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Abstract: Vision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly.
Following are the main 5 DR stages: none, moderate, mild, proliferate, and severe. In this study, a
deep learning (DL) model is presented that diagnoses all 5 stages of DR with more accuracy than
previous methods. The suggested method presents two scenarios: case 1 with image enhancement
using contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction
with an Enhanced Super-resolution generative adversarial network (ESRGAN), and case 2 without
image enhancement; augmentation techniques are then performed to generate a balanced dataset
utilizing the same parameters for both cases. Using Inception-V3 applied to the Asia Pacific Tele-
Ophthalmology Society (APTOS) datasets, the developed model achieved an accuracy of 98.7% for
case 1 and 80.87% for case 2, which is greater than existing methods for detecting the five stages of
DR. It was demonstrated that using CLAHE and ESRGAN improves a model's performance and
learning ability.
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1. Introduction

The progressive eye disease known as DR is a direct result of having mellitus. In-
creases in blood glucose occur chronically in people with Diabetes Mellitus where the
pancreas does not generate or release enough blood adrenaline [1, 2]. Most diabetics go
blind from DR, especially those of retirement age in low-income nations. Early identifica-
tion is crucial for preventing the consequences that can arise from chronic diseases like
diabetes [3].

Retinal vasculature abnormalities are the hallmark of DR, which can progress to ir-
reversible vision loss due to scarring or hemorrhage [1, 4]. This may cause gradual vision
impairment, and in its most severe form, blindness. It is not possible to cure the illness,
thus treatment focuses on preserving the patient's present level of eyesight [5]. The pa-
tient's eyesight can be maintained most successfully if DR is caught early enough. To iden-
tify DR, an ophthalmologist must manually examine photographs of the retina in a pa-
tient's eye, which is a costly and time-consuming technique [6]. Examining retinal images
for the presence and the kind of various abnormalities has long been the standard method
for detecting DR by ophthalmologists. Microaneurysms (MIA), hemorrhages (HEM), soft
exudates (SOX), and hard exudates (HEX) are the four most common forms of lesions
identified [1, 7], which can be identified as the following:

e Assign of earlier start DR, MIA appear as tiny, red dots on the retina due to a weak-
ening in the vessel walls. The dots have distinct borders and a dimension of 125 mi-
crometers or less. There are six subtypes of microaneurysms, however treatments is
the same for all of them [8, 9].
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e Incontrast to MIA, HEM is characterized by big spots on the retina with uneven edge
widths of more than 125 micrometers. A hemorrhage can be either flame or blot, ac-
cording to whether the spots are on the surface or deeper in the tissue [10, 11].

e  The swelling of nerve fibers causes soft exudates, which appear as white ovals on the
retina as defined as SOX [1, 7].

e  The yellow spots on the retina, known as HEX, are the result of plasma leakage. They

extend across the periphery of the retina and also have defined borders [1, 2].
Lesions caused by MIA and HEM tend to be red, while blemishes caused by the two forms
of exudates tend to be bright. There are five distinct stages of DR that can be detected:
Different degrees of DR are shown in Figure 1: none, mild, moderate, severe, and prolif-
erative DR [11]. .

LNormaI ModerateJ

NO DR Moderate DR Mild DR /

Critical

\‘\ Proliferative DR Severe DR ,‘ /

Figure 1: The five phases of diabetic retinopathy, listed by severity

Here, we highlight the original contributions of our study.

e To generate high-quality images for the APTOS dataset, we used the CLAHE [15]
filtering algorithm in conjunction with ESRGAN [16], which is the main contribution
of the presented work.

e By employing the technique of augmentation, we ensured that the APTOS dataset
contained a consistent amount of data.

e Accuracy (Acc), Confusion matrix (CM), precision (Prec), recall (Re), top n accuracy,
and the F1-score (F1sc) are the indicators used in a comprehensive comparative study
to determine the viability of the proposed system.

e  Pre-trained networks trained on the APTOS data set are fine-tuned with the use of
an Inception-V3 weight-tuning algorithm.

e By adopting a varied training procedure backed by various permutations of training
strategies, the general reliability of the suggested method is enhanced, and overfit-
ting is avoided (e.g., learning rate, data augmentation, batch size, and validation pa-
tience ).
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e  The APTOS dataset was used during both the training and evaluation phases of the
model's development. By employing stringent 80:20 hold-out validation, the model
achieved a remarkable 98.71% accuracy of classification using enhancement tech-
niques and 80.87% without using enhancement techniques.

This research presents two cases scenarios, in case 1 an optimal technique for DR stage
enhancement using CLAHE followed by ESRGAN techniques, in case 2 no enhancement
is applied to the images. Due to the class imbalance in the dataset, oversampling is re-
quired using augmentation techniques. In addition, we trained the weights of each model
using Inception-V3, the results of the models have been compared using APTOS dataset
images. This plan will be followed as we continue with the paper. Section 2 provides con-
text for the subsequent discussion of the related work. Section 4 presents and analyzes the
results of the proposed technique presented in Section 3, and Section 5 wraps up the re-
search.2.

2. Related Work

There were various issues with DR picture detection when done manually. Numer-
ous patients in underdeveloped nations face challenges due to a shortage of competence
(trained ophthalmologists) and pricey tests. Because of the importance of timely detection
in the fight against blindness, automated processing methods have been devised to facil-
itate accessibility to accurate and speedy diagnosis and treatment. Automated DR classi-
fication accuracy has recently been achieved by Machine Learning (ML) models trained
on ocular fundus pictures. A lot of work has gone into developing automatic methods that
are both efficient and inexpensive [17, 18].

This means that these methods are now universally superior to their traditional coun-
terparts. There are two main schools of thought in DR categorization research: traditional,
expert-led methods, and cutting-edge, machine-learning-based methods, more in-depth
analysis of these techniques is provided below. For instance, Alexandr et al. [19] Compares
a new improved structure (EfficientNet) to two extensively used traditional architectures
(DenseNet, ResNet) . The APTOS Symposium dataset is used to classify the retinal picture
into one of five classes. Another work presented by Kazakh-British et al. [20], performed
experimental studies with relevant processing pipeline that extracted arteries from fundus
pictures, after that, CNN model was trained to recognize lesions. A further method pro-
posed by Macsik et al. [21] proposes a new alternative of local binary CNN deterministic
filter generation that can closely approximate the effectiveness of the traditional CNN
with less training set and memory utilization, which can be advantageous in systems with
limited memory or processing resources. They compare their binary classification of reti-
nal fundus datasets into healthy and pathological groups to CNN and LBCNN, which use
probabilistic filter sequence.

Furthermore, Al-Antary & Yasmine [17] suggests the multi-scale attention network
(MSA-Net) for DR categorization. The encoder network embeds the retina image in a
high-level representational space, enriching it with mid- and high-level characteristics. A
multi-scale feature pyramid describes the retinal structure in another location. On top of
the high-level representation, a multi-scale attention mechanism improves feature repre-
sentation discrimination. The model classifies DR severity using cross-entropy loss. The
model detects healthy and unhealthy retina pictures as an extracurricular assignment us-
ing weakly annotations. This surrogate task helps the model recognize non-healthy retina
pictures. EyePACS and APTOS datasets performed well with the proposed technique.
Khalifa et al. [22] examined DL models for medical DR detection. APTOS 2019 dataset was
used for numerical experiments. This study used AlexNet, Res-Net18, SqueezeNet, Goog-
leNet, VGG16, and VGGI19. These models were chosen because they have fewer layers
than DenseNet and Inception-Resnet. Data augmentation improved model robustness
and overfitting. A CNN-based DR detection and classification was presented by Hemanth
et al. [23]. They used HIST and CLAHE for image contrast enhancement and CNN model
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classification accuracy of 97% and F-measure of 94%. While, Maqsood et al. [24] intro-
duced a new 3D CNN model to localize hemorrhages, an early indicator of DR, using a
pre-trained VGG-19 model to extract characteristics from the segmented hemorrhages.
Their studies used 1509 photos from multiple datasets and averaged 97.71% accuracy. Das
et al. [25] recommended a fundus image-based CNN to classify normal and abnormal pa-
tients. Maximal principal curvature was used to recover blood vessels from pictures.
Adaptive histogram equalization and morphological opening corrected incorrectly seg-
mented sections. DIARETDB1 had 98.7% accuracy and 97.2% precision.

Table 1 summarizes the many attempts to detect DR anomalies in photos using vari-
ous DL techniques [17, 21, 26-32]. According to the results of the research into DR identi-
fication and diagnostic methods, there are still a lot of loopholes that need to be investi-
gated. For beginning, there has been minimal emphasis on constructing and training a
bespoke DL model entirely from the beginning because of the lack of a big amount of data,
even though numerous researchers have obtained excellent dependability values utilizing
pre-trained models using transfer-learning.

Table 1: A review of the literature comparing several DR diagnostic techniques.

Reference | Year Technique Classes | Dataset
[17] 2021 multi-scale attention network (MSA-Net) 5 APTOS
Eyepacs
[21] 2022 local binary convolutional neural network | 2 APTOS
(LBCNN)
[26] 2022 support vector machine (SVM) 2 APTOS
IDRID
[27] 2022 | CNN 2 APTOS
[28] 2022 Inception-ResNet-v2 5 APTOS
[29] 2021 Squeeze Excitation Densely Connected 5 APTOS
deep CNN EyePACS
[30] 2021 | VGG-16 5 APTOS
[31] 2022 | VGG16 2 APTOS
DenseNet121
[32] 2022 DenseNet201 5 APTOS
3 New Dataset

Ultimately, Training DL models with raw images instead of preprocessed images se-
verely restricts the final classification network's scalability, as was the case in nearly all of
these studies. In order to resolve these problems, the current research creates a lightweight
DR detection system by integrating multiple layers into the architecture of pre-trained
models. This leads to a more efficient and effective proposed system that meets users'
expectations.

3. Research Methodology

For the DR detection system to operate, as shown in Error! Reference source not
found., a transfer DL strategy (Inception-V3) have been retrained over in the image da-
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taset in order to learn discriminative and usable feature representations. This section of-
fers a concise summary of the method followed when working with the provided dataset.
The preprocessing stage is then clearly outlined, and implementation specifics of the pro-
posed system are covered; they include the 2 cases scenarios used in this context, the pre-
processing techniques proposed, the basic design, and the training methodology for the
approach that was ultimately chosen.

Original Image CLAHE Image ESRGAN Image Augmented Images
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Figure 2: An illustration of the DR detecting system's process.

3.1. Data set Description

Selecting a dataset with a sufficient number of high-quality photos is crucial. This
study makes use of the APTOS 2019 (Asia Pacific Tele-Ophthalmology Society) Blindness
Detection Dataset [14], a publically available Kaggle datasets that incorporates a huge
number of photos. In this collection, high-resolution Retinal pictures are provided for the
5 stages of DR, classified from 0 (none) to 4 (proliferate DR), with labels 1-4 corresponding
to the four levels of severity. There are 3,662 retinal pictures in total; 1,805 are from the
"no DR" group, 370 are from the "mild DR" group, 999 are from the "moderate DR" group,
193 are from the "severe DR" group, and 295 are from the "proliferate DR" group as illus-
trated in Error! Reference source not found.. Images are 3216 x 2136 pixels in size , and
Error! Reference source not found. shows some examples of these kind of pictures. There
is background noise in the photographs and the labels, much like any real-world data set.
It's possible that the provided images will be flawed in some way, be it with artifacts,
blurriness, improper exposure, or some other issue. The photos were collected over a long
period of time from a number of different clinics using different cameras, all of which
contribute to the overall high degree of diversity.

Table 2: Class-Wide Image Distribution

Class Index DR Level # Images
0 No 1,805
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1 Mild 370
2 Moderate 999
3 Severe 193
4 Proliferate 295

3.2. Proposed Methodology.

An automatic DR classification model was developed using the dataset referenced in
this paper, and its general process is demonstrated in Error! Reference source not found..
It demonstrates two different scenarios, case one in which preprocessing step is per-
formed using CLAHE followed by ESRGAN is used and case 2 in which neither step is
performed, while using augmentation of the images to prevent overfitting in both scenar-
ios. Lastly, images are sent into the Inception-V3 model for classification step.

3.2.1. Preprocessing using CLAHE and ESRGAN

Images of the retinal fundus are often taken from several facilities using various tech-
nologies. Consequently, given the high intensity variation in the photographs used by the
proposed method, it was crucial to enhance the quality of DR images and get rid of vari-
ous types of noise. All images in case 1, undergo a preliminary preprocessing phase prior
to augmentation and training necessitated various stages:

CLAHE
Resize each picture to 224*224*3 pixels
ESRGAN

. Normalization

Error! Reference source not found.-b shows that first, CLAHE was used to improve
the DR image's fine details, textures, and low contrast by redistributing the input image's
lightness values [33]. This was accomplished by separating the image into numerous non-
overlapping sections of almost identical size. Therefore, this technique improves the local
contrast enhancement while also making borders and slopes more apparent. Following
this, all photos are scaled to suit the input of the learning model, which is 224*224*3. Error!
Reference source not found.-c depicts the subsequent application of ESRGAN on the out-
put of the preceding stage. ESRGAN pictures can more closely mimic image artifacts'
sharp edges [34]. Intensity differences between images can be rather large, thus images
are normalized so that their intensities fall within the range [-1] to [1]; this keeps the data
within acceptable bounds and gets rid of any noise. As a result of normalization, the
model is less sensitive to variations in weights, making it easier to tune. As a result, the
approach depicted in Error! Reference source not found. enhances the appearance of the
image's borders and arcs while also increasing the image's contrast, resulting in more pre-
cise results when utilizing this method.

= e e

3.2.3 Data Augmentation

Data augmentation was implemented on the training set to increase the number of
images and alleviate the issue of an imbalanced dataset before exposing Inception-V3 to
the dataset images. In most cases, deeper learning models perform better when given
more data to learn from. We can utilize the characteristics of DR photos by applying sev-
eral modifications to each image. If the image is magnified, flipped horizontally or verti-
cally, or rotated by a specified number of degrees, the deep neural network (DNN) is un-
affected. Data augmentations (i.e., shifting, rotating, and zooming) are utilized to regulate
the data, reduce overfitting, and address the issue of dataset imbalance. The horizontal
shift augmentation is one of the transformations utilized in this study; it horizontally shifts
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the image pixels while keeping the image's aspect ratio, a number between 0 and 1 indi-
cates the step size for this operation. Rotation is another transformation; after selecting a
rotation angle between 0 and 180, the image is rotated at random. To create fresh samples
for the network, all prior alterations to the training set's images are applied.

Original Image CLAHE Image ESRGAN Image

Figure 3: Samples of the proposed image-enhancement techniques: a) the original, unedited image;

b) rendition of this same image with CLAHE; c) the final enhanced image after applying ESRGAN

In this study, two scenarios were utilized to train Inception-V3: the first was to apply
augmentation to the enhanced images, as depicted in Error! Reference source not found.,
and the second was to apply augmentation to the raw images, as depicted in . Data aug-
mentation, depicted in Error! Reference source not found. and , aims to increase the
volume of data by adding slightly modified copies of existing data or newly synthesized
data derived from the existing data using the same parameters for both scenarios (Error!
Reference source not found. and ), with the same total number of images in both cases.

Figure 5: Images Illustrations for The Same Image, Augmented (without enhancement)
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In a second use of data augmentation techniques, the issue of inconsistent sample
sizes and complicated classifications was resolved. As seen in Error! Reference source not
found., the APTOS dataset exemplifies the "imbalanced class," because the samples are
not distributed evenly throughout the several classes. After applying augmentation tech-
niques to the dataset, the classes are obviously balanced for both scenarios as depicted in
Figure 6.

Number of Training Images in APTOS Dataset

m No DR

Mild DR
B Moderate DR
B Severe DR

M Proliferative DR

Figure 6: Number of training images after using augmentation techniques

3.2.4 Learning Model (Inception-V3)

In this section, the approach's fundamental theory is outlined and explained. Incep-
tion-v3 [11, 12] is one of transfer learning pretrained models, it is a succeeding of the
original architecture for Inception-v1 [35] and Inception-v2 [36]. The Inception-v3 model
is trained using the ImageNet datasets [37, 38], which contain the information required
for identifying one thousand classes. The error rate for the top five in ImageNet is 3.5%,
while the error rate for the top one has lowered to 17.3%.

Inception was influenced in particular by Serre et al. [39] technique, which may pro-
cess information in several stages. By adopting Lin et al. [40] method, the developers of
Inception were able to improve the model precision of the neural networks, making them
a significant design requirement. As a result of the dimension reduction to 1*1 convolu-
tions, this had also protected them from computing constraints. Researchers were able to
significantly reduce the amount of time and effort spent on DL picture classification using
Inception [41]. Using only the theoretical explanations offered by Arora et al. [42], they
emphasized discovering an optimal spot between the typical technique of improving per-
formance —increasing both depth and size—and layer separability. When utilized inde-
pendently, both procedures might be computationally expensive. This was the fundamen-
tal goal of the 22-layer architecture employed by the Inception DL system, in which all
filters are learned. On the basis of Arora et al. [42] research, a correlation statistical analysis
was developed to generate highly associated categories that were input into the subse-
quent layer. The 1*1 layer, the 3*3 layer, and the 5*5 convolution layer were all inspired
by the concept of multiscale processing of visual data. Each of these layers eventually be-
comes a set of 1*1 convolutions [41] following a process of dimension reduction.

4 Experimental Results
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4.1 Instruction and Setup of Inception-V3

To demonstrate the effectiveness of the deployed DL system and to compare results
to industry standards, tests were carried out on the APTOS dataset. The dataset has been
divided into three categories in accordance with the suggested training method: Eighty
percent of the data was utilized for training (9,952 photographs), ten percent for testing
(1012 photos), and the remaining ten percent was randomly selected and used as a vali-
dation set (1025 photos) to evaluate performance and save the best weight combinations.
All photographs were reduced in size during the training process to a 224*224*3 pixel
resolution. We tested the proposed system's TensorFlow Keras implementation on a
Linux desktop equipped with a GPU RTX3060 and 8GB of RAM.

Using the Adam optimizer and a method that slows down training when learning
has stalled for too long, the proposed framework was first trained on the APTOS dataset
(i.e., validation patience). Throughout the entirety of the training process, the following
hyperparameters were input into the Adam optimizer: In this simulation, we used a range
of 1E”3 to 1E"5 for the learning rate, 2—64 for the batch size (with an increase of 2x the
previous value), 50 epochs, 10 for patience, and 0.90 for momentum. Our arsenal of anti-
infectious measures is completed by a method known as "batching" for the dissemination
of infectious forms.

4.2 Evaluative Parameters

This study describes the evaluation methods and their results. Classifier accuracy
(Acc) is a standard performance measure. It is determined by dividing the number of suc-
cessfully categorized instances (images) by the total number of examples in the dataset
(equation (1)). Picture categorization systems are often evaluated using precision (Prec)
and recall (Re). As demonstrated in equation (2), precision improves with the number of
accurately labeled photos, whereas recall is the ratio of properly categorized images in the
dataset to those related numerically (3). The F1-score also shows that the system is more
accurate at predicting the future than one with a lower value. Equation (4) calculates the
F1-score (Fl1sc). This study's final criterion, top N accuracy, requires model N's highest
probability answers to match the expected softmax distribution. If one of N predictions
matches the intended label, the classification is accurate.

TP+T™
Acc = TP4TT4FP +F1 1)

TP
Prec = W (2)

TP
Re = TPFT _ 3)
rec*Re

Flsc=2+ (Prec+Re) (4)

True positives, represented by the symbol (Tp), are successfully anticipated
positive cases, and true negatives (Tn) are effectively predicted negative scenarios. False
positives (Fp) are falsely predicted positive situations, whereas false negatives (Fn) are
falsely projected negative situations.

4.3. Performance of Inception-V3 Model Outcomes:

Considering the APTOS dataset, two distinct cases sets are investigated, in which
Inception-V3 was applied to our dataset in two distinct scenarios, the first with enhance-
ment (CLAHE + ESRGAN) and the second without enhancement (CLAHE + ESRGAN),
as depicted in Error! Reference source not found.. In order to reduce the amount of time
required to complete the project, this division was chosen. Models are trained for 50
epochs, with batch sizes ranging from 2 to 64 and learning rates ranging from 1E”3 to
1E”5. In order to achieve the highest possible level of precision, Inception-V3 was further
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tweaked by freezing between 140 and 160 layers. Several iterations of the same model
with the same parameters were used to generate a model ensemble, since random weights
are generated for each iteration, the precision fluctuates from iteration to iteration. The
top performance from each iteration is saved and shown. in Table 3 and Table 4, for case
1 and case 2, respectively. It reveals that the best results produced with and without pre-
processing using CLAHE + ESRGAN are 98.7% and 80.87%, respectively. Figure 7 depicts
the optimal outcome for the two scenarios based on the utilized evaluation metrics case 1
using CLAHE and ESRGAN and case 2 without using them.

Table 3: Best Accuracy with enhancement ( CLAHE + ESRGAN)

Acc Prec Re Flsc Top-2 Accuracy Top-3 Accuracy
0.9872 0.99 0.99 0.99 0.996 0.999

Table 4: Best Accuracy without enhancement (CLAHE + ESRGAN)
Acc Prec Re Flsc Top-2 Accuracy Top-3 Accuracy
0.8087 0.80 0.81 0.80 0.9144 0.9800

Best Results for both Scenarios

1.2

0.9872 0.996 0.999¢ 93 0.99

.9144
.8087 0.8
0.
0.
0.
0.
0

Top-2 Accuracy Top-3 Accuracy Prec Flsc
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)]

>

N
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Figure 7: Best Results for both Scenarios

Figure 8 and Figure 9 demonstrate the confusion matrix with and without using
CLAHE + ESRGAN respectively.
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Figure 8: Best confusion matrix of Inception-V3 with enhancement (with CLAHE + ESRGAN)
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Figure 9: Best confusion matrix of Inception-V3 without enhancement (without CLAHE + ESRGAN)

Table 5 and Table 6 display the total number of photos utilized for testing in each
class for the APTOS dataset. According to the data, it is clear that the No DR class has the
most images with 504; its Prec, Re, and Flsc give the highest values of 99 percent, 100
percent, and 100 percent for case 1 and 97 percent, 97 percent, and 97 percent for case 2.
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Table 5: CLAHE + ESRGAN Class-Level Results
Prec Re Flsc Total images

Mild DR 0.99 0.97 0.98 93

Moderate DR 0.98 0.99 0.98 280

No DR 0.99 1.00 1.00 504

Proliferative DR | 0.97 0.95 0.96 82

Severe DR 0.98 0.96 0.97 53

Average 0.99 0.99 0.99 1012

Table 6: No (CLAHE + ESRGAN) Class-Level Results
Prec Re Flsc Total images

Mild DR 0.58 0.62 0.60 93
Moderate DR 0.70 0.78 0.74 280
No DR 0.97 0.97 0.97 504
Proliferative DR 0.68 0.48 0.56 82
Severe DR 0.43 0.31 0.36 53
Average 0.80 0.81 0.80 1012

Using retinal pictures to improve the accuracy with which ophthalmologists identify
infections while lowering their effort has now been demonstrated to be practical in real-
world scenarios.

4.4. Evaluation Considering a Variety of Other Methodologies

Effectiveness is compared to that of other methods. According to Table 7, our method
exceeds other alternatives in terms of effectiveness and performance. The proposed incep-
tion model achieves an overall accuracy rate of 98.7%, surpassing the present methods.

Table 7: Comparison of system performance to previous research using the APTOS Dataset.

Reference Technique Accuracy
[17] MSA-Net 84.6%
[21] LBCNN 97.41%
[26] SVM 94.5%
[27] CNN 95.3%
[28] Inception-ResNet-v2 97.0%,
[30] VGG-16 74.58%
[31] VGG16 73.26%
DenseNet121 96.11%
[32] DenseNet201 93.85%
[43] EfficientNet-B6 86.03%
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[44] SVM classifier and MobileNet V2 for feature | 88.80%
[45] Densenet-121, Xception, Inception-v3, Resnet-50 85.28%
[46] Inception-ResNet-v2 72.33%
[47] MobileNet_V2 93.09%
[48] EfficientNet and DenseNet 96.32%
[49] VGG16 96.86%
[50] Hybrid Residual U-Net 94%
[51] Inception-v3 88.1%
Proposed Inception-V3 ( without using CLAHE + ESRGAN) | 80.87%
Methodology | Inception-V3 (using CLAHE + ESRGAN) Case 1 98.7%

5 Discussion

Based on CLAHE and ESRGAN, a novel DR categorization scheme was presented in
this research. The developed model was tested on the DR images founded in APTOS 2019
dataset. Consequently, there are two training scenarios, case 1 with CLAHE + ESRGAN
applied to the APTOS dataset and case 2 without CLAHE + ESRGAN. Through 80:20 hold-
out validation, the model attained a 5-class accuracy rate of 98.7% for Case 1 and 80.87%
for Case 2. The proposed method classified both cases scenarios using the pretrained In-
ception-V3 infrastructure. Throughout model construction, we evaluated the classifica-
tion performance of two distinct scenarios and found that enhancement techniques pro-
duced the best results (Figure 7). The main contributing element in our methodology is
the general resolution enhancement of CLAHE + ESRGAN, which we prove with evidence
that it is responsible for great improvement in the accuracy.

6 Conclusion

By identifying retinal images displayed in the APTOS dataset, researchers have es-
tablished a strategy for quickly and accurately diagnosing five distinct forms of cancer.
The proposed method employs two scenarios: case 1 using image enhancement (using
CLAHE and ESRGAN) and case 2 without using enhancement. Case 1 scenario employs
four-stage picture enhancement techniques in order to increase the image's luminance and
eliminate noise. CLAHE and ESRGAN are the two stages with the best impact on accu-
racy, as demonstrated by experimental results. The state-of-the-art in preprocessed med-
ical imagery was employed to learn Inception-V3 with augmentation techniques that
helped reduce overfitting and raised the entire competencies of the suggested methodol-
ogy. This proposed solution claims that when using Inception-V3, the conception model
achieves a correctness of 98.7% = 99% for case 1 scenario and 80.87% = 81% for case 2 sce-
nario, both of which are on line with the accuracy of trained ophthalmologists. The usage
of CLAHE and ESRGAN in the preprocessing step further contributes to the study's nov-
elty and significance. The proposed methodology outperforms the current establishment
models, as evidenced by a comparison of their respective strengths and weaknesses. To
prove the effectiveness of the proposed method, it must be tested on a sizable and intricate
dataset, ideally consisting of a significant number of potential DR instances soon. In the
future, new datasets may be analyzed using DenseNet, VGG, or ResNet as well as addi-
tional augmentation approaches.
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