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Abstract: COVID-19 transmission models have conferred great value in informing public health

understanding, planning, and response. However, the pandemic also demonstrated the infeasibility

of basing public health decision-making on transmission models with pre-set assumptions. No

matter how favourably evidenced when built, a model with fixed assumptions is challenged by

numerous factors that are difficult to predict. Ongoing planning associated with rolling back and

re-instituting measures, initiating surge planning, and issuing public health advisories can benefit

from approaches that allow state estimates for transmission models to be continuously updated in

light of unfolding time series. A model being continuously regrounded by empirical data in this

way can provide a consistent, integrated depiction of the evolving underlying epidemiology and

acute care demand, offer the ability to project forward such a depiction in a fashion suitable for

triggering the deployment of acute care surge capacity or public health measures, support quantative

evaluation of tradeoffs associated with prospective interventions in light of the latest estimates of the

underlying epidemiology. We describe here the design, implementation and multi-year daily use for

public health and clinical support decision-making of a particle filtered COVID-19 compartmental

model, which served Canadian federal and provincial governments via regular reporting starting in

June 2020. The use of the Bayesian Sequential Monte Carlo algorithm of Particle Filtering allows the

model to be re-grounded daily and adapt to new trends within daily incoming data – including test

volumes and positivity rates, endogenous and travel-related cases, hospital census and admissions

flows, daily counts dose-specific vaccinations administered, measured concentration of SARS-CoV-2

in wastewater, and mortality. Important model outputs include estimates (via sampling) of the

count of undiagnosed infectives, the count of individuals at different stages of the natural history

of frankly and pauci-symptomatic infection, the current force of infection, effective reproductive

number, and current and cumulative infection prevalence. Following a brief description of model

design, we describe how the machine learning algorithm of particle filtering is used to continually

reground estimates of dynamic model state, support probabilistic model projection of epidemiology

and health system capacity utilization and service demand and probabilistically evaluate trade-offs

between potential intervention scenarios. We further note aspects of model use in practice as an

effective reporting tool in a manner that is parameterized by jurisdiction, including support of a

scripting pipeline that permits a fully automated reporting pipeline other than security-restricted

new data retrieval, including automated model deployment, data validity checks, and automatic

post-scenario scripting and reporting. As demonstrated by this multi-year deployment of Bayesian

machine learning algorithm of particle filtering to provide industrial-strength reporting to inform

public health decision making across Canada, such methods offer strong support for evidence-based

public health decision making informed by ever-current articulated transmission models whose

probabilistic state and parameter estimates are continually regrounded by diverse data streams.
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1. Introduction

A novel coronavirus and accompanying infectious disease was reported to the World Health

Organization (WHO) in Wuhan, China in December of 2019 [1]. The WHO declared this outbreak a

Public Health Emergency of International Concern in January of 2020, designating this new coronavirus

disease COVID-19 [1]. Global travel and endogenous spread across hundreds of countries have yielded

a worldwide pandemic, with rapidly rising totals of over 752 million confirmed cases, and over 6.8

million confirmed deaths through January 30, 2023 [2].

During the COVID-19 pandemic, ongoing public health order planning, and replanning associated

with rolling back and reinstituting measures and conducting timely messaging has benefited from the

availability of empirical time series — often holding evidence of shifts in epidemiology, availability of

acute care resources, and changes in behaviour with regards to risk, testing, vaccination uptake, and

clinical presentation. At the same time, decision-making has relied heavily on a variety of types of

dynamic models.

Several previous works [3–8] showed the success of monitoring, estimating and predicting

the transmission of infectious diseases by incorporating epidemiology mathematical models using

the machine learning algorithm of Sequential Monte Carlo – also named particle filtering (PF) [9,10],

combined with observed datasets. Such work has demonstrated that projections forward from dynamic

modelling frameworks for triggering acute care surge planning and enhanced public health messaging

and surveillance offer substantial additional value if they can be informed by up-to-date, grounded

estimates of the current situation. The particle filtering method – together with several variants

– has also been used for COVID-19 [11–15] in the last two years since this new infectious disease

emerged. Most of these works used public health surveillance data – such as daily reported cases and

daily hospitalized admission patients – to track the transmission dynamics. Several researchers [15]

used wastewater surveillance data to ground the mathematical epidemiology models via a partially

observed Markov processes (POMP) model – using Markov chain Monte Carlo and sequential Monte

Carlo (particle filtering) methods, after the SARS-CoV-2 virus was confirmed detected in untreated

wastewater [16].

In this paper, we present a model, deployed by the health system and used internally for

provincial-level reporting and decision-making since the fourth month of the pandemic, which

incorporated a COVID-19 compartmental transmission model, a machine learning algorithm

in the form of the Sequential Monte Carlo algorithm of Particle Filtering, and a wide variety

of observed datasets (coming daily) from both public health surveillance data and wastewater

surveillance data. Within this context, the COVID-19 model provides an integrated characterization

of disease transmission, a natural history of infection including both frankly symptomatic and

oligo-/pauci-symptomatic pathways, and passive and active case-finding systems – including an

integral characterization of tests in both passive and (separately) active case finding – the occurrence

of travelling cases, basic COVID-19 related acute care flows and occupancy, characterization of two

dose-specific vaccination stages, and mortality. Important model outputs include estimates (via

sampling) of the effective reproductive number, the count of undiagnosed infectives, and the count

of individuals at different stages of the natural history of infection along both pathways. Since July

2020, the model further incorporated a representation of SARS-CoV-2 fecal viral shedding; and when

wastewater evidence is available, the PF framework makes use of a likelihood term, comparing

the empirical viral concentration of SARS-CoV-2 in wastewater with model expectations for that

concentration.
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The model was built in concert with the Saskatchewan Health Authority and has been in

production use for regular health system reporting since June 2020, with some model findings

informing understanding of the evolving epidemiological context as early as April 2020. Since that

time, and beyond its use for reporting to the Saskatchewan Health Authority and Saskatchewan

Ministry of Health, the model has been used to deliver reporting contracts with the Public Health

Agency of Canada (for each Canadian province), First Nations and Inuit Health Branch (FNIHB).

The resulting reports have proven particularly key in day-to-day instituted health system reporting

and informing planning for the Canadian Midwestern province of Saskatchewan. In this paper, we

characterize the structure of the model and present the results of applying the model to the population

of the city of Saskatoon in the province of Saskatchewan of Canada, during the period of wild type

SARS-CoV-2 and the alpha variant [17] from February 22, 2020, to July 31, 2021.

2. Methods

2.1. Deterministic Compartmental Model

We describe here the compartmental model used within this system, which characterizes the total

population as divided into different compartments distinguished by different pathways of natural

progression, severity of illness, diagnosis, and acute care use. For simplicity, our description of the

model omits discussion of the evolution of that model, pausing only to note that the vast majority of

the model as described here was in use at the start of regular reporting in June 2020. We also exclude

from this section a characterization of variants of that model, differing particularly in the levels of

stratification involved. We further exclude discussion of variant-specific adjustment of values of some

parameters otherwise treated as constant and the model structure adjusted to accommodate further

variants in the application.

The structure of the COVID-19 compartmental model is shown in Figure 1, and employs a time

unit of days. The compartments of the model are introduced as follows. The model contains a largely

orthogonal characterization of progression along two possible natural histories of infection (on one

hand) and diagnosis status (on the other). Specifically, the model dichotomizes both the infective

(compartments denoted by names prefixed by I or H) and recovered (compartments prefixed by R)

populations into diagnosed (sub-scripted by D) and undiagnosed (sub-scripted by U) status, depending

on whether an individual has been diagnosed via lab-confirmed PCR testing. The infective population

in the model was further divided into two groups: hospitalized individuals (compartments HNICU and

HICU) and those in the community (subcompartments of the supercompartment I). Supercompartment

I of infectives in the community is characterized by dividing it into three groups based on the stage of

the natural history of infection – presymptomatics (compartments IAU and IAD), and those at a later

stage along each of the two parallel pathways of infection distinguished by degree of symptomaticity.

Specifically, the model treats infected individuals as proceeding from the (infectious) presymptomatic

phase to one of two possible natural histories of infection: A frankly symptomatic pathway and

an oligosymptomatic route of progression, which accept fractions 1 − fPA and fPA of undiagnosed

individuals proceeding from presymptomatic compartment IAU , respectively. The frankly symptomatic

pathway starts at an early stage in which individuals have not yet had the opportunity to exhibit

complications (compartments IYU and IYD), and symptoms are assumed to be mild. The progression of

an individual from the first to the second symptomatic stage marks the point where any complications

emerge, with a specified fraction (denoted as fH) of progressing individuals (regardless of erstwhile

diagnosis status) developing severe or critical complications. Such individuals suffering complications

are presumed to lead to presentation for care and hospitalization. Frankly symptomatic individuals

absent complications proceed on to a stage involving symptomatic individuals beyond the risk of

complications (compartments IYNU and IYND). By contrast to the frankly symptomatic pathway, the

oligosymptomatic pathway proceeds from the presymptomatic stage through a natural history of

infection in which infected individuals remain infective but never develop symptoms sufficient to
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motivate care-seeking; compartments along this pathway are denoted by an A subscript. Like their

symptomatic counterparts, oligosymptomatic infectives are characterized as proceeding through two

subsequent compartments of IA, with the timing of progression identical to the frankly symptomatic

stages – oligosymptomatic stage 1 (compartments IA2U and IA2D) and oligosymptomatic stage 2

(compartments of IA3U and IA3D). The model also considers the vaccinated population, where only

Susceptible individuals are assumed to be administered vaccines. Compartment V1 represents the

persons who have only received one dose of a COVID-19 vaccine, and V2 represents the persons who

have received two vaccine doses. As is detailed further below, vaccinated individuals are treated as

remaining subject to some vaccine-efficacy-moderated risk of infection (denoted e1 for only having

one dose and e2 for having two doses).

Figure 1. Transmission model structure

2.1.1. Diagnosis and Case Finding

In this COVID-19 compartmental model, infected patients can be diagnosed both by passive case

finding via presentation for care and (separately) via active case finding, such as through contact tracing,

screening, and mass testing [18]. Passive case finding is treated as diagnosing symptomatic infectives

who present for care, and is treated as endogenously driven within the model. Such presentation-driven

diagnosis is represented by red flows in Figure 1, and proceeds from compartments of undiagnosed

symptomatic infectives that have not yet exhibited complications IYU to the next stage compartment

of diagnosed individuals IYND. By contrast, reflecting the fact that active case finding can identify

individuals not yet exhibiting symptoms, active case finding within the model is represented by flows

(the orange arrows in Figure 1) from a broader set of compartments of undiagnosed exposed and

infective individuals to the corresponding next stage diagnosed compartments of the model. It is to be

noted that because of the multi-day time lag commonly associated with test results in the province,

for both passive and active-case finding, we let the flows of undiagnosed infectives proceed to the

next stage diagnosed compartments instead of the directly corresponding diagnosed stages; thus, for
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example, those diagnosed from stage IYU flow into the next stage compartments of IYND, rather than

into IYD.

The daily flow of cases being diagnosed by passive testing, but not leading to hospitalization,

is mainly governed according to the endogenous model calculations IYU( fY)/tIY
, where fY is the

fraction of undiagnosed symptomatic infected individuals with complications that do not require

hospitalization during their course of infection, and tIY
is the mean days to develop or avoid

complications; this is bounded by the empirical data (denoted as Em) of total test volume presenting

other than due to hospitalization or international travel. Em can be calculated by the difference between

the daily total test volume (denoted as Vt) and the three-way sum of daily admitted COVID-19 patients

to ICU and non-ICU hospitalizations (denoted as VHICU and VHNICU , respectively) and new likely

exogenous cases (denoted as ExD
). This difference reflects the known use of tests for hospitalization,

and the fact that out-of-province cases were carefully estimated for the opening weeks of the pandemic,

and each required tests.

The model characterization of daily diagnosed cases identified specifically by active case finding –

conducted via activities such as contact tracing, screening, and drive-through testing – is designed

to capture the fact that in such forms of case finding, testing tends to drive the count of individuals

diagnosed, and identifies infected individuals at all stages of the natural history of infection. To

represent the fact that test count drives the count of cases diagnosed with an efficiency limited by the

number of infected individuals, we made use of a previously published testing model [19]. Within

this model, the count of infectives identified by testing is characterized as IU βT(1 − e
−α V

IU ), where V is

the total test volume, IU is the total count of undiagnosed infectives, α is a measure of test efficiency,

and βT ∈ [0, 1] represents an upper limit on the fraction of infectives that could be identified via active

case finding. In this test model, the term βT(1 − e
−α V

IU ) characterizes the fraction of all infectives

that are diagnosed. Reflecting the fact that active case-finding efforts are incomplete in their reach,

βT represents the fraction of infectives that would be diagnosed via active-case finding if the total

test volumes V were to be arbitrarily large (i.e., the asymptomatic fraction of infected individuals

who would be located as the ratio of test volume to infections approaches infinity); given the broad

reach of contact tracing within the province, this work treated βT as 1. α is a measure of testing

efficiency. When βT is 1 (as it is here), for a small active test volume V, this can be seen roughly

corresponding to the product of the test positivity rate and test specificity: For every test performed, α

infectives will on average be discovered. The saturating exponential term (1 − e
−α V

IU ) assumes that

as the volume of tests performed for active case finding rises, a greater number of tests are needed

to find a given infective. Thus, while more tests will identify additional infectives, doubling the

count of tests performed will not double the count of infectives identified. By employing this test

model to calculate the cases diagnosed by active case finding in this project, and recognizing the

priority placed on presentation-driven tests that drive passive case finding, the model assumes that the

total volume of tests performed for active finding is given by the difference between the total testing

volume (Em) and the volume of tests performed for passive case finding (min( IYU fY
tIY

, Em)), and thus

Vactive = Em −min
IYU fY

tIY
, Em. At any time, the total count of undiagnosed infectives can be calculated by

summing all of the undiagnosed compartments, which is IU = EU + IAU + IA2U + IA3U + IYU + IYNU .

Thus, the model gives the diagnosed cases found by active testing as Vp = IU βT(1− e
−α

Vactive
IU ). And the

daily count of diagnoses from active case finding for different compartments (e.g., EU , IAU , IA2U , IA3U ,

IYU , and IYNU) – depicted as orange arrows in Figure 1 – is treated as simply being split proportionally

according to the count of people in each undiagnosed infective compartment.

2.1.2. Acute Care Utilization

Undiagnosed or diagnosed symptomatic individuals who develop severe or critical COVID-19

complications [20] at the time of transitioning from the early stage symptomatic period (leaving IYU
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and IYD) are presumed to present for care and enter into the hospitalization stocks either for acute but

non-critical care (compartment HNICU) or for critical care (HICU) – the purple flows in Figure 1. The

fraction of all individuals progressing from diagnosed early- to diagnosed late-stage symptomatic state

who are treated as not developing severe or critical COVID-19 complications is treated as 1 − fH . The

fraction of all individuals progressing from undiagnosed early- to diagnosed late-stage symptomatic

state diagnosed by passive testing is fY. And the fraction of individuals progressing from undiagnosed

early- to undiagnosed late-stage symptomatic state diagnosed by passive testing is 1 − fH − fY. Of

the fraction fH of such progressors requiring hospitalization, the fractions that transition to the ICU

(HICU) and non-ICU (HNICU) are given by parameter f ICU and 1 − f ICU , respectively. Individuals in

both such hospitalization compartments are further subject to mortality, with deceased individuals

transitioning to compartment D at the time of passing, as indicated by the grey flows in Figure 1. Given

the overall COVID-19 case fatality rate for hospitalized patients requiring ICU care or not in need

of such care (denoted by φICU and φNICU , respectively), the model characterizes the corresponding

daily mortality rates as −ln(1− φICU)/tICU and −ln(1− φNICU)/tNICU , where tICU and tNICU are the

mean durations of ICU hospitalized and non-ICU hospitalized patient stays before death, respectively.

As a simplifying assumption and to lower the count of compartments required and the resulting size

of the state space, the model does not seek to explicitly model continued hospital residence amongst

some patients prior to or following ICU discharge.

2.1.3. Exogenous/Endogenous infections

The model considers infectives as originating from both endogenous sources (via infection through

contact with other infectives in the modeled population) and exogenous sources (where infectives

arrive in the population via out-of-province (and particularly international) arrivals), which are flows

represented by the magenta arrows in Figure 1. This exogenous flow is driven by the empirical time

series of daily travellers infected outside of the population and was of strong importance for accounting

for patterns in the opening two to three months of the pandemic, on account of the importance of

international arrivals in driving subsequent endogenous transmission. Endogenous infections are

calculated by the transmission system of the model.

2.1.4. Vaccination System

The model considers two levels of vaccination-induced protection for the population [21]. This

characterization reflects the fact that Saskatchewan’s vaccination campaign employed only two-dose

vaccines, namely Pfizer/BioNTech BNT-162b2, Moderna mRNA-1273, and AstraZeneca ChAdOx1.

With the BNT-162b2 vaccine being responsible for approximately 74.86% of all vaccines delivered

within the province, and conscious of the adverse impact on model state space size and – by extension –

machine-learning inference accuracy, we made the simplifying assumption of characterizing vaccinated

individuals by two levels of vaccine protection, rather than with further levels and/or via stratification

with respect to each vaccine product. Two flows of daily vaccinated cases from the susceptible

(compartment S) to the first level of vaccination-induced protection (compartment V1) and from the

first dose vaccinated to a higher level of protection (compartment V2) (represented by green arrows

in Figure 1) are driven by the empirical time series of daily receiving first dose vaccines and second

dose vaccines. Because of limited evidence concerning the duration of vaccine protection [21], this

model currently assumes the vaccines confer permanent protection. Individuals with both one and

two doses of vaccines remain subject to the risk of infection, with the relative risk of infection in

each dose-count-specific compartment compared to an unvaccinated symptomatic being given by

the one minus an estimate of vaccine efficacy against infection with that dose count. The vaccine

efficacy against infection of the vaccines used within Saskatchewan is reported based on clinical

trial data [22] that differs from vaccine to vaccine, notably against different COVID-19 variants of

concern (VoCs). Reflecting the mixed vaccination regime and the presence of multiple VoCs over the

timeframe of the study, the vaccine efficacy against infection considered in this project for a single
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dose (denoted as e1) and two doses (denoted as e2) are 0.8 and 0.95 based on the vaccines used in

Canada – Pfizer, Moderna, and Astra-Zeneca [22]. While COVID-19 vaccines routinely offer greater

efficacy against hospitalization and mortality than against infection, motivated in part by the desire

to avoid the adverse effects on model inference of enlarging the state space of the model and lacking

ready empirical data on breakthrough infections at time of formulation, the model treats breakthrough

infection as placing an individual into the same pathways of infection as are used for an infected

unvaccinated individual.

2.1.5. Infectious Transmission System

The force of infection parameter λ characterizes the hazard rate of infection – the probability

density with which a fully susceptible (e.g., a person in the stocks of S) is subject to infection from

an infective, and is governed by mass action principles [23]. The force of infection parameter λ is

calculated by cβpe, where c is the contact rate among the population per unit time, β is the probability

of transmitting COVID-19 per discordant contact and pe is the effective prevalence of infectives in the

mixing community. The construct of the effective prevalence of infectives in the mixing community,

pe, is designed to take into account the mixing implications of the symptoms, diagnosis, and acute

care status of infective individuals; we refer to a relative-mixing-level-adjusted size of a subpopulation

as the “effective” size of that subpopulation. The effective prevalence of infectives in the mixing

community pe is represented by the fraction of the effective infectives among the effective population

in the community. We assume that undiagnosed oligosymptomatic individuals (in the compartments

of IAU , IA2U and IA3U) have full social contacts and undiagnosed symptomatic individuals (in the

compartments of IYU and IYNU) exhibit a relative reduction in the level of social mixing as given by

fraction ρU as measured relative to full social contacts (themselves as assumed to be associated with

a relative mixing rate of 1), and non-hospitalized diagnosed patients (in the compartments of IAD,

IA2D, IA3D, IYD and IYND) in the community have a similar proportional reduction in mixing denoted

ρD. Hospitalized patients are treated as not engaging in mixing, and thus do not contribute to the

size of the effective mixing populations, and thus carry a relative mixing rate of 0. It is important

to emphasize that such values represent relative mixing rate characterizations; secular changes in

contact rate across the population (such as those that might be caused by public health orders) are

characterized by another element of the formulation detailed below. There are three flows in the

model reflecting the force of the infection process – the infection from stocks S, V1 and V2, which are

associated with rose-coloured flows in Figure 1.

2.1.6. Municipal Wastewater Surveillance Characterization

Municipal wastewater refers to sewage containing waste from households, workplaces and other

sources served by municipal infrastructure [24]. In a public health context, wastewater surveillance

(WWS) describes the process of sampling and analyzing wastewater to monitor phenomena such as

the prevalence of conditions, use of pharmaceuticals, and occurrence of viral outbreaks in communities

[24]. Medema et al. [25] demonstrated a significant correlation between COVID-19 virus SARS-CoV-2

concentrations in wastewater and the prevalence of COVID-19. This finding suggested that wastewater

surveillance of SARS-CoV-2 could offer a tool to monitor the trends of COVID-19 prevalence in

cities. Moreover, wastewater surveillance offers a significant advantage since the concentration of

SARS-CoV-2 in the wastewater sampling is representative of the entire population served by the

sewage shed, regardless of health status, propensity care-seeking behavior or reported infection status

[24]. Moreover, because of the high shedding levels seen in the early stages of infection by SARS-CoV-2,

wastewater assays can often identify pre-symptomatic or oligosymptomatic populations.

This project involved the design, implementation, deployment, and routinized use of a

particle-filtered compartmental model to estimate epidemiological and health system state using

time series including wastewater concentrations of SARS-CoV-2. Due to the dynamics of viral load,

fecal shedding in an SARS-CoV-2-infected individual varies across natural histories of infection, such
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as between symptomatic/asymptomatic, and over stages of progression [26–28]. We made use of

a weighted shedding model reflecting the fact that individuals in the early stages of infection shed

at far higher rates than do those at later stages of infection. Hoffman et al. [28] estimated shedding

profile modulates viral concentrations in faecal samples over time; the estimated weights of viral

concentration of different stages based on this research are shown in Table 1. In light of that weighted

shedding profile for individuals and the larger shedding populations of interest, we treat there as

being a constant of proportionality γ that relates the (weighted) value of the shedding population to

the daily concentration of SARS-CoV-2. Reflecting the fact that the focus of the wastewater monitoring

within Saskatchewan was on cities exhibiting separated storm-water and wastewater infrastructure

marked by short (≤ 8 hours) toilet-to-municipal wastewater treatment plant transit times, and use

of autosampling from the primary inflow into the treatment plant, we treated the concentration of

COVID-19 wastewater samples for a given city as indicative of the current – rather than the lagged –

epidemiology for that city.

2.1.7. Model Parameters

Table 1 gives the value and units for constant parameters of the deterministic COVID-19 model;

readers interested in further detail regarding the formulations involving these parameters are referred

to Appendix A.

Table 1. Table of constant parameters

Parameters Description Value Source Unit

ρU Relative mixing rate amongst undiagnosed symptomatics 0.6 [29](1) 1

ρD Relative mixing rate amongst diagnosed in community 0.36 [29](1) 1
ExD Daily travel imported case count of diagnosed Surveillance data SHA primary data Persons/Day

EVacc1 Daily count of persons administered the 1st dose vaccination Surveillance data SHA primary data Persons/Day
EVacc2 Daily count of persons administered the 2 doses vaccination Surveillance data SHA primary data Persons/Day

Vt Daily count of persons undergoing PCR (nasopharyngeal
swab)-based testing

Surveillance data SHA primary data Persons/Day

VHICU Daily count of COVID-19 patients admitted into the ICU Surveillance data SHA primary data Persons/Day
VHNICU Daily count of COVID-19 patients admitted into the

non-ICU
Surveillance data SHA primary data Persons/Day

fS Fraction of arriving symptomatics identified upon arrival 1/3 expert estimation 1
fHICU Fraction of admitting ICU among hospitalized patients 0.23 SHA primary data 1

tE Mean latent period 2.9 PHAC data Day
tI Mean incubation period following infectivity 2.72 [30] Day
tIY

Mean time to develop or avoid complications 6.0 [31] Day
tR Mean recovery time following symptoms 9.5 PHAC data Day
tH Mean duration of hospital stay for non-ICU patients before

recovery
12.0 SHA primary data Day

tICU Mean duration of ICU stay before to hospital wards,
discharge or death

6.0 SHA primary data Day

tNICU Mean duration of non-ICU stay before death 4.57 SHA primary data Day
fpA Fraction of persistent asymptomatics 0.4 [32] 1

φICU Case fatality rate amongst ICU patients 0.45 SHA primary data 1
φNICU Case fatality rate for cases not requiring ICU care 0.08 SHA primary data 1

e1 Vaccine efficacy for dose 1 0.8 [22] 1
e2 Vaccine efficacy for those completing (2 doses) primary

series
0.95 [22] 1

γ Ratio of model shedding measure to viral concentration in
wastewater

10.374 PMCMC model [33] copies/100ml/Person

wE Viral shedding weight in exposed stage (EU) 0.2 [28] 1
wIA Viral shedding weight in presymptomatic stage (IAU , IAD) 0.5 [28] 1
wIY Viral shedding weight in symptomatic stage with

complications and cotemporal stages of oligosymptomatic
infection (IA2U , IA2D, IYU , IYUD, HICU , HNICU)

0.2 [28] 1

wIN Viral shedding weight in early symptomatic stage (absent
complications) and cotemporal stage of oligosymptomatic
infectives (IA3U , IA3D, IYNU , IYND)

0.1 [28] 1

βT Upper limit on fraction of infectives found by active testing 1.0 Reflective of full extent of unit range 1

2.2. Calculation of Variables of Interest from the COVID-19 Model

Figure 1 shows the system of ODEs governing the behaviour of the deterministic COVID-19

model. As detailed in section 2.3.1, the stochastic version of this model serves as the state space model

for particle filtering. We detail here a set of derived quantities whose formulation is identical for both

forms of the model.
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A variety of COVID-19 outcomes of interest can be derived from the ODEs shown in Equation A1

in the Appendix A, including those relevant for epidemiological and acute care decision-making. From

the standpoint of public health planning and epidemiology, important quantities include a dynamic

characterization of the effective reproductive number (denoted as Rt), the count of undiagnosed

infectives in the community with time (denoted as NU), and the force of infection (λ). Each of these

quantities provides information important for understanding the evolution of the current pandemic

situation and played a central role in the reporting undertaken from the model. Such measures are

especially useful in indicating the evolution of the epidemiological situation, anticipating incipient

outbreaks, assessing the performance of current intervention strategies, and informing decisions to be

made in the near future, such as those involving relaxation or re-imposition of public health orders.

Some of the model-derived values are of foremost value in the sphere of projection, rather than

in the historic time horizon. From the standpoint of acute care and surge planning, the model offers

particular value by virtue of its capacity to project forward acute care demand, both in the form of

new admissions for COVID-19 Intensive Care Unit (ICU) and non-ICU hospital needs and in terms of

census counts for both of those levels of acute care services. Particularly when the stochastic version of

the model is used with particle filtering, such information can aid in decisions involving triggering of

surge capacity.

2.2.1. Calculation of the Evolving Effective Reproductive Number

The basic reproductive number (denoted as R0) and effective reproductive number (denoted here

as Rt) are widely used concepts in mathematical epidemiological models. The basic reproductive

number (R0) is the average number of secondary infections transmitted by a typical infective individual

in a completely susceptible surrounding population [34]. While an understanding of this quantity is

of great value, in the context of an evolving outbreak, with a population of evolving susceptibility,

behavioural & public-health measure-induced changes in the contact rate, changing variant ecology,

and greater day-to-day attention typically rests on the effective reproductive number (Rt). Rt is the

average number of secondary infections transmitted by a typical infective individual in a population

composed of both susceptible and non-susceptible persons and reflective of the current epidemiology,

including mixing patterns and public health, institutional and personal protective practices at present,

vaccine effectiveness, population turnover, and currently circulating variants. As a general rule, if

Rt(t) > 1, the count of infected individuals will increase over time; if Rt(t) = 1, the count of infected

patients will remain roughly constant; if Rt(t) < 1, the number of individuals infected will decline

over time.

The model detailed here used two methods to calculate the effective reproductive number (Rt):

A simplified original method, and a method that takes into account the differential mixing rates

between undiagnosed and diagnosed individuals, and the case-finding process that leads individuals

to transition from the former to the latter. Both methods played prominent roles in daily reporting

using the model throughout different stages of the pandemic. The original method is based on such an

assumption that all infectives exhibit full – not reduced – mixing with the susceptibles throughout their

full duration of infectivity (i.e., until recovery). Recalling that e1 and e2 represent vaccine effectiveness

given one or two administered doses, respectively, and that ρU and ρD denote relative rates of mixing
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amongst symptomatic-but-undiagnosed individuals and diagnosed individuals, respectively, the

original values of R0 and Rt(t) in this COVID-19 model are characterized as follows:

R0 = Cβ(tI + tIY
+ tIYN

)

Rt(t) = R0 · fSusc(t) (1)

fSusc(t) =
S(t) + (1 − e1)V1(t) + (1 − e2)V2(t)

N(t)

N(t) = (S + EU + IAU + IA2U + IA3U + RU + V1 + V2) + ρU(IYU + IYNU)+

ρD(IAD + IA2D + IA3D + IYD + IYND + RD)

However, in real-world scenarios (and in this model), infection spread is governed by other

factors besides those captured in the equations above. Specifically, the degree of infection spread

from an infective is affected by the relative mixing levels between undiagnosed symptomatics and

diagnosed infectives. Whilst the characterization in Equation (1) considers those factors inasmuch as

they affect the fraction of contacts that are made with susceptibles, it fails to consider them in terms

of the behaviour of the infective individual over the course of their illness. Considering the effective

duration infectives spend in different infected stages leads to a new formulation for each of the basic

and effective reproductive numbers, denoted R′
0 and R′

t, respectively:

R′
0 = CβtE f f ective

tE f f ective =
1

IE

[

(IA + ρD IAD)(tI + tIY
+ tIYN

)+

(IA2 + ρD IA2D + ρu IYU + ρD IYUD)(tIY
+ tIYN

)+

(IA3 + ρD IA3D + ρu IYD + ρD IYND)tIYN

]

IE = (IA + IA2 + IA3) + ρu ∗ (IYU + IYN) + ρD ∗ (IAD + IA2D + IA3D + IYUD + IYND) (2)

R′
t(t) = R′

0 · fSusc(t)

In this contribution, we employ the latter method, which considers the effective time of infectives

to estimate and predict the effective reproductive number Rt.

2.2.2. Count of Undiagnosed Infectives in the Community over Time

Given the underlying structure of the model, the count of undiagnosed infectives in the

community NU(t) can be calculated by summing the count of undiagnosed persons in each infective

compartment as follows:

NU(t) = IAU + IA2U + IA3U + IYU + IYNU (3)

2.2.3. Daily Effective Prevalence of Infectives in the Mixing Community

The point prevalence of COVID-19 is the proportion of individuals in a population who have

COVID-19 at a specified point in time [35]. Thus, the equation of the standard prevalence is as follows:

pst =
IAU + IA2U + IA3U + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND

S + EU + IAU + IA2U + IA3U + V1 + V2 + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND
(4)

In the model, we use the effective prevalence instead of the standard prevalence. The effective

prevalence considers the weight of contact coefficients of the undiagnosed infectives (ρU) and the

weight of contact coefficients of the diagnosed infectives (ρD). Thus, the daily effective prevalence of
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infectives in the mixing community can be calculated by the fraction of the effective infectives in the

total effective population in the community. The formulation is as follows:

pt =
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + EU + IAU + IA2U + IA3U + V1 + V2) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(5)

2.2.4. Force of Infection

Section 2.1.5 introduced the model’s use of the force of infection (λ). This quantity can be

calculated as the product of what we term the transmission rate – itself the product of the contact rate

and probability of transmission per discordant contact – and the fraction of the mixing population that

is infectious:

λ = cβpt (6)

where pt is the daily effective prevalence of infectives, as characterized by equation 5.

2.2.5. Cumulative Prevalence of Infections

Period prevalence is the proportion of individuals in a population who have had COVID-19

over a specified period of time [35]. Thus, the cumulative prevalence of COVID-19 infections can be

calculated by the fraction of the initial population who have ever been infected by COVID-19. The

formulation of the cumulative prevalence of infections at time T is as follows:

pc =

∫ T
0 λ[S + (1 − e1)V1 + (1 − e2)V2] dt

N0
(7)

2.2.6. New Hospital Admissions and Census Count for non-ICU and ICU Needs

A key motivator for the construction of the COVID-19 model characterized in this project is to

estimate and predict acute care demand and capacity utilization. This includes considering hospital

admissions – including ICU admission and non-ICU admission cases – and the daily number (census)

of ICU and non-ICU hospital patients. The daily hospitalized census for ICU and non-ICU at any

given time is simply characterized by the values of the compartments HICU and HNICU , respectively.

Recalling that the time unit of the model is days, the per-day rate (daily count) of new admissions of ICU

patients is given by the sum of two flows into the HICU compartment, representing the development

of critical symptoms by both previously diagnosed (IYD) and (separately) previously undiagnosed

(IYU) symptomatic infectives. Similarly, the daily new hospital admissions of patients not requiring

ICU care is the sum of two flows into the HNICU compartment, representing the development of severe

symptoms by both previously diagnosed (IYD) and undiagnosed (IYU) individuals. Thus the daily

new admissions of ICU and non-ICU patients are as follows:

dHICU =
(IYU + IYD) fH fHICU

tIY

dHNICU =
(IYU + IYD) fH(1 − fHICU)

tIY

(8)

2.3. SMC Algorithm Incorporation of the Stochastic COVID-19 Model

The prominent sequential Monte Carlo (SMC) method of particle filtering is a contemporary

state inference and identification methodology that supports filtering of general non-Gaussian and

non-linear state space models in light of time series of empirical observations [3,5,9]. This approach

estimates, via sampling, the time-evolving internal state of a dynamic system (here, the COVID-19
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model) in which random perturbations are present, and where information about the state is obtained

via noisy measurements made at each observation time. The state space model characterizes the

processes governing the time evolution of the internal state of the system with stochastics consisting

of random perturbations. The state of the state space model is assumed in general to be latent and

unobservable. Information concerning the latent state is obtained periodically via a noisy observation

vector. The particle filtering method can be viewed as undertaking a “survival of the fittest" of varying

hypotheses as to the current location of the system in state space, with each such hypothesis being

represented by a particle, the fitness of which is determined by the consistency between what is

observed empirically at each observation time point and what would be expected given the state of the

particle (the hypothesized state) at that time point. Interested readers are referred to a more detailed

treatment in [5,9,10].

2.3.1. State Space Model

The state space model depicts the processes governing the time evolution of the state – both latent

and observable – of a noisy system. In this paper, the state space model consists of a stochastically

embellished variant of the deterministic COVID-19 model depicted in Figure 1 and whose equations

are given in Equation A1 of the Appendix A. Reflecting the fact that effective use of particle filtering

requires an underlying state equation model exhibiting stochastic variability, we characterize here an

extension of the deterministic model that incorporates random perturbations in dynamic processes —

including several stochastically evolving parameters — so as to reflect stochastic time evolution in

the external world. The extended, stochastic model introduced below then serves as the basis for an

accompanying particle filter.

The state vector of the particle filtering model is given by:

[

S, EU , IAU , IAD, IA2U , IA2D, IA3U , IA3D, IAU , IAD, IYU , IYD, IYNU , IYND, HICU , HNICU ,

RU , RD, D, logit(Cβ), logit(α), logit( fH), logit( fY)
]T

.

Dynamic Processes

We consider stochastic processes to characterize the arrival of undiagnosed travel-imported

symptomatic cases, contact and care-seeing behaviour, and test positivity rates associated with active

screening. Moreover, Poisson processes are used to reflect the stochastics associated with the occurrence

of a small number of cases over a small unit of time – denoted as ∆t (carrying the value of 0.001

days in the COVID-19 model) [3,5]. The stochastic process characterizing undiagnosed travel-based

importation of symptomatic infectives is given by
PoissonExD∆t

1− fS
fS

∆t .

Dynamic Parameters

There are a set of quantities that might commonly be regarded as parameters, but whose values

evolved in notable ways over the course of the COVID-19 pandemic, particularly with the evolution

of human behaviour, variant ecology, due to changes in active case-finding efforts, and arrival of

the pathogen in vulnerable demographics and communities. Such quantities are termed “dynamic

parameters” herein. The dynamic parameters of the deterministic COVID-19 model are listed in Table

2.
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Table 2. Table of dynamic parameters

Parameters Meaning Min(a) Max(b) STD Unit

Cβ Transmission contact rate 0(1) 0.49181 10.0 Persons/Day

fH Fraction of symptomatic individuals who proceed on to
require hospitalization

0.04 0.06 0.1 1

fY Fraction of undiagnosed symptomatics who proceed on to
seek care but who are not hospitalized

0.1 0.821 0.5 1

αt A measure of test efficiency 0.01 0.25 5 1

Figure 2. The model structure of the stochastic particle filtering model

2.3.2. Likelihood Function

Our formulation of the overall likelihood function and sub-likelihood functions for this work

drew inspiration from our past success in employing negative binomial-based likelihood functions

in a diverse set of particle filtering applications in communicable disease [3–8], and by others

in MCMC-based approaches for H1N1 influenza [36]. Moreover, for simplicity and in line with

formulations used successfully in multiple of our past contributions [3,4,6], the current model

characterized the overall likelihood function for the particle filtering model as the product of

sub-likelihood functions, each considering a distinct subset of the empirical datasets employed to

ground the model:
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L = LNewReportedEndogenousCases ×LCumulativeReportedEndogenousCases

×LCumulativeICUAdmissions ×LCumulativeNICUAdmissions (9)

×LICUCensus ×LNICUCensus

×LCumulativeDeaths ×LViralConcentrationsinwastewater

Table 3. Table of sub-likelihood functions

Likelihood Name Empirical Dataset Model Value Mathematical Form

LNewReportedEndogenousCases New Reported Endogenous COVID-19 Cases VP +
IYU( fH+ fY)

tIY
Negative Binomial

LCumulativeReportedEndogenousCases Cumulative Reported Endogenous COVID-19 Cases
∫

(VP +
IYU( fH+ fY)

tIY
) Negative Binomial

LCumulativeICUAdmission Cumulative Hospitalized ICU Admission patients
∫

dHICU Negative Binomial
LCumulativeNICUAdmission Cumulative Hospitalized non-ICU Admission patients

∫

dHNICU Negative Binomial
LICUCensus Daily Hospitalized ICU Census patients HICU Negative Binomial
LNICUCensus Daily Hospitalized non-ICU Census patients HNICU Negative Binomial

LCumulativeDeaths Cumulative COVID-19 Deaths D Negative Binomial
LViralConcentration Measured concentration of SARS-CoV-2 virus in wastewater γ[wEEU + wIA(IAU + IAD) + wIY(IA2U + IA2D + IYU + IYUD + HICU + HNICU) + wIN(IA3U + IA3D + IYNU + IYND)] Gamma Distribution

Each sub-likelihood function is characterized by one of two distinct parametric statistical

distributions – a negative binomial distribution or gamma distribution. Such sub-likelihood functions

characterize the likelihood of observing the empirical datum, given an underlying model state specified

by the particle state. Those two forms of sub-likelihood functions are introduced as follows:

• The value of each sub-likelihood function based on a negative binomial distribution is given as

follows:

LNegativeBinomial =

(

y + r − 1

r − 1

)

pr(1 − p)y (10)

where y is the observed datum, x is the model value corresponding to that datum (integer

rounded), r is the dispersion parameter associated with the negative binomial distribution, and

p = x
x+r . In this project, the value of dispersion parameter r was chosen to be 5.

• The value of the sub-likelihood function based on a gamma distribution is given as follows:

LGamma =
βαy(α−1)e−βy

∫ ∞

0 zα−1e−zdz
(11)

where y is the observed datum, x is the model value corresponding to that datum, k is the shape

parameter, α = x
k−1 , and β = k

x . Such likelihood functions within this project assumed a value of

k = 5.

It is important to note that while the likelihood function employed here is designed to be used

with each of the types of data shown in Table 3, the likelihood formulation is moreover designed to be

robust in the context of missing data for several of those types of data. Data that can be accommodated

as missing includes hospitalized admission data – ICU and non-ICU, hospitalized census data – ICU

and non-ICU, and viral concentration in wastewater data. When a datum is not available for these

types of observations, the corresponding sub-likelihood function will be treated as holding a value

of unity (1.0). Thus, given missing data of this sort, the overall likelihood function will still carry the

value of the product of the sub-likelihood functions for which data is available.

2.4. Data Sources

Since June 2020 and through early 2022 – and with prior episodic use – this model has served in a

production capacity for the whole of Saskatchewan, and for varying periods for particular regions,

municipalities, and small-area geographies within Saskatchewan. For the period October 2020 -

October 2021, via a contract with the Public Health Agency of Canada (PHAC), it was further used
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for reporting and projections multiple times a week for all provinces of Canada. Beyond that, via a

contract for reporting to the First Nations and Inuit Health Branch of Health Canada (FNIHB), the

model was used in the period November 2020 - March 2022 for biweekly reporting and projections

for First Nations Reserves in six Canadian provinces. Most such uses have exercised subsets of the

likelihood functions considered, with hospital census data and wastewater data being restricted to

subsets of jurisdictions.

For a given jurisdiction, empirical datasets are fed into the particle filtering model to estimate and

predict the evolution of the epidemiological and acute care state of that jurisdiction. The empirical

datasets employed in the model can be divided into two categories: A set incorporated in the likelihood

function for training the particle filtering model, and another that serves as an exogenous input to the

differential equation model.

The following empirical datasets were considered in the likelihood function:

• Daily count of new reported incident confirmed or suspected cases.
• Cumulative reported incident confirmed or suspected cases from the inception of the pandemic.
• Cumulative reported deaths from COVID-19.
• Daily count of COVID-19 patients admitted into the ICU.
• Daily COVID-19 patients admitted into hospital for non-ICU care.
• Daily midnight census (count) of COVID-19 patients in the ICU.
• Daily midnight census of COVID-19 patients in the hospital for non-ICU care.
• Weekly average virus SARS-CoV-2 concentration in wastewater.

The following empirical datasets were incorporated as exogenous inputs directly into the dynamic

model:

• Daily new likely exogenous cases, which represent arrivals into the jurisdiction believed to be

infected while outside the jurisdiction, with an emphasis on international travel.
• Daily count of persons undergoing PCR (nasopharyngeal swab)-based testing.
• Daily count of COVID-19 patients admitted into the ICU.
• Daily count of COVID-19 patients admitted into hospital for non-ICU care.
• Daily count of persons who received the 1st dose vaccination.
• Daily count of persons who received their second vaccinate dose.

It is important to note that the empirical datasets of “Daily count of COVID-19 patients admitted

into the ICU" and “Daily COVID-19 patients admitted into hospital for non-ICU care" are used in both

the likelihood function and in driving the model directly.

2.5. Characterizing Model Fidelity to Empirical Data

A key driver for the evolution of the particle filtering approach applied here was the ongoing

critical assessment of the fidelity between outputs from the particle-filtered model and the above

empirical data sources. As a primary metric for assessing such fidelity in this project, we employed a

discrepancy function. The discrepancy between the particle filtering model results and each empirical

dataset specified here is the mean of the normalized-RMSE (root mean square error) across the whole

time frame of the model incorporating the empirical data; as such, smaller discrepancies are considered

favourable. To accommodate the different scales of multiple empirical datasets, we employ the

normalized-RMSE to measure the difference between the model estimated/predicted values and

the observed data of each empirical dataset on each day having observed data. The mathematical

formulation for the normalized-RMSE is specified in Appendix D.

3. Results

This section characterizes COVID-19 particle filtering model results and (empirical data

availability permitting) associated discrepancies for both day-to-day estimates of the epidemiological

state and projection of quantities such as the future daily infected cases, force of infection, and ICU

and non-ICU admissions and census.
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3.1. Particle filtering model results with incorporating empirical datasets

Although the particle filter model characterized here at various intervals provided reporting for

17 different jurisdictions; for the sake of simplicity, we focus here on results for a jurisdiction offering

wastewater data and served by amongst the longest spans of data – Saskatoon, Saskatchewan. In the

application examined here – which is emblematic of simulations conducted on this jurisdiction over

long periods of time – the COVID-19 particle filtering model takes in daily incoming empirical data to

produce daily reporting. The model runs start on February 22, 2020, when the empirical data became

available from the appropriate public health agency (here, the Saskatchewan Health Authority); testing

for COVID-19 began on February 25, 2020, and the first reported infected cases occurred on March 11,

2020. The simulation here proceeds to July 31st, 2021, prior to the widespread appearance of the Delta

variant of concern. Particle filtering was conducted with a particle count of 150,000.

Table 4. Table of discrepancies (Normalized Root Mean Square Error (NRMSE)) of all empirical

datasets compared with model estimated results (with 5 realizations)

Dataset Mean 95% Confidence Interval

Count of daily reported cases 0.8429 (0.8343, 0.8515)
Cumulative reported cases 0.2750 (0.2558, 0.2943)
Cumulative death cases 0.4981 (0.4842, 0.5121)
Daily virus concentration in wastewater 0.5734 (0.5511, 0.5957)
Cumulative hospitalized non-ICU admissions 0.1306 (0.1223, 0.1389)
Cumulative hospitalized ICU admissions 0.5372 (0.5313, 0.5431)
Daily hospitalized non-ICU census 0.4181 (0.4117, 0.4245)
Daily hospitalized ICU census 0.6545 (0.6492, 0.6598)
Sum of total 3.9300 (3.8980, 3.9617)

Table 4 presents the mean discrepancy, with 5 runs of the model. For comparison in scale, the table

further provides the 95% confidence interval of each empirical dataset incorporated in the likelihood

function to ground the model. As a reminder, the lower the discrepancy, the better the results sampled

from the particle filtered model reproduce the empirical dataset.

Figures 3 to 10 show the particle filtering COVID-19 model’s (the results of the minimum

discrepancy among those 5 runs) estimated results, compared with empirical data. The comparison

between model results and empirical data indicates that the particle filtering COVID-19 model can

estimate the daily COVID-19 transmission and hospitalization status. As an important caveat, for

data confidentiality reasons, precise empirical data is only provided here for empirical data publicly

available through the Saskatchewan Health Authority COVID-19 dashboard [37]. For depiction of the

two types of data not publicly available (ICU and non-ICU hospital admissions) in those figures, we

ensure data confidentiality by showing synthetic data in the figure instead of actual data. Specifically,

for each of ICU and (separately) non-ICU hospital admissions, the data shown in the figures for a

given day is poisson-distributed pseudo-empirical data. That is, for day t with an actual count of nt

hospital admissions, the synthetic datapoint is drawn from poisson(max(nt, 0.05)).

Figure 3. Daily new reported confirmed or suspected infective cases between particle filtering

model results (boxplot) and empirical data (superimposed red scatterplot)
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Figure 4. Cumulative reported infective cases in the community between particle filtering model

results (boxplot) and empirical data (superimposed red scatterplot)

Figure 5. Daily count of COVID-19 patients in the hospitalized ICU between particle filtering

model results (boxplot) and empirical data (superimposed red scatterplot)

Figure 6. Daily count of COVID-19 patients in the hospitalized non-ICU between particle filtering

model results (boxplot) and empirical data (superimposed red scatterplot)

Figure 7. Daily count of COVID-19 hospitalized deaths between particle filtering model results

(boxplot) and empirical data (red scatter plot)
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Figure 8. Daily wastewater viral concentration of SARS-CoV-2 (N2 copies per 100mL) between

particle filtering model results (boxplot) and empirical data with missing days (red scatter plot)

Figure 9. Daily count of Hospitalized ICU admitted patients between particle filtering model

results (boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot)

Figure 10. Daily count of hospitalized non-ICU admitted patients between particle filtering model

results (boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot)

3.2. Estimation of Latent Dynamic Variables

Through ongoing incorporation of the empirical datasets to ground the COVID-19 dynamic

model, the particle filtering process estimates the latent states and dynamic variables to inform the

COVID-19 transmission. Figure 11 shows the model-estimated daily effective reproductive number

(the method and underlying mathematical formulation can be found in Section 2.2.1). Figure 12 shows

the model-estimated daily undiagnosed infectives (with details on formulation found in Section 2.2.2).

Figure 13 shows the model-estimated force of infection (λ) (with details on formulation found in

Section 2.2.4). Figure 14 shows the model-estimated daily effective prevalence of infectives in the

mixing community (with details on formulation found in Section 2.2.3). And figure 15 shows the

cumulative prevalence of infections for each day (with details on formulation found in Section 2.2.5).

Readers interested in the estimated latent state of the COVID-19 particle filtering model are referred to

Appendix D.
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Figure 11. The daily estimated effective reproductive number

Figure 12. The daily estimated count of undiagnosed infectives

Figure 13. The daily estimated force of infection

Figure 14. The daily estimated effective prevalence of infectives in the mixing community
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Figure 15. The daily estimated prevalence of cumulative infection

3.3. Projection Results

While the COVID-19 particle filtering model offers strong performance in monitoring and

estimating COVID-19 transmission, throughout its use across jurisdictions, such estimates of

current epidemiological state have routinely been accompanied by 14-day projections of COVID-19

transmission and hospitalization.

To assess the predictive capacity of the COVID-19 particle filtering model herein, we employed it

to perform 1-day, 7-day and 14-day predictions for each day starting from day 100 in Saskatoon and

continuing for the remainder of the time horizon considered here. Within the projection period (e.g.,

7 days) conducted from a given, no further particle filtering is performed, the model is simply run

forward, without any incorporation of the observed data. Mirroring the process seen in de-facto use of

the model, such a projection is performed from each successive day. It is essential to recognize that

while the projection itself doesn’t incorporate any new data, between each such day on which the projection

is launched, new data arrives and is incorporated by the particle filtering. The updated estimate of the latent

state of the system afforded by this incorporation of the new data by the particle filtering allows the

next projection (looking into the “future” as obtained from the standpoint of that day) to be made on

the basis of the refined and updated understanding of the current epidemiological context.

Table 5 shows the predictive discrepancy between the model-predicted results and the empirical

data. By comparing the average discrepancy of the three projection runs – 1-day, 7-day, and 14-day

ahead – we can see that the relative accuracy of the projections decreases with longer prediction

timeframes. It bears emphasis that while discrepancies are computed here to compare model results

against empirical data, during the projection timeframes launched from each day, empirical data are

only used for comparison with the model-projected results. However, as noted above, new data is

taken into account before undertaking each successive projection.

Table 5. Discrepancies for 1-day, 7-day and 14-day projection run projected data against empirical

datasets

Dataset Mean Projection Discrepancy
1-day 7-day 14-day

Count of daily reported cases 0.7051 0.8301 0.9433
Cumulative reported cases 0.1591 0.1636 0.1769
Cumulative death cases 0.4098 0.4164 0.4293
Cumulative hospitalized non-ICU admissions 0.1617 0.1582 0.1734
Cumulative hospitalized ICU admissions 0.8705 0.8734 0.8838
Daily hospitalized non-ICU census 0.7131 0.7506 0.8308
Daily hospitalized ICU census 1.1541 1.1846 1.2364
Sum of total 4.1734 4.3767 4.6738

Figures 16 through 20 depict a comparison between the model-predicted results with the empirical

datasets (or, for confidentiality of hospital admissions, the empirically inspired synthetic data noted

above). To understand the results, it is to be emphasized that for every day, we perform three predictive

runs (1-day, 7-day and 14-day). When shown in boxplots in the figures, the values for (one) day-ahead
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predictions of the model will be shown directly in comparison with the corresponding day-ahead

empirical data. By contrast, for the 7-day projection results, for each day the figures visually compare

the average model-predicted value over that 7-day interval with the corresponding average of the

empirical data over that same 7-day interval. As above, it is to be emphasized that within each such

projection from a given day, no particle filtering is occurring, and the empirical data are only compared

with the model results, not incorporated in the model. As noted above, as would and did occur

in day-to-day practice of a deployed system such as this, with the passage of each successive day,

new data is incorporated by the particle filtering mechanism to update the estimate of system state,

allowing the next projection to be made on the basis of that updated state estimate.

Those figures show that the preponderance of observed data (blue points in the diagrams) fall

within the 50% inter-quartile range of the boxplot, demonstrating relatively accurate model predictions

for up to 14 days in advance to inform public health agencies and governments, as in informed by

data up to the point of projection. For example, the prediction of daily new reported cases can produce

a picture of the trends in future transmission – as informed by system state estimated by the particle

filtering. In a similar manner, the prediction of daily hospitalized ICU, non-ICU admission, and

census patients can inform public health agencies’ mobilization of surge capacity, anticipation of

capacity utilization and service demands, and more broadly supporting judicious allocation of hospital

resources over the multi-week timeframe.
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(c)

Figure 16. The projection results (boxplot) of the daily reported cases compared with empirical

data (the blue points, and not incorporated in the model). (a) The next day projection results. (b)

The 7-day projection time-window-averaged projection results versus corresponding empirical data

window-averages. (c) The 14-day projection window-averaged projection results versus corresponding

empirical data window-averages.
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Figure 17. The projection results (boxplot) of the daily count of patients in the non-ICU compared

with the empirical data (the blue points, and not incorporated in the model). (a) the next

day projection results. (b) The 7-day projection time-window-averaged projection results versus

corresponding empirical data window-averages. (c) The 14-day projection time-window-averaged

projection results versus corresponding empirical data window-averages.
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(c)

Figure 18. The projection results (boxplot) of the daily count of patients in the hospitalized ICU

compared with the empirical data (the blue points, and not incorporated in the model). (a) The

next day projection results. (b) The 7-day projection time-window-averaged projection results versus

corresponding empirical data window-averages. (c) The 14-day projection time-window-averaged

projection results versus corresponding empirical data window-averages.
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Figure 19. The projection results (boxplot) of the daily count of deaths compared with the empirical

data (the blue points, and not incorporated in the model). (a) The next day projection results.

(b) The 7-day projection time-window-averaged projection results versus corresponding empirical

data window-averages. (c) The 14-day projection time-window-averaged projection results versus

corresponding empirical data window-averages.
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Figure 20. The projection results (boxplot) of the daily count of patients admitted to the non-ICU

admitted patients with empirically mimicking synthetic data (the blue points, and not incorporated

in the model), with the latter being employed to preserve confidentiality. (a) The next day projection

results. (b) The 7-day projection time-window-averaged projection results versus corresponding

synthetic data window-averages. (c) The 14-day projection time-window-averaged projection results

versus corresponding synthetic data window-averages.
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Figure 21. The prediction results (boxplot) of the daily count of patients admitted to the

hospitalized ICU compared with the empirically mimicking synthetic data (the blue points, and

not incorporated in the model), with the latter being employed to preserve confidentiality. (a) The

next day projection results. (b) The 7-day projection time-window-averaged projection results versus

corresponding synthetic data window-averages. (c) The 14-day projection time-window-averaged

projection results versus corresponding synthetic data window-averages.

3.4. Intervention Results

In the previous sections, we showed that the particle filtering algorithm can estimate the state

space of the COVID-19 model. Beyond supporting the projection methods examined in the previous

session, the capacity to perform such state estimation also confers benefits for conducting simulations

of tradeoffs between intervention strategies, despite their counterfactual character. As for projection

scenarios discussed in the previous section, during the time horizon of a given intervention run (e.g.,

14 days), the particle filtering is disabled, and the dynamic model is run forward with no empirical data

being incorporated. But, as for the projection methods above, with each successive day of operation,

particle filtering incorporates a new day worth of data. The accuracy of the intervention runs conducted

forward into the future from a given day following the particle filter update from the previous day

benefits from the updated state estimated made possible by particle filtering’s incorporation of a new

day’s worth of data.

In this section, we show two intervention experiments to simulate stylized public health

intervention policies. The stylized intervention strategies are characterized abstractly for demonstration

purposes, but are emblematic of the sort of more textured interventions examined during use of the

model, and provide a flavour of what could be achieved with other interventions. In each case, the

scenarios are run forward for 14 days from each successive day with the intervention mechanisms in

place. Such a scenario run undertaken from a given day depicts the posited result of undertaking the

associated intervention starting on that day.

For a given such day, a single boxplot for that day depicts, on the basis of the state estimate

as of that particular day as updated by particle filtering for that day, the average outcome over the

14-day intervention time horizon. It bears emphasis that, in each case, the intervention scenario is

counter-factual — the intervention is not put into effect from day to day; rather, each such 14-day
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intervention scenario projects what the impact of such an intervention would be, were it to be

undertaken starting on the current day.

The two interventions considered here are predominantly focused on actions undertaken during

two outbreak waves:

• The first stylized intervention exhibited here focuses on elevating hygiene-oriented personal

protective measures, such as might be exemplified by a regional mask mandate. For simplicity,

the examination here characterizes such interventions as multiplying the effective contact rate

by a coefficient in the range (0, 1). Figure 22 depicts the results of such counterfactual scenario

occurring focused on the first outbreak wave in Saskatoon. For simplicity, this scenario posits

an aggressive such hygiene-enhancing intervention which reduces the contact rate by 50%

specifically for the window between day 220 to day 310 (inclusive).
• In a second intervention type, we examine the outcomes from a stylized outbreak-response

immunization campaign elevating vaccination rates for the 14-day defined period. This effect is

achieved by using a coefficient to increase the effective vaccination rate in the model over that

timeframe. As an example, Figure 23 shows the results of elevating the effective vaccination rate

by 50% rate during the third outbreak wave in Saskatoon, with those elevated rates being in

place from day 390 to day 510, inclusive.

The baseline comparator for the intervention runs – no intervention policies performed – can be

found as the normal projection runs from Figure 16 to 19.
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Figure 22. Model-based projections of the effects, for each successive day, of the average outcome

over an intervention reducing the effective contact rate over the next 14 days, starting at that day.
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Figure 23. Model-based projections, for of COVID-19 the next 14 days average results when

simulating an outbreak-response immunization campaign. This is realized by characterizing a

stylized elevated vaccine-induced protection level among 50% of the population.

4. Discussion and Limitations

As demonstrated in its use to support reporting for 17 jurisdictions across Canada for a period

of a year or more, the COVID-19 particle filtering model can monitor COVID-19 transmission and

hospitalization, estimate the daily latent states and important dynamic variables, and predict future

daily transmission and hospitalization status over the multi-week timeframe, all in light of daily

updates to estimated system state. With running the model daily, the daily estimates for COVID-19

transmission, hospitalization status, projection and intervention results reflect the latest sets of

empirical data – including both health system and wastewater data – to provide current understanding

to inform public health and healthcare system decision-making.

This work suffers from a number of limitations. A key one concerns changes in variant ecology.

Reflective of the high amounts of transmission experienced globally, the virus SARS-CoV-2 causing

COVID-19 has exhibited marked evolution. For most of the period for which data is considered in

this paper (early 2020 to the end of July 2021) the wild type of SARS-CoV-2 of the uniform lineage in

place in Canada, with the Alpha variant [17] appearing in Canada in the final week of 2021 (and in

Saskatchewan by February 2021), followed by Beta and Gamma and Delta. With respect to our example

jurisdictions considered in example runs here (Saskatoon), the highly distinctive Delta variant [17]

became the dominant variant of SARS-CoV-2 following July 2021 driving the next wave of outbreaks.
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Our COVID-19 particle filtering model is capable of simulating changes in the virus ecology by

adjusting characteristic parameter values (e.g., to reflect virulence, transmissivity, fraction of cases

that are symptomatic, or vaccine effectiveness). For example, to change from simulating Alpha to the

Delta variant, we increase the maximum value of the “transmission contact rate" (denoted as cβ in this

paper), and decreased both of the two doses’ vaccine efficacy (denoted as e1 and e2). However, the

dynamic model assumes the presence of a single variant at a time, and is not suitable for characterizing

processes requiring representation of multi-variant ecologies, such as those involving competition

between multiple lineages. It is also not well-suited for capturing variant cross-reactivity with respect

to immunological protection.

Although the structure of the COVID-19 model has demonstrated effectiveness in simulating

COVID-19 transmission and hospitalization across diverse jurisdictions from the beginning of the

first infected individual occurrence until the end of 2021, there are a number of key shortcomings in

the existing structure of the model. Likely the single most important such limitation relates to the

failure of the model to adequately characterize the differential impact of vaccination on protection

from infection vs. protection from severe disease and death. The model’s existing characterization

of COVID-19 vaccination characterizes its impact of vaccination only as mediated by an impact on

transmission. While individuals in the model can be infected regardless of vaccination status, once a

breakthrough infection of a vaccinated individual occurs, the model lacks existing mechanisms for

retaining information on that individual’s vaccination status. As a result, conditional on infection,

the model grossly unrealistically characterizes a vaccinated individual as having an identical risk of

hospitalization, ICU admission and death as a non-vaccinated individual. While model parameters

associated with such outcomes can be modified to reflect a high prevalence of vaccination uptake, the

model urgently needs a means of characterizing different types of protection conferred by vaccines.

Such a representation is particularly urgent in light of the need to capture the evolution in variant

ecology emphasized above. Beyond this foundational modification, the model requires the capacity to

represent the impact of successive booster vaccines.

Beyond the key change required for characterization of vaccine-induced protection, the model

depicted in this paper exhibits a needs to adapt to the updated epidemiological context and evolved

understanding of SARS-CoV-2. Most importantly are a need to take into account the extensively

evidenced phenomenon of waning of both natural immunity (acquired from exposure to the disease

through infection) and vaccine-induced immunity.

Finally, the COVID-19 model structure characterized here is only applied to an aggregate

population. Important gains in insight can be secured by incorporation of key elements of heterogeneity

via stratification. Given the marked differences in risk of severe disease and hospitalization, vaccine

uptake, assortive mixing, and risk behaviour, stratification by age group is a key priority. Particularly

in light of the pronounced rural-urban disparities in vaccination and risk behaviour, and opportunities

for incorporation of data drawn from SARS-CoV-2 wastewater concentration assays across varying

municipalities, stratified by multiple regions can also confer notable benefits.

Most of the needs covered in this section have subsequently been successfully incorporated into

newer versions of the particle filtered dynamic model than those presented here, but coverage of this

expanded model and particle filtering framework lies outside this presentation.

Also left for separate coverage are our refinement and expansion of the model covered here into

a Particle Markov Chain Monte Carlo model offering additional capabilities and sophistication in

sampling of static parameters [33], closer examination and evaluation of the incorporation, and support

for drawing insight from wastewater data, and details of the extensive and articulated distributed

computation framework used to provide nearly fully automated day-to-day running and reporting of

model results across diverse jurisdictions and data sources at scale.
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5. Conclusion

The work here characterizes the design and multi-year deployment of a production-quality

particle filter model that played a central role in informing public health decision-making starting in

the opening months of the pandemic. By cross-leveraging particle filtering, dynamic (transmission)

modeling, and diverse health system and wastewater data sources, the system presented here and

close variants offered important initial findings by April 2020, and served to deliver daily-updated

COVID-19 situational analyses and short-term forecasts for Saskatchewan for the period of June 2020

through December 2021, multiple times a week for each Canadian province for Public Health Agency

of Canada until November 2021 and weekly to First Nations across six Canadian provinces via FNIHB

through March 2022.

Particle filtered dynamic models confer strong benefits by virtue of their ability to incorporate

diverse incoming empirical data streams — here including both regularly reported health system

data and episodically sampled wastewater data — to perform day-to-day probabilistic estimation and

reporting of latent epidemiological and health system quantities of interest. Quantities routinely

reported from the model described here include — but are not limited to — COVID-19 cases,

testing volumes, hospitalization admissions and census, and deaths, force of infection, undiagnosed

individuals and other factors. This further includes a more sophisticated estimate of the effective

reproductive number taking into account incomplete reporting, asymptomatic transmission, diagnosis

and isolation, and other considerations. Beyond supporting updated estimation of such quantities

and other elements of system state whenever new data arrives, our extensively deployed particle

filtered framework uses each new system state estimate as the basis for probabilistically projecting

forward the evolution of epidemiology and acute-care demand, such as can readily support triggering

surge capacity mobilization, motivate the institution of public health measures, or prepare for higher

health capacity utilization. Similar methods can and were used to support reporting of results from

prospective counterfactual intervention scenarios, with each undertaken in light of the latest empirical

observations.

As demonstrated by its widespread adoption for continually regrounded reporting and scenario

analysis for diverse Canadian jurisdictions, the sequential Monte Carlo approach of particle filtering

offers a compelling tool for evidence-based public health decision-making. The capacity of particle

filtering to keep transmission models and resulting probabilistic state estimates and scenarios

projections continually updated with the latest data offers compelling advantages over earlier

generations of techniques such as the Extended Kalman Filter, and the computational demands

of this technique are well-balanced with the velocity of contemporary data streams of relevance.

Systems employing particle filtering offer strong advantages well-matched to the urgent need for

public health surveillance and decision-making in coming years.
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Abbreviations

Abbreviations

The following abbreviations are used in this manuscript:

SMC Sequential Monte Carlo

PF Particle Filtering

WHO World Health Organization

PMCMC Particle Markov Chain Monte Carlo

PHAC Public Health Agency of Canada

SHA Saskatchewan Health Authority

FNIHB First Nations and Inuit Health Branch

PCR Polymerase Chain Reaction

ICU Intensive Care Unit

WWS Wastewater Surveillance

ODE Ordinary Differential Equation

MCMC Markov Chain Monte Carlo

RMSE Root Mean Square Error

NRMSE Normalized Root Mean Square Error

Appendix A. The ODEs of the COVID-19 mathematical model

The mathematical equations of the compartmental model are listed as follows:
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dS

dt
= −λS − EVacc1

dV1

dt
= EVacc1 − EVacc2 − λ(1 − e1)V1

dV2

dt
= EVacc2 − λ(1 − e2)V2

dEU

dt
= λS + λ(1 − e1)V1 + λ(1 − e2)V2 −

EU

tE
− Vp

EU

IU

dIAU

dt
=

EU

tE
−

IAU

tI
− Vp

IAU

IU

IAD

dt
= Vp

EU

IU
−

IAD

tI

dIA2U

dt
= fpA

IAU

tI
−

IA2U

tIY

− Vp
IA2U

IU

dIA2D

dt
= fpA

IAD

tI
−

IA2D

tIY

dIA3U

dt
=

IA2U

tIY

− Vp
IA3U

IU
−

IA3U

tIYN

dIA3D

dt
=

IA2D

tIY

+ Vp
IA2U

IU
−

IA3D

tIYN

dIYU

dt
= ExD

1 − fS

fS
+ (1 − fpA)

IAU

tI
−

IYU(1 − fY)

tIY

− Vp
IYU

IU
− min

IYU fY

tIY

, Em

dIYD

dt
= ExD + (1 − fpA)

IAD

tI
+ Vp

IAU

IU
−

IYD

tIY

dHICU

dt
= IYU

fH fHICU

tIY

+ IYD
fH fHICU

tIY

−
HICU

tICU
− HICU

−ln(1 − φICU)

tICU

dHNICU

dt
= IYU

fH(1 − fHICU)

tIY

+ IYD
fH(1 − fHICU)

tIY

+
HICU

tICU
− HNICU

−ln(1 − φNICU)

tNICU
−

HNICU

tH

dIYNU

dt
= IYU

1 − fH − fY

tIY

− min
IYU fY

tIY

, Em −
IYNU

tIYN

− Vp
IYNU

IU

dIYND

dt
= Vp

IYU

IU
+

IYD(1 − fH)

tIY

+ min
IYU fY

tIY

, Em −
IYND

tIYN

dRU

dt
=

IYNU

tIYN

+
IA3U

tIYN

dRD

dt
=

IYND

tIYN

+
HICU

tH
+

IA3D

tIYN

+ Vp
IYNU

IU
+ Vp

IA3U

IU

dD

dt
= HNICU

−ln(1 − φNICU)

tNICU
+ HICU

−ln(1 − φICU)

tICU

IU = EU + IAU + IA2U + IA3U + IYU + IYNU

tIYN
= tR − tIY

N = S + V1 + V2 + EU + ED + IAU + IAD + IA2U + IA2D + IA3U + IA3D + IYU + IYD + IYNU + IYND + RU + RD

+ HICU + HNICU + D

λ = cβ
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + V1 + V2 + EU + IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(ED + IAD + IA2D + IA3D + IYD + IYND)

Em = max 0, Vt − VHICU − VHNICU − ExD

Vremain = Em − min
IYU fY

tIY

, Em

Vp = Vremain β1 − e
−α

Vremain
IU

(A1)

The meaning of each stock:

S: The number of susceptible individuals

V1: The number of individuals who have received first vaccination dose

V2: The number of individuals who have received two vaccination doses

EU : The number of undiagnosed susceptible individuals

IAU : The number of undiagnosed temporary asymptomatic infected individuals

IAD: The number of diagnosed temporary asymptomatic infected individuals
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IA2U : The number of undiagnosed persistent asymptomatic infected individuals

IA2D: The number of diagnosed persistent asymptomatic infected individuals

IA3U : The number of undiagnosed persistent asymptomatic infected individuals with progression

from IA2U

IA3D: The number of diagnosed persistent asymptomatic infected individuals with progression

from IA2D

IYU : The number of undiagnosed symptomatic infected individuals with complications

IYD: The number of diagnosed symptomatic infected individuals with complications

IYNU : The number of undiagnosed symptomatic infected individuals without complications

IYND: The number of diagnosed symptomatic infected individuals without complications

HICU : The number of hospitalized critical infected individuals

HNICU : The number of hospitalized acute infected individuals

RU : The number of undiagnosed recovered individuals

RD: The number of diagnosed recovered individuals

D: The number of died individuals from COVID-19

Appendix B. The Mathematical Deduction of The Dynamic Parameters

If parameter β varies over the range [0, 1], we characterize the logit of β (transfer from interval

[0, 1] to (−∞,+∞)) as undergoing Brownian Motion according to Stratonovich notation as:

d(logit(β)) = dln
β

1 − β
= sβdWt (A2)

In a more general situation, where β varies in the interval [a, b], we scale β ∈ [a, b] to β′ ∈ [0, 1],

where we have:

β′ =
β − a

b − a
(A3)

Finally, if we substitute equation (A3) to (A2), we can get the logit of β (transfer from interval

[a, b] to (−∞,+∞)) as undergoing Brownian Motion according to Stratonovich notation as:

d(logit(β)) = dln
β − a

b − β
= sβdWt (A4)

Appendix C. Boxplots of the COVID-19 particle filtering model estimated latent state

Figure A1. Boxplot of the latent state of stock S
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Figure A2. Boxplot of the latent state of stock EU

Figure A3. Boxplot of the latent state of stock IAU

Figure A4. Boxplot of the latent state of stock IAD

Figure A5. Boxplot of the latent state of stock IA2U
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Figure A6. Boxplot of the latent state of stock IA2D

Figure A7. Boxplot of the latent state of stock IA3U

Figure A8. Boxplot of the latent state of stock IA3D

Figure A9. Boxplot of the latent state of stock IYNU
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Figure A10. Boxplot of the latent state of stock IYND

Figure A11. Boxplot of the latent state of stock IYU

Figure A12. Boxplot of the latent state of stock IYD

Figure A13. Boxplot of the latent state of stock RU
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Figure A14. Boxplot of the latent state of stock RD

Figure A15. Boxplot of the latent state of stock V1

Figure A16. Boxplot of the latent state of stock V2

Figure A17. Boxplot of the latent state of stock logit(cβ)
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Figure A18. Boxplot of the latent state of stock logit( fH)

Figure A19. Boxplot of the latent state of stock logit( fY)

Figure A20. Boxplot of the latent state of stock logit(α)

Appendix D. Mathematical equations of calculating the normalized RMSE and discrepancy

The normalized-RMSE between the COVID-19 particle filtering model estimated/predicted values

and the observed data on each day is calculated as follows:

NRMSE =

√

√

√

√∑
n
i=1

2(ŷ−yi)
ŷ+yi

2

n
(A5)

where y is the model estimated/predicted value, ŷ is the observed value, and n is the total number

of particles sampled by weight to measure. Then, the discrepancy of each empirical dataset is simply

the average of the NRMSE across the whole time frame. The result of the NRMSE lies in the interval

[0, 2].

Appendix E. Calculation of relative mixing rate amongst undiagnosed symptomatics ρU and
diagnosed in community ρD

[29] shows “About 35 of the 160 confirmed cases did not minimise social contact. More than a

fifth continued to work or carried on with their daily routine despite being sick". We then assume

80% of diagnosed mostly isolated themselves by reducing their contacts to 20% of normal, and 50%

undiagnosed reduce their contacts to 20% of normal. Then we have ρD = 0.8 ∗ 0.2+ (1− 0.8) ∗ 1 = 0.36,

ρU = 0.5 ∗ 0.2 + (1 − 0.5) ∗ 1 = 0.6
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NIC = IA + IYU + IYN + IA2 + IA3

N = S + E + VP + VF + IA + IYU + IYN + IA2 + IA3 + HICU + HNICU + R

NI = IA + IYU + IYN + IA2 + IA3 + HICU + HNICU
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