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Abstract: In this study, we demonstrate how the incorporation of appropriate feature engineering
together with the selection of a Machine Learning (ML) algorithm that best suits the available dataset,
leads to the development of a predictive model for transformation temperatures that can be applied
to a wide range of shape memory alloys. We develop a gradient boosting ML surrogate model
capable of predicting Martensite Start, Martensite Finish, Austenite Start, and Austenite Finish
transformation temperatures with an average accuracy of more than 95% by explicitly taking care of
potential distribution changes when modeling different alloy systems. We included heat treatment,
rolling, extrusion processing parameters, and alloy system categorical features in the model input
features to achieve more accurate and realistic results. In addition, using Shapley values, which are
calculated based on the average marginal contribution of features to all possible coalitions, this study
was able to gain insights into the governing features and their effect on predicted transformation
temperatures, providing a unique opportunity to examine the critical parameters and features in
martensite transformation temperatures.

Keywords: shape memory alloys; machine learning; martensitic transformation; phase
transformation; feature engineering

1. Introduction

Shape memory alloys (SMAs) exhibit reversible martensitic transformations from a
low-temperature, low-symmetry martensite phase to a high-temperature, high-symmetry austenite
phase [1]. As a result of this reversible transition, they exhibit several behaviors, including the Shape
Memory Effect (SME) [2,3], superelasticity [1,3], elasto-/magneto-caloric effects [4-11], tunable thermal
expansion [12,13], stiffness [14,15], magnetic exchange bias [16], and spin glass transitions [17-19].

Advances in SMAs are intermittent. A significant discovery has only occurred once a decade
since the late 1960s. For example, the discovery of NiTi in the 60s [20,21], Cu-based SMAs in the 1970s
[22], superelasticity in the 1980s [23,24], magnetic SMAs in the 1990s [25], B-Ti SMAs in the 2000s
[26-31], and multi-component high-temperature SMAs in the 2010s [29]. There is a need to develop a
methodology that will accelerate the discovery of new SMAs, thereby reducing the discovery cycle
from decades to just a few months.

Conventional alloy discovery has relied on a tradeoff system where the gain in one target leads
to another worsening. Due to the numerous tradeoffs that often must be employed in such systems,
optimizing multiple characteristics becomes even more challenging. It primarily targets binary
systems where interactions between elements are often known or at least predictable. In conventional
alloys, the quest for finding tradeoffs to tune specific characteristics has motivated the exploration
of the multi-principal element, or high entropy alloy design space [32-36]. A similar paradigm has
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emerged in functional alloys with several compositionally complex SMAs, and Multi-Principal Element
Multi-Functional Alloys (MPEMFA), which may demonstrate superior performance compared to less
complex counterparts [37]. As an example of these quests, recently discovered quaternary and quinary
MPEMFAs exhibit reversible thermally induced martensite transformation, SME, and superelasticity
above 700°C, the highest temperature superelasticity reported to date [38].

Efficient discovery of new compositionally complex alloys is challenging due to the vastness
of the chemical and microstructural space and extreme sensitivity to minute changes in chemistry
and/or microstructure [39]. The successful discovery of MPEMFAs is at the expense of exploring a
very high-dimensional, non-linear, and highly singular mathematical space, in which querying a single
point experimentally comes at a high cost.

Expanding the chemical discovery space may lead to new discoveries, but it may also result in
undesirable properties. This is especially true when considering their solid-state actuation properties
and martensitic transformation temperature characteristics for optimizing actuation properties under
transformation temperature constraints. As an example, in TiPt and Pd systems, higher alloy
complexity led to smaller irrecoverable/permanent strains and actuation thermal cycling, but at
the expense of a larger thermal hysteresis [40]. As chemical complexity increases, atomic interactions
make the understanding of the new design space more complicated as numerous factors may be able
to yield the same result.

Current alloy development frameworks are insufficient, as simulation-assisted frameworks can
be computationally expensive, do not readily incorporate data from experiments, and are sequential.
Traditional high throughput (HTP) combinatorial approaches are incapable of dealing with the high
dimensionality and complexity of the MPEFMA space. In addition, HIP approaches are ‘one-shot’
or ‘open loop’ schemes without an iterative framework, and are suboptimal in resource allocation.
State-of-the-art machine learning (ML)/Al-driven approaches may be unsuitable in cases where the
materials space is highly non-linear, sparsely queried, or very singular. The use of modeling, combined
with high throughput experiments, has the potential to vastly increase the rate of discovery in these
new systems due to the newfound ability to apply active learning methods to find trends in small
elemental variations, which could never be observed before.

Avoiding computationally expensive calculations such as first-principles calculations [41,42], or
theoretical studies [43—45], multiple research groups have tried to use classical machine learning (ML)
models and, more recently deep neural networks to create surrogate models, connecting chemistry
to transformation temperatures. Most of the models are fitted to small training data sets that are less
diverse in terms of the included elements and different SMA systems, limiting the application space
of these models [45-51]. On the other hand, some data sets are enriched with computational data
stemming from simulation models such as CALPHAD [52], which limit the results to the uncertainties
and assumptions of the underlying calculations [53,54].

Although the importance of processing parameters on martensitic transformation is known, only
limited studies [46—48,55] have considered the effect of processing parameters in their model to avoid
the complexities added by these features. Wang et. al. in their recent work [56] attempted to cover the
shortcomings of the literature and have combined composition-based featurization with a fractional
encoding of the materials. However, the complexity of their model makes tracking and providing
feature importance calculations a cumbersome task. In addition, their model limits the feature space
to chemistry-related information, and processing parameters are not included. As a result, having a
model that covers several alloy systems and is based on a relatively diverse data set, which considers
the features containing the composition-based information and the manufacturing parameters, is
missing in the literature.

Considering the aforementioned missing pieces to have a complete and comprehensive model, we
are structuring our work to build a surrogate model that can fit the multi-dimensionality of a diverse
yet limited data set. The precise feature engineering enabled the possibility of making predictions for
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various alloy systems. In addition, the generated features and Shapley values provided the chance to
shed light on the physics of the transformation.

Our work is structured as follows; We first describe the data set, the background of the ML
algorithm, and the surrogate ML model in the methods section. Subsequently, we will discuss our
results and the novelty of this work providing physics-related information about the features affecting
the transformation temperatures.

Sparse data distribution in datasets
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Figure 1. The number of data points available for each alloy system in the database. Please note that
each alloy system is composed of multiple compositions, and each composition might have multiple
data points with different processing parameters. The figure was plotted using Matplotlib [57].
2. Methods

In this section, we first elaborate on the structure of the data set under the study, data
pre-processing, and feature generation procedures to make our reported results reproducible. More
importantly, we introduce the basics of the adopted ML surrogate model based on CatBoost, for
which we will demonstrate its generalizable prediction performance with respect to the corresponding
evaluation metrics in our experiments in Section 3. Last but not least, by adopting the Shapley
value [58], we also provide the feature importance analysis to interpret the learned CatBoost model for
SMAs transformation temperatures.

2.1. Data Preparation

A database with information on composition, processing parameters, and thermodynamic
responses was constructed by combining the data mined from the literature, and our in-house
experimental results [59]. Composition data was represented in atomic percentages at the resolution of
0.1at%. Processing parameters were used, including the parameters in heat treatment, rolling, and
extrusion. Both composition and processing parameters construct an initial feature list for the ML
surrogate model. Thermodynamic responses were limited to transformation temperatures as these are
the targets for this study.

After cleaning the data (i.e., removing data points with duplicated and NaN values) and removing
inconsistent values (i.e., removing data points where atomic percentages exceeded 100, Martensite
Start (Ms) > Austenite Finish (Af), Martensite Finish (Mf) > Austenite Start (As), As > Af, and Mf >
Ms), 2,494 data points for 237 different shape memory alloy were acquired. These data points have 13
different processing parameters. The dataset in the compositional space has data concentration around
specific compositions. For some compositions, we had as low as one experimental measurement
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data point per composition; for others, there were more than ten data points per composition. This
fact creates an under-sampling of the composition space for some regions. Still, it doesn’t imply an
imbalance in the dataset, as the data points with the same composition have different processing
parameters. To add another layer of model evaluation for generalizability, we divided the data set into
the train/test set and the validations set. The train/test set contains compositions with at least two
experiments per composition and is divided into training and test sets for appropriate training of the
model and to avoid overfitting the training data. On the other hand, the validation set is the set of
compositions with only one experiment. The set is used to evaluate the model further. The number of
samples available for alloy systems in each data set is shown in Figure 1.

We employed three featurization methods for the present work: processing-related,
composition-related, and alloy-system-related. Compositions were featurized with the Jarvis database
[60] using the CBFV [56,61-65] Python [66] library. We added these features based on previous
experiments and density functional theory, ML, and classical force-field calculations, as a result,
increasing the total number of features to 3,079. For more detailed explanations of the features
generated in this paper, please refer to JARVIS-Tools [67] and CBFV [68] documentation.

We note that our final feature set also contains eight categorical features to help our ML surrogate
model better predict thermodynamic properties for different SMA systems. These categorical features
are NiTi-based, NiTiPd-based, NiTiCu-based, NiTiHf-based, NiTiNb-based, NiTiZr-based, NiTiB-based,
and alloy systems. This set of categorical features provides information on SMA systems with their
main element combinations. As an example, the alloy system for Cu2Ni3Pd5Ti10 is NiTiPdCu. Other
categorical features are subcategories of alloy systems. In the case of Cu2Ni3Pd5Ti10, it belongs to the
NiTi-based, NiTiPd-based, and NiTiCu-based categories, so the value for these features is True, and
the value for the four remaining categorical features (i.e. NiTiHf, NiTiNb, NiTiZr, and NiTiB-based) is
False. As a result of feature engineering, the database contained 3,087 features ready for training.

2.2. CatBoost Surrogate Model

The number of alloy systems, significant change in thermodynamic targets with slight composition
variation, number of features, and presence of categorical and numerical features in the database
indicate a complex non-linear learning space. Decision-tree-based ML models are good candidates
for capturing nonlinear composition\ processing \structure property-space mapping relationships in
a high-dimensional learning space. Different boosting and bagging strategies, built upon tree-based
weak learners, such as Random Forests [69], XGBoost [70], LightGBM [71], and CatBoost [72], have
been developed to achieve state-of-the-art prediction performance. Convenient in working with
categorical data and having multiple targets are the other reasons that we chose CatBoost as our final
ML surrogate model. In the following subsections, we introduce the background of the ML algorithm,
model evaluation methods, and hyperparameter tuning by Bayesian optimization (BO).

2.2.1. Background of the ML Algorithm

Boosting [73] is a family of ML algorithms that combines multiple weak learners to build a strong
learner for prediction. Decision trees [74], which recursively partition the input space and learn the
decision rules for each subspace based on training data, are usually chosen as weak learners or base
learners because of their lightweight nature and low computational costs.

Gradient boosting [75], as a member of the boosting family, utilizes the gradient of a pre-defined
loss function to combine the weak learners. Unlike other implementations of gradient boosting,
including XGBoost [70] and LightGBM [71], CatBoost [72] tries to fight potential prediction shifts with
an ordered boosting method and has been reported to achieve more reliable prediction performance.

In CatBoost, the strong learner M; is updated as [72]:

M1 (x) = Mi(x) — ahi (x),
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where hf(x) € argminh(x)(Ex[(h(x) - %}x’y)v:%)z}) is the estimation of %}X’y”f:% with the

weak learner and %}x,y) | =, is the gradient of the loss function w.r.t the current strong learner M;,
« is the learning rate to control the update step size. L(f,x,y) = L(f,x,y) + J(f), which is the
loss function connecting the prediction to the target, usually contains an L2 regularization term J(f) to
prevent from overfitting.
As another way to resist prediction shift and speed up the training procedure, Bayesian
bootstrap [76] is applied in CatBoost in each iteration on the training dataset to sub-sample and
re-weight the data and balance model inputs.

2.2.2. Loss Function and Evaluation

The choice of the loss function L£(f,x,y) is critical in the training process to achieve accurate
predictions. To measure the prediction accuracy for a single target, Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and coefficient of determination (R2 score) are broadly used. The R2
score, measuring the dependency relationship between the prediction and target, is defined as [77]:

R2_q1_ Lili— M(x;))*
Yilyi —9)?
where 7 is the average over all the target values.
RMSE measures the difference between the target and the prediction by [78]:

RMSE(M(x), ) — \/Ei(M(’;]) _]/i)zl

where M(x;) is the prediction of the i-th sample, y; is the corresponding target, and N is the number of
samples. MAE, as another broadly used metric, is defined as [78]:

MAE(M(x),y) N

A perfect predictor (always correct) would have a 0 RMSE and MAE with an R2 score of 1.
When it comes to multiple target prediction, we can adopt RMSE to MultiRMSE as follows:

i i(M(xi); — vi,j)?
B ,

MultiRMSE(M(x),y) = \/

where M(x;); is the prediction of the j-th target of the i-th sample (x;), y;; is the corresponding target,
and N is the number of samples.

2.2.3. Hyperparameter Tuning

Fine-tuning the model’s hyperparameters can be a pathway to pursuing higher prediction
accuracy. Before training the model, we tuned the hyperparameters of the CatBoost algorithm using
the BO approach [79], utilizing the Bayesian Optimization [80] Python library. The optimization
process was performed on the training set, and the negative square root of the mean_squared_error
was set as the target of the BO algorithm to optimize. The resulting parameters used to build the ML
model are illustrated in Table 1.
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Table 1. Software parameters were used to build the ML model.

CBFV Python library
Parameters Values Comment
clem bro rvis The other good option is ‘oliynyk’. It generates fewer features; hence it is
—Prop J computationally cheaper. However, we got slightly better results using ‘jarvis’.
extend_features True -
sum_feat True It generates 438 more features when used with jarvis.
CatBoost Python library
Parameters Values Comment
boosting_type Plain The classic gradient boosting scheme.
learning_rate 0.2092 Boosting learning rate.
depth 6 Depth of the tree.
12_leaf reg 0.05992 Coefficient at the L2 regularization term of the cost function.
bagging_temperature 0.5562 Assigning random weights to objects by using the Bayesian bootstrap.
loss_function MultiRMSE The metric to use in training.
eval_metric MultiRMSE The metric used for overfitting detection.

By considering the hyperparameters as the input to a black-box function whose output is the
corresponding model performance, the task of fine-tuning the hyperparameters can be viewed as a
black-box optimization problem. BO [79] that iteratively queries new input and eventually optimizes
the prediction performance is suitable under this scenario. BO models the black-box performance
function as a Gaussian process (GP) GP(u(-), Cov(+,-)). An acquisition function guides the selection
of new query points based on the updated posterior of the GP condition on the current observations.

The choice of acquisition function is critical and affects the optimization efficiency. Expected
Improvement (EI), Entropy Search (ES), and Upper Confidence Bound (UCB) are examples of
well-studied acquisition functions [79]. We focus on the UCB acquisition because of its low
computational cost and strong performance, which takes the form of:

a(x) = u(x|D) + By/Cov(x, x| D),

where D denotes the set of current observations, u(x|D) and Cov(x, x| D) represent the mean and
variance of the updated posterior GP, respectively. UCB balances the exploration and exploitation by
the hyperparameter 8, where higher  values lead to a higher level of exploration while lower 8 lead
to exploitation more. In our experiments, f = 2.576.

2.3. SHAP-based Model Interpretation

Besides prediction accuracy, model interpretability is another goal when developing AI/ML
surrogate models, particularly for scientific machine learning (SciML), as in this paper. To better
understand the composition-processing-property relationships, we also calculate the SHapley Additive
exPlanation (SHAP) [58] for each feature, enabling information-theory-based feature prioritization. The
corresponding SHAP values capture the importance of the related features in determining materials’
thermodynamic responses, which provides insight into SMA physics.

The SHAP Value ¢(k, M) for the feature k in a model M is defined as:

ok, M) = ) wsp[MH () — MP ()],
SCF/k
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Where F is the set of all the features, M° (x®) is the retrained model with only the features in a subset S
instead of all the features.

The retraining of 2/FI=1 models to calculate the SHAP value of each feature, however,
is computationally infeasible in most applications. The original paper [58] proposed several
approximation methods to tackle this exponential computational complexity challenge with
significantly reduced retraining time. SHAP Value can be viewed as a weighted average of the
difference between the retrained model with and without feature k for each subset S, providing a
quantitative feature importance metric capturing its contribution to the final model prediction.

3. Results and Discussion

As detailed in Section 2.1, we have collected 2,494 data points for a set of 237 SMA compositions
composed of 26 different alloy systems. The training was performed on 80% of the training/test
data set, which contains 137 SMAs from NiMnColn, NiTi, NiTiAu, NiTiCu, NiTiCuAu, NiTiCuCo,
NiTiCuNb, NiTiCuZr, NiTiHf, NiTiHfCu, NiTiHfFeCu, NiTiHfZr, NiTiHfZrCu, NiTiNb, NiTiPd,
NiTiPdB, NiTiPdCo, NiTiPdCu, NiTiPdHf, NiTiPdSc, NiTiPdTa, NiTiPt, NiTiZr, NiTiZrAl, and NiTiZrB
alloy systems, and the performance of the model was evaluated on the test set (20% of the above
data set). Furthermore, a “validation” set that contains 100 SMAs from NiTi, NiTiCu, NiTiCuZr,
NiTiHf, NiTiHfZr, NiTiNb, NiTiPd, NiTiPdCu, NiTiPdSc, NiTiPdTa, NiTiPt, NiTiZr, and NiTiNbZr
alloy systems was held out, excluding from the above training/test data set to better evaluate the
generalizability of the trained CatBoost surrogate.

Predicted vs. Actual Values - Test Size: 20%
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Figure 2. Predicted and actual values of Ms, Mf, As, and Af temperatures for the test set. The figure
was plotted using Matplotlib and seaborn [81]. The visually distinct colors generated by iWantHue
[82].

The average R? score, MAE, and RMSE of the model predictions were adopted for
performance evaluation, calculated using scikit-learn [83] r2_score, mean_absolute_error, and
mean_squared_error functions. On the training set (80% of the training/test data set), the average R?,
MAE, and RMSE values of Ms, Mf, Af, and As temperature predictions are 0.95, 18.47°C, and 29.97°C.
The same evaluation metrics for the test set (20% of the training/test data set) are 0.95, 18.75°C, and
26.78°C. The high R? score for the training and test set


https://doi.org/10.20944/preprints202302.0080.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 doi:10.20944/preprints202302.0080.v1

8 of 14

is an indication of not having under/overfitting for the trained model. Figure 2 shows the model’s
performance for the test set. The R? scores for Ms, Mf, Af, and As temperatures are 0.95, 0.96, 0.96,
and 0.95 respectively. The MAE for the same targets is 17.39°C, 18.32°C, 18.00°C, and 21.29°C. The
RMSE for the same transformation temperatures are 25.10°C, 25.23°C, 25.97°C, and 30.45°C. Also,
when we look into more detailed thermodynamic predictions for different alloy systems, it is clear
that our CatBoost model with customized input features not only correctly predicted transformation
temperatures of NiTi-based SMAs but also did a good job predicting NiMn-based alloys.

We have further tested the model’s performance on compositions unknown to the model to
investigate how well this model can predict the transformation temperature of alloys, which the model
has never seen during the previously described training/test procedure. This analysis is performed on
the data set we referred to as the “validation” set with the distribution shown in Figure 1. This data set
contains 100 NiTi-based shape memory alloys, and the performance of the model on this data set is
shown in Figure 3. These data points are unique from the train/test data points either in the sense that
they have a unique composition or processing parameters.

Predicted vs. Actual Values - Validation Set
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Figure 3. Predicted and actual values of Ms, Mf, As, and Af temperatures for the validation set. The
figure was plotted using Matplotlib and seaborn. The visually distinct colors generated by iWantHue.

The comparison plot of the transformation temperatures for this validation set also shows the
proximity of the predicted and true transformation temperatures. The R2 score, MAE, and RMSE of
the model for Ms temperature are 0.92, 18.42°C, and 22.96°C, for Mf temperature are 0.89, 22.84°C, and
30.53°C, for Af temperature are 0.92, 21.33°C, and 27.44°C, and for As temperature are 0.89, 26.76°C,
and 34.22°C.

It is worth mentioning that although the model was never trained with any NiTiNbZr alloy
system, it could predict the targets for these alloy systems. Also, only 6 out of 26 alloy systems had
more than 150 data points in the training/test set, where the number of data points for the NiTiCu
alloy system is lower than that of the validation set. Another interesting fact, as shown in Figure
4, is that the model could detect the sequence in transformation temperatures without defining any
constraints. Accordingly, the model could understand and keep the following sequence: Ms < Af, Mf
< As, As < Af, and Mf < Ms.
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Transformation Temperatures Sequence

w— NiTiCu
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Figure 4. Transformation temperatures sequence for predicted values. Each parallelogram corresponds
to a composition and each connection point corresponds to a transformation temperature. The figure
was plotted using Matplotlib. The visually distinct colors generated by iWantHue.

Last but not least, the interpretation of the SHAP-based model was performed. The absolute
Shapley values for each feature are averaged to create the SHAP feature importance plot, shown in
Figure 5, which depicts the magnitude of feature attributions. This plot suggests that for the NiTiX
alloy system, transformation temperatures are mainly a function of chemical and electronic properties
such as atomic mass (atom_mass), atomic radii (atom_rad), molar volume (mol_vol), heat of fusion
(hfus), melting point (mp), boiling point (bp), electronegativity (X), electron affinity (elec_aff), and
polarizability (polzbl). Moreover, the final heat treatment temperature (FinalHT_Temp) as a processing
parameter is among the top 10 most important features affecting this transformation temperature.

Important features affecting the transformation temperatures of NiTiX alloy system

avg_atom_mass_subs x |
dev_nfus_subs x |

avg_mol_vol_subs_hfus
dev_X_subs_elec_aff
avg_mol_vol_subs_elec_aff
dev_mp_divi_atom_mass
sum_polzbl_add_atom_rad
Processing_FinalHT_Temp
dev_atom_rad_divi_atom_mass
avg_X_subs_bp
sum_mol_vol_mult_voro_coord

avg_mol_vol

avg Z
. Af

. As
. Ms
- Mf

range_polzbl_add_first_ion_en

dev_first_ion_en_subs_polzbl

0 10 20 30 40 50
mean(|SHAP value|) (average impact on model output magnitude)

Figure 5. The most important features affect the transformation temperatures of the NiTiX alloy system.
The figure was plotted using the SHAP summary_plot function.

The uneven amount of SHAP values for targets (consider the width of the colorful area for each
feature) suggests that not all features evenly affect transformation temperatures, which shows the
complexity of the model in making predictions.
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To better illustrate how changing values of a feature affect transformation temperature predictions,
the summary plot for Ms temperature is depicted in Figure 6 as an example. It shows that high values of
average atomic mass and electronegativity difference (avg_atom_mass_subs_x), population standard
deviation of heat of fusion and electronegativity difference (dev_hfus_subs_X), molar volume and
heat of fusion difference (avg_mol_vol_subs_hfus), population standard deviation of atomic radii and
atomic mass quotient (dev_atom_rad_divi_atom_mass) increase the M, temperature. On the contrary,
low values of population standard deviation of electronegativity and electron affinity difference
(dev_X_subs_elec_aff) and summation of polarizability and atomic radii (sum_polzbl_add_atom_rad)
tend to increase this target. In the case of processing parameters, the high values of final heat treatment
temperature can increase or decrease the martensitic temperature, based on its contrary effects on the
microstructure and precipitates of each composition [84]. Hence, it offers a handy tool for selecting
alloying elements for designing SMAs with high transformation temperatures.

When it comes to the computational costs, training the model for 2,394 data points with 3,087
features and 4 targets on a Windows laptop equipped with Intel® Core™ i7-11800H processor and
16 GB Random Access Memory (RAM) took 3 minutes and 21 seconds. The model proves to be fast,
accurate, and simple - it has competitive performance and can be an excellent choice for time-sensitive
studies.

Predictive impact of the most important features based on their values

High

avg_atom_mass_subs_X I-II I " o
dev_hfus_subs_X ] .ll e
avg_mol_vol_subs_hfus LI L + -
dev_X_subs_elec_aff . .II o e
avg_mol_vol_subs_elec_aff .0 l <
dev_mp_divi_atom_mass o oo | et {
sum_polzbl_add_atom_rad o s | [ ;3;
dev_atom_rad_divi_atom_mass ﬂ g o g
Processing_FinalHT_Temp E
sum_mol_vol_mult_voro_coord

avg_Z
range_polzbl_add_first_ion_en
avg_X_subs_bp

avg_mol_vol

avg_voro_coord

T Low
-20 -10 0 10 20 30 40

SHAP value (impact on model output)

Figure 6. Effects of most important features’ values on the Ms temperature of NiTiX alloys. The figure
was plotted using the SHAP summary_plot function.

4. Conclusions

Employing advanced ML techniques and domain knowledge, we were able to build a model to
predict transformation temperatures of SMAs, provide insight into the important features contributing
to each prediction, and shed light on the physics of thermodynamic transformation of SMAs. The
results of the present work are as follows:

®  Proper feature engineering with all processing parameters, composition-based features, and
alloy system categorical features is the key to building a robust model that is able to predict
transformation temperatures of a vast range of SMAs with a relatively low amount of data. In our
study, the model could predict the transformation temperatures of 100 SMAs in the validation set
after training by 2,394 data points for 137 alloys in the train/test set.

*  The results shows that CatBoost is a promising ML surrogate model for the thermodynamic
prediction of complex alloy systems. Considering its tree-based nature, it can adequately handle
diverse data sets with a potentially high number of features, which is the case in most materials
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science studies. It also performs well with a relatively limited number of training data points.
This tree-based boosting algorithm also provides a natural path to model interpretability.

*  The dependency of transformation temperatures on processing parameters, chemical, and
electronic properties was shown and discussed.

Data Availability Statement: Data used in this study is part of an ongoing research project and cannot be shared
publicly at this time.
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