
Article

Real-Time Epidemiology and Acute Care Need
Monitoring and Forecasting for COVID-19 via
Bayesian Sequential Monte Carlo-Leveraged
Transmission Models

Xiaoyan Li 1,* , Vyom Patel 2, Lujie Duan 3, Jalen Mikuliak 4, Jenny Basran 5 and Nathaniel D
Osgood 6

1 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada;
xiaoyan.li@usask.ca

2 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada;
vyom.patel@usask.ca

3 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada;
lujie.duan@usask.ca

4 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada;
jalen.mikuliak@usask.ca

5 Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada; jenny.basran@saskhealthauthority.ca
6 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada;

nathaniel.osgood@usask.ca
* Correspondence: xiaoyan.li@usask.ca; Tel.: +1-306-966-4886

Abstract: COVID-19 transmission models have conferred great value in informing public health
understanding, planning, and response. However, the pandemic also demonstrated the infeasibility
of basing public health decision-making on transmission models with pre-set assumptions. No
matter how favourably evidenced when built, a model with fixed assumptions is challenged by
numerous factors that are difficult to predict. Ongoing planning associated with rolling back and
re-instituting measures, initiating surge planning, and issuing public health advisories can benefit
from approaches that allow state estimates for transmission models to be continuously updated in
light of unfolding time series. A model being continuously regrounded by empirical data in this
way can provide a consistent, integrated depiction of the evolving underlying epidemiology and
acute care demand, offer the ability to project forward such a depiction in a fashion suitable for
triggering the deployment of acute care surge capacity or public health measures, support quantative
evaluation of tradeoffs associated with prospective interventions in light of the latest estimates of the
underlying epidemiology. We describe here the design, implementation and multi-year daily use for
public health and clinical support decision-making of a particle filtered COVID-19 compartmental
model, which served Canadian federal and provincial governments via regular reporting starting in
June 2020. The use of the Bayesian Sequential Monte Carlo algorithm of Particle Filtering allows the
model to be re-grounded daily and adapt to new trends within daily incoming data – including test
volumes and positivity rates, endogenous and travel-related cases, hospital census and admissions
flows, daily counts dose-specific vaccinations administered, measured concentration of SARS-CoV-2
in wastewater, and mortality. Important model outputs include estimates (via sampling) of the
count of undiagnosed infectives, the count of individuals at different stages of the natural history
of frankly and pauci-symptomatic infection, the current force of infection, effective reproductive
number, and current and cumulative infection prevalence. Following a brief description of model
design, we describe how the machine learning algorithm of particle filtering is used to continually
reground estimates of dynamic model state, support probabilistic model projection of epidemiology
and health system capacity utilization and service demand and probabilistically evaluate trade-offs
between potential intervention scenarios. We further note aspects of model use in practice as an
effective reporting tool in a manner that is parameterized by jurisdiction, including support of a
scripting pipeline that permits a fully automated reporting pipeline other than security-restricted
new data retrieval, including automated model deployment, data validity checks, and automatic
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post-scenario scripting and reporting. As demonstrated by this multi-year deployment of Bayesian
machine learning algorithm of particle filtering to provide industrial-strength reporting to inform
public health decision making across Canada, such methods offer strong support for evidence-based
public health decision making informed by ever-current articulated transmission models whose
probabilistic state and parameter estimates are continually regrounded by diverse data streams.

Keywords: COVID-19; particle filtering; machine learning; epidemiologic modeling; compartmental
model; projection and intervention

1. Introduction

A novel coronavirus and accompanying infectious disease was reported to the World Health
Organization (WHO) in Wuhan, China in December of 2019 [1]. The WHO declared this outbreak a
Public Health Emergency of International Concern in January of 2020, designating this new coronavirus
disease COVID-19 [1]. Global travel and endogenous spread across hundreds of countries have yielded
a worldwide pandemic, with rapidly rising totals of over 752 million confirmed cases, and over 6.8
million confirmed deaths through January 30, 2023 [2].

During the COVID-19 pandemic, ongoing public health order planning, and replanning associated
with rolling back and reinstituting measures and conducting timely messaging has benefited from the
availability of empirical time series — often holding evidence of shifts in epidemiology, availability of
acute care resources, and changes in behaviour with regards to risk, testing, vaccination uptake, and
clinical presentation. At the same time, decision-making has relied heavily on a variety of types of
dynamic models.

Several previous works [3–8] showed success in monitoring, estimating and predicting the
transmission of infectious diseases by stochastic filtering of mathematical epidemiology models using
with observed datasets via Sequential Monte Carlo (SMC) machine learning algorithms. SMC methods
were introduced in the early 2000s and [9,10], and commonly go by the name of particle filtering (PF).
Such work has demonstrated that projections forward from dynamic models in health and health care
offer substantial additional value if they can be informed by up-to-date, grounded estimates of the
current situation. The particle filtering method – together with several variants – has also been used for
COVID-19 [11–15] in the last two years since this new infectious disease emerged. Most of these works
used public health surveillance data – such as daily reported cases and daily hospitalized admission
patients – to track the transmission dynamics. After the SARS-CoV-2 virus was confirmed detected in
untreated wastewater [16], several researchers [15] used wastewater surveillance data to ground the
mathematical epidemiology models via a partially observed Markov processes (POMP) model. These
methods use Markov chain Monte Carlo and sequential Monte Carlo (particle filtering) methods.

This paper presents the use of PF with a model deployed by the health system and used internally
for routine provincial-level reporting and decision-making since the fourth month of the pandemic.
Such PF incorporated a COVID-19 compartmental transmission model, and a wide variety of observed
daily datasets from both public health surveillance data and wastewater surveillance data. Within this
context, the COVID-19 model provides an integrated characterization of disease transmission, a natural
history of infection including both frankly symptomatic and oligo-/pauci-symptomatic pathways, and
distinct passive and active case-finding systems the occurrence of travelling cases, basic COVID-19
related acute care flows and occupancy, characterization of two dose-specific vaccination stages, and
mortality. Important model outputs include estimates (via sampling) of the effective reproductive
number, the count of undiagnosed infectives, and the count of individuals at different stages of the
natural history of infection along both pathways. Since July 2020, the model further incorporated a
representation of SARS-CoV-2 fecal viral shedding; and when wastewater evidence is available, the PF
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framework makes use of a likelihood term, comparing the empirical viral concentration of SARS-CoV-2
in wastewater with model expectations for that concentration.

The model was built in concert with the Saskatchewan Health Authority and has been in
production use for regular health system reporting since June 2020, with some model findings
informing understanding of the evolving epidemiological context as early as April 2020. Since that
time, and beyond its use for reporting to the Saskatchewan Health Authority and Saskatchewan
Ministry of Health, the model has been used to deliver reporting contracts with the Public Health
Agency of Canada (for each Canadian province), First Nations and Inuit Health Branch (FNIHB).
The resulting reports have proven particularly key in day-to-day instituted health system reporting
and informing planning for the Canadian Midwestern province of Saskatchewan. In this paper, we
characterize the structure of the model and present the results of applying the model to the population
of the city of Saskatoon in the province of Saskatchewan of Canada, during the period of wild type
SARS-CoV-2 and the alpha variant [17] from February 22, 2020, to July 31, 2021.

2. Methods

2.1. Deterministic Compartmental Model

We describe here the compartmental model used within this system, which characterizes the total
population as divided into different compartments distinguished by different pathways of natural
progression, severity of illness, diagnosis, and acute care use. For simplicity, our description of the
model omits discussion of the evolution of that model, pausing only to note that the vast majority of
the model as described here was in use at the start of regular reporting in June 2020. We also exclude
from this section a characterization of variants of that model, differing particularly in the levels of
stratification involved. We further exclude discussion of variant-specific adjustment of values of some
parameters otherwise treated as constant and the model structure adjusted to accommodate further
variants in the application.

The structure of the COVID-19 compartmental model is shown in Figure 1, and employs a time
unit of days. The compartments of the model are introduced as follows. The model contains a largely
orthogonal characterization of progression along two possible natural histories of infection (on one
hand) and diagnosis status (on the other). Specifically, the model dichotomizes both the infective
(compartments denoted by names prefixed by I or H) and recovered (compartments prefixed by R)
populations into diagnosed (sub-scripted by D) and undiagnosed (sub-scripted by U) status, depending
on whether an individual has been diagnosed via lab-confirmed PCR testing. The infective population
in the model was further divided into two groups: hospitalized individuals (compartments HNICU and
HICU) and those in the community (subcompartments of the supercompartment I). Supercompartment
I of infectives in the community is characterized by dividing it into three groups based on the stage of
the natural history of infection – presymptomatics (compartments IAU and IAD), and those at a later
stage along each of the two parallel pathways of infection distinguished by degree of symptomaticity.
Specifically, the model treats infected individuals as proceeding from the (infectious) presymptomatic
phase to one of two possible natural histories of infection: A frankly symptomatic pathway and
an oligosymptomatic route of progression, which accept fractions 1− fPA and fPA of undiagnosed
individuals proceeding from presymptomatic compartment IAU , respectively. The frankly symptomatic
pathway starts at an early stage in which individuals have not yet had the opportunity to exhibit
complications (compartments IYU and IYD), and symptoms are assumed to be mild. The progression of
an individual from the first to the second symptomatic stage marks the point where any complications
emerge, with a specified fraction (denoted as fH) of progressing individuals (regardless of erstwhile
diagnosis status) developing severe or critical complications. Such individuals suffering complications
are presumed to lead to presentation for care and hospitalization. Frankly symptomatic individuals
absent complications proceed on to a stage involving symptomatic individuals beyond the risk of
complications (compartments IYNU and IYND). By contrast to the frankly symptomatic pathway, the
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oligosymptomatic pathway proceeds from the presymptomatic stage through a natural history of
infection in which infected individuals remain infective but never develop symptoms sufficient to
motivate care-seeking; compartments along this pathway are denoted by an A subscript. Like their
symptomatic counterparts, oligosymptomatic infectives are characterized as proceeding through two
subsequent compartments of IA, with the timing of progression identical to the frankly symptomatic
stages – oligosymptomatic stage 1 (compartments IA2U and IA2D) and oligosymptomatic stage 2
(compartments of IA3U and IA3D). The model also considers the vaccinated population, where only
Susceptible individuals are assumed to be administered vaccines. Compartment V1 represents the
persons who have only received one dose of a COVID-19 vaccine, and V2 represents the persons who
have received two vaccine doses. As is detailed further below, vaccinated individuals are treated as
remaining subject to some vaccine-efficacy-moderated risk of infection (denoted e1 for only having
one dose and e2 for having two doses).

Figure 1. Transmission model structure

2.1.1. Diagnosis and Case Finding

In this COVID-19 compartmental model, infected patients can be diagnosed both by passive case
finding via presentation for care and (separately) via active case finding, such as through contact tracing,
screening, and mass testing [18]. Passive case finding is treated as diagnosing symptomatic infectives
who present for care, and is treated as endogenously driven within the model. Such presentation-driven
diagnosis is represented by red flows in Figure 1, and proceeds from compartments of undiagnosed
symptomatic infectives that have not yet exhibited complications IYU to the next stage compartment
of diagnosed individuals IYND. By contrast, reflecting the fact that active case finding can identify
individuals not yet exhibiting symptoms, active case finding within the model is represented by flows
(the orange arrows in Figure 1) from a broader set of compartments of undiagnosed exposed and
infective individuals to the corresponding next stage diagnosed compartments of the model. It is to be
noted that because of the multi-day time lag commonly associated with test results in the province,
for both passive and active-case finding, we let the flows of undiagnosed infectives proceed to the
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next stage diagnosed compartments instead of the directly corresponding diagnosed stages; thus, for
example, those diagnosed from stage IYU flow into the next stage compartments of IYND, rather than
into IYD.

The daily flow of cases being diagnosed by passive testing, but not leading to hospitalization,
is mainly governed according to the endogenous model calculations IYU( fY)/tIY , where fY is the
fraction of undiagnosed symptomatic infected individuals with complications that do not require
hospitalization during their course of infection, and tIY is the mean days to develop or avoid
complications; this is bounded by the empirical data (denoted as Em) of total test volume presenting
other than due to hospitalization or international travel. Em can be calculated by the difference between
the daily total test volume (denoted as Vt) and the three-way sum of daily admitted COVID-19 patients
to ICU and non-ICU hospitalizations (denoted as VHICU and VHNICU , respectively) and new likely
exogenous cases (denoted as ExD ). This difference reflects the known use of tests for hospitalization,
and the fact that out-of-province cases were carefully estimated for the opening weeks of the pandemic,
and each required tests.

The model characterization of daily diagnosed cases identified specifically by active case finding –
conducted via activities such as contact tracing, screening, and drive-through testing – is designed
to capture the fact that in such forms of case finding, testing tends to drive the count of individuals
diagnosed, and identifies infected individuals at all stages of the natural history of infection. To
represent the fact that test count drives the count of cases diagnosed with an efficiency limited by the
number of infected individuals, we made use of a previously published testing model [19]. Within this

model, the count of infectives identified by testing is characterized as IU βT(1− e−α V
IU ), where V is the

total test volume, IU is the total count of undiagnosed infectives, α is a measure of test efficiency, and
βT ∈ [0, 1] represents an upper limit on the fraction of infectives that could be identified via active case

finding. In this test model, the term βT(1− e−α V
IU ) characterizes the fraction of all infectives that are

diagnosed. Reflecting the fact that active case-finding efforts are incomplete in their reach, βT represents
the fraction of infectives that would be diagnosed via active-case finding if the total test volumes
V were to be arbitrarily large (i.e., the asymptomatic fraction of infected individuals who would be
located as the ratio of test volume to infections approaches infinity); given the broad reach of contact
tracing within the province, this work treated βT as 1. α is a measure of testing efficiency. When βT is 1
(as it is here), for a small active test volume V, this can be seen roughly corresponding to the product
of the test positivity rate and test specificity: For every test performed, α infectives will on average be

discovered. The saturating exponential term (1− e−α V
IU ) assumes that as the volume of tests performed

for active case finding rises, a greater number of tests are needed to find a given infective. Thus, while
more tests will identify additional infectives, doubling the count of tests performed will not double the
count of infectives identified. By employing this test model to calculate the cases diagnosed by active
case finding in this project, and recognizing the priority placed on presentation-driven tests that drive
passive case finding, the model assumes that the total volume of tests performed for active finding is
given by the difference between the total testing volume (Em) and the volume of tests performed for
passive case finding (min( IYU fY

tIY
, Em)), and thus Vactive = Em −min

(
IYU fY

tIY
, Em

)
. At any time, the total

count of undiagnosed infectives can be calculated by summing all of the undiagnosed compartments,
which is IU = EU + IAU + IA2U + IA3U + IYU + IYNU . Thus, the model gives the diagnosed cases

found by active testing as Vp = IU βT(1− e−α
Vactive

IU ). And the daily count of diagnoses from active
case finding for different compartments (e.g., EU , IAU , IA2U , IA3U , IYU , and IYNU) – depicted as orange
arrows in Figure 1 – is treated as simply being split proportionally according to the count of people in
each undiagnosed infective compartment.

2.1.2. Acute Care Utilization

Undiagnosed or diagnosed symptomatic individuals who develop severe or critical COVID-19
complications [20] at the time of transitioning from the early stage symptomatic period (leaving IYU
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and IYD) are presumed to present for care and enter into the hospitalization stocks either for acute but
non-critical care (compartment HNICU) or for critical care (HICU) – the purple flows in Figure 1. The
fraction of all individuals progressing from diagnosed early- to diagnosed late-stage symptomatic state
who are treated as not developing severe or critical COVID-19 complications is treated as 1− fH . The
fraction of all individuals progressing from undiagnosed early- to diagnosed late-stage symptomatic
state diagnosed by passive testing is fY. And the fraction of individuals progressing from undiagnosed
early- to undiagnosed late-stage symptomatic state diagnosed by passive testing is 1− fH − fY. Of
the fraction fH of such progressors requiring hospitalization, the fractions that transition to the ICU
(HICU) and non-ICU (HNICU) are given by parameter f ICU and 1− f ICU , respectively. Individuals in
both such hospitalization compartments are further subject to mortality, with deceased individuals
transitioning to compartment D at the time of passing, as indicated by the grey flows in Figure 1. Given
the overall COVID-19 case fatality rate for hospitalized patients requiring ICU care or not in need
of such care (denoted by φICU and φNICU , respectively), the model characterizes the corresponding
daily mortality rates as−ln(1− φICU)/tICU and−ln(1− φNICU)/tNICU , where tICU and tNICU are the
mean durations of ICU hospitalized and non-ICU hospitalized patient stays before death, respectively.
As a simplifying assumption and to lower the count of compartments required and the resulting size
of the state space, the model does not seek to explicitly model continued hospital residence amongst
some patients prior to or following ICU discharge.

2.1.3. Exogenous/Endogenous infections

The model considers infectives as originating from both endogenous sources (via infection through
contact with other infectives in the modeled population) and exogenous sources (where infectives
arrive in the population via out-of-province (and particularly international) arrivals), which are flows
represented by the magenta arrows in Figure 1. This exogenous flow is driven by the empirical time
series of daily travellers infected outside of the population and was of strong importance for accounting
for patterns in the opening two to three months of the pandemic, on account of the importance of
international arrivals in driving subsequent endogenous transmission. Endogenous infections are
calculated by the transmission system of the model.

2.1.4. Vaccination System

The model considers two levels of vaccination-induced protection for the population [21]. This
characterization reflects the fact that Saskatchewan’s vaccination campaign employed only two-dose
vaccines, namely Pfizer/BioNTech BNT-162b2, Moderna mRNA-1273, and AstraZeneca ChAdOx1.
With the BNT-162b2 vaccine being responsible for approximately 74.86% of all vaccines delivered
within the province, and conscious of the adverse impact on model state space size and – by extension –
machine-learning inference accuracy, we made the simplifying assumption of characterizing vaccinated
individuals by two levels of vaccine protection, rather than with further levels and/or via stratification
with respect to each vaccine product. Two flows of daily vaccinated cases from the susceptible
(compartment S) to the first level of vaccination-induced protection (compartment V1) and from the
first dose vaccinated to a higher level of protection (compartment V2) (represented by green arrows
in Figure 1) are driven by the empirical time series of daily receiving first dose vaccines and second
dose vaccines. Because of limited evidence concerning the duration of vaccine protection [21], this
model currently assumes the vaccines confer permanent protection. Individuals with both one and
two doses of vaccines remain subject to the risk of infection, with the relative risk of infection in
each dose-count-specific compartment compared to an unvaccinated symptomatic being given by
the one minus an estimate of vaccine efficacy against infection with that dose count. The vaccine
efficacy against infection of the vaccines used within Saskatchewan is reported based on clinical
trial data [22] that differs from vaccine to vaccine, notably against different COVID-19 variants of
concern (VoCs). Reflecting the mixed vaccination regime and the presence of multiple VoCs over the
timeframe of the study, the vaccine efficacy against infection considered in this project for a single
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dose (denoted as e1) and two doses (denoted as e2) are 0.8 and 0.95 based on the vaccines used in
Canada – Pfizer, Moderna, and Astra-Zeneca [22]. While COVID-19 vaccines routinely offer greater
efficacy against hospitalization and mortality than against infection, motivated in part by the desire
to avoid the adverse effects on model inference of enlarging the state space of the model and lacking
ready empirical data on breakthrough infections at time of formulation, the model treats breakthrough
infection as placing an individual into the same pathways of infection as are used for an infected
unvaccinated individual.

2.1.5. Infectious Transmission System

The force of infection parameter λ characterizes the hazard rate of infection – the probability
density with which a fully susceptible (e.g., a person in the stocks of S) is subject to infection from
an infective, and is governed by mass action principles [23]. The force of infection parameter λ is
calculated by cβpe, where c is the contact rate among the population per unit time, β is the probability
of transmitting COVID-19 per discordant contact and pe is the effective prevalence of infectives in the
mixing community. The construct of the effective prevalence of infectives in the mixing community,
pe, is designed to take into account the mixing implications of the symptoms, diagnosis, and acute
care status of infective individuals; we refer to a relative-mixing-level-adjusted size of a subpopulation
as the “effective” size of that subpopulation. The effective prevalence of infectives in the mixing
community pe is represented by the fraction of the effective infectives among the effective population
in the community. We assume that undiagnosed oligosymptomatic individuals (in the compartments
of IAU , IA2U and IA3U) have full social contacts and undiagnosed symptomatic individuals (in the
compartments of IYU and IYNU) exhibit a relative reduction in the level of social mixing as given by
fraction ρU as measured relative to full social contacts (themselves as assumed to be associated with
a relative mixing rate of 1), and non-hospitalized diagnosed patients (in the compartments of IAD,
IA2D, IA3D, IYD and IYND) in the community have a similar proportional reduction in mixing denoted
ρD. Hospitalized patients are treated as not engaging in mixing, and thus do not contribute to the
size of the effective mixing populations, and thus carry a relative mixing rate of 0. It is important
to emphasize that such values represent relative mixing rate characterizations; secular changes in
contact rate across the population (such as those that might be caused by public health orders) are
characterized by another element of the formulation detailed below. There are three flows in the
model reflecting the force of the infection process – the infection from stocks S, V1 and V2, which are
associated with rose-coloured flows in Figure 1.

2.1.6. Municipal Wastewater Surveillance Characterization

Municipal wastewater refers to sewage containing waste from households, workplaces and other
sources served by municipal infrastructure [24]. In a public health context, wastewater surveillance
(WWS) describes the process of sampling and analyzing wastewater to monitor phenomena such as
the prevalence of conditions, use of pharmaceuticals, and occurrence of viral outbreaks in communities
[24]. Medema et al. [25] demonstrated a significant correlation between COVID-19 virus SARS-CoV-2
concentrations in wastewater and the prevalence of COVID-19. This finding suggested that wastewater
surveillance of SARS-CoV-2 could offer a tool to monitor the trends of COVID-19 prevalence in
cities. Moreover, wastewater surveillance offers a significant advantage since the concentration of
SARS-CoV-2 in the wastewater sampling is representative of the entire population served by the
sewage shed, regardless of health status, propensity care-seeking behavior or reported infection status
[24]. Moreover, because of the high shedding levels seen in the early stages of infection by SARS-CoV-2,
wastewater assays can often identify pre-symptomatic or oligosymptomatic populations.

This project involved the design, implementation, deployment, and routinized use of a
particle-filtered compartmental model to estimate epidemiological and health system state using
time series including wastewater concentrations of SARS-CoV-2. Due to the dynamics of viral load,
fecal shedding in an SARS-CoV-2-infected individual varies across natural histories of infection, such
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as between symptomatic/asymptomatic, and over stages of progression [26–28]. We made use of
a weighted shedding model reflecting the fact that individuals in the early stages of infection shed
at far higher rates than do those at later stages of infection. Hoffman et al. [28] estimated shedding
profile modulates viral concentrations in faecal samples over time; the estimated weights of viral
concentration of different stages based on this research are shown in Table 1. In light of that weighted
shedding profile for individuals and the larger shedding populations of interest, we treat there as
being a constant of proportionality γ that relates the (weighted) value of the shedding population to
the daily concentration of SARS-CoV-2. Reflecting the fact that the focus of the wastewater monitoring
within Saskatchewan was on cities exhibiting separated storm-water and wastewater infrastructure
marked by short (≤ 8 hours) toilet-to-municipal wastewater treatment plant transit times, and use
of autosampling from the primary inflow into the treatment plant, we treated the concentration of
COVID-19 wastewater samples for a given city as indicative of the current – rather than the lagged –
epidemiology for that city.

2.1.7. Model Parameters

Table 1 gives the value and units for constant parameters of the deterministic COVID-19 model;
readers interested in further detail regarding the formulations involving these parameters are referred
to Appendix A.

Table 1. Table of constant parameters

Parameters Description Value Source Unit

ρU Relative mixing rate amongst
undiagnosed symptomatics

0.6 [29](1) 1

ρD Relative mixing rate amongst diagnosed
in community

0.36 [29](1) 1

ExD Daily travel imported case count of
diagnosed

Surveillance data SHA primary data Persons/Day

EVacc1 Daily count of persons administered the
1st dose vaccination

Surveillance data SHA primary data Persons/Day

EVacc2 Daily count of persons administered the
2 doses vaccination

Surveillance data SHA primary data Persons/Day

Vt Daily count of persons undergoing PCR
(nasopharyngeal swab)-based testing

Surveillance data SHA primary data Persons/Day

VHICU Daily count of COVID-19 patients
admitted into the ICU

Surveillance data SHA primary data Persons/Day

VHNICU Daily count of COVID-19 patients
admitted into the non-ICU

Surveillance data SHA primary data Persons/Day

fS Fraction of arriving symptomatics
identified upon arrival

1/3 expert estimation 1

fHICU Fraction of admitting ICU among
hospitalized patients

0.23 SHA primary data 1

tE Mean latent period 2.9 PHAC data Day
tI Mean incubation period following

infectivity
2.72 [30] Day

tIY Mean time to develop or avoid
complications

6.0 [31] Day

tR Mean recovery time following symptoms 9.5 PHAC data Day
tH Mean duration of hospital stay for

non-ICU patients before recovery
12.0 SHA primary data Day

tICU Mean duration of ICU stay before to
hospital wards, discharge or death

6.0 SHA primary data Day
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Table 1. Cont.

Parameters Description Value Source Unit

tNICU Mean duration of non-ICU stay before
death

4.57 SHA primary data Day

fpA Fraction of persistent asymptomatics 0.4 [32] 1
φICU Case fatality rate amongst ICU patients 0.45 SHA primary data 1
φNICU Case fatality rate for cases not requiring

ICU care
0.08 SHA primary data 1

e1 Vaccine efficacy for dose 1 0.8 [22] 1
e2 Vaccine efficacy for those completing (2

doses) primary series
0.95 [22] 1

γ Ratio of model shedding measure to viral
concentration in wastewater

10.374 PMCMC model [33] copies/100ml/
Person

wE Viral shedding weight in exposed stage
(EU)

0.2 [28] 1

wIA Viral shedding weight in
presymptomatic stage (IAU , IAD)

0.5 [28] 1

wIY Viral shedding weight in symptomatic
stage with complications and cotemporal
stages of oligosymptomatic infection
(IA2U , IA2D , IYU , IYUD , HICU , HNICU)

0.2 [28] 1

wIN Viral shedding weight in early
symptomatic stage (absent
complications) and cotemporal stage of
oligosymptomatic infectives (IA3U , IA3D ,
IYNU , IYND)

0.1 [28] 1

βT Upper limit on fraction of infectives
found by active testing

1.0 Reflective of full extent
of unit range

1

2.2. Calculation of Variables of Interest from the COVID-19 Model

Figure 1 shows the system of ODEs governing the behaviour of the deterministic COVID-19
model. As detailed in Section 2.3.1, the stochastic version of this model serves as the state space model
for particle filtering. We detail here a set of derived quantities whose formulation is identical for both
forms of the model.

A variety of COVID-19 outcomes of interest can be derived from the ODEs shown in Equation A1
in the Appendix A, including those relevant for epidemiological and acute care decision-making. From
the standpoint of public health planning and epidemiology, important quantities include a dynamic
characterization of the effective reproductive number (denoted as Rt), the count of undiagnosed
infectives in the community with time (denoted as NU), and the force of infection (λ). Each of these
quantities provides information important for understanding the evolution of the current pandemic
situation and played a central role in the reporting undertaken from the model. Such measures are
especially useful in indicating the evolution of the epidemiological situation, anticipating incipient
outbreaks, assessing the performance of current intervention strategies, and informing decisions to be
made in the near future, such as those involving relaxation or re-imposition of public health orders.

Some of the model-derived values are of foremost value in the sphere of projection, rather than
in the historic time horizon. From the standpoint of acute care and surge planning, the model offers
particular value by virtue of its capacity to project forward acute care demand, both in the form of
new admissions for COVID-19 Intensive Care Unit (ICU) and non-ICU hospital needs and in terms of
census counts for both of those levels of acute care services. Particularly when the stochastic version of
the model is used with particle filtering, such information can aid in decisions involving triggering of
surge capacity.

2.2.1. Calculation of the Evolving Effective Reproductive Number

The basic reproductive number (denoted as R0) and effective reproductive number (denoted here
as Rt) are widely used concepts in mathematical epidemiological models. The basic reproductive
number (R0) is the average number of secondary infections transmitted by a typical infective individual
in a completely susceptible surrounding population [34]. While an understanding of this quantity is
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of great value, in the context of an evolving outbreak, with a population of evolving susceptibility,
behavioural & public-health measure-induced changes in the contact rate, changing variant ecology,
and greater day-to-day attention typically rests on the effective reproductive number (Rt). Rt is the
average number of secondary infections transmitted by a typical infective individual in a population
composed of both susceptible and non-susceptible persons and reflective of the current epidemiology,
including mixing patterns and public health, institutional and personal protective practices at present,
vaccine effectiveness, population turnover, and currently circulating variants. As a general rule, if
Rt(t) > 1, the count of infected individuals will increase over time; if Rt(t) = 1, the count of infected
patients will remain roughly constant; if Rt(t) < 1, the number of individuals infected will decline
over time.

The model detailed here used two methods to calculate the effective reproductive number (Rt):
A simplified original method, and a method that takes into account the differential mixing rates
between undiagnosed and diagnosed individuals, and the case-finding process that leads individuals
to transition from the former to the latter. Both methods played prominent roles in daily reporting
using the model throughout different stages of the pandemic. The original method is based on such an
assumption that all infectives exhibit full – not reduced – mixing with the susceptibles throughout their
full duration of infectivity (i.e., until recovery). Recalling that e1 and e2 represent vaccine effectiveness
given one or two administered doses, respectively, and that ρU and ρD denote relative rates of mixing
amongst symptomatic-but-undiagnosed individuals and diagnosed individuals, respectively, the
original values of R0 and Rt(t) in this COVID-19 model are characterized as follows:

R0 = Cβ(tI + tIY + tIYN )

Rt(t) = R0 · fSusc(t) (1)

fSusc(t) =
S(t) + (1− e1)V1(t) + (1− e2)V2(t)

N(t)

N(t) = (S + EU + IAU + IA2U + IA3U + RU + V1 + V2) + ρU(IYU + IYNU)+

ρD(IAD + IA2D + IA3D + IYD + IYND + RD)

However, in real-world scenarios (and in this model), infection spread is governed by other
factors besides those captured in the equations above. Specifically, the degree of infection spread
from an infective is affected by the relative mixing levels between undiagnosed symptomatics and
diagnosed infectives. Whilst the characterization in Equation (1) considers those factors inasmuch as
they affect the fraction of contacts that are made with susceptibles, it fails to consider them in terms
of the behaviour of the infective individual over the course of their illness. Considering the effective
duration infectives spend in different infected stages leads to a new formulation for each of the basic
and effective reproductive numbers, denoted R′0 and R′t, respectively:

R′0 = CβtE f f ective

tE f f ective =
1
IE

[
(IA + ρD IAD)(tI + tIY + tIYN )+

(IA2 + ρD IA2D + ρu IYU + ρD IYUD)(tIY + tIYN )+

(IA3 + ρD IA3D + ρu IYD + ρD IYND)tIYN

]
IE = (IA + IA2 + IA3) + ρu ∗ (IYU + IYN) + ρD ∗ (IAD + IA2D + IA3D + IYUD + IYND) (2)

R′t(t) = R′0 · fSusc(t)

In this contribution, we employ the latter method, which considers the effective time of infectives
to estimate and predict the effective reproductive number Rt.
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2.2.2. Count of Undiagnosed Infectives in the Community over Time

Given the underlying structure of the model, the count of undiagnosed infectives in the
community NU(t) can be calculated by summing the count of undiagnosed persons in each infective
compartment as follows:

NU(t) = IAU + IA2U + IA3U + IYU + IYNU (3)

2.2.3. Daily Effective Prevalence of Infectives in the Mixing Community

The point prevalence of COVID-19 is the proportion of individuals in a population who have
COVID-19 at a specified point in time [35]. Thus, the equation of the standard prevalence is as follows:

pst =
IAU + IA2U + IA3U + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND

S + EU + IAU + IA2U + IA3U + V1 + V2 + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND
(4)

In the model, we use the effective prevalence instead of the standard prevalence. The effective
prevalence considers the weight of contact coefficients of the undiagnosed infectives (ρU) and the
weight of contact coefficients of the diagnosed infectives (ρD). Thus, the daily effective prevalence of
infectives in the mixing community can be calculated by the fraction of the effective infectives in the
total effective population in the community. The formulation is as follows:

pt =
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + EU + IAU + IA2U + IA3U + V1 + V2) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)
(5)

2.2.4. Force of Infection

Section 2.1.5 introduced the model’s use of the force of infection (λ). This quantity can be
calculated as the product of what we term the transmission rate – itself the product of the contact rate
and probability of transmission per discordant contact – and the fraction of the mixing population that
is infectious:

λ = cβpt (6)

where pt is the daily effective prevalence of infectives, as characterized by equation 5.

2.2.5. Cumulative Prevalence of Infections

Period prevalence is the proportion of individuals in a population who have had COVID-19
over a specified period of time [35]. Thus, the cumulative prevalence of COVID-19 infections can be
calculated by the fraction of the initial population who have ever been infected by COVID-19. The
formulation of the cumulative prevalence of infections at time T is as follows:

pc =

∫ T
0 λ[S + (1− e1)V1 + (1− e2)V2] dt

N0
(7)

2.2.6. New Hospital Admissions and Census Count for non-ICU and ICU Needs

A key motivator for the construction of the COVID-19 model characterized in this project is to
estimate and predict acute care demand and capacity utilization. This includes considering hospital
admissions – including ICU admission and non-ICU admission cases – and the daily number (census)
of ICU and non-ICU hospital patients. The daily hospitalized census for ICU and non-ICU at any
given time is simply characterized by the values of the compartments HICU and HNICU , respectively.
Recalling that the time unit of the model is days, the per-day rate (daily count) of new admissions of ICU
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patients is given by the sum of two flows into the HICU compartment, representing the development
of critical symptoms by both previously diagnosed (IYD) and (separately) previously undiagnosed
(IYU) symptomatic infectives. Similarly, the daily new hospital admissions of patients not requiring
ICU care is the sum of two flows into the HNICU compartment, representing the development of severe
symptoms by both previously diagnosed (IYD) and undiagnosed (IYU) individuals. Thus the daily
new admissions of ICU and non-ICU patients are as follows:

dHICU =
(IYU + IYD) fH fHICU

tIY

dHNICU =
(IYU + IYD) fH(1− fHICU)

tIY

(8)

2.3. SMC Algorithm Incorporation of the Stochastic COVID-19 Model

The prominent sequential Monte Carlo (SMC) method of particle filtering is a contemporary
state inference and identification methodology that supports filtering of general non-Gaussian and
non-linear state space models in light of time series of empirical observations [3,5,9]. This approach
estimates, via sampling, the time-evolving internal state of a dynamic system (here, the COVID-19
model) in which random perturbations are present, and where information about the state is obtained
via noisy measurements made at each observation time. The state space model characterizes the
processes governing the time evolution of the internal state of the system with stochastics consisting
of random perturbations. The state of the state space model is assumed in general to be latent and
unobservable. Information concerning the latent state is obtained periodically via a noisy observation
vector. The particle filtering method can be viewed as undertaking a “survival of the fittest" of varying
hypotheses as to the current location of the system in state space, with each such hypothesis being
represented by a particle, the fitness of which is determined by the consistency between what is
observed empirically at each observation time point and what would be expected given the state of the
particle (the hypothesized state) at that time point. Interested readers are referred to a more detailed
treatment in [5,9,10].

2.3.1. State Space Model

The state space model depicts the processes governing the time evolution of the state – both latent
and observable – of a noisy system. In this paper, the state space model consists of a stochastically
embellished variant of the deterministic COVID-19 model depicted in Figure 1 and whose equations
are given in Equation A1 of the Appendix A. Reflecting the fact that effective use of particle filtering
requires an underlying state equation model exhibiting stochastic variability, we characterize here an
extension of the deterministic model that incorporates random perturbations in dynamic processes —
including several stochastically evolving parameters — so as to reflect stochastic time evolution in
the external world. The extended, stochastic model introduced below then serves as the basis for an
accompanying particle filter.

The state vector of the particle filtering model is given by:[
S, EU , IAU , IAD, IA2U , IA2D, IA3U , IA3D, IAU , IAD, IYU , IYD, IYNU , IYND, HICU , HNICU ,

RU , RD, D, logit(Cβ), logit(α), logit( fH), logit( fY)
]T

.

Dynamic Processes

We consider stochastic processes to characterize the arrival of undiagnosed travel-imported
symptomatic cases, contact and care-seeing behaviour, and test positivity rates associated with active
screening. Moreover, Poisson processes are used to reflect the stochastics associated with the occurrence
of a small number of cases over a small unit of time – denoted as ∆t (carrying the value of 0.001
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days in the COVID-19 model) [3,5]. The stochastic process characterizing undiagnosed travel-based

importation of symptomatic infectives is given by
Poisson

(
ExD∆t 1− fS

fS

)
∆t .

Dynamic Parameters

There are a set of quantities that might commonly be regarded as parameters, but whose values
evolved in notable ways over the course of the COVID-19 pandemic, particularly with the evolution
of human behaviour, variant ecology, due to changes in active case-finding efforts, and arrival of
the pathogen in vulnerable demographics and communities. Such quantities are termed “dynamic
parameters” herein. The dynamic parameters of the deterministic COVID-19 model are listed in Table
2.

Table 2. Table of dynamic parameters

Parameters Meaning Min(a) Max(b) STD Unit

Cβ Transmission contact rate 0(1) 0.49181 10.0 Persons/Day
fH Fraction of symptomatic individuals who proceed on to

require hospitalization
0.04 0.06 0.1 1

fY Fraction of undiagnosed symptomatics who proceed on
to seek care but who are not hospitalized

0.1 0.821 0.5 1

αt A measure of test efficiency 0.01 0.25 5 1

Figure 2. The model structure of the stochastic particle filtering model
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2.3.2. Likelihood Function

Our formulation of the overall likelihood function and sub-likelihood functions for this work
drew inspiration from our past success in employing negative binomial-based likelihood functions
in a diverse set of particle filtering applications in communicable disease [3–8], and by others
in MCMC-based approaches for H1N1 influenza [36]. Moreover, for simplicity and in line with
formulations used successfully in multiple of our past contributions [3,4,6], the current model
characterized the overall likelihood function for the particle filtering model as the product of
sub-likelihood functions, each considering a distinct subset of the empirical datasets employed to
ground the model:

L = LNewReportedEndogenousCases ×LCumulativeReportedEndogenousCases

×LCumulativeICUAdmissions ×LCumulativeNICUAdmissions (9)

×LICUCensus ×LNICUCensus

×LCumulativeDeaths ×LViralConcentrationsinwastewater

Table 3. Table of sub-likelihood functions

Likelihood Name Empirical Dataset Model Value Mathematical Form

LNewReportedEndogenousCases New Reported
Endogenous COVID-19
Cases

VP + IYU ( fH+ fY)
tIY

Negative Binomial

LCumulativeReportedEndogenousCases Cumulative Reported
Endogenous COVID-19
Cases

∫
(VP + IYU ( fH+ fY)

tIY
) Negative Binomial

LCumulativeICUAdmission Cumulative Hospitalized
ICU Admission patients

∫
dHICU Negative Binomial

LCumulativeNICUAdmission Cumulative Hospitalized
non-ICU Admission
patients

∫
dHNICU Negative Binomial

LICUCensus Daily Hospitalized ICU
Census patients

HICU Negative Binomial

LNICUCensus Daily Hospitalized
non-ICU Census patients

HNICU Negative Binomial

LCumulativeDeaths Cumulative COVID-19
Deaths

D Negative Binomial

LViralConcentration Measured concentration
of SARS-CoV-2 virus in
wastewater

γ[wEEU + wIA(IAU +
IAD) + wIY(IA2U + IA2D +
IYU + IYUD + HICU +
HNICU) + wIN(IA3U +
IA3D + IYNU + IYND)]

Gamma Distribution

Each sub-likelihood function is characterized by one of two distinct parametric statistical
distributions – a negative binomial distribution or gamma distribution. Such sub-likelihood functions
characterize the likelihood of observing the empirical datum, given an underlying model state specified
by the particle state. Those two forms of sub-likelihood functions are introduced as follows:

• The value of each sub-likelihood function based on a negative binomial distribution is given as
follows:

LNegativeBinomial =

(
y + r− 1

r− 1

)
pr(1− p)y (10)

where y is the observed datum, x is the model value corresponding to that datum (integer
rounded), r is the dispersion parameter associated with the negative binomial distribution, and
p = x

x+r . In this project, the value of dispersion parameter r was chosen to be 5.
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• The value of the sub-likelihood function based on a gamma distribution is given as follows:

LGamma =
βαy(α−1)e−βy∫ ∞
0 zα−1e−zdz

(11)

where y is the observed datum, x is the model value corresponding to that datum, k is the shape
parameter, α = x

k−1 , and β = k
x . Such likelihood functions within this project assumed a value of

k = 5.

It is important to note that while the likelihood function employed here is designed to be used
with each of the types of data shown in Table 3, the likelihood formulation is moreover designed to be
robust in the context of missing data for several of those types of data. Data that can be accommodated
as missing includes hospitalized admission data – ICU and non-ICU, hospitalized census data – ICU
and non-ICU, and viral concentration in wastewater data. When a datum is not available for these
types of observations, the corresponding sub-likelihood function will be treated as holding a value
of unity (1.0). Thus, given missing data of this sort, the overall likelihood function will still carry the
value of the product of the sub-likelihood functions for which data is available.

2.4. Data Sources

Since June 2020 and through early 2022 – and with prior episodic use – this model has served in a
production capacity for the whole of Saskatchewan, and for varying periods for particular regions,
municipalities, and small-area geographies within Saskatchewan. For the period October 2020 -
October 2021, via a contract with the Public Health Agency of Canada (PHAC), it was further used
for reporting and projections multiple times a week for all provinces of Canada. Beyond that, via a
contract for reporting to the First Nations and Inuit Health Branch of Health Canada (FNIHB), the
model was used in the period November 2020 - March 2022 for biweekly reporting and projections
for First Nations Reserves in six Canadian provinces. Most such uses have exercised subsets of the
likelihood functions considered, with hospital census data and wastewater data being restricted to
subsets of jurisdictions.

For a given jurisdiction, empirical datasets are fed into the particle filtering model to estimate and
predict the evolution of the epidemiological and acute care state of that jurisdiction. The empirical
datasets employed in the model can be divided into two categories: A set incorporated in the likelihood
function for training the particle filtering model, and another that serves as an exogenous input to the
differential equation model.

The following empirical datasets were considered in the likelihood function:

• Daily count of new reported incident confirmed or suspected cases.
• Cumulative reported incident confirmed or suspected cases from the inception of the pandemic.
• Cumulative reported deaths from COVID-19.
• Daily count of COVID-19 patients admitted into the ICU.
• Daily COVID-19 patients admitted into hospital for non-ICU care.
• Daily midnight census (count) of COVID-19 patients in the ICU.
• Daily midnight census of COVID-19 patients in the hospital for non-ICU care.
• Weekly average virus SARS-CoV-2 concentration in wastewater.

The following empirical datasets were incorporated as exogenous inputs directly into the dynamic
model:

• Daily new likely exogenous cases, which represent arrivals into the jurisdiction believed to be
infected while outside the jurisdiction, with an emphasis on international travel.

• Daily count of persons undergoing PCR (nasopharyngeal swab)-based testing.
• Daily count of COVID-19 patients admitted into the ICU.
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• Daily count of COVID-19 patients admitted into hospital for non-ICU care.
• Daily count of persons who received the 1st dose vaccination.
• Daily count of persons who received their second vaccinate dose.

It is important to note that the empirical datasets of “Daily count of COVID-19 patients admitted
into the ICU" and “Daily COVID-19 patients admitted into hospital for non-ICU care" are used in both
the likelihood function and in driving the model directly.

2.5. Characterizing Model Fidelity to Empirical Data

A key driver for the evolution of the particle filtering approach applied here was the ongoing
critical assessment of the fidelity between outputs from the particle-filtered model and the above
empirical data sources. As a primary metric for assessing such fidelity in this project, we employed a
discrepancy function. The discrepancy between the particle filtering model results and each empirical
dataset specified here is the mean of the normalized-RMSE (root mean square error) across the whole
time frame of the model incorporating the empirical data; as such, smaller discrepancies are considered
favourable. To accommodate the different scales of multiple empirical datasets, we employ the
normalized-RMSE to measure the difference between the model estimated/predicted values and
the observed data of each empirical dataset on each day having observed data. The mathematical
formulation for the normalized-RMSE is specified in Appendix D.

3. Results

This section characterizes COVID-19 particle filtering model results and (empirical data
availability permitting) associated discrepancies for both day-to-day estimates of the epidemiological
state and projection of quantities such as the future daily infected cases, force of infection, and ICU
and non-ICU admissions and census.

3.1. Particle filtering model results with incorporating empirical datasets

Although the particle filter model characterized here at various intervals provided reporting for
17 different jurisdictions; for the sake of simplicity, we focus here on results for a jurisdiction offering
wastewater data and served by amongst the longest spans of data – Saskatoon, Saskatchewan. In the
application examined here – which is emblematic of simulations conducted on this jurisdiction over
long periods of time – the COVID-19 particle filtering model takes in daily incoming empirical data to
produce daily reporting. The model runs start on February 22, 2020, when the empirical data became
available from the appropriate public health agency (here, the Saskatchewan Health Authority); testing
for COVID-19 began on February 25, 2020, and the first reported infected cases occurred on March 11,
2020. The simulation here proceeds to July 31st, 2021, prior to the widespread appearance of the Delta
variant of concern. Particle filtering was conducted with a particle count of 150,000.

Table 4. Table of discrepancies (Normalized Root Mean Square Error (NRMSE)) of all empirical
datasets compared with model estimated results (with 5 realizations)

Dataset Mean 95% Confidence Interval

Count of daily reported cases 0.8429 (0.8343, 0.8515)
Cumulative reported cases 0.2750 (0.2558, 0.2943)
Cumulative death cases 0.4981 (0.4842, 0.5121)
Daily virus concentration in wastewater 0.5734 (0.5511, 0.5957)
Cumulative hospitalized non-ICU admissions 0.1306 (0.1223, 0.1389)
Cumulative hospitalized ICU admissions 0.5372 (0.5313, 0.5431)
Daily hospitalized non-ICU census 0.4181 (0.4117, 0.4245)
Daily hospitalized ICU census 0.6545 (0.6492, 0.6598)
Sum of total 3.9300 (3.8980, 3.9617)
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Table 4 presents the mean discrepancy, with 5 runs of the model. For comparison in scale, the table
further provides the 95% confidence interval of each empirical dataset incorporated in the likelihood
function to ground the model. As a reminder, the lower the discrepancy, the better the results sampled
from the particle filtered model reproduce the empirical dataset.

Figures 3 to 10 show the particle filtering COVID-19 model’s (the results of the minimum
discrepancy among those 5 runs) estimated results, compared with empirical data. The comparison
between model results and empirical data indicates that the particle filtering COVID-19 model can
estimate the daily COVID-19 transmission and hospitalization status. As an important caveat, for
data confidentiality reasons, precise empirical data is only provided here for empirical data publicly
available through the Saskatchewan Health Authority COVID-19 dashboard [37]. For depiction of the
two types of data not publicly available (ICU and non-ICU hospital admissions) in those figures, we
ensure data confidentiality by showing synthetic data in the figure instead of actual data. Specifically,
for each of ICU and (separately) non-ICU hospital admissions, the data shown in the figures for a
given day is poisson-distributed pseudo-empirical data. That is, for day t with an actual count of nt

hospital admissions, the synthetic datapoint is drawn from poisson(max(nt, 0.05)).

Figure 3. Daily new reported confirmed or suspected infective cases between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot)

Figure 4. Cumulative reported infective cases in the community between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot)

Figure 5. Daily count of COVID-19 patients in the hospitalized ICU between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot)
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Figure 6. Daily count of COVID-19 patients in the hospitalized non-ICU between particle filtering
model results (boxplot) and empirical data (superimposed red scatterplot)

Figure 7. Daily count of COVID-19 hospitalized deaths between particle filtering model results
(boxplot) and empirical data (red scatter plot)

Figure 8. Daily wastewater viral concentration of SARS-CoV-2 (N2 copies per 100mL) between particle
filtering model results (boxplot) and empirical data with missing days (red scatter plot)

Figure 9. Daily count of Hospitalized ICU admitted patients between particle filtering model results
(boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot)
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Figure 10. Daily count of hospitalized non-ICU admitted patients between particle filtering model
results (boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot)

3.2. Estimation of Latent Dynamic Variables

Through ongoing incorporation of the empirical datasets to ground the COVID-19 dynamic
model, the particle filtering process estimates the latent states and dynamic variables to inform the
COVID-19 transmission. Figure 11 shows the model-estimated daily effective reproductive number
(the method and underlying mathematical formulation can be found in Section 2.2.1). Figure 12 shows
the model-estimated daily undiagnosed infectives (with details on formulation found in Section 2.2.2).
Figure 13 shows the model-estimated force of infection (λ) (with details on formulation found in
Section 2.2.4). Figure 14 shows the model-estimated daily effective prevalence of infectives in the
mixing community (with details on formulation found in Section 2.2.3). And Figure 15 shows the
cumulative prevalence of infections for each day (with details on formulation found in Section 2.2.5).
Readers interested in the estimated latent state of the COVID-19 particle filtering model are referred to
Appendix D.

Figure 11. The daily estimated effective reproductive number

Figure 12. The daily estimated count of undiagnosed infectives

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2023                   doi:10.20944/preprints202302.0078.v2

https://doi.org/10.20944/preprints202302.0078.v2


20 of 39

Figure 13. The daily estimated force of infection

Figure 14. The daily estimated effective prevalence of infectives in the mixing community

Figure 15. The daily estimated prevalence of cumulative infection

3.3. Projection Results

While the COVID-19 particle filtering model offers strong performance in monitoring and
estimating COVID-19 transmission, throughout its use across jurisdictions, such estimates of
current epidemiological state have routinely been accompanied by 14-day projections of COVID-19
transmission and hospitalization.

To assess the predictive capacity of the COVID-19 particle filtering model herein, we employed it
to perform 1-day, 7-day and 14-day predictions for each day starting from day 100 in Saskatoon and
continuing for the remainder of the time horizon considered here. Within the projection period (e.g.,
7 days) conducted from a given, no further particle filtering is performed, the model is simply run
forward, without any incorporation of the observed data. Mirroring the process seen in de-facto use of
the model, such a projection is performed from each successive day. It is essential to recognize that
while the projection itself doesn’t incorporate any new data, between each such day on which the projection
is launched, new data arrives and is incorporated by the particle filtering. The updated estimate of the latent
state of the system afforded by this incorporation of the new data by the particle filtering allows the
next projection (looking into the “future” as obtained from the standpoint of that day) to be made on
the basis of the refined and updated understanding of the current epidemiological context.

Table 5 shows the predictive discrepancy between the model-predicted results and the empirical
data. By comparing the average discrepancy of the three projection runs – 1-day, 7-day, and 14-day
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ahead – we can see that the relative accuracy of the projections decreases with longer prediction
timeframes. It bears emphasis that while discrepancies are computed here to compare model results
against empirical data, during the projection timeframes launched from each day, empirical data are
only used for comparison with the model-projected results. However, as noted above, new data is
taken into account before undertaking each successive projection.

Table 5. Discrepancies for 1-day, 7-day and 14-day projection run projected data against empirical
datasets

Dataset Mean Projection Discrepancy
1-day 7-day 14-day

Count of daily reported cases 0.7051 0.8301 0.9433
Cumulative reported cases 0.1591 0.1636 0.1769
Cumulative death cases 0.4098 0.4164 0.4293
Cumulative hospitalized non-ICU admissions 0.1617 0.1582 0.1734
Cumulative hospitalized ICU admissions 0.8705 0.8734 0.8838
Daily hospitalized non-ICU census 0.7131 0.7506 0.8308
Daily hospitalized ICU census 1.1541 1.1846 1.2364
Sum of total 4.1734 4.3767 4.6738

Figures 16 through 20 depict a comparison between the model-predicted results with the empirical
datasets (or, for confidentiality of hospital admissions, the empirically inspired synthetic data noted
above). To understand the results, it is to be emphasized that for every day, we perform three predictive
runs (1-day, 7-day and 14-day). When shown in boxplots in the figures, the values for (one) day-ahead
predictions of the model will be shown directly in comparison with the corresponding day-ahead
empirical data. By contrast, for the 7-day projection results, for each day the figures visually compare
the average model-predicted value over that 7-day interval with the corresponding average of the
empirical data over that same 7-day interval. As above, it is to be emphasized that within each such
projection from a given day, no particle filtering is occurring, and the empirical data are only compared
with the model results, not incorporated in the model. As noted above, as would and did occur
in day-to-day practice of a deployed system such as this, with the passage of each successive day,
new data is incorporated by the particle filtering mechanism to update the estimate of system state,
allowing the next projection to be made on the basis of that updated state estimate.

Those figures show that the preponderance of observed data (blue points in the diagrams) fall
within the 50% inter-quartile range of the boxplot, demonstrating relatively accurate model predictions
for up to 14 days in advance to inform public health agencies and governments, as in informed by
data up to the point of projection. For example, the prediction of daily new reported cases can produce
a picture of the trends in future transmission – as informed by system state estimated by the particle
filtering. In a similar manner, the prediction of daily hospitalized ICU, non-ICU admission, and
census patients can inform public health agencies’ mobilization of surge capacity, anticipation of
capacity utilization and service demands, and more broadly supporting judicious allocation of hospital
resources over the multi-week timeframe.
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Figure 16. The projection results (boxplot) of the daily reported cases compared with empirical
data (the blue points, and not incorporated in the model). (a) The next day projection results. (b)
The 7-day projection time-window-averaged projection results versus corresponding empirical data
window-averages. (c) The 14-day projection window-averaged projection results versus corresponding
empirical data window-averages.
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Figure 17. The projection results (boxplot) of the daily count of patients in the non-ICU compared
with the empirical data (the blue points, and not incorporated in the model). (a) the next day projection
results. (b) The 7-day projection time-window-averaged projection results versus corresponding
empirical data window-averages. (c) The 14-day projection time-window-averaged projection results
versus corresponding empirical data window-averages.
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Figure 18. The projection results (boxplot) of the daily count of patients in the hospitalized ICU
compared with the empirical data (the blue points, and not incorporated in the model). (a) The
next day projection results. (b) The 7-day projection time-window-averaged projection results versus
corresponding empirical data window-averages. (c) The 14-day projection time-window-averaged
projection results versus corresponding empirical data window-averages.
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Figure 19. The projection results (boxplot) of the daily count of deaths compared with the empirical
data (the blue points, and not incorporated in the model). (a) The next day projection results.
(b) The 7-day projection time-window-averaged projection results versus corresponding empirical
data window-averages. (c) The 14-day projection time-window-averaged projection results versus
corresponding empirical data window-averages.
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Figure 20. The projection results (boxplot) of the daily count of patients admitted to the non-ICU
admitted patients with empirically mimicking synthetic data (the blue points, and not incorporated
in the model), with the latter being employed to preserve confidentiality. (a) The next day projection
results. (b) The 7-day projection time-window-averaged projection results versus corresponding
synthetic data window-averages. (c) The 14-day projection time-window-averaged projection results
versus corresponding synthetic data window-averages.
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(c)

Figure 21. The prediction results (boxplot) of the daily count of patients admitted to the hospitalized
ICU compared with the empirically mimicking synthetic data (the blue points, and not incorporated
in the model), with the latter being employed to preserve confidentiality. (a) The next day projection
results. (b) The 7-day projection time-window-averaged projection results versus corresponding
synthetic data window-averages. (c) The 14-day projection time-window-averaged projection results
versus corresponding synthetic data window-averages.

3.4. Intervention Results

In the previous sections, we showed that the particle filtering algorithm can estimate the state
space of the COVID-19 model. Beyond supporting the projection methods examined in the previous
session, the capacity to perform such state estimation also confers benefits for conducting simulations
of tradeoffs between intervention strategies, despite their counterfactual character. As for projection
scenarios discussed in the previous section, during the time horizon of a given intervention run (e.g.,
14 days), the particle filtering is disabled, and the dynamic model is run forward with no empirical data
being incorporated. But, as for the projection methods above, with each successive day of operation,
particle filtering incorporates a new day worth of data. The accuracy of the intervention runs conducted
forward into the future from a given day following the particle filter update from the previous day
benefits from the updated state estimated made possible by particle filtering’s incorporation of a new
day’s worth of data.

In this section, we show two intervention experiments to simulate stylized public health
intervention policies. The stylized intervention strategies are characterized abstractly for demonstration
purposes, but are emblematic of the sort of more textured interventions examined during use of the
model, and provide a flavour of what could be achieved with other interventions. In each case, the
scenarios are run forward for 14 days from each successive day with the intervention mechanisms in
place. Such a scenario run undertaken from a given day depicts the posited result of undertaking the
associated intervention starting on that day.

For a given such day, a single boxplot for that day depicts, on the basis of the state estimate
as of that particular day as updated by particle filtering for that day, the average outcome over the
14-day intervention time horizon. It bears emphasis that, in each case, the intervention scenario is
counter-factual — the intervention is not put into effect from day to day; rather, each such 14-day
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intervention scenario projects what the impact of such an intervention would be, were it to be
undertaken starting on the current day.

The two interventions considered here are predominantly focused on actions undertaken during
two outbreak waves:

• The first stylized intervention exhibited here focuses on elevating hygiene-oriented personal
protective measures, such as might be exemplified by a regional mask mandate. For simplicity,
the examination here characterizes such interventions as multiplying the effective contact rate
by a coefficient in the range (0, 1). Figure 22 depicts the results of such counterfactual scenario
occurring focused on the first outbreak wave in Saskatoon. For simplicity, this scenario posits
an aggressive such hygiene-enhancing intervention which reduces the contact rate by 50%
specifically for the window between day 220 to day 310 (inclusive).

• In a second intervention type, we examine the outcomes from a stylized outbreak-response
immunization campaign elevating vaccination rates for the 14-day defined period. This effect is
achieved by using a coefficient to increase the effective vaccination rate in the model over that
timeframe. As an example, Figure 23 shows the results of elevating the effective vaccination rate
by 50% rate during the third outbreak wave in Saskatoon, with those elevated rates being in
place from day 390 to day 510, inclusive.

The baseline comparator for the intervention runs – no intervention policies performed – can be
found as the normal projection runs from Figure 16 to 19.
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Figure 22. Model-based projections of the effects, for each successive day, of the average outcome over
an intervention reducing the effective contact rate over the next 14 days, starting at that day.
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Figure 23. Model-based projections, for of COVID-19 the next 14 days average results when simulating
an outbreak-response immunization campaign. This is realized by characterizing a stylized elevated
vaccine-induced protection level among 50% of the population.

4. Discussion and Limitations

As demonstrated in its use to support reporting for 17 jurisdictions across Canada for a period
of a year or more, the COVID-19 particle filtering model can monitor COVID-19 transmission and
hospitalization, estimate the daily latent states and important dynamic variables, and predict future
daily transmission and hospitalization status over the multi-week timeframe, all in light of daily
updates to estimated system state. With running the model daily, the daily estimates for COVID-19
transmission, hospitalization status, projection and intervention results reflect the latest sets of
empirical data – including both health system and wastewater data – to provide current understanding
to inform public health and healthcare system decision-making.

This work suffers from a number of limitations. A key one concerns changes in variant ecology.
Reflective of the high amounts of transmission experienced globally, the virus SARS-CoV-2 causing
COVID-19 has exhibited marked evolution. For most of the period for which data is considered in
this paper (early 2020 to the end of July 2021) the wild type of SARS-CoV-2 of the uniform lineage in
place in Canada, with the Alpha variant [17] appearing in Canada in the final week of 2021 (and in
Saskatchewan by February 2021), followed by Beta and Gamma and Delta. With respect to our example
jurisdictions considered in example runs here (Saskatoon), the highly distinctive Delta variant [17]
became the dominant variant of SARS-CoV-2 following July 2021 driving the next wave of outbreaks.
Our COVID-19 particle filtering model is capable of simulating changes in the virus ecology by
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adjusting characteristic parameter values (e.g., to reflect virulence, transmissivity, fraction of cases
that are symptomatic, or vaccine effectiveness). For example, to change from simulating Alpha to the
Delta variant, we increase the maximum value of the “transmission contact rate" (denoted as cβ in this
paper), and decreased both of the two doses’ vaccine efficacy (denoted as e1 and e2). However, the
dynamic model assumes the presence of a single variant at a time, and is not suitable for characterizing
processes requiring representation of multi-variant ecologies, such as those involving competition
between multiple lineages. It is also not well-suited for capturing variant cross-reactivity with respect
to immunological protection.

Although the structure of the COVID-19 model has demonstrated effectiveness in simulating
COVID-19 transmission and hospitalization across diverse jurisdictions from the beginning of the
first infected individual occurrence until the end of 2021, there are a number of key shortcomings in
the existing structure of the model. Likely the single most important such limitation relates to the
failure of the model to adequately characterize the differential impact of vaccination on protection
from infection vs. protection from severe disease and death. The model’s existing characterization
of COVID-19 vaccination characterizes its impact of vaccination only as mediated by an impact on
transmission. While individuals in the model can be infected regardless of vaccination status, once a
breakthrough infection of a vaccinated individual occurs, the model lacks existing mechanisms for
retaining information on that individual’s vaccination status. As a result, conditional on infection,
the model grossly unrealistically characterizes a vaccinated individual as having an identical risk of
hospitalization, ICU admission and death as a non-vaccinated individual. While model parameters
associated with such outcomes can be modified to reflect a high prevalence of vaccination uptake, the
model urgently needs a means of characterizing different types of protection conferred by vaccines.
Such a representation is particularly urgent in light of the need to capture the evolution in variant
ecology emphasized above. Beyond this foundational modification, the model requires the capacity to
represent the impact of successive booster vaccines.

Beyond the key change required for characterization of vaccine-induced protection, the model
depicted in this paper exhibits a needs to adapt to the updated epidemiological context and evolved
understanding of SARS-CoV-2. Most importantly are a need to take into account the extensively
evidenced phenomenon of waning of both natural immunity (acquired from exposure to the disease
through infection) and vaccine-induced immunity.

Finally, the COVID-19 model structure characterized here is only applied to an aggregate
population. Important gains in insight can be secured by incorporation of key elements of heterogeneity
via stratification. Given the marked differences in risk of severe disease and hospitalization, vaccine
uptake, assortive mixing, and risk behaviour, stratification by age group is a key priority. Particularly
in light of the pronounced rural-urban disparities in vaccination and risk behaviour, and opportunities
for incorporation of data drawn from SARS-CoV-2 wastewater concentration assays across varying
municipalities, stratified by multiple regions can also confer notable benefits.

Most of the needs covered in this section have subsequently been successfully incorporated into
newer versions of the particle filtered dynamic model than those presented here, but coverage of this
expanded model and particle filtering framework lies outside this presentation.

Also left for separate coverage are our refinement and expansion of the model covered here into
a Particle Markov Chain Monte Carlo model offering additional capabilities and sophistication in
sampling of static parameters [33], closer examination and evaluation of the incorporation, and support
for drawing insight from wastewater data, and details of the extensive and articulated distributed
computation framework used to provide nearly fully automated day-to-day running and reporting of
model results across diverse jurisdictions and data sources at scale.

5. Conclusion

The work here characterizes the design and multi-year deployment of a production-quality
particle filter model that played a central role in informing public health decision-making starting in
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the opening months of the pandemic. By cross-leveraging particle filtering, dynamic (transmission)
modeling, and diverse health system and wastewater data sources, the system presented here and
close variants offered important initial findings by April 2020, and served to deliver daily-updated
COVID-19 situational analyses and short-term forecasts for Saskatchewan for the period of June 2020
through December 2021, multiple times a week for each Canadian province for Public Health Agency
of Canada until November 2021 and weekly to First Nations across six Canadian provinces via FNIHB
through March 2022.

Particle filtered dynamic models confer strong benefits by virtue of their ability to incorporate
diverse incoming empirical data streams — here including both regularly reported health system
data and episodically sampled wastewater data — to perform day-to-day probabilistic estimation and
reporting of latent epidemiological and health system quantities of interest. Quantities routinely
reported from the model described here include — but are not limited to — COVID-19 cases,
testing volumes, hospitalization admissions and census, and deaths, force of infection, undiagnosed
individuals and other factors. This further includes a more sophisticated estimate of the effective
reproductive number taking into account incomplete reporting, asymptomatic transmission, diagnosis
and isolation, and other considerations. Beyond supporting updated estimation of such quantities
and other elements of system state whenever new data arrives, our extensively deployed particle
filtered framework uses each new system state estimate as the basis for probabilistically projecting
forward the evolution of epidemiology and acute-care demand, such as can readily support triggering
surge capacity mobilization, motivate the institution of public health measures, or prepare for higher
health capacity utilization. Similar methods can and were used to support reporting of results from
prospective counterfactual intervention scenarios, with each undertaken in light of the latest empirical
observations.

As demonstrated by its widespread adoption for continually regrounded reporting and scenario
analysis for diverse Canadian jurisdictions, the sequential Monte Carlo approach of particle filtering
offers a compelling tool for evidence-based public health decision-making. The capacity of particle
filtering to keep transmission models and resulting probabilistic state estimates and scenarios
projections continually updated with the latest data offers compelling advantages over earlier
generations of techniques such as the Extended Kalman Filter, and the computational demands
of this technique are well-balanced with the velocity of contemporary data streams of relevance.
Systems employing particle filtering offer strong advantages well-matched to the urgent need for
public health surveillance and decision-making in coming years.
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The following abbreviations are used in this manuscript:
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PHAC Public Health Agency of Canada
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FNIHB First Nations and Inuit Health Branch
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ICU Intensive Care Unit
WWS Wastewater Surveillance
ODE Ordinary Differential Equation
MCMC Markov Chain Monte Carlo
RMSE Root Mean Square Error
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Appendix A. The ODEs of the COVID-19 mathematical model

The mathematical equations of the compartmental model are listed as follows:

dS
dt

= −λS− EVacc1

dV1

dt
= EVacc1 − EVacc2 − λ(1− e1)V1

dV2

dt
= EVacc2 − λ(1− e2)V2

dEU

dt
= λS + λ(1− e1)V1 + λ(1− e2)V2 −

EU

tE
−Vp

EU

IU

dIAU

dt
=

EU

tE
− IAU

tI
−Vp

IAU

IU

IAD

dt
= Vp

EU

IU
− IAD

tI

dIA2U

dt
= fpA

IAU

tI
− IA2U

tIY
−Vp

IA2U

IU

dIA2D

dt
= fpA

IAD

tI
− IA2D

tIY

dIA3U

dt
=

IA2U

tIY
−Vp

IA3U

IU
− IA3U

tIYN

dIA3D

dt
=

IA2D

tIY
+ Vp

IA2U

IU
− IA3D

tIYN

dIYU

dt
= ExD

1− fS

fS
+ (1− fpA)

IAU

tI
− IYU(1− fY)

tIY
−Vp

IYU

IU
−min

(
IYU fY

tIY
, Em

)
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dIYD

dt
= ExD + (1− fpA)

IAD

tI
+ Vp

IAU

IU
− IYD

tIY

dHICU

dt
= IYU

fH fHICU

tIY
+ IYD

fH fHICU

tIY
− HICU

tICU
−
(

HICU
−ln(1− φICU)

tICU

)
dHNICU

dt
= IYU

fH(1− fHICU)

tIY
+ IYD

fH(1− fHICU)

tIY
+

HICU

tICU
−
(

HNICU
−ln(1− φNICU)

tNICU

)
− HNICU

tH

dIYNU

dt
= IYU

1− fH − fY

tIY
−min

(
IYU fY

tIY
, Em

)
− IYNU

tIYN

−Vp
IYNU

IU

dIYND

dt
= Vp

IYU

IU
+

IYD(1− fH)

tIY
+ min

(
IYU fY

tIY
, Em

)
− IYND

tIYN

dRU

dt
=

IYNU

tIYN

+
IA3U

tIYN

dRD

dt
=

IYND

tIYN

+
HICU

tH
+

IA3D

tIYN

+ Vp
IYNU

IU
+ Vp

IA3U

IU

dD
dt

=

(
HNICU

−ln(1− φNICU)

tNICU

)
+

(
HICU

−ln(1− φICU)

tICU

)
IU = EU + IAU + IA2U + IA3U + IYU + IYNU

tIYN = tR − tIY

N = S + V1 + V2 + EU + ED + IAU + IAD + IA2U + IA2D + IA3U + IA3D + IYU + IYD + IYNU + IYND + RU + RD

+ HICU + HNICU + D

λ = cβ
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + V1 + V2 + EU + IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(ED + IAD + IA2D + IA3D + IYD + IYND)

Em = max (0, Vt −VHICU −VHNICU − ExD )

Vremain = Em −min
(

IYU fY

tIY
, Em

)
Vp = Vremainβ

(
1− e

−α
Vremain

IU

)
(A1)

The meaning of each stock:
S: The number of susceptible individuals
V1: The number of individuals who have received first vaccination dose
V2: The number of individuals who have received two vaccination doses
EU : The number of undiagnosed susceptible individuals
IAU : The number of undiagnosed temporary asymptomatic infected individuals
IAD: The number of diagnosed temporary asymptomatic infected individuals
IA2U : The number of undiagnosed persistent asymptomatic infected individuals
IA2D: The number of diagnosed persistent asymptomatic infected individuals
IA3U : The number of undiagnosed persistent asymptomatic infected individuals with progression

from IA2U
IA3D: The number of diagnosed persistent asymptomatic infected individuals with progression

from IA2D
IYU : The number of undiagnosed symptomatic infected individuals with complications
IYD: The number of diagnosed symptomatic infected individuals with complications
IYNU : The number of undiagnosed symptomatic infected individuals without complications
IYND: The number of diagnosed symptomatic infected individuals without complications
HICU : The number of hospitalized critical infected individuals
HNICU : The number of hospitalized acute infected individuals
RU : The number of undiagnosed recovered individuals
RD: The number of diagnosed recovered individuals
D: The number of died individuals from COVID-19
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Appendix B. The Mathematical Deduction of The Dynamic Parameters

If parameter β varies over the range [0, 1], we characterize the logit of β (transfer from interval
[0, 1] to (−∞,+∞)) as undergoing Brownian Motion according to Stratonovich notation as:

d(logit(β)) = d
(

ln
(

β

1− β

))
= sβdWt (A2)

In a more general situation, where β varies in the interval [a, b], we scale β ∈ [a, b] to β′ ∈ [0, 1],
where we have:

β′ =
β− a
b− a

(A3)

Finally, if we substitute equation (A3) to (A2), we can get the logit of β (transfer from interval
[a, b] to (−∞,+∞)) as undergoing Brownian Motion according to Stratonovich notation as:

d(logit(β)) = d
(

ln
(

β− a
b− β

))
= sβdWt (A4)

Appendix C. Boxplots of the COVID-19 particle filtering model estimated latent state

Figure A1. Boxplot of the latent state of stock S

Figure A2. Boxplot of the latent state of stock EU

Figure A3. Boxplot of the latent state of stock IAU
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Figure A4. Boxplot of the latent state of stock IAD

Figure A5. Boxplot of the latent state of stock IA2U

Figure A6. Boxplot of the latent state of stock IA2D

Figure A7. Boxplot of the latent state of stock IA3U
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Figure A8. Boxplot of the latent state of stock IA3D

Figure A9. Boxplot of the latent state of stock IYNU

Figure A10. Boxplot of the latent state of stock IYND

Figure A11. Boxplot of the latent state of stock IYU
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Figure A12. Boxplot of the latent state of stock IYD

Figure A13. Boxplot of the latent state of stock RU

Figure A14. Boxplot of the latent state of stock RD

Figure A15. Boxplot of the latent state of stock V1
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Figure A16. Boxplot of the latent state of stock V2

Figure A17. Boxplot of the latent state of stock logit(cβ)

Figure A18. Boxplot of the latent state of stock logit( fH)

Figure A19. Boxplot of the latent state of stock logit( fY)
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Figure A20. Boxplot of the latent state of stock logit(α)

Appendix D. Mathematical equations of calculating the normalized RMSE and discrepancy

The normalized-RMSE between the COVID-19 particle filtering model estimated/predicted values
and the observed data on each day is calculated as follows:

NRMSE =

√√√√∑n
i=1

(
2(ŷ−yi)

ŷ+yi

)2

n
(A5)

where y is the model estimated/predicted value, ŷ is the observed value, and n is the total number
of particles sampled by weight to measure. Then, the discrepancy of each empirical dataset is simply
the average of the NRMSE across the whole time frame. The result of the NRMSE lies in the interval
[0, 2].

Appendix E. Calculation of relative mixing rate amongst undiagnosed symptomatics ρU and
diagnosed in community ρD

[29] shows “About 35 of the 160 confirmed cases did not minimise social contact. More than a
fifth continued to work or carried on with their daily routine despite being sick". We then assume
80% of diagnosed mostly isolated themselves by reducing their contacts to 20% of normal, and 50%
undiagnosed reduce their contacts to 20% of normal. Then we have ρD = 0.8 ∗ 0.2+(1− 0.8) ∗ 1 = 0.36,
ρU = 0.5 ∗ 0.2 + (1− 0.5) ∗ 1 = 0.6

NIC = IA + IYU + IYN + IA2 + IA3

N = S + E + VP + VF + IA + IYU + IYN + IA2 + IA3 + HICU + HNICU + R

NI = IA + IYU + IYN + IA2 + IA3 + HICU + HNICU
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