarterly* **2021**, *102*, 2472–2481, doi:10.1111/ssqu.13081.
47. Gilles, I.; Le Pogam, M.-A.; Perriraz, M.; Bangerter, A.; Green, E.G.T.; Staerklé, C.; Krings, F.; Wagner-Egger, P.; Peytremann-Bridevaux, I. Trust in Institutions and the COVID-19 Threat: A Cross-Sectional Study on the Public Perception of Official Recommendations and of Othering in Switzerland. *Int J Public Health* **2021**, *66*, 1604223, doi:10.3389/ijph.2021.1604223.
48. Bogart, L.M.; Ojikutu, B.O.; Tyagi, K.; Klein, D.J.; Mutchler, M.G.; Dong, L.; Lawrence, S.J.; Thomas, D.R.; Kellman, S. COVID-19 Related Medical Mistrust, Health Impacts, and Potential Vaccine Hesitancy Among Black Americans Living With HIV. *J Acquir Immune Defic Syndr* **2021**, *86*, 200–207, doi:10.1097/QAI.0000000000002570.
49. Bajaj, S.S.; Stanford, F.C. Beyond Tuskegee — Vaccine Distrust and Everyday Racism. *New England Journal of Medicine* **2021**, *384*, e12, doi:10.1056/NEJMpv2035827.
50. Mosby, I.; Swidrovich, J. Medical Experimentation and the Roots of COVID-19 Vaccine Hesitancy among Indigenous Peoples in Canada. *CMAJ* **2021**, *193*, E381–E383, doi:10.1503/cmaj.210112.
51. Muhajarine, N.; Adeyinka, D.A.; McCutcheon, J.; Green, K.L.; Fahlman, M.; Kallio, N. COVID-19 Vaccine Hesitancy and Refusal and Associated Factors in an Adult Population in Saskatchewan, Canada: Evidence from Predictive Modelling. *PLOS ONE* **2021**, *16*, e0259513, doi:10.1371/journal.pone.0259513.
52. Criss, S.; Nguyen, T.T.; Norton, S.; Virani, I.; Titherington, E.; Tillmanns, E.L.; Kinnane, C.; Maiolo, G.; Kirby, A.B.; Gee, G.C. Advocacy, Hesitancy, and Equity: Exploring U.S. Race-Related Discussions of the COVID-

19 Vaccine on Twitter. *International Journal of Environmental Research and Public Health* **2021**, *18*, 5693, doi:10.3390/ijerph18115693.

53. Willis, D.E.; Andersen, J.A.; Bryant-Moore, K.; Selig, J.P.; Long, C.R.; Felix, H.C.; Curran, G.M.; McElfish, P.A. COVID-19 Vaccine Hesitancy: Race/Ethnicity, Trust, and Fear. *Clinical and Translational Science* **2021**, *14*, 2200–2207, doi:10.1111/cts.13077.

54. Nguyen, L.H.; Joshi, A.D.; Drew, D.A.; Merino, J.; Ma, W.; Lo, C.-H.; Kwon, S.; Wang, K.; Graham, M.S.; Polidori, L.; et al. Self-Reported COVID-19 Vaccine Hesitancy and Uptake among Participants from Different Racial and Ethnic Groups in the United States and United Kingdom. *Nat Commun* **2022**, *13*, 636, doi:10.1038/s41467-022-28200-3.

55. He, K.; Mack, W.J.; Neely, M.; Lewis, L.; Anand, V. Parental Perspectives on Immunizations: Impact of the COVID-19 Pandemic on Childhood Vaccine Hesitancy. *J Community Health* **2022**, *47*, 39–52, doi:10.1007/s10900-021-01017-9.

56. Hart, P.S.; Chinn, S.; Soroka, S. Politicization and Polarization in COVID-19 News Coverage. *Science Communication* **2020**, *42*, 679–697, doi:10.1177/1075547020950735.

57. Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. *Nat Hum Behav* **2021**, *5*, 337–348, doi:10.1038/s41562-021-01056-1.

58. G, T. COVID-19 and the Authority of Science. *HEC forum : an interdisciplinary journal on hospitals' ethical and legal issues* **2021**, doi:10.1007/s10730-021-09455-7.

59. Huang, Y.; Liu, W. Promoting COVID-19 Vaccination: The Interplay of Message Framing, Psychological Uncertainty, and Public Agency as a Message Source. *Science Communication* **2021**, doi:10.1177/10755470211048192.

60. Nan, X.; Iles, I.A.; Yang, B.; Ma, Z. Public Health Messaging during the COVID-19 Pandemic and Beyond: Lessons from Communication Science. *Health Communication* **2022**, *37*, 1–19, doi:10.1080/10410236.2021.1994910.

61. Stolow, J.A.; Moses, L.M.; Lederer, A.M.; Carter, R. How Fear Appeal Approaches in COVID-19 Health Communication May Be Harming the Global Community. *Health Educ Behav* **2020**, *47*, 531–535, doi:10.1177/1090198120935073.

62. Hase, V.; Engelke, K.M. Emotions in Crisis Coverage: How UK News Media Used Fear Appeals to Report on the Coronavirus Crisis. *Journalism and Media* **2022**, *3*, 633–649, doi:10.3390/journalmedia3040042.

63. Teye-Kwadjo, E. How Can We Better Frame COVID-19 Public Health Messages? *Discov Psychol* **2022**, *2*, 30, doi:10.1007/s44202-022-00042-6.

64. Merton, R.K. *The Sociology of Science: Theoretical and Empirical Investigations*; University of Chicago Press, 1973; ISBN 978-0-226-52092-6.

65. Niemiec, E. COVID-19 and Misinformation: Is Censorship of Social Media a Remedy to the Spread of Medical Misinformation? *EMBO Rep* **2020**, *21*, e51420, doi:10.15252/embr.202051420.

66. Select Subcommittee's Year-End Staff Report Highlights Oversight Work, Releases New Findings from Ongoing Investigations Available online: <https://coronavirus.house.gov/news/press-releases/select-subcommittee-s-year-end-staff-report-highlights-oversight-work-releases> (accessed on 2 October 2022).

67. Great Barrington Declaration and Petition Available online: <https://gbdeclaration.org/> (accessed on 2 October 2022).

68. Rose, J.; McCullough, P.A. WITHDRAWN: A Report on Myocarditis Adverse Events in the U.S. Vaccine Adverse Events Reporting System (VAERS) in Association with COVID-19 Injectable Biological Products. *Curr Probl Cardiol* **2021**, *101011*, doi:10.1016/j.cpcardiol.2021.101011.
69. Jiang, H.; Mei, Y.-F. Retraction: Jiang, H.; Mei, Y.-F. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. *Viruses* **2021**, *13*, 2056. *Viruses* **2022**, *14*, 1011, doi:10.3390/v14051011.
70. Retraction: Comparative Immunogenicity of HIV-1 Gp160, Gp140 and Gp120 Expressed by Live Attenuated Newcastle Disease Virus Vector. *PLoS One* **2020**, *15*, e0244046, doi:10.1371/journal.pone.0244046.
71. Covid-19: Global Attack on Freedom of Expression Is Having a Dangerous Impact on Public Health Crisis Available online: <https://amnesty.ca/news/covid-19-global-attack-on-freedom-of-expression-is-having-a-dangerous-impact-on-public-health-crisis/> (accessed on 2 October 2022).
72. Wadwalla, B.-A. Covid-19: Ivermectin's Politicisation Is a Warning Sign for Doctors. *BMJ* **2021**, *373*, n747, doi:10.1136/bmj.n747.
73. Thacker, P.D. Conflicts of Interest among the UK Government's Covid-19 Advisers. *BMJ* **2020**, *371*, m4716, doi:10.1136/bmj.m4716.
74. Omer, S.B.; Salmon, D.A.; Orenstein, W.A.; deHart, M.P.; Halsey, N. Vaccine Refusal, Mandatory Immunization, and the Risks of Vaccine-Preventable Diseases. *New England Journal of Medicine* **2009**, *360*, 1981–1988, doi:10.1056/NEJMsa0806477.
75. King, W.C.; Rubinstein, M.; Reinhart, A.; Mejia, R. Time Trends, Factors Associated with, and Reasons for COVID-19 Vaccine Hesitancy: A Massive Online Survey of US Adults from January-May 2021. *PLOS ONE* **2021**, *16*, e0260731, doi:10.1371/journal.pone.0260731.
76. Lee, C.; Yang, T.; Inchoco, G.D.; Jones, G.M.; Satyanarayan, A. Viral Visualizations: How Coronavirus Skeptics Use Orthodox Data Practices to Promote Unorthodox Science Online. In Proceedings of the Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, May 6 2021; pp. 1–18.
77. Xiao, J.; Shiu, E.Y.C.; Gao, H.; Wong, J.Y.; Fong, M.W.; Ryu, S.; Cowling, B.J. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings—Personal Protective and Environmental Measures - Volume 26, Number 5—May 2020 - Emerging Infectious Diseases Journal - CDC, doi:10.3201/eid2605.190994.
78. Rab, S.; Javaid, M.; Haleem, A.; Vaishya, R. Face Masks Are New Normal after COVID-19 Pandemic. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* **2020**, *14*, 1617–1619, doi:10.1016/j.dsx.2020.08.021.
79. Herby, J.; Jonung, L.; Hanke, S. A LITERATURE REVIEW AND META-ANALYSIS OF THE EFFECTS OF LOCKDOWNS ON COVID-19 MORTALITY Available online: <https://www.semanticscholar.org/paper/A-LITERATURE-REVIEW-AND-META-ANALYSIS-OF-THE-EFFECTS-OF-ON-Herby-Jonung/b2a45d2abedabeb08355f23bf313885acc1a3925> (accessed on 2 October 2022).
80. Walmsley, T.; Rose, A.; Wei, D. The Impacts of the Coronavirus on the Economy of the United States. *EconDisCliCha* **2021**, *5*, 1–52, doi:10.1007/s41885-020-00080-1.
81. Asahi, K.; Undurraga, E.A.; Valdés, R.; Wagner, R. The Effect of COVID-19 on the Economy: Evidence from an Early Adopter of Localized Lockdowns. *J Glob Health* **2011**, *05002*, doi:10.7189/jogh.10.05002.
82. Verschuur, J.; Koks, E.E.; Hall, J.W. Global Economic Impacts of COVID-19 Lockdown Measures Stand out in High-Frequency Shipping Data. *PLOS ONE* **2021**, *16*, e0248818, doi:10.1371/journal.pone.0248818.
83. Fairlie, R.; Fossen, F. *Sales Losses in the First Quarter of the COVID-19 Pandemic: Evidence from California Administrative Data*; National Bureau of Economic Research: Cambridge, MA, 2021; p. w28414;.

84. Evans, S.; Alkan, E.; Bhangoo, J.K.; Tenenbaum, H.; Ng-Knight, T. Effects of the COVID-19 Lockdown on Mental Health, Wellbeing, Sleep, and Alcohol Use in a UK Student Sample. *Psychiatry Res* **2021**, *298*, 113819, doi:10.1016/j.psychres.2021.113819.

85. Birmingham, W.C.; Wadsworth, L.L.; Lassetter, J.H.; Graff, T.C.; Lauren, E.; Hung, M. COVID-19 Lockdown: Impact on College Students' Lives. *J Am Coll Health* **2021**, *1*–15, doi:10.1080/07448481.2021.1909041.

86. Chaturvedi, K.; Vishwakarma, D.K.; Singh, N. COVID-19 and Its Impact on Education, Social Life and Mental Health of Students: A Survey. *Child Youth Serv Rev* **2021**, *121*, 105866, doi:10.1016/j.childyouth.2020.105866.

87. PACE - Changing Patterns of Growth in Oral Reading Fluency During the COVID-19 Pandemic Available online: <https://edpolicyinca.org/publications/changing-patterns-growth-oral-reading-fluency-during-covid-19-pandemic> (accessed on 2 October 2022).

88. The Shadow Pandemic: Violence against Women during COVID-19 | UN Women – Headquarters Available online: <https://www.unwomen.org/en/news/in-focus/in-focus-gender-equality-in-covid-19-response/violence-against-women-during-covid-19> (accessed on 2 October 2022).

89. Boserup, B.; McKenney, M.; Elkbuli, A. Alarming Trends in US Domestic Violence during the COVID-19 Pandemic. *The American Journal of Emergency Medicine* **2020**, *38*, 2753–2755, doi:10.1016/j.ajem.2020.04.077.

90. Bhavsar, V.; Kirkpatrick, K.; Calcia, M.; Howard, L.M. Lockdown, Domestic Abuse Perpetration, and Mental Health Care: Gaps in Training, Research, and Policy. *The Lancet Psychiatry* **2021**, *8*, 172–174, doi:10.1016/S2215-0366(20)30397-7.

91. CDC Director Rochelle Walensky: Too Little Caution and Too Much Optimism...; 2022;

92. Nordström, P.; Ballin, M.; Nordström, A. Risk of SARS-CoV-2 Reinfection and COVID-19 Hospitalisation in Individuals with Natural and Hybrid Immunity: A Retrospective, Total Population Cohort Study in Sweden. *The Lancet Infectious Diseases* **2022**, *22*, 781–790, doi:10.1016/S1473-3099(22)00143-8.

93. Commissioner, O. of the Pfizer-BioNTech COVID-19 Vaccines. *FDA* **2022**.

94. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine* **2020**, *383*, 2603–2615, doi:10.1056/NEJMoa2034577.

95. Moline, H.L. Effectiveness of COVID-19 Vaccines in Preventing Hospitalization Among Adults Aged ≥ 65 Years — COVID-NET, 13 States, February–April 2021. *MMWR Morb Mortal Wkly Rep* **2021**, *70*, doi:10.15585/mmwr.mm7032e3.

96. Leung, G.; Verma, A. Epidemiological Study of COVID-19 Fatalities and Vaccine Uptake: Insight From a Public Health Database in Ontario, Canada. *Cureus* **2021**, *13*, doi:10.7759/cureus.16160.

97. Bardosh, K.; Krug, A.; Jamrozik, E.; Lemmens, T.; Keshavjee, S.; Prasad, V.; Makary, M.A.; Baral, S.; Høeg, T.B. COVID-19 Vaccine Boosters for Young Adults: A Risk-Benefit Assessment and Five Ethical Arguments against Mandates at Universities 2022.

98. Herrera-Esposito, D.; de los Campos, G. Age-Specific Rate of Severe and Critical SARS-CoV-2 Infections Estimated with Multi-Country Seroprevalence Studies. *BMC Infectious Diseases* **2022**, *22*, 311, doi:10.1186/s12879-022-07262-0.

99. Gazit, S.; Shlezinger, R.; Perez, G.; Lotan, R.; Peretz, A.; Ben-Tov, A.; Herzl, E.; Alapi, H.; Cohen, D.; Muhsen, K.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Naturally Acquired Immunity versus Vaccine-Induced Immunity, Reinfections versus Breakthrough Infections: A Retrospective Cohort Study. *Clin Infect Dis* **2022**, *75*, e545–e551, doi:10.1093/cid/ciac262.

100. Erener, S. Diabetes, Infection Risk and COVID-19. *Mol Metab* **2020**, *39*, 101044, doi:10.1016/j.molmet.2020.101044.
101. Demeulemeester, F.; de Punder, K.; van Heijningen, M.; van Doesburg, F. Obesity as a Risk Factor for Severe COVID-19 and Complications: A Review. *Cells* **2021**, *10*, 933, doi:10.3390/cells10040933.
102. UC COVID-19 Vaccine and Booster Requirements | University Health Services Available online: <https://uhs.berkeley.edu/requirements/covid19> (accessed on 1 October 2022).
103. Coronavirus Vaccinations for Children and Young People - THL Available online: <https://thl.fi/en/web/infectious-diseases-and-vaccinations/what-s-new/coronavirus-covid-19-latest-updates/vaccines-and-coronavirus/coronavirus-vaccinations-for-children-and-young-people> (accessed on 1 October 2022).
104. Áframhaldandi notkun COVID-19 bóluefnis Moderna á Íslandi Available online: <https://www.landlaeknir.is/um-embaettid/frettir/frett/item47722/aframhaldandi-notkun-covid-19-boluefnis-moderna-a-islandi> (accessed on 1 October 2022).
105. Vaccination against Covid-19 Available online: <https://www.sst.dk/en/english/corona-eng/vaccination-against-covid-19> (accessed on 1 October 2022).
106. Almashat, S.; Wolfe, S.M.; Carome, M. Twenty-Five Years of Pharmaceutical Industry Criminal and Civil Penalties: 1991 through 2015. *Public Citizen* **2016**.
107. Lenzer, J. US Drug Company Executives Could Face Criminal Charges for Off-Label Promotion. *BMJ* **2010**, *341*, c5808, doi:10.1136/bmj.c5808.
108. Justice Department Announces Largest Health Care Fraud Settlement in Its History Available online: <https://www.justice.gov/opa/pr/justice-department-announces-largest-health-care-fraud-settlement-its-history> (accessed on 1 October 2022).
109. Ioannidis, J.P.A. Why Most Published Research Findings Are False. *PLOS Medicine* **2005**, *2*, e124, doi:10.1371/journal.pmed.0020124.
110. Diels, J.; Cunha, M.; Manaia, C.; Sabugosa-Madeira, B.; Silva, M. Association of Financial or Professional Conflict of Interest to Research Outcomes on Health Risks or Nutritional Assessment Studies of Genetically Modified Products. *Food Policy* **2011**, *36*, 197–203, doi:10.1016/j.foodpol.2010.11.016.
111. Addiction Rare in Patients Treated with Narcotics. *New England Journal of Medicine* **1980**, *302*, 123–123, doi:10.1056/NEJM198001103020221.
112. Leung, P.T.M.; Macdonald, E.M.; Stanbrook, M.B.; Dhalla, I.A.; Juurlink, D.N. A 1980 Letter on the Risk of Opioid Addiction. *New England Journal of Medicine* **2017**, *376*, 2194–2195, doi:10.1056/NEJMc1700150.
113. Raad, R.; Appelbaum, P.S. Relationships between Medicine and Industry: Approaches to the Problem of Conflicts of Interest. *Annu Rev Med* **2012**, *63*, 465–477, doi:10.1146/annurev-med-061410-121850.
114. Lexchin, J.; Bero, L.A.; Djulbegovic, B.; Clark, O. Pharmaceutical Industry Sponsorship and Research Outcome and Quality: Systematic Review. *BMJ* **2003**, *326*, 1167.
115. Sinha, M.S.; Kesselheim, A.S.; Darrow, J.J. Pharmaceutical Advertising in Medical Journals: Revisiting a Long-Standing Relationship. *CHEST* **2018**, *153*, 9–11, doi:10.1016/j.chest.2017.09.048.
116. Smith, R. Medical Journals Are an Extension of the Marketing Arm of Pharmaceutical Companies. *PLOS Medicine* **2005**, *2*, e138, doi:10.1371/journal.pmed.0020138.
117. Glauser, W. Pharma Influence Widespread at Medical Schools: Study. *CMAJ* **2013**, *185*, 1121–1122, doi:10.1503/cmaj.109-4563.

118. Colombo, C.; Mosconi, P.; Villani, W.; Garattini, S. Patient Organizations' Funding from Pharmaceutical Companies: Is Disclosure Clear, Complete and Accessible to the Public? An Italian Survey. *PLOS ONE* **2012**, *7*, e34974, doi:10.1371/journal.pone.0034974.
119. Ozieranski, P.; Rickard, E.; Shai Mulinari Exposing Drug Industry Funding of UK Patient Organisations. *BMJ* **2019**, *365*, l1806, doi:10.1136/bmj.l1806.
120. Commissioner, O. of the Fact Sheet: FDA at a Glance. *FDA* **2022**.
121. Gresham, G.K.; Ehrhardt, S.; Meinert, J.L.; Appel, L.J.; Meinert, C.L. Characteristics and Trends of Clinical Trials Funded by the National Institutes of Health between 2005 and 2015. *Clin Trials* **2018**, *15*, 65–74, doi:10.1177/1740774517727742.
122. Hvistendahl, M. Corruption and Research Fraud Send Big Chill Through Big Pharma in China. *Science* **2013**, *341*, 445–446, doi:10.1126/science.341.6145.445.
123. Malhotra, A. Curing the Pandemic of Misinformation on COVID-19 mRNA Vaccines through Real Evidence-Based Medicine - Part 1. *Journal of Insulin Resistance* **2022**, *5*, 8.
124. Finkelstein, D.; Smith, M.K.; Faden, R. Informed Consent and Medical Ethics. *Arch Ophthalmol* **1993**, *111*, 324–326, doi:10.1001/archophth.1993.01090030042034.
125. Drew, L. Did COVID Vaccine Mandates Work? What the Data Say. *Nature* **2022**, *607*, 22–25, doi:10.1038/d41586-022-01827-4.
126. Shuster, E. Fifty Years Later: The Significance of the Nuremberg Code. *New England Journal of Medicine* **1997**, *337*, 1436–1440, doi:10.1056/NEJM199711133372006.
127. Laws Are Not the Only Way to Boost Immunization. *Nature* **2018**, *553*, 249–250, doi:10.1038/d41586-018-00660-y.
128. Helps, C.; Leask, J.; Barclay, L. "It Just Forces Hardship": Impacts of Government Financial Penalties on Non-Vaccinating Parents. *J Public Health Pol* **2018**, *39*, 156–169, doi:10.1057/s41271-017-0116-6.
129. Bardosh, K.; Figueiredo, A. de; Gur-Arie, R.; Jamrozik, E.; Doidge, J.C.; Lemmens, T.; Keshavjee, S.; Graham, J.; Baral, S. The Unintended Consequences of COVID-19 Vaccine Policy: Why Mandates, Passports, and Segregated Lockdowns May Cause More Harm than Good 2022.
130. Pennings, S.; Symons, X. Persuasion, Not Coercion or Incentivisation, Is the Best Means of Promoting COVID-19 Vaccination. *Journal of Medical Ethics* **2021**, *47*, 709–711, doi:10.1136/medethics-2020-107076.
131. van der Cruijsen, C.; de Haan, J.; Jonker, N. Has the COVID-19 Pandemic Affected Public Trust? Evidence for the US and the Netherlands. *Journal of Economic Behavior & Organization* **2022**, *200*, 1010–1024, doi:10.1016/j.jebo.2022.07.006.
132. Trust, W. How COVID-19 Has Increased the World's Trust in Science Available online: <https://phys.org/news/2021-11-covid-world-science.html> (accessed on 2 October 2022).
133. Bromme, R.; Mede, N.G.; Thomm, E.; Kremer, B.; Ziegler, R. An Anchor in Troubled Times: Trust in Science before and within the COVID-19 Pandemic. *PLOS ONE* **2022**, *17*, e0262823, doi:10.1371/journal.pone.0262823.
134. Goldstein, D.A.N.; Wiedemann, J. Who Do You Trust? The Consequences of Partisanship and Trust for Public Responsiveness to COVID-19 Orders. *Perspectives on Politics* **2022**, *20*, 412–438, doi:10.1017/S1537592721000049.
135. The Public's Perspective on the United States Public Health System Available online: <https://www.rwjf.org/en/library/research/2021/05/the-publics-perspective-on-the-united-states-public-health-system.html> (accessed on 21 October 2022).

136. 2022 Edelman Trust Barometer Available online: <https://www.edelman.com/trust/2022-trust-barometer> (accessed on 21 October 2022).

137. Li, J.; Zhang, Y.; Niu, X. The COVID-19 Pandemic Reduces Trust Behavior. *Economics Letters* **2021**, *199*, 109700, doi:10.1016/j.econlet.2020.109700.

138. Rhodes, A.; Hoq, M.; Measey, M.-A.; Danchin, M. Intention to Vaccinate against COVID-19 in Australia. *The Lancet Infectious Diseases* **2021**, *21*, e110, doi:10.1016/S1473-3099(20)30724-6.

139. Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A Global Survey of Potential Acceptance of a COVID-19 Vaccine. *Nat Med* **2021**, *27*, 225–228, doi:10.1038/s41591-020-1124-9.

140. Majid, U.; Ahmad, M. The Factors That Promote Vaccine Hesitancy, Rejection, or Delay in Parents. *Qual Health Res* **2020**, *30*, 1762–1776, doi:10.1177/1049732320933863.

141. Fan, J.; Wang, X.; Du, S.; Mao, A.; Du, H.; Qiu, W. Discussion of the Trust in Vaccination against COVID-19. *Vaccines* **2022**, *10*, 1214, doi:10.3390/vaccines10081214.

142. Latkin, C.A.; Dayton, L.; Yi, G.; Konstantopoulos, A.; Boodram, B. Trust in a COVID-19 Vaccine in the U.S.: A Social-Ecological Perspective. *Social Science & Medicine* **2021**, *270*, 113684, doi:10.1016/j.socscimed.2021.113684.

143. Warren, R.C.; Forrow, L.; Hodge, D.A.; Truog, R.D. Trustworthiness before Trust — Covid-19 Vaccine Trials and the Black Community. *N Engl J Med* **2020**, *383*, e121, doi:10.1056/NEJMmp2030033.

144. Batelaan, K. 'It's Not the Science We Distrust; It's the Scientists': Reframing the Anti-Vaccination Movement within Black Communities. *Global Public Health* **2022**, *17*, 1099–1112, doi:10.1080/17441692.2021.1912809.

145. LaCour, M.; Davis, T. Vaccine Skepticism Reflects Basic Cognitive Differences in Mortality-Related Event Frequency Estimation. *Vaccine* **2020**, *38*, 3790–3799, doi:10.1016/j.vaccine.2020.02.052.

146. Fuhrer, J.; Cova, F. "Quick and Dirty": Intuitive Cognitive Style Predicts Trust in Didier Raoult and His Hydroxychloroquine-Based Treatment against COVID-19 2020.

147. AP-NORC/USAfacts Poll: US Trust in COVID-19 Information Down Available online: <https://apnews.com/article/virus-outbreak-donald-trump-pandemics-media-social-media-d3c50f0479f8ac123c8cf548c33282be> (accessed on 21 October 2022).

148. Besley, J.C. The National Science Foundation's Science and Technology Survey and Support for Science Funding, 2006–2014. *Public Underst Sci* **2018**, *27*, 94–109, doi:10.1177/0963662516649803.

149. Muñoz, A.; Moreno, C.; Luján, J.L. Who Is Willing to Pay for Science? On the Relationship between Public Perception of Science and the Attitude to Public Funding of Science. *Public Underst Sci* **2012**, *21*, 242–253, doi:10.1177/0963662510373813.

150. Petty, R.E.; Cacioppo, J.T. *Attitudes and Persuasion: Classic and Contemporary Approaches*; Routledge: New York, 2019; ISBN 978-0-429-50215-6.

151. Gilbert, D.T.; Fiske, S.T.; Lindzey, G. *The Handbook of Social Psychology*; McGraw-Hill, 1998; ISBN 978-0-19-521376-8.

152. Besley, J.C.; Dudo, A.D.; Yuan, S.; Abi Ghannam, N. Qualitative Interviews With Science Communication Trainers About Communication Objectives and Goals. *Science Communication* **2016**, *38*, 356–381, doi:10.1177/1075547016645640.

153. Kahan, D.M.; Peters, E.; Wittlin, M.; Slovic, P.; Ouellette, L.L.; Braman, D.; Mandel, G. The Polarizing Impact of Science Literacy and Numeracy on Perceived Climate Change Risks. *Nature Clim Change* **2012**, *2*, 732–735, doi:10.1038/nclimate1547.

154. Miller, J.M. Booster Doses of Moderna COVID-19 Vaccines in Adults, Adolescents & Children. *2022*, 202211.

155. Blastland, M.; Freeman, A.L.J.; van der Linden, S.; Marteau, T.M.; Spiegelhalter, D. Five Rules for Evidence Communication. *Nature* **2020**, *587*, 362–364, doi:10.1038/d41586-020-03189-1.
156. Zhang, Y.; Suhaimi, N.; Yongsatianchot, N.; Gaggiano, J.D.; Kim, M.; Patel, S.A.; Sun, Y.; Marsella, S.; Griffin, J.; Parker, A.G. Shifting Trust: Examining How Trust and Distrust Emerge, Transform, and Collapse in COVID-19 Information Seeking. In Proceedings of the Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, April 27 2022; pp. 1–21.
157. Doshi, P.; Godlee, F.; Abbasi, K. Covid-19 Vaccines and Treatments: We Must Have Raw Data, Now. *BMJ* **2022**, *376*, o102, doi:10.1136/bmj.o102.
158. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, IJ.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. *Scientific Data* **2016** *3:1* **2016**, *3*, 1–9, doi:10.1038/sdata.2016.18.
159. Piwowar, H.A.; Vision, T.J. Data Reuse and the Open Data Citation Advantage. *PeerJ* **2013**, *1*, e175–e175, doi:10.7717/peerj.175.
160. Rosman, T.; Bosnjak, M.; Silber, H.; Koßmann, J.; Heycke, T. Open Science and Public Trust in Science: Results from Two Studies. *Public Underst Sci* **2022**, *09636625221100686*, doi:10.1177/09636625221100686.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.