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Abstract: The application of machine learning techniques to satellite imagery has been the subject
of interest in recent years. The increase in quality and quantity of images, made available by Earth
observation programs, such as the Copernicus program, led to the generation of large amounts of
data. Among the various applications of this data is the creation of land cover maps. The present
work aimed to create machine learning models capable of accurately segment and classify satellite
images, to automatically generate a land cover map of the Portuguese territory. Several experiments
were carried out with the spectral bands of the Sentinel-2 satellite, with vegetation indices, and with
several sets of land cover classes. Three machine learning architectures were evaluated, which adopt
two different techniques for image classification. One of the classification techniques follows an
object-oriented approach, and in this case the architecture adopted in our models was a U-Net artificial
neural network. The other classification technique is pixel-oriented, and the machine learning models
tested were random forest and support vector machine. The overall accuracy of the results obtained
ranged from 68.6% to 94.75%, depending strongly on the number of classes into which the land cover
is classified. The result of 94.75% was obtained when classifying the land cover only into 5 classes.
However, a very interesting accuracy of 92.37% was achieved by the model when trained to classify 8
classes. These results are superior to those reported in the related bibliography.
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1. Introduction

Recent scientific advances in remote sensing (RS) have resulted in easy access to
satellite imagery. Among the countless applications of satellite imagery, the present work
highlights the creation of land use land cover (LULC) maps. LULC refers to human con-
structions and natural features of the earth’s surface. LULC are used in various fields of
study, such as urban planning, natural resource management, carbon circulation, epidemi-
ology, and climate change. Using the Portuguese territory as a case study, this work intends
to apply machine learning (ML) techniques to reproduce the results of the Corine Land
Cover (CLC) European Union project.

One of the expected outcomes for this project was to train a model capable of suc-
cessfully classifying satellite imagery into a LULC map. In a LULC classification task, the
term of comparison is an overall accuracy of 85% and where none of the classes have an
accuracy of less than 70% [1]. If a trained model performs better than this threshold, it will
be considered successful.

RS tasks, such as LULC classification, exhibit some unique specificities. Although there
are huge amounts of satellite imagery, most of this data is not classified or it is outdated,
therefore not being useful for training deep learning (DL) models [2]. The seasons introduce
variability, and hence complexity, especially due to changes in phenology [3]. However
this variability can be captured by DL methods, provided it is reproduced in the training
data [4].

Several techniques can be implemented for LULC classification, however, these can be
divided into two categories: pixel-oriented and object-oriented. Pixel-oriented techniques
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are more traditional and consider each pixel as an independent unit, classifying each pixel
according to its spectral values. Due to their technical limitations, pixel-oriented methods
should not be used with high-resolution images [5], as they lower model accuracy and
generate images that suffer from the salt and pepper problem, as mentioned by [6]. These
methods have two additional limitations [7]:

e Cann’t handle mixed pixels, a phenomenon that occurs when features from multiple
classes are present in a single pixel.
e Don't take advantage of the content of adjacent pixels and their contextual information.

Object-oriented methods, also called geographic object-based image analysis (GEO-
BIA), group pixels into segments that ideally represent real-world objects. Typically GEO-
BIA takes place in two phases: segmentation and classification. Note that the segmentation
process, not present in pixel-oriented techniques, can also introduce errors into the model,
especially in cases of sub-segmentation [8].

2. Related Work

Several papers reporting the application of machine learning to remote sensing have
been published recently. This section focus on related approaches to pixel- and object-based
land cover classification, the employed ML models, the datasets, the considered land cover
classes, and other techniques such as the inclusion of spectral indexes.

A comparison of five ML models was documented in [4]. The chosen models where
Random Forest (RF) and four Convolutional Neural Networks (CNNs). These models
classified Sentinel-2 imagery into 8 classes using the 4 bands with a spacial resolution of
10 meters (red, green, blue, NIR). The achieved results where compared to TOP10NL data
from the Infrastructure for Spatial Information in the European Community (INSPIRE). The
RF was the worse model with an overall accuracy of 81%, and the best model obtained 86%
accuracy. The main conclusions from this were (i) CNNs and RFs are capable of classifying
land cover classes, (ii) hyper-parameter optimization has reduced effect on results when
adequate amount of training data is available, (iii) seasonal variety can be handled by
introducing it into the training set, (iv) in 3 out of 4 CNN models the size of the input
impacts the classification results, and (v) transfer learning shows acceptable results, making
the usage of several additional data valid when the application targets an European map.

[9] presents another comparison of ML models, including Support Vector Machines
(SVM), extreme gradient boosting (XGBoost), RE, and an Artificial Neural Network. Their
case study was the boreal climate and the considered surface area has a dimension of
10km x 12km. The models were feed with four images, one per season, which improved the
classification of some classes. The model with the best result was a SVM with an accuracy
of 75.8%.

The work presented in [1] has objectives and methodology similar to ours and can
therefore be used as a comparison term. The paper evaluates the feasibility of applying
the U-Net neural network to classify the land cover. It achieved a classification accuracy of
92% using the 5 CLC level 1 classes, which decreases to 84% when 13 CLC level 2 classes
are considered. The model obtains the worst results when using only RGB bands, on the
contrary, the best model was obtained with a combination of spectral bands and computed
spectral indexes such as NDVL

[10] reports a successful application of a RF, over a combination of Sentinel-1 and
Sentinel-2 imagery data, to crop mapping in Belgium. The Model mapped the Belgium
territory in 12 classes and two steps. The first step classifies the objects in one out of 4
classes: built-up, water, forest, and crop. The second step expands the crop class into 9
more specific classes. They achieved an 82% overall accuracy.

The paper from [11], published in 2019, introduced a new large-scale dataset for train-
ing ML models to classify or segment satellite imagery. The dataset is called BigEarthNet
and contains 590, 326 image patches. This significant amount of data alleviates the problem
encountered in RS, the lack of large training sets, a bottleneck that prevents the use of the
more recent and complex deep learning models.
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3. Methodology
3.1. BigEarthNet Dataset

The main dataset we adopted to to train ML models was the mentioned BigEarth-
Net [11]. This dataset consists of 590, 326 Sentinel-2 image patches, composed of 12 spectral
bands with 10, 20, and 60 meters of spacial resolution, and each patch is labeled with one
or more CLC classes. The bands with 60 meters spacial resolution were discarded.

Although this dataset is aimed for classification problems, a layer was added to each
patch, obtained from a Web Map Service, containing the corresponding 2018 CLC map. This
layer was necessary to train the models for pixel-wise classification, instead of patch-wise
classification. From the total of 590, 326 images, 16, 110 were removed, either because they
contain clouds or because there was no CLC map available. Although the BigEarthNet
dataset contains images covering the four seasons, land cover classes are not balanced. The
CLC class corresponding to glaciers and perpetual snow is totally absent from the dataset.

3.2. LandCoverPT Dataset

The BigEarthNet dataset gathers images from several European countries, some of
which have biomes drastically different from Portugal. The LandCoverPT was created with
the objective of having dataset more appropriate to train ML models capable of generating
a Portuguese land cover map.

The creation of the dataset used 26 Sentinel-2 products, captured in June and August
2019, and the products where divided into 153,347 patches with the same size as the
BigEarthNet patches (120 x 120).

A few aspects to take in consideration when analysing the results produced with the
LandCoverPT dataset:

1. It does not include seasonal variety.

2. A thorough examination to identify the presence of clouds was not carried out, and
so there may be a residual amount of clouds not detected by manual inspection.

3. Some level 3 CLC classes are missing, since they do not exist in Portuguese territory.

3.3. Models

The first attempt to classify the land cover was carried out with a Support Vector
Machine (SVM) [12] [13]. The work reported in [9] compares the SVM to the random forest,
the extreme gradient boosting (XGBoost), and a deep neural network. An SVM constructs a
hyperplane, in a high dimensional space, to separate each pair of classes. A good separation
is achieved by the hyperplane that has the largest distance to the nearest training samples,
in order to minimize the generalization error of the classifier. The separating hyperplane
depends on a subset of the training data, called the support vectors. A hard margin SVM
tries to fit a decision boundary that maximizes the distance between the support vectors
of the two classes, but this type of SVM classifier is very sensitive to outliers and it only
works on data that is linearly separable. The soft margin SVM addresses these problems
by allowing some samples to be located on the boundary region. Thus, a soft margin
classifier deals with a trade-off between maximizing the width of the separating margin
and minimizing the misclassifications. The trade-off is controlled by the C hyperparameter
of scikit-learn SVC classifier.

In machine learning, kernels can help to construct non-linear decision boundaries
using linear classifiers. A kernel function only calculates the relationships between every
pair of samples as if they were in a higher dimensional space. This trick, consisting in
calculating the high-dimensional relationships without actually transforming the samples
to the higher dimension, is called the kernel trick. The kernel trick reduces the amount of
computation required by SVMs by avoiding the transformation of the data from a lower
to higher dimensional space. There are several types of kernels, such as polynomial and
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Gaussian kernels. The (Gaussian) Radial Basis Function kernel, computed with the pair of
samples x; and x;, is expressed by:

K(x;, %)) = e~ 1lli=lF

M

Parameter C can be interpreted as the inverse of regularization. Parameter gamma
(7) controls the influence that the classification of a given training sample has over the
classification of its neighbors, where a larger gamma means that only closer samples are
affected. Natively, SVC only supports binary classification, but it was extended with a
one-versus-one approach to allow multi-class classification. All attempts to classify the
land cover with SVMs, were done with 5 classes and the scikit-learn SVC classifier, which is
based on LibSVM [14] [15].

The second ML model evaluated was Random Forest (RF), a supervised Machine
Learning algorithm based on the concept of ensemble learning [16]. An example of a
successful application of a RF model to land cover classification is documented in [10]. RF
improves the Decision Tree (DT) algorithm, and emerged with the objective of minimizing
its main limitations: they are prone to overfitting and even a small change in the training
data can result in a huge difference on the decision tree structure. The random forest
overcomes these limitations by taking the prediction from each tree and based on the
majority votes from the trees (figure 1). It uses bagging and feature randomness when
building each individual tree, in order to create an uncorrelated forest of trees whose
prediction by committee is more accurate than that of any individual tree. Randomness is
built into RF mainly in two ways: each tree is fitted on a subset of the entire dataset, and
each tree can grow differently, by virtue of the randomized order or subset of the features
considered for optimum split in the Decision Tree.

Random Forest
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Figure 1. A RF model is a forest of decision trees.

The Random Forest uses an ensemble technique called Bootstrap Aggregating, or
Bagging. First, each decision tree is trained independently with a different bootstrapped
set, obtained from the entire dataset using sampling with replacement (bootstrap step).
During inference, a prediction is made by each decision tree, and the final prediction by
the random forest is returned as a majority vote (aggregation step). The cost function, or
criterion, used more often during the learning process to split a node of the decision tree is
called the Gini Impurity. It is basically a concept to quantify how homogeneous or "pure" a
node is. A node is considered pure (G=0) if all training samples in the node belong to the
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same class, while a node with many training samples from many different classes will have
a Gini Impurity close to 1. The Gini impurity at a node is computed by equation 2.

NC
G=1-y @)
c=1

Where NC is the number of classes, 7. is the number of samples belonging to class ¢
on the node, and 7 is the total number of samples on the node.

In the present work RFs were implemented with the scikit-learn RandomForestCla-
ssifier. The most relevant hyperparameters of RandomForestClassifier are the number
of trees the algorithm builds (n_estimators), the maximum number of features considered
when splitting a node (max_features), and the minimum number of samples that must be
allocated to each leaf node to be created (min_sample_leaf).

The last model, and the one that was most thoroughly evaluated, to classify the land
cover was the neural network U-Net. U-Net is a CNN model initially developed for
biomedical image segmentation and to be trained with few images [17]. However, both
U-Net and other variants of it, were successfully applied to the RS domain, as reported in
works [1] [7] [18] [19].

As can be seen in figure 2, U-Net comprises two parts, a contracting path that captures
context (top part), and a symmetric expanding path that enables precise localization of
features (bottom part). The contracting part extracts features through convolutions with
3 x 3 filters and max pooling layers. The expanding part uses convolutions and transposed
convolutions to reduce the number of feature maps from 512 to 64, while it increases their
dimensions from 15 x 15 to 120 x 120. Feature maps from the contracting part of the
network are copied to the expanding part to avoid losing spatial information. The copy is
implemented by the 4 vertical skip connections in figure 2. The copied features are then
concatenated with same size features from the expanding path.

In our experiments, the U-Net receives as input 120 x 120 patches and outputs
#classes segmentation masks with the same size, one mask per land cover class. As
documented in the next section, experiments were carried out with different numbers of
land cover classes.

4. Experiments and Results
4.1. Support Vector Machine Classifier

In the first experiment with SVMs, the model was trained with unbalanced samples
from 256 image patches of size 120x120 pixels and 10 bands. The model was trained with
C=2.0, the RBF kernel, gamma=’scale’, unlimited number of iterations, and decision_fun-
ction_shape=’ovr’. The achieved validation accuracy was 79.3%. Since the dataset is
quite unbalanced, a reasonable high accuracy is achieved by a model that is tuned to classify
correctly the 3 most frequent classes (1, 2, 5) and misclassifying the least frequent ones (0,
3). The next step was to balance the dataset, considering the same number of samples for
all the classes. The considered number of samples was defined as the minimum value of
the occurrences among the 5 classes.

Another direction that was explored was applying Principal Component Analysis
(PCA) to reduce the number of features per sample from 10 (bands) to 3 (principal compo-
nents), those that explain around 99% of the variance. Figure 3 shows the result of plotting
the samples, after being projected on a 2D /3D space, defined by the two/three principal
components of PCA that explain most of the variance. The projection on 3D makes it easier
to visualize the clustering of the samples belonging to the same class. The visual analysis of
this figure reveals that the classes exhibit a significant overlapping on the 3D space, which
will make separation difficult. It was applied grid search cross-validation (CV) to find best
values for the hyperparameters C and gamma of the SVM model. It was found that C = 1.0
and gamma = 5.0 allow the best accuracy. When using a C > 10000 it was observed that
the computation time, necessary to run a "batch" with a combination of hyperparameters,
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Figure 2. U-Net model trained on patches with 120x120 pixels and 10 bands.
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became extremely high. The global test accuracy of the model was 59.1%. Finally, we
dropped PCA and keep the 10 original features per pixel. Considering 2048 image patches,
10 features per pixel (corresponding to 10 Sentinel-2 bands) which allowed us to achieve
the highest accuracy with SVM, 68.6%.

Evaluation metrics for the best SVM model are presented in table 1 and the confusion
matrix is in figure 4. Considering the Fl-score, the worst result belongs to the wetlands
class (class 3). Although the improvement of the SVM model after balancing the dataset,
optimizing the hyperparameters and reducing the number of features with PCA is not
a satisfactory result and reveals that SVM is not the best fit to classify the land cover.
Moreover, even a moderated number of image patches, such as 1024, turns the training
very slow.

pcz

Ewme o

Figure 3. Plotting the samples after being projected on a 2D/3D space defined by the two/three
principal components of PCA.
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Table 1. Results for SVM model, using 10 features per sample, and the 5 CLC level 1 classes.

Class Precision Recall Fl-score
0 - Artificial surfaces 0.69 0.65 0.67
1 - Agricultural areas 0.57 0.67 0.62
2 - Forest and semi-natural areas 0.59 0.73 0.66
3 - Wetlands 0.75 0.46 0.57
4 - Water bodies 0.89 0.91 0.90
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Figure 4. Normalized confusion matrix for the classification in 5 classes with SVM.

4.2. Random Forest Classifier

Training of the RF was done with 1024 image patches of 120x120 pixels each, the
number of land cover classes was 5, classes were balanced by considering a number of
pixels per class equal to the least frequent class, PCA was applied to select the 3 features
that explain most of the variance, the criterion used to evaluate the splits was log_loss,
the RF included 100 decision trees, bootstrap=False meaning the whole dataset is applied
to train each tree. The test accuracy score achieved by the trained model is 0.557.

Next, the number of image patches was increased to 2048, the number of features per
pixel remained on 3, the evaluation criterion was changed to gini, the number of decision
trees was kept on 100, bootstrap=True and max_samples= 0.8. The test accuracy score
achieved by the trained model is 0.573. It was also tried increasing the number of decision
trees to 200, but there was no improvement on the model performance.

Since using only 3 features per pixels resulted in poor results, it was decided to re-
move PCA and keep the 10 original features per pixel. Considering 2048 image patches,
10 features per pixel (corresponding to 10 Sentinel-2 bands), 5 land cover classes, bal-
ancing the frequency of the classes, with the gini evaluation criterion, bootstrap=True,
max_samples= 0.8, and max_features=3, the test accuracy score achieved by the trained
model raised to 0.706. The confusion matrix is presented in figure 5. This confusion matrix
reveals that the percentage of samples correctly classified is 68.0% for class 0, 67.0% for
class 1, 72.0% for class 2, 55.0% for class 3, and 93.0% for class 4. Precision, recall, and
F-score metrics for the trained RF model are shown on table 2.
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Figure 5. Normalized confusion matrix for the classification in 5 classes with RF.

Table 2. Results for RF model, using 10 features per sample, and the 5 CLC level 1 classes.

Class Precision Recall Fl-score
0 - Artificial surfaces 0.70 0.68 0.69
1 - Agricultural areas 0.59 0.67 0.62
2 - Forest and semi-natural areas 0.63 0.72 0.67
3 - Wetlands 0.77 0.55 0.64
4 - Water bodies 0.88 0.93 0.91

4.3. U-Net

U-Net model was described with the TensorFlow library, especially the Keras API, it
was trained with Adam optimizer, the categorical cross-entropy loss, the ModelCheckpo-
int, EarlyStopping, and ReduceLROnPlateau clallbacks, during 200 epochs. Models were
evaluated based on accuracy, precision, recall, and F1-score metrics.

A list of all experiments carried out, as well as the results obtained, can be seen in the
table 3. The set of experiments accomplished with U-Net and the BigEarthNet dataset will
be summarized now.
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Table 3. Summary of the different experiments.

Model Classes Dataset Overall Accuracy
SVM 5 BigEarthNet 68.6%
RF 5 BigEarthNet 70.6%
U-Net 43 BigEarthNet 82.32%
U-Net + NDVI 43 BigEarthNet 77.95%
U-Net 15 BigEarthNet 87.11%
U-Net 11 BigEarthNet 86.88%
U-Net 8 BigEarthNet 92.37%
U-Net 5 BigEarthNet 94.75%
U-Net 5 LandCoverPT 87.26%

The experiment with all 43 CLC level 3 classes will work as our baseline, i.e, with
all the other experiments we will try to improve the results of the baseline. The overall
accuracy achieved was 82.32% with most misclassifications being within very similar
classes, such as continuous urban fabric and discontinuous urban fabric. The class with the
lowest results was green urban areas, being misclassified as urban fabric or forests.

The second experiment tried to improve the results of the previous attempt through
the insertion of the Normalized Difference Vegetation Index (NDVI). NDVI was chosen
because of its popularity in the literature, for example in [20] and [21]. The final results
were worse than in the previous scenario, analysing each class individually shows that
some classes were being completely misclassified and this did not happen in the previous
experiment. Taking into consideration these results the idea of using other spectral indexes
was abandoned.

The next step taken to improve the results was to reduce the number of land cover
classes. The experiment with 15 CLC level 2 classes improved the overall accuracy to
87.11%. The normalized confusion matrix for the segmentation in 15 classes with U-Net is
shown in figure 6. While the baseline presented some values for the F1-score metric of the
order of 0.4, this model presents 0.65 as the lowest value.

The automatic classification of land cover in 15 classes is still a very ambitious objective,
and therefore another model was trained to classify the land cover only in the 5 CLC level 1
classes. The trained U-Net model achieved a 94.75% overall accuracy, the best result among
all experiments. Evaluation metrics for this model are presented in table 4 an the confusion
matrix is in figure 7. Considering the Fl-score, the worst result belongs to the wetlands
class (class 3).

Table 4. Results for U-Net model, using 10 spectral bands and the 5 CLC level 1 classes.

Class Precision Recall Fl-score
0 - Artificial surfaces 0.86 0.82 0.84
1- Agricultural areas 0.94 0.94 0.94
2 - Forest and semi-natural areas 0.95 0.95 0.95
3 - Wetlands 0.77 0.80 0.78

4 - Water bodies 0.98 0.99 0.98
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Figure 6. Normalized confusion matrix for the segmentation in 15 classes with U-Net.
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Figure 7. Normalized confusion matrix for the segmentation in 5 classes with U-Net.

Two attempts with a combination of CLC classes from levels 1 and 2 were realized.
The first one used 11 classes and obtained an overall accuracy of 86.11%, a result worse
than the experiment with 15 classes.

The second attempt used 8 classes and its overall accuracy was 92.37%, a result very
similar to the experiment with 5 classes (table 5). The chosen level 2 classes are those that


https://doi.org/10.20944/preprints202302.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0102.v1

12 0f 18

were best classified by U-Net trained with the level 2 classes. The remaining level 2 classes
were collapsed into the corresponding level 1 classes. The CLC hierarchy was maintained,
i.e, only level 2 classes that would be part of the same level 1 class were gathered. Confusion
matrix analysis (figure 8) shows that 11% of the samples belonging to class 0 (artificial
surfaces) are classified as class 1 (agricultural areas), 12% of class 2 (pastures) is classified
as class 1 (agricultural areas), 17% of class 4 (inland wetlands) is classified as class 3 (forest
and semi-natural areas), and 18% of class 5 (maritime wetlands) is classified as class 7
(maritime waters).

Table 5. Results for U-Net model, using 10 spectral bands and 8 CLC level 1 and level 2 classes.

Class Precision Recall F1-score
0 - Artificial surfaces 0.84 0.81 0.83
1- Agricultural areas 0.91 0.88 0.90
2 - Pastures 0.81 0.83 0.82
3 - Forest and semi-natural areas 0.94 0.96 0.95
4 - Inland wetlands 0.78 0.76 0.77
5 - Maritime wetlands 0.79 0.72 0.76
6 - Inland waters 0.94 0.94 0.94
7 - Maritime waters 0.99 0.99 0.99
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Figure 8. Normalized confusion matrix for the segmentation in 8 classes with U-Net.

Experiments with the LandCoverPT dataset, the U-Net model, and level 1 land cover
classes, were also accomplished. The results of these experiments were worse than those
achieved with the BigEarthNet dataset, quantified as an overall accuracy of 87.26%. Classes
with the worst results in this experiment were artificial surfaces and wetlands. A possible
explanation for this results can be the low number of samples containing those classes in
the LandCoverPT dataset.

The visual inspection to the predictions with the trained models, and to the correspon-
dent ground-truth, revealed that the classification errors were predominantly located at the
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boundary of the patches (figure 9). The most likely explanation for this fact is the existence
of mixed pixels. Another explanation, mentioned in the literature, is the lower ability of
U-Net to correctly segment pixels at the object’s boundaries.

Figure 9 shows a satellite image patch, randomly chosen from the test set. The leftmost
column of the figure shows the ground truth masks for the 5 level 1 classes (0 to 4). The
next column shows the model prediction for the same classes. In the upper right corner are
presented 4 of the 10 bands of the input patch, in this case the ones with the best spatial
resolution: red, green, blue and near infrared. Pixels that were misclassified are shown in
yellow in the central right part of the figure.

cLclo]

QLC_pred(0]

s s 7.

CLC_pred(1]

x5 w© B

QLC_pred(2]

x5 w7

€LC_pred(3]

0 X s 7100 100

Figure 9. Random satellite image patch from the test set: input masks (left), predicted masks (middle),
input visible bands (top right), and misclassified pixels (center right).

When we evaluate the trained models with a dataset distinct from the train/validation
set, the results are inferior. It was observed that several land cover parcels, classified as
agricultural areas in the 2018 CLC map (yellow regions in figure 10), are misclassified by
our models as artificial surfaces (red regions in figure 10) or forests and semi-natural areas
(green regions in figure 10).

Another problem, observed in some parts of the automatically generated map, is the
discontinuity between patches. This problem occurs because the masks generated by the
model are obtained patch by patch, where the patch size is 120 x 120. A possible solution is
to discard the pixels on the periphery of the patches and use only the inner part (figure 11).
The innermost pixels have more contextual information and better accuracy than peripheric
pixels, as it can be seen in table 6. The drawback of this solution is the longer time is takes
to generate the land cover map. For example, considering only a inner part of 20 x 20 pixels
on each patch, the time to classify the same land area will increase 6 * 6 times.

Figure 12 contains a complete and continuous land cover map for continental Portugal.
This map was generated with the U-Net model, trained on the BigEarthNet dataset and 5
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Figure 10. Ground truth 2018 CLC map with 5 classes, for the northwest region of Portugal (top) and
corresponding map generated by the trained U-Net model (bottom). Color scheme: red - artificial

surfaces, yellow - agricultural areas, green - forest and semi-natural areas, magenta - wetlands, blue -
water bodies.

Figure 11. Discontinuity problem in the segmentation of patches (top) and its mitigation (bottom).
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Table 6. Accuracy achieved when using only the inner part of each patch, for different sizes of the
considered area.

Size of the area 43CLC 15CLC 5CLC
used on each patch  classes classes classes

120 x 120 82.38%  87.02% 94.75%
110 x 110 82.71%  87.27% 94.87%
100 x 100 82.91% 87.42% 94.94%
90 x 90 83.07%  87.51%  95.00%
80 x 80 83.17%  87.60%  95.03%
70 x 70 83.26% 87.68%  95.08%
60 x 60 83.37%  87.74%  95.08%
50 x 50 83.43% 87.76%  95.08%
40 x 40 83.50% 87.83%  95.09%
30 x 30 83.55%  87.88% 95.11%
20 x 20 83.59% 87.89% 95.11%
10 x 10 83.62% 87.93%  95.10%

classes. Sentinel-2 products, downloaded from the https:/ /scihub.copernicus.eu website,
were used to generate the full map. Images were captured by the satellite on July 7, 2021
and August 22, 2021, and have a maximum cloud percentage of 5%. Because products with
a minimum cloud percentage were needed, it was impossible to use all the images from the
same day. To visualize the map we used the QGIS tool, where the various parcels of the
map generated by the model were merged and trimmed with the help of a shapefile that
defines the boundaries of the Portuguese mainland.

5. Conclusions and Future Work

The results achieved in the present work provide an evidence that it is possible to
automatically and reliably generate an updated land cover map. Thus, the results of this
study are relevant for those working in the field of remote sensing.

The biggest difficulty encountered in the course of the work was the processing of
large amounts of data from a dataset such as the BigEarthNet or the Sentinel-2 satellite
products. To overcome these difficulties techniques such as feeding the training loop with
data stored in TFrecords files and adopting iterative processes whenever possible.

The best trained model achieved an overall accuracy of 94.75%, which can be increased
to 95.11% if only the central pixels of the patches are considered during the segmentation of
each patch. Although this result is very good, it should however be taken into consideration
that the visual comparison between the official 2018 CLC map and the map generated by
the developed model, for the same geographical area and the same year, shows that the
overall quality of the generated map is lower than 94.75%.

When classifying land cover into 5 classes, a consistent result across all models is
a greater difficulty in identifying artificial surfaces (class 0) and wetlands (class 4). The
explanation lies in the similarity between the spectral characteristics of artificial surfaces
and agricultural areas (class 1), and between wetlands and semi-natural areas (class 2). In
the case of Portuguese territory, the identification of class 3 constitutes an added problem
because wetlands are not frequent.

The latest official CLC map is relative to 2018 and required a production time of about
one and a half year. While training, tuning and generating the land cover map with the
proposed model requires a time of less than a month. The ML model will never have a
higher accuracy than the CLC project since the model learns from the official CLC map

d0i:10.20944/preprints202302.0102.v1
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Figure 12. Land cover map for the Portuguese mainland generated by the U-Net model.

data. However, given the time difference needed to produce the maps, the maps generated
with ML models are feasible in several scenarios, because they may be more up-to-date
than the official CLC map.

To conclude it is necessary to point out that the CLC maps and the Land Use and Land
Cover charts have a human error, and when these maps are used to train ML models the
error remains. In case of the 2018 CLC map, each participating country commissioned a
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team to create their map, but all countries used the same methodology and nomenclature,
to ensure an accuracy higher than 85%.

Although the best model achieved good results, some alternatives remained to be
explored. Here are some possibilities to improve the presented results:

e  Test other segmentation models that address some of the U-Net limitations, such as
models based on Feature Pyramid Networks [22] [23] [24] [25] [26] and DeepLab [27].

e  Test other datasets, improve and increase the tested LandCoverPT dataset, which
exhibit some limitations to obtain optimal results. Another possibility is to improve
the dataset would be to optimize the size of the patches into which the Sentinel-2
products were divided.

e Implement other strategies to minimize the segmentation problem at the periphery of
patches.

o  Take a more consistent approach to optimizing model hyperparameters, for example
by using a library such as Optuna or TPOT.

e Add other types of data to the optical images, such as radar images collected by the
Sentinel-1 satellite.

e  Test spectral indexes with the random forest model.
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