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Abstract: The inverse Finite Element Method (iFEM) is a model-based technique to compute the
displacement (and then the strain) field of a structure from strain measurements and a geometrical
discretization of the same. Different literature works exploit the error between the numerically
reconstructed strains and the experimental measurements to perform damage identification in a
Structural Health Monitoring framework. However, only damage detection and localization are
performed, without attempting a proper damage size estimation. The latter could be based on
machine learning techniques, however, an a priori definition of the damage conditions would be
required. To overcome these limitations, the present work proposes a new approach in which the
damage is systematically introduced in the iFEM model to minimize its discrepancy with respect to
the physical structure. This is performed with a maximum likelihood estimation framework, where
the most accurate damage scenario is selected among a series of different models. The proposed
approach is experimentally verified on an aluminum plate subjected to fatigue crack propagation,
which enables the creation of a Digital-Twin of the structure itself. The strain field fed to the iFEM
routine is experimentally measured with an Optical Backscatter Reflectometry fiber and the
methodology is validated with independent observations of lasers and the Digital Image
Correlation.

Keywords: inverse Finite Element Method; iFEM; Digital-Twin; Structural Health Monitoring;
crack; Digital Image Correlation

1. Introduction

Structural integrity and damage assessment are crucial factors to guarantee the safety of
different structures and components. Safety requirements depend on the particular application and
are defined in relation to the potential consequences induced by a failure or a malfunction.
Aeronautical structures are particularly critical from the safety point of view since a failure can induce
catastrophic consequences. For this reason, non-destructive controls (such as visual inspection, liquid
penetrant, radiography, magnetic particles, etc.) are performed at scheduled intervals to early detect
the presence of damages. However, these controls frequently require service interruption with a
significant economic impact on the overall aircraft management. This problem is mitigated by the
adoption of Structural Health Monitoring (SHM) and Prognostic Health Monitoring (PHM)
techniques, which are aimed to perform a real-time assessment of the structure. The aircraft is
equipped with permanently installed sensors able to represent the working conditions, then data-
driven [1-3] or model-based [4,5] algorithms can early detect anomalies. This can increase the service
time between two consecutive maintenances, decreasing the overall cost. Data-driven algorithms
frequently rely on historical data to detect anomalies, while the latter approach is based on structure
models in both the healthy and damaged states. Then, algorithms frequently exploit machine
learning, e.g. Artificial Neural Networks (ANN), and a database of damage scenarios to perform the
final structure’s assessment [6]. However, one main limitation of most of the literature’s SHM
techniques is their dependency on the external load applied to the structure [7], which often hampers
their applicability in real scenarios.
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In recent years, there was a further shift of paradigm in the structure’s monitoring with the
adoption of the Digital Twin (DT) approach [8-11]. Digital Twin is an integrated multi-physics, multi-
scale, probabilistic simulation of an as-built system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin [12]. For each
physical aeronautical structure, there is a related DT, i.e., a digital representation of the same through
a high-fidelity model. The number of DT literature examples is rapidly increasing in the last years,
with applications in the aeronautical field [12-16], marine industry (offshore wind turbine and naval
transport) [17-19], and manufacturing processes [20-22]. Focusing on aeronautical applications,
nowadays DTs are mainly used to model the airframe of aircraft [13,14,16] and to predict the
structural fatigue life of cracked structures [18,23]. Although there is not a unique literature definition
of the components of a DT [9], the following main elements can be identified: (i) a physical structure
and/or system, (ii) a digital representation (master model) of the structure/system, (iii) a connection
between the physical and the virtual structure/system, which is generally represented by sensors,
often referred to as digital shadow. In particular, the DT model must be fast enough to run in real-time,
parallelly to the operation of the real structure, based on data from sensors or simulated data to
predict future states of the system. For this reason, DTs are frequently based on ANN algorithms,
analytical relations, other surrogate models, or a combination of these approaches. Another
fundamental aspect is that the DT must be a perfect mirror of the real structure, thus the occurrence
of damage or an anomaly must be reflected in the model. This requires a constant update of the DT
model, where any modification of the structure/system (also due to maintenance) is reported. In
conclusion, DT allows near real-time updating of the structural model through physical
measurements acquired from sensors to perform damage diagnosis and prognosis in an SHM
framework.

Among the different algorithms available in the literature, the inverse Finite Element Method
(iFEM) is a model-based technique to compute the structure’s displacement field from strain
measurements. It requires only a mesh discretization of the structure with a definition of boundary
conditions, and its efficient formulation is suitable for real-time applications. Furthermore, it does
not require any material property definition or knowledge of the loading condition, only the strain
measurements acquired from sensors are needed as input. More specifically, iFEM generally requires
strain sensors (e.g. stain gauges or fiber optic sensors) bonded on the external sides of the structure,
although applications with embedded sensors (for composite materials) are available in the literature
[24]. These characteristics make the iFEM attractive for a DT and, to the best authors” knowledge, no
application has been already reported in the literature. However, one main limitation hampering the
implementation of the current iFEM approach in a DT framework is the lack of model updating
capability, thus this manuscript aims to cover this literature gap in view of future DT applications. In
particular, current iFEM applications are always based on an initial model definition (in the
undamaged configuration), without any updating to account for damage propagation or
maintenance operations. This paper newly proposes an updating framework for damage
identification with the iFEM, which paves the way for DT practioners to employ iFEM models rather
than direct methods such as FEM and XFEM, where damage introduction and propagation are
already state-of-the-art. This is on the basis that the application of the latter methods becomes
significantly challenging for applications subjected to unknown and stochastic loading conditions
where only strain measurements are available, which justifies the development of the inverse FEM
framework.

The iFEM was originally introduced by A. Tessler et al. [25,26] and nowadays its formulation is
available for beam [27-33] and shell structures [34-41]. It is based on the minimization of a least-
square functional, which is representative of the error between the input strain measurements
acquired by sensors and a numerical formulation of the same, function of the unknown nodal degrees
of freedom (dof). Focusing on shell structures, three types of inverse elements are nowadays available
in the literature for mesh discretization: (i) the iMIN3, a triangular element based on bilinear
anisoparametric shape functions [42,43], (ii) the iQS4, a quadrilateral flat element based on bilinear
anisoparametric shape functions [37,44,45], and (iii) the iCS8, an eight-nodes curved element based
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on quadratic isoparametric shape functions [46]. A comparative study assessed the performances of
these elements also in relation to the different application scenarios [47]. In addition to the basic
elements described, additional formulations have been introduced by the different authors to
increase the results’ accuracy of specific classes of problems. In particular, the Refined Zig-Zag
Theory (RZT) is introduced in the iFEM formulation to model the through-the-thickness
displacement field of composite laminate [48-52], while the iFEM isogeometric analysis is beneficial
in the case of large non-linear deformations [53].

Several shape sensing applications with iFEM are available in the literature, based both on
numerical and experimental case studies. However, although strain sensors can be applied to the
whole structure when dealing with numerical case studies [44], their number and locations are one
of the main constraints for practical applications [39,54]. Hardware limitations frequently limit the
number of sensors available and their installation is subordinated to practical reasons, like access to
the structure. As a consequence, sensors generally cover only a limited portion of the structure and
their location must be optimized, according to the different constraints, to well describe the strain
field. Furthermore, the adoption of pre-extrapolation techniques was revealed an effective tool to
increase the overall results” accuracy, providing an input strain value also where sensors are not
available [24,55]. In particular, this can be based on data-driven approaches, like polynomial
functions or the Smoothing Element Analysis (SEA) [56-59], on a physics-based approach [60], or
Gaussian Process interpolation for a statistical input strain evaluation [61]. More specifically, data-
driven approaches pre-extrapolate the strain field only based on the measurements acquired from
sensors, thus the sensor network must be representative of the strain field within the structure to
obtain accurate results. However, in the case of high strain gradients induced by local discontinuities
(e.g. holes and notches), the design of a sensor network able to well describe the strain field is a
challenging task, in particular when the number of sensors is limited. Thus, the adoption of a physics-
based pre-extrapolation approach combines the strain measurements from the available sensors with
the physical knowledge of the discontinuity (e.g. its size and position) to better pre-extrapolate the
strain field. In particular, this approach relies on the analytical stress solution of the discontinuity
itself, when available, otherwise on its numerical stress solution computed with FEM.

In addition to shape sensing, iFEM has been also extended to damage detection in an SHM
framework with different approaches, such as load-independent damage indices [44,54], damage
parameters based on the Von-Mises strain [36,62], and Artificial Neural Networks [63]. However,
these approaches are able to identify the presence and, in case, the location of damage in the structure
(both metallic and composites), but not estimate its size, which is still an unexplored area of the iFEM
applications. In particular, the numerical case studies proposed by Colombo et al. [44] investigate the
crack detection on a metallic plate with a load-independent damage index accounting also for
different crack sizes and orientations. Furthermore, in this study, a rough estimation of the crack size
could be performed from the damage index pattern since all the elements around the crack itself are
covered by sensors. However, this approach is only feasible in a numerical case study and cannot be
performed in a real scenario. Another limitation of the previous literature works is the requirement
of a damage index threshold to detect the presence of the damage itself, which selection is
subordinated to the specific case study. Only Kefal et al. recently proposed a coupling of
periodynamics analysis and iFEM for the crack propagation monitoring in composite plate structures
[64], however, an automatic crack size estimation through the iFEM remains unexplored. For this
reason, this work is aimed to define an automatic routine to perform damage size estimation in a
realistic scenario within the iFEM approach. In particular, the damage is systematically introduced
in the iFEM model creating different possible damage scenarios, then a maximum likelihood
estimation framework selects the model that better describes the experimental strain field measured
by test sensors. So, the damage is introduced in the iFEM model better approaching the actual
condition of the physical structure, which could be used for future DT frameworks. The methodology
is experimentally verified on an aluminum plate subjected to fatigue crack propagation. The strain
field is experimentally measured by an Optical Backscatter Reflectometry fiber and from independent
observations of the Digital Image Correlation, which is used to further validate the methodology.
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The manuscript is organized as follows. A review of the iFEM methodology is reported in
Section 2, while its extension for the crack size estimation is provided in Section 3. The experimental
case study is presented in Section 4 and their results and discussion are provided in Section 5. Finally,
the conclusions of the work are stated in Section 6.

2. Inverse Finite Element Method review

An overview of the iFEM [25,26] is reported in this Section, while a more detailed review specific
to the iQS4 element is available in [37,44] for interested readers.

Suppose a shell structure is discretized into finite elements, as in the direct FEM. However, the
mesh is composed of inverse elements, the iQS54 in this case, which compute the displacement field
from input strain measurements. This is done by minimizing the least-square functional of Equation
(1), which is defined as the error between the input strain field acquired by sensors (-*) and its
numerical formulation (- (u)), which is is turn function of the unknown nodal displacements u. Both
the input and the numerical strain fields are decoupled into three main components: the membrane
e, the bending k, and the transverse shear g strain contributions. Thus, the formulation of the i-th
inverse element can be defined as:

i) = [leu) - ef7, +[lku) ~ illo + gD - gfll, (1)

where ||-]|%, is the squared weighted Euclidean norm with the weight matrix W. In particular, W,,
i, and W! are diagonal matrices of weights for the membrane, bending, and transverse shear strain
contributions respectively. These coefficients control the coherence between the numerical and the
experimental strain measurements, in particular, in the case of sparse sensor networks. In general, a
unitary reference value is associated to the elements in which the input strain field component is
acquired by physical sensors, while, in other cases, the coefficients are generally reduced to small
values (e.g. 107*). Notice that, each matrix W contains three weights on the main diagonal, which
are related to the strain components along the x-axis, the y-axis, and the in-plane shear with respect
to the element’s local reference system (Figure 2). Then, in case an element is interested by a
monoaxial strain sensor, only the weight related to its direction is assigned equal to one and the others
are reduced to a small value.
After a proper assembly procedure, the unknown structure’s displacement field is computed by
minimizing the error functional presented in Equation (1), which will be detailed in Section 2.3 after
a proper definition of the input (Section 2.1) and numerical (Section 2.2) strain fields.

2.1. Input strain formulation

In the most general case, the input strain formulation is computed from the strain measurements
acquired on the structure. Sensors are generally applied on the external surfaces of the component,
where their installation and maintenance are easier, although applications with embedded sensors
are also possible [24].

For example, consider a couple of strain gauge rosettes applied on the two external sides of the
shell as shown in Figure 1. The membrane and the bending strain components associated with the j-
th sensors’ location within the i-th inverse element can be defined as:

+ - + -
Exx T Exx Exx — Exx
& _ + - g _ + o=
e =51 T ey kij =538y = Evy (2)
+ - + -
Yay t Vay i Yxy = Yxy i

Where 2h is the shell thickness at the sensors’ location. The computed strain components
contain the information of a plane strain tensor and, in case monoaxial strain sensors are used, only
one component will be defined and the others are posed equal to zero.

Furthermore, in practical applications only few sensors are available due to costs, space
constraints, and hardware limitations, limiting the definition of the input strain field. However, for
an accurate iFEM computation, the input strain field should be provided on all the structure’s inverse
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elements and it should be representative of the strain gradient. For this reason, the sensor network
should be properly designed and the element’s size can be tuned according to the expected strain
gradient. Nevertheless, several elements of the mesh can be free from any input definition and, to
limit their influence on the global formulation, small weighting coefficients w; (i = m,k,s) can be
associated to these elements. To further improve the iFEM results accuracy, the input strain field can
be pre-extrapolated in the element’s locations in which physical sensors are not available, obtaining
the definition of the input strain field on the whole structure. This can be done with different
approaches according to the specific problem, such as polynomial fitting and the Smoothing Element
Analysis [56-59]. These techniques are purely based on the acquired strain measurements from
sensors, thus being defined as data-based approaches, only providing a more continuous and smooth
strain field in the considered domain. Then, the recent introduction of the physics-based strain pre-
extrapolation technique [60] allows a further increase of the iFEM results” accuracy in the case of
sparse sensor networks on notched structures. In this case, the physical knowledge of the
discontinuity together with its analytical stress function allows an accurate definition of the input
strain field. This pre-extrapolation technique will be detailed in Section 3.4.2 for the particular case
under analysis, i.e. a cracked plate.

Portion of shell ) E;x
structure Top strain £y
\ rosette iy
xy
Z oh -

Bottom strain o

Eyy

«——  rosette 2

Yxy

Figure 1. Discrete sensor location both on the top and on the bottom surface of the shell structure.

2.2. Numerical strain formulation

The numerical strain formulation required by Equation (1) is based on the element’s shape
functions as in any finite element approach.

A local reference system (x,y,z) is defined within each inverse element, with its origin in the
centroid of the element and with the z-axis defining the out-of-plane coordinate, so that z € [-h; +h],
as also illustrated in Figure 2. The local coordinates are computed from the global reference system
(X,Y,Z), in which the structure is defined, with a proper transformation matrix, specific for each
element.

Each iQS4 inverse element is composed by four nodes, each one with six degrees of freedom
(dof). In particular, each element has 24 dof with 3 translations u, = {ux, uy,uz}q and 3 rotations
0, = {69, Bz}q for each element’s node q = (1,2,3,4), which are collected into the element’s nodal
displacement vector u'. Then, the local displacement field within each inverse element is defined
through the shape functions Ng, Lg, and M, [37] as:

4 4
u(x,y) = Nyuyq + E Lq0,4
q=1 q=1

4 4
v(x,y) = zq:1Nquyq + quIMqBZq
4

4 4
w(x,y) = Nyu,q — z LgOyq — z M,6,,
q=1 q=1 q=1
4

0, (x,y) = quxq
q=1

@)
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4
by (x,y) = Z NgByq
q=1

Then, under the hypothesis of plane stress condition and after computing the partial derivatives
of the shape functions, the strain field components within each element can be defined as:

e(u') = B™u'
k(ui) = Bbui (4)
gu’) = Bsu'

where B™, B?, and B® are matrices containing the derivatives of the shape functions.
Finally, the numerical strain field can be computed with the following relations in
correspondence of the required z coordinate:

exx

&yt = e(u') +z- k(u)

Vxy )
fr} = g

Te

Z
: 6"\ U
Portion of shell y Z /W
structure u [ GX
\ y Uy

Top side Nodal dof in local coordinates
ZhI ezT
Z
Bottom side Uz
i
UY
X / Ux' \By
Y 0,

Nodal dof in global coordinates

Figure 2. iQ54 element with global (X,Y,Z) and local (x,y,z) reference system and the related degrees
of freedoms (dof). Numbers 1 to 4 refer to the element nodes.
2.3. Matrix formulation

As previously introduced, the iFEM relies on the minimization of the global formulation of
Equation (1), however, limited to a single element until now. Thus, before considering the
contribution of all the inverse elements discretizing the structure, Equation (1) is elaborated to
achieve an efficient numerical computation. In particular, the 3 square weighted norms are expressed
as normalized Euclidean norms as:

n
, 1 . T .
le(ut) ~eflls, =~ ffA > (e(), - e5) Win(e(w), - e5) dxay
i j=1

. £112
Re(u?) = kel )

(Zh)z . i e\ wi i £
" ffAl ; (k(u ),- B kij) Wi (k(u )J. - kl-j) dx dy
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n
. 1 . . .
o - gl =+ [| (o, - g5) wilo@, - gf)dxdy
A; =1

Where 4; is the area of the considered element and n the total number of input strain sensors
within the same. Then, after substituting the input and the numerical strain components previously
developed in Sections 2.1 and 2.2 respectively, the least-square functional can be expressed as:

@ (u) = ul kiul — 2ul’ fi 4 & (7)
In which:

ki = f (B™ W,,B™ + (2h)*B®" W,B" + BS' W B®) dx dy
Aj

n
: 1 T T T
_ b
fi=— f f Z(B’" Wl + (2h)2BY W, kS, + BS W, g5,) dx dy ®)
A =1

n

il W,ef + (2h)2kE WL kS, + g5 W.g)dx d
f—; i (eij Wnef; + (2h)ki; Wy ki; + g5; W, gi;) dx dy

ij=1
Integrals can be efficiently computed numerically with the Gauss quadrature, for example
adopting four integration points for each inverse element for an accurate result. Then, a standard
assembly procedure accounts for the contribution of all structure’s inverse elements, obtaining a
global formulation of Equation (7). Finally, this is minimized with respect to the global displacement

field (i.e., 0®/0U = 0) and thus the problem can be written as:

KU=F 9

Where K is a matrix linking the nodal displacement U, in global coordinates (Uy, U, U,, 0,
0,,and 0, for each node), with the vector F, which is a function of the input strain field. Notice that
the matrix K depends on the structure’s element discretization and on the sensor network
configuration, while F only depends on the input strain measurements. However, the matrix K is
singular and it will lead to a rigid motion of the structure if unconstrained, thus, after the definition
of problem-specific boundary conditions, the unconstrained (free) nodal displacements can be
computed as:

KppUp = Fp = Up = KpiFp (10)

Finally, after the computation of the structure’s displacement field, the numerical strain can be
computed on the whole structure through Equation (5).

3. Crack size estimation technique

A basic requirement of any iFEM application is that the model well describes the physical
structure, which is generally true in the healthy condition of the structure. Then, in case a damage
nucleates and propagates in the structure, the iFEM displacement and strain reconstruction will be
different than the acquired data (often passed as input to the iFEM) due to a geometrical non-
compatibility. This is exploited by different literature researches [36,44,54,62], where the strain
difference between the acquired data and the iFEM reconstruction highlights the presence of a
potential damage. However, these approaches are limited to damage detection and localization,
without attempting a proper diagnosis. Thus, in this Section, a new strategy will be proposed to
automatically estimate the damage size, in this case, the crack length on a metallic plate. In particular,
the proposed approach does not require any training process and an a priori creation of a damage
scenarios database for comparison is not mandatory.
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3.1. Crack size estimation overview

As already anticipated, if the iFEM model will be geometrically different from the physical
structure, due to damage, also the displacement and strain field reconstructions will be different from
the acquired data. Thus, the idea is to systematically introduce the damage into the iFEM model to
reduce its discrepancy with respect to the damaged structure. Then, the model that presents the lower
discrepancy with respect to the experimental observations is the best description of the actual
structural condition (e.g. its damaged state), specifically for the current mesh discretization.

The approach will be detailed for the particular case of a cracked metallic plate, however, it
remains valid also for other damage mechanisms.

3.2. Crack propagation routine

Starting from an iFEM model defined in the healthy condition, the first step regards the
introduction of the damage in the model itself. For the particular case of a crack in a shell structure,
this can be summarized with the following procedure (Figure 3):

1. The central position of the crack is identified as one node of the undamaged iFEM mesh, as
highlighted by the red node in Figure 3.a. This localization can be based on several approaches,
such as visual inspection of the structure or automatic localization with a specific algorithm. The
present research will not investigate any particular localization technique and the crack center
is supposed to be known from any visual or automatic inspection, however, the approach
described remains valid for any general localization method.

2. The crack is introduced in the mesh by doubling the node corresponding to the crack center and
modifying the connectivity matrix to unlink the elements (Figure 3.b). The crack is supposed to
propagate under a pure Mode I loading, thus its orientation is perpendicular to the first principal
stress. Finally, the two nodes identifying the crack tips are highlighted in blue in Figure 3.b. This
procedure, together with the crack center identification, is detailed in Algorithm 1.

3. The crack is further propagated perpendicularly to the first principal stress. The two nodes on
the crack tip’s locations are doubled and the connectivity matrix is further modified to unlink
the elements, as shown in Figure 3.c and detailed in Algorithm 2.

4. Repeat step 3 several times, opening one node per time, until the most likely crack length is
reached according to the procedure detailed in Section 3.3.

For the sake of clarity, Figure 3 shows the mesh in a generic deformed state only for a better
comprehension of the same. The mesh is always defined in the undeformed configuration of the
structure and thus the doubled nodes are overlapped.

u —
. " Ty £ i1z
- by T2 'T1new T2 L new
10 nry 172
e e T2

(a) (b) (c)

Figure 3. Crack propagation routine: (a) identification of the crack center (red node); (b) crack
introduction; (c) crack propagation.

Algorithm 1: Crack center identification and introduction on an undamaged
structure.

1:  Identify the position (x, y, z) of the crack center
2:  Find the maximum principal stress direction from the sensor’s measurements

doi:10.20944/preprints202302.0091.v1
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3:  Find the nearest node of the mesh to the crack center 2 Center node n, =
[x,y, 2]

4:  Identify the two crack tip nodes ny; = [x,y,z]r; and ny, = [x,y,z]r, asthe
nearest nodes to the crack center n, and perpendicular to the maximum
principal stress direction

5:  Double the Center node n; = n, - update the node matrix

6:  Update the connectivity matrix to unlink the elements in correspondence of
ne

7:  Compute the crack length: 2a = norm(ny; — ny;)

8:  Compute and invert the iFEM K matrix

Algorithm 2: Crack propagation from an existing damage condition.

1:  Identify the two nodes nry; and nrq, as the nearest nodes to the crack tip
nr; and perpendicular to the maximum principal stress direction

2:  Identify the new crack tip 1 between nry; and nrq, as the farthest node
from n, 2 Npi_pew

3:  Identify the two nodes nr,; and nr,, as the nearest nodes to the crack tip
nr, and perpendicular to the maximum principal stress direction

4:  Identify the new crack tip 2 between nr,; and nr,, as the farthest node
from n, 2 Nyy_new

5:  Double the crack tip nodes: ny; = ny; and ny, = ny, = update the node
matrix

6:  Update the connectivity matrix to unlink the elements in correspondence of
ny; and ngp,

7:  Update the crack tip location: nyy = npq_pey and nry; = Npo_pew

8:  Compute the crack length: 2a = norm(ny; — nr,)

9:  Compute and invert the iFEM K matrix

3.3. Damage state diagnosis

Once multiple iFEM models have been generated, the next task is identifying which model is
more representative of the actual structure’s damage condition and thus, in this application,
estimating the damage size. Notice that, for the sake of simplicity, the procedure described relies on
a database of iFEM models containing different damage conditions (generated according to Section
3.2), however, this a priori database definition is not mandatory, as will be better discussed in Section
5.2.3.

To approach this problem, the sensors available are subdivided into two sensor networks:

e Aninput sensor network (g;,,) to feed the iFEM algorithm and compute the displacement and the
strain field on the whole structure

o A test sensor network (g¢5) to compare the strain field computed by the iFEM (g;rg)y) with the
experimental measurements acquired on the structure.

In the most general case, the two sensor networks can be coincident, however, to properly
highlight the presence of the damage and perform a better diagnosis, the following approach is
adopted (Figure 4):
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e  The input sensor network is composed only of sensors sufficiently far from the damaged area to
acquire the far-field strain. Thus, these strain measurements will not be affected by the presence
of the damage, whatever is the actual damage condition considered.

e The test sensor network is composed of sensors located in the area of influence of the damage,
where the observations can be correlated to the actual damage state.

The damage-sensitive area is defined by a square domain centered on the crack location and
with dimensions 8a, where a is the expected maximum semi-crack length.

Damage sensitive area

Einp o Smp

J 0
test

Figure 4. Portion of shell structure with input and test sensor networks definition.

Each strain pattern acquired from sensors is characterized by a specific crack length, which is
unknown and the target of this analysis. Thus, for each acquisition, the input strain field is fed to all
the iFEM models generated, which, in turn, will compute different displacement and strain
reconstructions, as shown in Figure 5. Then, the computed strain fields will be compared to the test
measurements and, in order to condensate the information from multiple sensors into a single scalar
for each model, the likelihood index is adopted. In particular, for each iFEM model i, a Gaussian
Likelihood index is computed as:

Ntes i 2
L lt—[ 1 (etest - gilFEM)]- 1
. = — eX D e ————————
=1\ e p g2 (11)

Where Ny is the total number of test sensors and o2 is a variance parameter related to the
measurement uncertainties.

However, being the Likelihood the product of elements smaller than one, its final value can
reach very small values which cannot be correctly computed in a numerical environment, in
particular when a large number of test sensors is used. Thus, to overcome this issue, the logarithmic
Gaussian Likelihood is used:

Ntest

N 1 . 2
Ly = == 1n(210%) = 5= > (cvest = eleem), 12)

=1

The Likelihood (or the logarithmic Likelihood) of each model is related to its probability of well
reproducing the test measurements and thus the damage state considered. So, the problem is
addressed with a maximum likelihood estimation framework, where the iFEM model with the largest
logarithmic Likelihood is the one that better minimizes the error with respect to the test
measurements, being the diagnosis of the actual damage state.
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Figure 5. Crack size estimation framework.

3.4. Crack strain field pre-extrapolation

The iFEM framework proposed requires a good strain reconstruction near the damage to
correctly compute the damage state. However, in this framework the input strain field provides just
the far-field strain, thus, although the different iFEM models contain different damage scenarios, the
crack will not open and, as a consequence, it will not induce its characteristic strain field. To overcome
this issue, the recently developed physics-based strain pre-extrapolation is adopted to impose the
strain field specific of each crack length. The approach is described for the specific case of a crack in
an infinite plate, while its general formulation is available in [60].

3.4.1. Pre-extrapolation framework overview

As previously introduced, the physics-based strain pre-extrapolation technique is adopted to
correctly compute the strain field on the whole structure and, in particular, near the crack, also in the
case of a sparse sensor network. This technique accounts for the knowledge of the crack length and
position, thus considering its physical strain behavior on the structure. Obviously, the correct crack
scenario is not a priori known since it is the objective of the present analysis, as previously described
in Section 3.3. Thus, the framework proposed (which is also summarized in Figure 5) is modified by
adding the physics-based strain pre-extrapolation technique at each iteration, as detailed in Figure 6.
In particular, each iFEM model considered contains a different damage scenario and thus a specific
pre-extrapolated input strain field will be computed for the damage-sensitive area. Then, among all
the adopted iFEM models, where each one considers a different damage scenario and its relative
strain pre-extrapolation, the condition that better describes the real damage is selected with the
maximum likelihood estimation framework described in Section 3.3.
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Figure 6. Strain pre-extrapolation framework.
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3.4.2. Physics-based strain pre-extrapolation for a crack in an infinite plate

For each considered iFEM model (i.e. for each specific damage condition) the strain field is pre-
extrapolated on the whole structure with the following physics-based approach [60]:

e A global pre-extrapolation, based on a data-driven approach, is computed on the whole
structure to obtain the far-field strain value. In the present analysis, a bi-linear polynomial fitting
is adopted, however, other techniques (for example the SEA) can be selected according to the
specific case study. Notice that, each strain component (&yy, &y, ¥xy) is independently pre-
extrapolated on each side of the structure.

e A local pre-extrapolation better predicts the strain field in the damage-sensitive area with a
physics-based approach. This takes as input the far-field strain computed by the data-driven
pre-extrapolation to compute the specific strain field induced by the crack.

In particular, the local physics-based approach is applied to a square damage-affected area with
dimensions 8a (Figure 4), where a is the semi-crack length considered by the current iFEM model.
The pre-extrapolation is based on the Westergaard stress solution [65], which considers a crack in an
infinite plate subjected to a biaxial state of stress. However, these equations are expressed in terms of
stress, while only the strain is available as input data in the iFEM formulation. For this reason, the

far-field stress (oy, gy, Ty,) is computed from the far-field strain (&, &y, ¥xy) with the Hook’s
equation under the hypothesis of plane stress condition:

Exx 1 -V 0 Ox
Vxy 0 0 2(1+4v) Txy
Notice that the elastic modulus of the material is not included in the equation since material

properties are generally not required by the iFEM approach. Thus, the computed stress field is not
exactly a stress, but it differs by a constant equal to the unknown elastic modulus. However, for

proper computation of the stress field, the Poisson ratio v is required and literature values can be
adopted in case specific material properties are not available.

Then, once the far-field stress has been computed, the Westergaard stress solution can be
applied. However, its original solution accounts for biaxial far-field stress (with o, = g,), while only
a monoaxial state of stress is considered under the hypothesis the crack is loaded in a pure Mode 1.
Different manipulation of the Westergaard solution are available in the literature to address specific
problems, in particular, the solution proposed by Elfitis and Liebowitz [66] is reported in Equation
(14). This set of equations accounts for a generic bi-axial state of stress, where g, = ka,, as illustrated
in Figure 7. In particular, the monoaxial state of stress that opens the crack in a pure Mode I can be


https://doi.org/10.20944/preprints202302.0091.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 doi:10.20944/preprints202302.0091.v1

13

defined by imposing S = g, and k = 0. Finally, the stress field in the damage-sensitive area can be
computed as:

Sr ( 0, + 92> S a?
cos |6 — -

3
rsin(6) sini(el +60,)—(1—-k)S

O, = 3
e 2 (r112)?
S 6, +86 S a? 3
o, = 4 cos( - > 2) a 3 7sin(0) sinz(ﬁl +6,) (14)
i (r112)?
S a? . 3
Tyy = —3 rsin(@) cos 6, +65)

(nm)2

where a is the semi-crack length considered and r, 1y, r,, 6, 6;, and 6, are linear and angular
variables defining a specific point P of the domain in which the stress field is computed, as reported
in Figure 7. Notice that the input stress S is obtained from Equation (13), which is in turn function
of the strain field pre-extrapolated with a data-driven approach.

Finally, once the stress field induced by the crack has been computed, it can be transformed back
into strains through Equation (13), defining the pre-extrapolated strain field to feed the iFEM
algorithm.

Tig

rxy
Ty . P {—»O’X
kS || ksl | kS :
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Figure 7. Stress field near a crack in an infinite plate subjected to a general biaxial loading condition.

4. Case study

The crack size estimation methodology proposed is experimentally applied and verified on an
aluminum plate subjected to a fatigue crack propagation to test its effectiveness and performance in
a real scenario.

This Section introduces the overall case study, in particular, the specimen with its sensor
network is described in Section 4.1, the test rig with the acquisition systems is described in Section
4.2, and the iFEM models adopted are presented in Section 4.3.

4.1. Specimen and sensor network

The specimen is an aluminum plate (E = 70,000 MPa and v = 0.3) with overall dimensions
650x150 mm and a thickness of 2 mm (Figure 8). At the two extremities of the specimen, aluminum
tabs are connected to ensure a better stress distribution into the plate once mounted in the testing
machine. Then, an artificial notch with a total length of 12 mm is introduced in the central point of
the plate to ensure proper crack nucleation and propagation during the test.

Strains are experimentally measured through a 3 m long Optical Backscatter Reflectometry
(OBR) fiber bounded on one side of the plate with the 3M™ DP490 epoxy adhesive. The fiber pattern
has been designed to cover at the best the region of interest (ROI) of the specimen, which corresponds
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to the central region of the plate with dimensions 200x150 mm. In particular, the dimension of the
ROI has been selected to avoid any boundary effect induced by the tabs and the gripping system of
the testing machine, obtaining a constant far-field stress distribution. This case study design mimics
a portion of an aeronautical structure, where a crack can nucleate from a rivet hole. The fiber provides
measurement points along both the x and the y axis of the plate according to the reference system
in Figure 8. Then, the straight segments of fiber inside the ROI are subdivided into the input and test
sensors, in particular, input sensors are sufficiently far from the crack to acquire only the far-field
strain, while test sensors are affected by the crack’s strain field.

On the other side of the specimen, a fine speckle pattern was painted to create a uniformly
random texture and acquire the strain field on the whole plate’s area by the Digital Image Correlation
(DIC) technique. Finally, two reference surfaces are bonded at the two extremities of the ROI to
measure its effective displacement with lasers during the test.

«— laser reference

LEGEND DIC speckle Initial notch
Input sensors
—— Test sensors !‘

LUNA opticalfiber

Figure 8. Specimen with sensor network.

4.2, Test rig

The specimen is mounted on a hydraulic MTS monoaxial testing machine with a 100 kN load
cell, as illustrated in Figure 9. The specimen is subjected to a tensile-tensile fatigue load with F,,, =
20 kN and R = 0.1 to nucleate and then propagate a crack from the artificial notch. A total number
of 32,000 cycles have been applied subdivided into different blocks of cycles. Then, between two
consecutive blocks of cycles, data have been statically acquired at the maximum load.

The OBR fiber has been acquired with a LUNA ODISI-B interrogator, providing a measurement
point every 2.5 mm of fiber. This fiber discretization accounts for 345 measurement points for the
input sensor network and 117 measurement points for the test one. Furthermore, several strain
samples are statically acquired for each crack length to average the values and reduce the noise. It
has to be noticed that, since the plate is loaded in tension, the bending strain components are zero (or
negligibly small) and only the membrane components contribute to the displacement field of the
structure. For this reason, although sensors are applied only on one side of the structure, the
membrane strain components can be correctly computed.

The crack length is measured with two Dino-Lite microscopes (1280x1024 pixel resolution) on
one side of the specimen (one at each crack tip), while, on the other side of the specimen the dual-
camera ARAMIS system provided by GOM acquires the images for the DIC technique. The ARAMIS
system includes 12 Megapixel cameras and a dual-led lights device. The system was calibrated to
acquire the images on a sub-portion of the ROI with dimensions 140x110 mm, corresponding to the
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maximum area available for this system. Finally, two MEL M5L/10 lasers acquire the effective
displacement of the ROL

ARAMIS
(DIC)

Figure 9. Test rig with main acquisition systems.

4.3. iFEM models

The structure’s iFEM model is limited to the ROI, thus to a shell structure with in-plane
dimensions 150x200 mm and a thickness of 2 mm, as reported in Figure 10. Boundary conditions
are representative of the portion of plate in tension, in particular, the lower side of the plate is
constrained to avoid any free motion in the 3D space. The horizontal displacement U, is constrained
just in one node to allow the transversal shrinking of the plate itself.

| 150 mm |

BOUNDARY CONDITIONS
— Uy=U,=0
0;=0 i=(xy,2)

e U:=0

Crack
center

200 mm
[
1)

Y

*
X

Figure 10. iFEM model with boundary conditions and the crack center positions.

Then, the structure is discretized into inverse elements (the iQS4) with two different structured

meshes to investigate the sensitivity of the methodology to the element’s size:

e amesh with 3.03x3 mm element’s size (namely 3 mm model), thus the structure is discretized
by a total number of 3,300 inverse elements

¢ amesh with 1x1 mm element’s size (namely 1 mm model), thus the structure is discretized by
a total number of 30,000 inverse elements

Notice that, although only the membrane response of the element is activated, the selection of
the iQS4 element is beneficial thanks to its drilling dof 6, which can avoid shear locking issues near
the crack.
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For both cases, the structure is initially discretized in the undamaged configuration, so without
the presence of any crack, and the input and the test sensor networks are defined according to Section
4.1. Notice that, since the fiber optic spatial discretization provides a measurement point every
2.5 mm, the 3 mm model contains at least one measurement in every element interested by the fiber.
On the contrary, for the 1 mm model only one element every two/three elements is covered by an
experimental input strain measurement, as also illustrated in Figure 11.

The central point of the crack is then identified on the structure by the node with coordinates
(x,¥) = (75 mm, 100 mm), which, in the present work, is assumed known a priori. Then, multiple
iFEM models are generated considering different damage conditions, as previously described in
Section 3. The crack is artificially increased symmetrically along the X axis with respect to the crack
center since the maximum principal stress acts along the Y direction. Notice that, the step increment
between two consecutive crack lengths is equal to two times the element’s size considered by each
model. For example, considering the 3 mm model, the following crack lengths are considered: 6, 12,
18, 24, 30, 36, 42, and 48 mm. While, for the 1 mm model the step increment is reduced to 2 mm and
thus the following crack lengths are generated: 2, 4, 6, 8, ..., 46, 48 mm. Notice that, this a priori
generation of the damage conditions is not strictly necessary for the algorithm’s routine since only
the required models can be generated on-demand when needed, as will be better discussed in Section
5.2.3.

3 mm iFEM model 1 mm iFEM model

LEGEND
. Input elements

. Test elements

Figure 11. Mesh discretization (3 mm and 1 mm meshes) with input and test sensor networks.

5. Results and Discussion

The data experimentally acquired in the case study under analysis (Section 5.1) are
systematically analyzed to evaluate the effectiveness and the performances of the proposed crack size
estimation technique. In particular, the results obtained with the 3 mm iFEM model are analyzed in
detail in Section 5.2, investigating all the aspects of the technique proposed, while a sensitivity
analysis on the mesh size is performed in Section 5.3 including results for the 1 mm mesh model.

5.1. Fatigue propagation experimental results

The specimen was tested with a total number of 32,000 fatigue cycles subdivided into 10 different
blocks. At the end of each block, both the strains and the crack length have been experimentally
measured at the maximum tensile load. In particular, the crack length is reported in Table 1 as a
function of the number of cycles. As already introduced, the target of the proposed methodology is
estimating the crack length, which is unknown in a general application, thus the experimental
measurements reported in Table 1 are exploited for validation of the methodology.
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Table 1. Experimental target crack length measured at different fatigue load cycles.

N cycles Crack length [mm]

5,000 16.26
10,000 19.69
15,000 20.92
20,000 24.30
22,500 25.46
25,000 26.96
26,000 28.99
28,000 30.01
30,000 31.40
32,000 32.50

5.2. iFEM results with the 3 mm model

This Section systematically investigates all the results obtained with the 3 mm model. In
particular, a comprehensive physical description of the Likelihood trend is reported in Section 5.2.1,
assessing the basic framework of the methodology. Then, the strain field computed by the iFEM is
compared with the independent measurements of DIC and the displacement field with laser
measurements in Section 5.2.2. Finally, the crack size estimation from multiple measurements at
different crack lengths is reported in Section 5.2.3, assessing the capability of the methodology in a
real application scenario.

5.2.1. Likelihood trends

Considering the 3 mm mesh, 9 different models are a priori generated: the undamaged model
and 8 models with different crack lengths. Crack lengths span from 6 mm to 48 mm with a step
increment of 6 mm, which corresponds to the double of the element’s size, as detailed in Section 4.3.

Let’s now consider the strain measurements experimentally acquired for a real crack length of
24.3 mm, which was obtained after 20,000 fatigue cycles. The input strain measurements are fed to
the 9 iFEM models generated, each one considering its own physics-based strain pre-extrapolation,
as summarized in Figure 5 and Figure 6. Each iFEM model will compute a different strain field, which
is in turn compared to the test measurements with the logarithmic Likelihood. The Likelihood is
computed for a parameter ¢ = 10 ue, representing a reasonable standard deviation of the strain’s
uncertainties for the present application. Notice that, a different value of o does not affect the results
of the present methodology and the maximum likelihood estimation framework would provide the
same results since only a scale factor would be applied to its trend. The resulting Likelihood trend
(Figure 12), which is proportional to the mean square error, resembles the capability of each model
of well describing the real damage condition, in particular, the model with the highest logarithmic
Likelihood considers a 24 mm long crack, which is almost equal to the real one. Finally, models with
a different crack length have lower values of Likelihood, resembling a probability distribution.

Then, let’s analyze more in detail the trend of the Likelihood curve obtained. The two iFEM
models adjacent to the maximum Likelihood point, i.e. the models with 18 and 30 mm cracks, have
almost the same Likelihood value which is slightly lower than the maximum one. This indicates that
also these models have a good probability! of well describing the real damage condition, although
this is not the maximum one. Notice that the logarithmic Likelihood is used, thus also a small
variation of the coefficient magnitude implies a considerable variation agreement between the test
and the iFEM strain fields. The same concept applies also to the models with 12 and 36 mm crack

! The authors naively considered likelihood function as proportional to damage probability density
function in presence of a non-informative prior knowledge on damage extent.
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lengths, although they are associated to a significantly lower Likelihood. Finally, the Likelihood trend
exhibits a different behavior for smaller and larger crack lengths respectively. For large values of
crack length (like 42 and 48 mm) the Likelihood exhibits a sudden drop since the test measurements
are significantly different from the strains computed by the iFEM. This behavior is induced by the
relative distance between the crack tip and the test sensors, which is decreased for larger cracks. On
the contrary, a small crack length may induce an almost negligible strain effect in correspondence of
the test sensors. For example, the models associated to the undamaged configuration and the 6 mm
crack length provide almost the same value of Likelihood, since their strain difference is not
appreciable in correspondence of the test sensors.

Finally, the strain field computed by iFEM with different models is reported in Figure 12. Notice
that the crack’s strain field and the displacement opening of the crack are obtained thanks to the
physics-based strain pre-extrapolation, which imposes the strain field of each particular crack length
on the input formulation, as described in Figure 6. The input measurements acquired by sensors are
representative only of the far-field strain, thus, without the physics-based strain pre-extrapolation,
they would not be able to compute the correct displacement and strain field given by the crack. In
particular, also if a crack is present in the model, this would not open since the input strain field is
not compatible with the model adopted. The pre-extrapolation technique can be avoided only in case
all the elements are experimentally covered by input sensors, which is not feasible in a real scenario,
in particular in correspondence of a damaged area. In conclusion, the physics-based strain pre-
extrapolation is fundamental to obtain a displacement and strain field coherent with the crack length
imposed in the model. However, all the results obtained by the models considered are potentially
wrong since associated with a damage condition a priori set by the routine. Thus, among all the
results computed, the right model is selected with the maximum likelihood estimation framework,
obtaining the most accurate description of the damage state for the given mesh discretization.
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Figure 12. Likelihood trend for experimental strain acquired at 24.3 mm crack length. Strain field
computed by the iFEM for four different models, deformed shape with scale factor 100.

The procedure described can be repeated several times for different acquisitions performed in
correspondence of different crack lengths. For example, the logarithmic Likelihood trend computed
for the 32.5 mm crack length strain acquisition, which was obtained after 32,000 fatigue cycles, is
reported in Figure 13. In this case, the experimental crack length does not correspond to any of the
iFEM models considered and the maximum Likelihood estimation framework indicates the 36 mm
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crack length model as the best. This model considers a crack length immediately after the real one,
however, also the 30 mm model is associated with a significant probability.
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Figure 13. Likelihood trend for experimental strain acquired at 32.5 mm crack length.

5.2.2.iFEM strain and displacement fields evaluation

The strain field computed by the iFEM is compared with the independent measurement of the
DIC for a further assessment of the methodology, while the iFEM displacement is compared with the
lasers’ measurement.

The acquisition performed at 20,000 cycles is considered since the detected crack length by the
iFEM (24 mm) is almost equal to the target one (24.30 mm). The strain field along the load direction
is compared in Figure 14, showing how the iFEM reconstruction is qualitatively in good agreement
with the DIC observation. In particular, the DIC strain field provides a continuous measurement on
the whole plate’s area, only the points in proximity of the crack are not computed due to a speckle’s
degradation. This provides an independent strain field validation of the whole damage-sensitive area
in locations different from the test sensors exploited by the maximum likelihood estimation
framework, finally providing the effectiveness of the methodology.

The laser measurements are used to validate the displacement results, in particular the total
deformation of the ROI along the load direction. The experimental measurements provide a total
deformation between the unloaded and the loaded condition equal to 0.228 mm, while the related
iFEM result is equal to 0.207 mm. The laser measurement overestimates of about 10 % the iFEM
numerical result and this can be attributed to a small misalignment of the lasers, thus measuring a
displacement component not perfectly perpendicular to the target surface, and to experimental
uncertainties.

After these considerations, the iFEM displacement and strain fields computed with the
methodology proposed are accurate and representative of the actual damage condition of the
structure. Thus, its adoption in a Digital-Twin framework allows a high-fidelity representation of the
structure and can provide precious information about its operative conditions.
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Figure 14. Comparison between iFEM strain reconstruction and the DIC strain field with the same
color scale. Acquisition performed at 20000 cycles: real crack length (DIC) of 24.30 mm and iFEM
crack length of 24 mm. Inverse FEM deformed shape with a scale factor 100.

5.2.3. Automatic crack size estimation framework

The crack size estimation procedure is now applied to the whole acquisition history to assess the
damage evolution.

The maximum likelihood estimation framework is applied to each strain acquisition, providing
the related diagnosis state. The crack lengths detected by the iFEM are compared with the target
measurements in Figure 15. In particular, the detected crack length underestimates or overestimates
the target measurement since only discrete crack’ steps of 6 mm are possible with the present mesh
discretization. Nevertheless, the maximum likelihood estimation framework always provides the
correct detection giving precious diagnostic information.
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Figure 15. Crack size estimation with the 3 mm iFEM model for the whole acquisition history.

However, one main limitation of the proposed technique in a real-time application is the
requirement of multiple models with different damage conditions. The iFEM algorithm is
particularly attractive for real-time applications since only the strain vector Fp of Equation (10) is
updated at each iteration, while, for a given mesh discretization and sensor network, the matrix Kpp
is constant and can be inverted just one time, resulting in a fast computation of the displacement field.
In the present work, an automatic procedure to generate multiple iFEM models has been described
(Section 3.2), which can be also exploited to a priori create a database of damage scenarios. However,
in a real application, the database cannot consider all the possible damage conditions, since also the
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damage location is initially unknown. Thus, an attractive procedure is, once the crack center has been
identified, generating only the required iFEM models on-demand with the procedure described in
Section 3.2. This would allow a more accurate damage diagnosis since the model database may not
include a damage scenario representative of the real condition. However, each time the mesh is
modified by the damage introduction or evolution, the Kpr matrix has to be recomputed and
reinverted, requiring a significant computational burden. Thus, a compromise has to be found
according to the specific application, as summarized with the following approaches:

e  The model update and the damage diagnosis are carried out online, where the needed models
are generated on-demand, although this may require a significant computation burden

e A database of damage scenarios can be generated offline considering the most relevant damage
mechanisms of the structure (e.g. the crack’s nucleation from rivet holes). Then, the real-time
algorithm will just load the required models, in which the matrix Kpr has been already
inverted, and perform an efficient damage diagnosis.

e  The damage diagnosis procedure is carried out offline at specified intervals, in parallel with
respect to the structure’s operation. With this approach, the a priori definition of the damage
scenarios and the database creation is not necessary since the computation does not have strict
requirements in terms of computational time. The offline procedure computes the new damage
condition of the structure, which can be uploaded on the real-time Digital-Twin and used until
the next model’s update. The offline damage diagnosis and model update can be carried out on-
demand, for example, based on some real-time damage indices, or at specified intervals
according to the expected damage growth rate.

e A combination of the approaches described can be adopted according to the specific case. For
example, an initial database can be created, and then, once the damage location is identified,
additional models are generated on-demand.

At this point, regardless of the specific approach adopted, let’s suppose to perform the real-time
damage diagnosis and Digital-Twin update of the structure under analysis. Let’s also suppose that
the structure was originally undamaged (thus without any crack) and after a visual inspection in
correspondence of the 5,000 cycles acquisition the crack was discovered and its central position
identified. At this point, the maximum likelihood estimation framework previously described is
performed and the crack length detected is 18 mm. In case all the 9 models previously presented are
included in the computation, a total of 9 iFEM iterations are required. However, if the computation
starts from the undamaged condition and the crack size is gradually increased, the maximum
likelihood is correctly identified when the model with the 24 mm damage size is executed, thus at
the 5% iteration. More specifically, the damage size is systematically increased until the likelihood
trend, after an initial increase, starts decreasing, thus the damage condition is identified by the
previous iteration. Then, once the crack length in correspondence of the 5,000 cycles has been
detected, the measurements acquired at 10,000 cycles are processed. The same procedure can be
repeated to identify the new crack length, however, the routine can start from the damage size
detected at the previous iteration, thus 18 mm in this case. This allows a further reduction of the
number of iterations and thus computational time. Moreover, in case the damage scenarios are not
loaded from a database, the model computation (i.e. the matrix inversion) of the 18 and 24 mm
crack length models is not necessary since performed in correspondence of the previous acquisition.
Thus, each time a new model is computed for the first time, it can be stored and reused when
necessary. This allows a reduction of the computation time during operation since in case the damage
does not significantly propagate no new iFEM models need to be computed. The acquisition
performed at 10,000 cycles will not provide any damage size increase since the likelihood computed
by the 24 mm crack size model results lower than the 18 mm one. Thus, in this specific case, just
two iFEM iterations are computed (with two different models) and no new model is generated and
inverted, resulting in a very fast computation. The same procedure can be repeated for each iteration
and the introduction of a new model, with the related matrix inversion, is carried out only when a
crack length propagation is observed, as also summarized in Figure 16. Thus, according to the
complexity of the model and the Digital-Twin requirements, the framework proposed can work in
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real-time without any a priori definition of the damage conditions, generating the required models
on-demand. Finally, the numerical procedure described is also detailed by Algorithm 3.

5

—¥— Tot. number of iFEM iterations
—#— Number of matrix inversions

N iterations
w

N
T

| /\ / |
2 25 3

0.5 1 15 3.5
N cycles «10%

Figure 16. Total number of iFEM iterations and matrix inversions for the whole fatigue propagation.

Algorithm 3: Real-time crack size estimation procedure without a priori creation of a

database of damage scenarios.

1:  Define the undamaged iFEM model (mesh, connectivity, BC, etc.)

2:  Set the initial state variables:
IFEM 046 (1) =undamaged iFEM model (mesh, connectivity, BC, etc.)
2am04e1(1) = 0 (zero initial crack length)
count = 0 (time instant counter)

20getectea(0) = 0 (zero initial detected crack length)

3:  Identify the crack center

4:  Define the input (g;,p) and the test (&) sensor networks

5:  while experimental data acquisition ON do

6: count = count +1

7: Acquire the new experimental measurements &;,,(count) and & (count)

8: indexmoger = find (2amoger == 2agetecteqa(count — 1)) (index of the previous
iteration iFEM model)

9: iter = 1 (iteration counter)

10: ( U(iter), grpy(iter) , LogL(iter) ) = Compute the iFEM results
({FEMpmpgei(indexmoger), Emp(count), &qeq(count)) (Algorithm 4)

11: condition = true

12: while condition == true do

13: indexXmoder = indexpoger +1

14: iter = iter +1

15: if iFEM,, 040 (index,,oq01) does not exist do

16: if apogei(index,oqer —1) == 0 do

17: IFEMpoqei(indexmoder) = crack introduction from

iFEMmodel (indexmodel - 1) (Algorlthm 1)
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18: else
19: IFEMpoqei(indexmoger) = crack propagation from
IFEM poge(indexpoger — 1) (Algorithm 2)
20: end
21: Get the new 2a,,p401(indexpmpger) from iFEMy,,qe(indexmoder)
22: end
23: ( U(iter), gipgu(iter) , LnL(iter) ) = Compute the iFEM results
(IFEMpogei(indexmoger), Eimp(count), &qsc(count)) (Algorithm 4)
24: if LnL(iter — 1) > LnL(iter) do
25: 20 4etecteq(COUNt) = 2amoger(indexmoger — 1) (store the detected crack
length)
26: Ufingi(count) = U(iter — 1)
27: s{;gf; (count) = gjpgy (iter — 1)
28: condition = false (exit from the while loop)
29: end
30: end
31: end

Algorithm 4: iFEM computation subroutine with physics-based strain pre-extrapolation.

1:  Pre-extrapolate the strain field with the physics-based approach considering the
2ampger (indexpqe1) crack length

Define the iFEM input vector F

Compute the iFEM displacement field Uy using Equation (10)

Compute the iFEM strain field &;zg) using Equation (5)

Compute the Logarithmic Likelihood (LnL) between &gy and &, using

Equation Error! Reference source not found.

5.3. iFEM results with the 1 mm model

The same methodology is now applied with a finer mesh with a 1mm element size. The
likelihood trends are briefly described in Section 5.3.1, while the final crack size estimation routine is
presented in Section 5.3.2.

5.3.1. Likelihood trends

The 1 mm mesh allows a better discretization of the crack length and so a total number of 25
models are generated. The first model is related to the undamaged structure (no crack), while the
other 24 consider different crack lengths up to 48 mm with a step size of 2 mm, corresponding to
the double of the element size.

The likelihood trends computed for the 20,000 and the 32,000 cycles acquisition are shown in
Figure 17 for comparison with respect to Section 5.2.1. In particular, the maximum likelihood is
obtained in correspondence of a model that well describes the target damage state, assessing the
capability of the technique for a finer mesh. In particular, all the conclusions obtained for the 3 mm
model are still valid, but with a more accurate detection of the crack length.
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Figure 17. Likelihood trend with 1 mm model: (a) experimental strain acquired at 24.3 mm (20,000
cycles); (b) experimental strain acquired at 32.5 mm crack length (32,000 cycles).

5.3.2. Crack size estimation results

The procedure detailed by Algorithm 3 can be now applied to all the acquisitions, resembling a
real-time application with an on-demand generation of the damaged scenarios. The results are
reported in Figure 18a, showing a fine discretization of the target crack length. More specifically, the
root mean square error between the detected crack length and its true value decreases from 2.05 mm,
for the 3 mm mesh, to 0.97 mm for the 1 mm case. Then, the number of iterations required by the
algorithm is shown in Figure 18b. In particular, the computation of a new iFEM model is performed
in almost every acquisition since the fine mesh is able to appreciate the damage propagation that
occurred. Obviously, a finer mesh requires a higher computational time for two main reasons: (i) the
higher number of elements and degree of freedoms; (ii) the higher number of model updates
required. Thus, in practical applications, a compromise on the mesh size must be chosen and, in case,
the most relevant damage scenarios can be generated a priori and stored in a numerical database to
speed up the overall procedure.

r i I 12 i I
34 ' [—w— Real crack length 114 —#— Tot. number of iFEM iterations | -
39 | [*— Detected crack length o) —#— Number of matrix inversions
. 30 [ 9+
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E£28 2 8
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Figure 18. Crack size estimation routine results: (a) crack size estimated with respect to the target
value of each acquisition; (b) number of iFEM iterations and matrix inversions performed by the real-
time algorithm.
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6. Conclusions

This paper newly extends the load-independent iFEM approach to estimate the structural
damage size leveraging on strain measurements acquired on the structure itself.

In case damage occurs on a structure, the iFEM model is no more compatible with the physical
structure, inducing a wrong displacement and strain field reconstruction. Thus, the iFEM approach
proposed in this work systematically introduces the damage in the iFEM model to decrease this
discrepancy. Several iFEM models are generated to account for different possible damage scenarios,
thus considering different damage sizes, then a maximum likelihood estimation framework selects
the model that better approaches the real damage condition. This framework minimizes the error
between the iFEM strain reconstruction and the measurements from test sensors, which are
representative of the real structure’s damaged condition. In addition, the methodology presented
overcomes some limitations of previous literature works on the damage detection with the iFEM, in
particular: (i) it can account for a lower number of strain sensors, (i7) it does not require the definition
of a threshold for the damage index evaluation.

The methodology is experimentally validated on an aluminum plate subjected to fatigue crack
propagation, where the objective of the analysis is the crack length size estimation. The iFEM
methodology exploits also the recently developed physics-based strain pre-extrapolation to obtain
the correct strain gradient induced by the crack and, at the same time, relies on a sparse sensor
network constituted of an OBR fiber optic. The methodology proposed provides a crack length
estimation very close to the one experimentally measured by visual inspection, although only discrete
values are possible according to the mesh discretization adopted. The iFEM strain reconstruction is
further validated with the independent observations of DIC, showing how the iFEM is able to well
describe the strain field near the crack, even in presence of a very sparse sensor network.

Nevertheless, the approach proposed has some limitations which will be further investigated
and solved in future works by the authors. First, the present application assumes the crack is detected
and its location is a priori known from a visual inspection or other identification techniques. Second,
the proposed methodology investigates only regular crack growths in which the crack’s direction is
constant, while different case studies (e.g., with composite materials) may exhibit different behaviors.
Finally, the proposed approach does not require a priori knowledge of the possible damage
conditions (i.e., of the possible crack positions and lengths) since the required models are generated
on-demand by the algorithm itself, which is beneficial compared to other diagnosis approaches, e.g.
based on machine learning techniques, where the a priori generation of different damage conditions
(i.e., a database of damage scenarios) is a fundamental step. However, each time a new damage
condition is generated, the iFEM matrix Kgr should be computed and inverted, resulting in a
computationally demanding task. This point in the most significant limitation of the present
technique and, in view of realizing a computationally efficient algorithm that can work in real-time
applications also for complex structures, different strategies can be adopted. For example, the most
relevant damage scenarios can be a priori generated and then specific models, more representative
of the actual damage condition, can be computed on-demand. As an alternative, model updating can
be run simultaneously to structure operation and, once the most likely model is selected, it will be
provided as input to the real-time routine.

These approaches, opportunely combined, can result in a fast routine that can be exploited to
develop an iFEM Digital-Twin (iIFEM-DT). This is a high-fidelity model of the real structure, which
is constantly updated according to the damage evolution, maintenance operations, and other
structure modification. Thus, the automatic damage size estimation based on iFEM proposed in this
work appears a good candidate to develop new DT frameworks.

In conclusion, this work introduces the possibility to include the damage information in the
iFEM model, which can be exploited in an SHM or a DT framework. Future works of the authors will
be dedicated to further developing the proposed methodology and assess its capabilities in different
scenarios.
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