Pre prints.org

Article Not peer-reviewed version

aeroBERT-Classifier: Classification of
Aerospace Requirements using BERT

Archana Tikayat Ray i , Bjorn F. Cole, Olivia J. Pinon Fischer i , Ryan T. White , Dimitri N. Mavris

Posted Date: 6 February 2023
doi: 10.20944/preprints202302.0077v1

Keywords: Requirements Engineering; Natural Language Processing; NLP; BERT; Requirements
Classification; Text Classification

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
aeroBERT-Classifier: Classification of Aerospace
Requirements Using BERT

Archana Tikayat Ray *{9, Bjorn F. Cole 2(%, Olivia J. Pinon Fischer 1, Ryan T. White 3® and
Dimitri N. Mavris !

1 Aerospace Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology,

Atlanta, Georgia, 30332
2 Lockheed Martin Space, Littleton, Colorado, 80127
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida, 32901
* Correspondence: atr@gatech.edu

Abstract: Requirements are predominantly written in Natural Language (NL), which makes them
accessible to stakeholders with varying degrees of experience, as compared to a model-based language
which requires special training. However, despite its benefits, NL can introduce ambiguities and
inconsistencies in requirements, which may eventually result in system quality degradation and
system failure altogether. The system complexity that characterizes current systems warrants
an integrated and comprehensive approach to system design and development. This need has
brought about a paradigm shift towards Model-Based Systems Engineering (MBSE) approaches
to system design and a departure from traditional document-centric methods. While, MBSE
shows great promise, the ambiguities and inconsistencies present in NL requirements hinder their
conversion to models directly. The field of Natural Language Processing (NLP) has demonstrated
great potential in facilitating the conversion of NL requirements into a semi-machine-readable
format that enables their standardization and use in a model-based environment. A first step
towards standardizing requirements consists of classifying them according to the “type” (design,
functional, performance, etc.) they represent. To that end, a language model capable of
classifying requirements needs to be fine-tuned on labeled aerospace requirements. This paper
presents the development of an annotated aerospace requirements corpus and its use to fine-tune
BERTgRASE-UNCASED to obtain aeroBERT-Classifier: a new language model for classifying aerospace
requirements into design, functional, or performance requirements. A comparison between
aeroBERT-Classifier and bart-large-mnli (zero-shot text classification) showcased the superior
performance of aeroBERT-Classifier on classifying aerospace requirements despite being fine-tuned
on a small labeled dataset.

Keywords: requirements engineering; natural language processing; NLP; BERT; requirements
classification; text classification

1. Introduction

1.1. Importance of Requirements Engineering

A requirement, as defined by the International Council of Systems Engineering (INCOSE),
is “a statement that identifies a system, product or process characteristic or constraint, which is
unambiguous, clear, unique, consistent, stand-alone (not grouped), and verifiable, and is deemed
necessary for stakeholder acceptability” [1]. Requirements are the first step towards designing systems,
products, and enterprises. As such, requirements should be [2,3]:

* Necessary: capable of conveying what is necessary to achieve the required system functionalities,
while being compliant with regulations

® Clear: able to convey the desired goal to the stakeholders by being simple and concise

* Traceable: able to be traced back to higher-level specifications, and vice versa

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

20f21

* Verifiable: can be verified by making use of different verification processes, such as analysis,
inspection, demonstration, and test

¢ Complete: the requirements should result in a system that successfully achieves the client’s
needs while being compliant with the regulatory standards

Requirements can be of different “types” such as functional, non-functional, design, performance,
certification, etc., based on the system of interest [4]. This typing has been developed to help
focus the efforts of requirements developers and help them provide guidelines on the style and
structure of different requirements. Requirements engineering has developed as a domain that
involves elucidating stakeholder expectations and converting them into technical requirements [5].
In other words, it involves defining, documenting, and maintaining requirements throughout the
engineering lifecycle [6]. Various stakeholders contribute to the requirements generation process, such
as consumers, regulatory bodies, contractors, component manufacturers, etc. [7].

Well-defined requirements and good requirements engineering practices can lead to successful
systems. Errors during the requirement definition phase, on the other hand, can trickle down to
downstream tasks such as system architecting, system design, implementation, inspection and
testing [8], and have dramatic engineering and programmatic consequences when caught late
in the product life cycle [9,10]. Because Natural Language (NL) is predominantly used to write
requirements [11], requirements are commonly prone to ambiguities and inconsistencies. This in turn
increases the likelihood of errors and issues in the way they are formulated, with the consequences
that we know. As a result, a way to standardize requirements to reduce their inherent ambiguities is
urgently needed.

1.2. Shift towards Model-based Systems Engineering

As mentioned before, most of the systems in the present-day world are complex and hence need a
comprehensive approach to their design and development [12]. To accommodate this need, there has
been a drive toward the development and use of the practice of Model-Based Systems Engineering
(MBSE), where activities that support the system design process are accomplished using detailed
models as compared to traditional document-based methods [13]. Models capture the requirements
as well as the domain knowledge and make them accessible to all stakeholders [14,15]. While MBSE
shows great promise, the ambiguities and inconsistencies inherent to NL requirements hinder their
direct conversion to models [16]. The alternative, which would consist of hand-crafting models, is
time-consuming and requires highly specialized subject matter expertise. As a result, there is a need
to convert NL requirements into a semi-machine-readable form so as to facilitate their integration
and use in a MBSE environment. Doing so would also allow for the identification of errors or
gaps in requirements during the requirements elicitation phase, leading to cost and time savings.
Despite these benefits, there are no standard tools or methods for converting NL requirements into a
machine-readable/semi-machine-readable.

1.3. Research focus and expected contributions

A first step towards standardizing requirements consists of classifying them according to their
“type” (design, functional, performance, etc.). For example, if a certain requirement is classified as
a design requirement, then it is expected to contain certain specific information regarding the system
design as compared to a functional requirement, which focuses on the functions to be achieved by a
system. Hence, it is important to be able to tell one requirement apart from another. The field of
Natural Language Processing (NLP) has shown promise when it comes to classifying text. However,
text classification has mainly been limited to sentiment analysis, news genre analysis, movie review
analysis, etc., and has not been applied in a focused way to engineering domains like aerospace. To
address the aforementioned need, the research presented herein leverages a pre-trained language
model, the Bidirectional Encoder Representational Transformer (BERT) [17], which is then fine-tuned on
an original labeled dataset of aerospace requirements for requirements classification. The remainder of

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

30f21

this paper is organized as follows: Section II presents the relevance of NLP in requirements engineering
and discusses various language models for text classification. Section III identifies the gaps in the
literature and summarizes the research goal. Section IV presents the technical approach taken to collect
data, create a requirements corpus, and fine-tune BERTgasg-uncaseD. Section V discusses the results
and compares the results from the aeroBERT-Classifier with that of bart-large-mnli (zero-shot text
classification). Lastly, Section VI summarizes the research conducted as part of this effort and discusses
potential avenues for future work.

2. Background

2.1. Natural Language Processing for Requirements Engineering (NLP4RE)

Requirements are almost always written in NL [18] to make them accessible to different
stakeholders. According to various surveys, NL was deemed to be the best way to express
requirements [19], and 95% of 151 software companies surveyed revealed that they were using some
form of NL to capture requirements [20]. Given the ease of using NL for requirements elicitation,
researchers have been striving to come up with NLP tools for requirements processing dating back
to the 1970s. Tools such as the Structured Analysis Design Technique (SADT), and the System
Design Methodology (SDM) developed at MIT, are systems that were created to aid in requirement
writing and management [19]. Despite the interest in applying NLP techniques and models to
the requirements engineering domain, the slow development of natural language technologies
thwarted progress until recently [11]. The availability of NL libraries/toolkits (Stanford CoreNLP [21],
NLTK [22], spaCy [23], etc.), and off-the-shelf transformer-based [24] pre-trained language models
(LMs) (BERT [17], BART [25], etc.) have propelled NLP4RE into an active area of research.

A recent survey performed by Zhao et al. reviewed 404 NLP4RE studies conducted between
1983 and April 2019 and reported on the developments in this domain [26]. Figure 1 shows a clear
increase in the number of published studies in NLP4RE over the years. This underlines the fact that
NLP plays a crucial role in requirements engineering and will only get more important with time,
given the availability of off-the-shelf language models.

45

40

EN
33

31
30

22 21

20 19

15015 16

12

Number of NLP4RE studies

10

w

w

N
N
N
N
N
N
N

—
[y
—
—
fay
[y

1983
1985
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

£ 2000
2001
2002
2003

® 2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019

bli

0
=

atio

>
<
=

Figure 1. Published studies in the NLP4RE domain between 1983 and April, 2019 [26].

Among the 404 NLP4RE studies reported in [26], 370 NLP4RE studies were analyzed and classified
based on the main NLP4RE task being performed. 26.22% of these studies focused on detecting
linguistic errors in requirements (use of ambiguous phrases, conformance to boilerplates, etc.), 19.73%

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

40f21

focused on requirements classification, and 17.03% on text extraction tasks focused on the identification
of key domain concepts (Figure 2).

26.22

25

= N
w o
1 1

% of total number of studies
=
1

Detection Classification Extraction Modeling
Type of NLP task

Tracing & Relating Search & Retrieval

Figure 2. Distribution of different language tasks performed by studies surveyed by Zhao et al [26].

As mentioned, the classification of requirements is a critical step toward their conversion into a
semi-machine-readable/standardized format. The following section discusses how NLP has evolved
and can be leveraged to enable classification.

2.2. Natural Language Processing (NLP) & Language Models (LMs)

NLP is promising when it comes to classifying requirements, which is a potential step toward the
development of pipelines that can convert free-form NL requirements into standardized requirements
in a semi-automated manner. Language models (LMs), in particular, can be leveraged for classifying
text (or requirements, in the context of this research) [17,25,27]. Language modeling was classically
defined as the task of predicting which word comes next [28]. Initially, this was limited to statistical
language models [29], which use prior word sequences to compute the conditional probability for
each of a vocabulary future word. The high-dimensional discrete language representations limit these
models to N-grams [30], where only the prior N words are considered for predicting the next word
or short sequences of following words, typically using high-dimensional one-hot encodings for the
words.

Neural LMs came into existence in 2000s [31] and leveraged neural networks to simultaneously
learn lower-dimensional word embeddings and learn to estimate conditional probabilities of
next words simultaneously using gradient-based supervised learning. This opened the door to
ever-more-complex and effective language models to perform an expanding array of NLP tasks,
starting with distinct word embeddings [32] to recurrent neural networks (RNNs) [33] and LSTM
encoder-decoders [34] to attention mechanisms [35]. These models did not stray too far from the
N-gram statistical language modeling paradigm, with advances that allowed text generation beyond
a single next word with for example beam search in [34] and sequence-to-sequence learning in [36].
These ideas were applied to distinct NLP tasks.

In 2017, the Transformer [24] architecture was introduced that improved computational
parallelization capabilities over recurrent models, and therefore enabled the successful optimization
of larger models. Transformers consist of stacks of encoders (encoder block) and stacks of decoders
(decoder block), where the encoder block receives the input from the user and outputs a matrix
representation of the input text. The decoder takes the input representation produced by the encoder
stack and generates outputs iteratively [24].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

50f21

All of these works required training on a single labeled dataset for a specific task. In
2018-20, several new models emerged and set new state-of-the-art marks in nearly all NLP tasks.
These transformer-based models include the Bidirectional Encoder Representational Transformer
(BERT) language model [17] (auto-encoding model), the Generative Pre-trained Transformer (GPT)
family [37,38] of auto-regressive language models, and T5 character-level language model [39]. These
sophisticated language models break the single dataset-single task modeling paradigm of most
mainstream models in the past. They employ self-supervised pre-training on massive unlabeled
text corpora. For example, BERT is trained on Book Corpus (800M words) and English Wikipedia
(2500M words) [17]. Similarly, GPT-3 is trained on 500B words gathered from datasets of books and
the internet [38].

These techniques set up automated supervised learning tasks, such as masked language modeling
(MLM), next-sentence prediction (NSP), and generative pre-training. No labeling is required as the
labels are automatically extracted from the text and hidden from the model, and the model is trained
to predict them. This enables the models to develop a deep understanding of language, independent
of the NLP task. These pre-trained models are then fine-tuned on much smaller labeled datasets,
leading to advances in the state of the art (SOTA) for nearly all downstream NLP tasks (Figure 3),
such as Named-entity recognition (NER), text classification, language translation, question answering,
etc. [17,40,41].

Corpus

Pre-training
Y

Language Model

Fine-tune for downstream
tasks using in-domain
labeled text

l A 4 l

Classification
tasks

NER POS

Figure 3. Chronology of Corpus, Language Model, and downstream tasks [42].

Training these models from scratch can be prohibitive given the computational power required:
to put things into perspective, it took 355 GPU-years and $4.6 million to train GPT-3 [43]. Similarly, the
pre-training cost for BERTp 4gr model with 110 million parameters varied between $2.5k-$50k, while
it cost between $10k-$200k to pre-train BERT| grge with 340 million parameters [44]. Pre-training
the BART LM took between 12 days with 256 GPUs [25]. These general-purpose LMs can then
be fine-tuned for specific downstream NLP tasks at a small fraction of the computational cost and
time-even in a matter of minutes or hours on a single-GPU computer [17,45-48].

Pre-trained LMs are readily available on the Hugging Face platform [49] and can be accessed
via the transformers library. These models can then be fine-tuned on downstream tasks with a labeled
dataset specific to the downstream task of interest. For example, for text classification, a dataset
containing the text and the corresponding labels should be used for fine-tuning the model. The final
model with text classification capability will eventually have different model parameters as compared
to the parameters it was initialized with [17]. Figure 4 illustrates the pre-training and fine-tuning steps
for BERT for a text classification task.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

6 of 21
Semi-supervised pre-training step
P —_—— e —————— N Supervised training on a specific task
/ e —
Model \
[R BERT] / 66.67% | Positive N
obtained: [Classifier \
| | I Downstream 33330 | Neaative |
| | | task: |
| A N [I Pre-trained |
3
| Pre-training 3 f \“’V" o | model: |
| dataset: Yon O # I |
| Book Corpus (11038 unpublished English Wikipedia
| P || |
| I I Dataset: Movie was good Positive |
| Masked language model (MLM): The model randomly masks 15% of I l Movie was not good Negative]
the tokens in the input sequence and the goal is to predict the original I \ I enjoyed the food Positive /
‘ Goal: vocabulary id of the token given the context ’ ~ %
\ * Next sentence prediction (NSP): The model learns the relationship —_————————— —— — — — — ———
between sentences by predicting whether the next sentences follows the /
N - previous sentence /s
— — — — — — — — —— — — — — — — —

Figure 4. Fine-tuning a BERT language model on text classification task [17,50].
The following section provides details about some of the LMs used for text classification purposes.

2.2.1. Bidirectional Encoder Representations from Transformers (BERT)

As mentioned previously, BERT is a pre-trained LM that is capable of learning deep bidirectional
representations from an unlabeled text by jointly incorporating both the left and right context of a
sentence in all layers [17]. Being a transformer-based LM, BERT is capable of learning the complex
structure and the non-sequential content in language by using attention mechanisms, fully-connected
neural network layers, and positional encoding [24,50]. Despite being trained on a large corpus, the
vocabulary of BERT is just 30,000 words since it uses WordPiece Tokenizer which breaks words into
sub-words, and eventually into letters (if required) to accommodate for out-of-vocabulary words. This
makes the practical vocabulary BERT can understand much larger. For example, “ing” is a single
word piece, so it can be added to nearly all verbs in the base vocabulary to extend the vocabulary
tremendously. BERT comes in two variants when it comes to model architecture [17]:

1. BERTgasE: contains 12 encoder blocks with a hidden size of 768, and 12 self-attention heads
(total of 110 M parameters)

2. BERT| aARrgE: contains 24 encoder blocks with a hidden size of 1024, and 16 self-attention heads
(total of 340M parameters)

BERT is pre-trained on two self-supervised language tasks, namely, Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP) (Figure 4), which help it develop a general-purpose
understanding of natural language. However, it can be fine-tuned to perform various downstream
tasks such as text classification, NER, Part-of-Speech (POS) tagging, etc. A task-specific output layer is
what separates a pre-trained BERT from a BERT fine-tuned to perform a specific task.

In a recent study, Hey et al. fine-tuned the BERT language model on the PROMISE NFR
dataset [51] to obtain NoRBERT (Non-functional and functional Requirements classification using
BERT) - a model capable of classifying requirements [52]. NoRBERT is capable of performing four
tasks, namely, (1) binary classification of requirements into two classes (functional and non-functional);
(2) binary and multi-class classification of four non-functional requirement classes (Usability, Security,
Operational, and Performance); (3) multi-class classification of ten non-functional requirement types;
and (4) binary classification of the functional and quality aspect of requirements.

The PROMISE NFR dataset [51] contains 625 requirements in total (255 functional and 370
non-functional, which are further broken down into different “sub-types”). It is, to the authors’
knowledge, the only requirements dataset of its kind that is publicly available. However, using
this dataset was deemed implausible for this work because it predominantly focuses on software
engineering systems and requirements. Table 1 shows some examples from the PROMISE NFR dataset.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

7 of 21

Table 1. Requirements examples from the PROMISE NFR dataset [51].

Serial No. Requirements
1 The product shall be available for use 24 hours per day 365 days per year.
2 The product shall synchronize with the office system every hour.
3 System shall let existing customers log into the website with their email
address and password in under 5 seconds.
4 The product should be able to be used by 90% of novice users on the Internet.
5 The ratings shall be from a scale of 1-10.

Another avenue for text classification is zero-shot text classification, which is discussed in detail
in the next section.

2.2.2. Zero-shot Text Classification

Models doing a task that they are not explicitly trained for is called zero-shot learning (ZSL) [53].
There are two general ways for ZSL, namely, entailment-based and embedding-based methods. Yin et
al. proposed a method for zero-shot text classification using pre-trained Natural Language Inference
(NLI) models [54]. The bart-large-mnli model was obtained by training bart-large [25] on the MultiNLI
(MNLI) dataset, which is a crowd-sourced dataset containing 433,000 sentence pairs annotated with
textual entailment information [0: entailment; 1: neutral; 2: contradiction] [55]. For example, to classify
the sentence “The United States is in North America” into one of the possible classes, namely, politics,
geography, or film, we could construct a hypothesis such as - This text is about geography. The probabilities
for the entailment and contraction of the hypothesis will then be converted to probabilities associated
with each of the labels provided.

Alhosan et al. [56] performed a preliminary study for the classification of requirements using
ZSL in which they classified non-functional requirements into two categories, namely usability, and
security. An embedding-based method was used where the probability of the relatedness (cosine
similarity) between the text embedding layer and the tag (or label) embedding layer was calculated to
classify the requirement into either of the two categories. This work uses a subset of the PROMISE
NFR dataset as well [51].

The zero-shot learning method for classifiers has been introduced in this section to serve as a
basis for LM performance in the classification task. The initial hypothesis behind this work is that the
tuned aeroBERT-Classifier will outperform the bart-large-mnli model.

3. Research Gaps & Objectives

As stated previously, SOTA LMs are typically pre-trained on general-domain text corpora such
as news articles, Wikipedia, book corpora, movie reviews, Tweets, etc. Off-the-shelf models for
specific tasks like NER or text classification are fine-tuned on generic text datasets as well. While
the underlying language understanding learned during pre-training is still valuable, the fine-tuned
models are less effective when it comes to working with specialized language from technical domains
such as aerospace, healthcare, etc. For example, using a language model fine-tuned on classifying
sentiment data will not be effective if used for classifying aerospace requirements. To illustrate this,
bart-large-mnli LM was used for classifying the aerospace requirement “The installed powerplant must
operate without any hazardous characteristics during normal and emergency operation within the range of
operating limitations for the airplane and the engine” into three classes (design requirement, functional
requirement, and performance requirement), as shown in Figure 5. The true label associated with the
requirement is performance, however, the zero-shot text classification model classified it as a functional
requirement. Several other examples were evaluated, and a skew toward the functional requirement
class was observed.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

8 of 21

The installed powerplant must cperate without any hazardous characteristics during
normal and emergency operations within the range of operating limitations for the
airplane and the engine.

Possible class names (comma-separated)
design requirement, functional requirement, performance requirement
Allow multiple true classes

Compute

0.424

functional requirement
- 5.205

performance requirement
9.211

design requirement

Figure 5. Classification of a performance requirement by bart-large-mnli model [54].

The existence of models such as SciBERT [57], FinBERT (Financial BERT) [58], BioBERT [59],
Clinical BERT [60], and PatentBERT [61] stresses the importance of domain-specific corpora for
pre-training and fine-tuning LMs when it comes to domains that are not well represented in the
general-domain text.

Open-source datasets, however, are scarce when it comes to requirements engineering, especially
those specific to aerospace applications. This has hindered the use of modern-day language models for
the requirements classification task. In addition, because annotating RE datasets requires subject-matter
expertise, crowd-sourcing as a means of data collection is not a viable approach.

Summary

The overarching goal of this research is eventually the development of a methodology for the
standardization of aerospace requirements into semi-machine-readable requirements by making
use of requirements boilerplate. Figure 6 shows the pipeline consisting of different language
models, the outputs of which put together will enable the conversion of NL requirements into
semi-machine-readable requirements, which will inform boilerplate creation.

aeroBERT-Classifier —— aeroBERT-NER ——| Parts-Of-Speech

— - Boilerplate
M calpable of;lassnfymg LM capable of identifying M capa_ble of tagging each identification
requirements into three five types of NE: SYS, ORG, token in a requirement
“types”: Design, Functional, VAL, RES, DATETIME [42] sequence with its POS tag Identifying boilerplates based
and Performance on the patterns seen in the

requirements

Figure 6. Pipeline for converting NL requirements to semi-machine-readable form enabling boilerplate
creation.

This paper focuses on fine-tuning a language model for classifying requirements into various
types. This effort achieves it through the:

1. Creation of a labeled aerospace requirements corpus: Aerospace requirements are collected
from Parts 23 and 25 of Title 14 of the Code of Federal Regulations (CFRs) and annotated. The
annotation involves tagging each requirement with its “type” (e.g., functional, performance,
interface, design, etc.).

2. Identification of aerospace requirements of interest: There are different variations of the BERT
LM for text classification, however, these models are trained on Tweets, sentiment data, movie
reviews, etc. Hence, there is a need for a model that is capable of classifying requirements.
Capabilities are added to identify three types of requirements: Design requirements, Functional
requirements, and Performance requirements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

9of21

3. Fine-tuning of BERT for aerospace requirements classification: The annotated aerospace
requirements are used for fine-tuning BERTgasg-Uncasep LM. Metrics such as precision, recall,
and F1 score are used to assess the model performance.

The following section describes in detail the technical approach taken.

4. Technical Approach

Aerospace requirements are often always proprietary, meaning that they are of limited
open-source availability. Since large amounts of data are required to train a LM from scratch,
this research focuses instead on fine-tuning the BERTpasp-uncaseD for the classification of aerospace
requirements. To that end, an aerospace corpus containing labeled requirements is developed and
used.

The methodology for developing the aeroBERT-Classifier is illustrated in Figure 7. The following
sections describe each step in detail.

Pre-processing
Cleaning the texts collected
Removing equations, cte. as required
Getting the text in the correct format for
annotation
ete.

A Fine-tunc

S _ _
Texts Corpus S B
A 4
aeroBERT-
| Classifier
Text collection Text Annotation
Parts of Title 14 of CFRs * Hand annotating requirements into various Test/New Classified
Part 23 types with inputs from SME: requirements requirements

Part 25 Design requirements
Functional requirements
Performance requirements
Environmental requirements
Interface requirements
Quality requirements

Corpus creation and annotation

Figure 7. Methodology for obtaining aeroBERT-Classifier.
4.1. Data Collection, Cleaning, and Annotation

The creation of an annotated aerospace requirements corpus is a critical step since such corpus is
not readily available in the open-source domain and is required for fine-tuning BERTpasp-UNCASED- AS
seen in Figure 7, the first step to creating a requirements dataset is to collect aerospace requirements
from various sources. Table 2 provides a list of the resources leveraged to obtain requirements for the
purpose of creating a classification corpus.

Table 2. Resources used for the creation of aerospace requirements classification corpus.

Serial No. Name of resource
1 Part 23: Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Airplanes
2 Part 25: Airworthiness Standards: Transport Category Airplanes

! Texts were extracted from these resources and often had to be modified into requirements.

Requirements oftentimes appear in paragraph form, which requires some rewriting to convert
texts/paragraphs into requirements that can then be added to the dataset. For example, Table 3 shows
14 CFR §23.2145(a) in its original and modified form, which resulted in three distinct requirements. A
total of 325 requirements were collected and added to the classification corpus.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023

Table 3. Example showing the modification of text from 14 CFR §23.2145(a) into requirements.

14 CFR §23.2145(a)

Requirements created

Airplanes not certified for aerobatics must -
(1) Have static longitudinal, lateral, and
directional stability in normal operations;

(2) Have dynamic short period and Dutch roll
stability in normal operations; and

(3) Provide stable control force feedback
throughout the operating envelope.

Requirement 1: Airplanes not certified for
aerobatics must have static longitudinal, lateral,
and directional stability in normal operations.

Requirement 2: Airplanes not certified for
aerobatics must have dynamic short period and
dutch roll stability in normal operations.

Requirement 3: Airplanes not certified for
aerobatics must provide stable control force

d0i:10.20944/preprints202302.0077.v1

feedback throughout the operating envelope.

After obtaining the requirements corpus, a few other changes were made to the text, as shown in
Table 4. The symbols ‘§” and ‘§§” were replaced with the word ‘Section” and ‘Sections’ respectively, to
make it more intuitive for the LM to learn patterns. Similarly, the dots *.” occurring in the section names
were replaced with ’-” to avoid confusing them with sentence endings. The above pre-processing steps
were also used in a companion article for obtaining annotated named entities (NEs) corpus to train

aeroBERT-NER [42].
Table 4. Symbols that were modified for corpus creation [42].
Original Symbol Modified text/symbol Example
§ Section §25.531 — Section 25.531
§§ Sections §§25.619 through 25.625 — Sections
25.619 through 25.625
Dot (“.’) wused in section Dash (’-') Section 25.531 — Section 25-531

numbers

After pre-processing the requirements text, the next step consisted of annotating the requirements
based on their “type”/category of requirement. Requirements were classified into six categories,
namely, Design, Functional, Performance, Interface, Environmental, and Quality. The definitions used
for the requirement “types” /categories along with the examples are provided in Table 5. Our author
base consists of the expertise required to make sure that the requirements were annotated correctly
into various categories. It is important to keep in mind that different companies/industries might
have their own definitions for requirements specific to their domain.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

11 of 21

Table 5. Definitions used for labeling/annotating requirements [2,5,65].

Requirement Type Definition

Design Dictates “how” a system should be designed given certain technical
standards and specifications;
Example: Trim control systems must be designed to prevent creeping in
flight.

Functional Defines the functions that need to be performed by a system in order to
accomplish the desired system functionality;
Example: Each cockpit voice recorder shall record voice communications of
flightcrew members on the flight deck.

Performance Defines “how well” a system needs to perform a certain function;
Example: The airplane must be free from flutter, control reversal, and
divergence for any configuration and condition of operation.

Interface Defines the interaction between systems [62];
Example: Each flight recorder shall be supplied with airspeed data.

Environmental Defines the environment in which the system must function;
Example: The exhaust system, including exhaust heat exchangers for each
powerplant or auxiliary power unit, must be designed to prevent likely
hazards from heat, corrosion, or blockage.

Quality Describes the quality, reliability, consistency, availability, usability,
maintainability, and materials and ingredients of a system [63];
Example: Internal panes must be made of nonsplintering material.

As mentioned previously, the corpus includes a total of 325 aerospace requirements. 134 of these
325 requirements (41.2%) were annotated as Design requirements, 91 (28%) as Functional requirements,
and 62 (19.1%) as performance requirements. Figure 8 shows the counts for all the requirement “types”.

| Total number of annotated requirements: 325 |

|
l l l | l |

| Design | I Functional | | Performance | | Interface | | Environment | | Quality |
Count: 134 +15 91 +8 62 27-23 8 3
t t |

Interface requirements were rewritten (or reclassified) to be
Design/Functional requirements

Figure 8. Six “types” of requirements were initially considered for the classification corpus. Due to
the lack of sufficient examples for Interface, Environment, and Quality requirements, these classes
were dropped at a later phase. However, some of the Interface requirements (23) were rewritten (or
reclassified) to convert them into either Design or Functional requirements to keep them in the final
corpus, which only contains Design, Functional, and Performance requirements.

As seen in Figure 8, the dataset is skewed toward Design, Functional, and Performance
requirements (in that order). Since the goal is to develop a LM that is capable of classifying
requirements, a balanced dataset is desired, which is not the case here. As seen, there are not enough
examples of Interface, Environment, and Quality requirements in the primary data source (Parts 23
and 25 of Title 14 of the Code of Federal Regulations (CFRs)). This can be due to the fact that Interface,
Environment, and Quality requirements do not occur alongside the other types of requirements.

In order to obtain a more balanced dataset, Environment and Quality requirements were dropped
completely. However, some of the Interface requirements (23) were rewritten (or reclassified) as Design
and Functional requirements, as shown in Table 6. The rationale for this reclassification was that it
is possible to treat the interface as a thing being specified rather than as a special requirement type
between two systems.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023

Table 6.

requirements.

d0i:10.20944/preprints202302.0077.v1

12 of 21

Examples showing the modification of Interface requirements into other “types” of

Original Interface Requirement

Modified Requirement “type”/category

Each flight recorder shall be supplied with
airspeed data.

The airplane shall supply the flight recorder
with airspeed data. [Functional Requirement]

Each flight recorder shall be supplied with The airplane shall supply the flight
directional data. recorder with directional data. [Functional
Requirement]

The state estimates supplied to the flight
recorder shall meet the aircraft-level system
requirements and the functionality specified in
Section 23-2500.

The state estimates supplied to the flight
recorder shall meet the aircraft level system
requirements and the functionality specified in
Section 23-2500. [Design Requirement]

The final classification dataset includes 149 Design requirements, 99 Functional requirements, and
62 Performance requirements (see Figure 8). Lastly, the ‘labels” attached to the requirements (design
requirement, functional requirement, and performance requirement) were converted into numeric
values: 0, 1, and 2, respectively. The final form of the dataset is shown in Table 7.

Table 7. Classification dataset format.

Requirements Label

Each cockpit voice recorder shall record voice communications transmitted 1
from or received in the airplane by radio.

Each recorder container must be either bright orange or bright yellow. 0
Single-engine airplanes, not certified for aerobatics, must not have a tendency 2
to inadvertently depart controlled flight.

Each part of the airplane must have adequate provisions for ventilation and 0
drainage.

Each baggage and cargo compartment must have a means to prevent 1

the contents of the compartment from becoming a hazard by impacting
occupants or shifting.

4.2. Preparing the dataset for fine-tuning BERTpASE-UNCASED

Language models (LMs) expect inputs in a certain format, and this may vary from one LM to
another. BERT expects inputs in the format discussed below [17]:
Special tokens:

* [CLSI]: This token is added to the beginning of every sequence of text and its final hidden state
contains the aggregate sequence representation for the entire sequence, which is then used for
the sequence classification task.

* [SEP]: This token is used to separate one sequence from the next and is needed for
Next-Sentence-Prediction (NSP) task. Since aerospace requirements used for this research are
single sentences, this token was not used.

¢ [PAD]: This token is used to make sure that all the input sequences are of the same length. The
maximum length for the input sequences was set to 100 after examining the distribution of
lengths of all sequences in the training set (Figure 9). All the sequences with a length less than
the set maximum length will be post-padded with [PAD] tokens till the sequence length is equal
to the maximum length. The sequences which are longer than 100, will be truncated.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

13 of 21

i i i ----- 25th percentile = 22

40 - : ' P 50th percentile = 29

E i i ----- 75th percentile = 40

! ! IR 95th percentile = 62
30 i i i !
4_, i i ; i
= i i i i
> 1 1 1 1
S i i i i
© 20 1 ! :
i i i |
1 1 1]
i ! i
10 L e

1 1 1

i i i i
i ! !

0 T T T f T — T T

10 20 30 40 50 60 70 80

Figure 9. Figure showing the distribution of sequence lengths in the training set. The 95! percentile
was found to be 62. The maximum sequence length was set to 100 for the aeroBERT-Classifier model.

All the sequences were lower-cased since the casing is not significant when it comes to sequence
classification. Preserving the casing is important for a token classification task such as Named-Entity
Recognition (NER). The bert-base-uncased tokenizer was used for splitting the requirement sentences
into WordPiece tokens, adding special tokens ([CLS], and [PAD]), mapping tokens to their respective
IDs in BERTpasg-UNcaseD’s Vocabulary of 30,522 tokens, padding/truncating sequences to match the
maximum length, and the creation of attention masks (1 for “real” tokens, and 0 for [PAD] tokens).

The dataset was split into training (90%) and test set (10%) containing 279 and 31 samples,
respectively (the corpus contains a total of 310 requirements). Table 8 gives a detailed breakdown
of the count of each type of requirement in the training and test set. The LM was fine-tuned on the
training set, whereas the model performance was tested on the test set, which the model had not been
exposed to during training.

Table 8. Breakdown of the “types” of requirements in the training and test set.

Requirement type Training set count Test set count
Design (0) 136 13
Functional (1) 89 10
Performance (2) 54 8
Total 279 31

4.3. Fine-Tuning BERTpASE-UNCASED

A pre-trained BERT model with a linear classification layer on the top is loaded from the
Transformers library from HuggingFace (BertForSequenceClassification). This model and the
untrained linear classification layer (full-fine-tuning) are trained on the classification corpus created
previously (Table 7).

The batch size was set to 16 and the model was trained for 20 epochs. The model was supplied
with three tensors for training: 1) input IDs; 2) attention masks; and 3) labels for each example. The
AdamW optimizer [64] with a learning rate of 2 x 10~ was used. The previously calculated gradients
were cleared before performing each backward pass. In addition, the norm of gradients were clipped
to 1.0 to prevent the exploding gradient problem. The dropout rate was set to the default value of
0.1 (after experimenting with other rates) to promote the generalizability of the model and speed up
the training process. The model was trained to minimize the cross-entropy loss function. In addition,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

14 of 21

the model performance on the test set was measured by calculating metrics, including the F1 score,
precision, and recall. Various iterations of the model training and testing were carried out to make sure
that the model was robust and reliable. The fine-tuning process took only 39 seconds on an NVIDIA
Quadro RTX 8000 GPU with a 40 GB VRAM. The small training time can be attributed to the small
training set.

Figure 10 shows a rough schematic of the methodology used for fine-tuning the
BERTgAsE-UNcAsED LM for the requirement, “Trim control systems must be designed to prevent creeping in
flight”. The token embeddings are fed into the pre-trained LM and the representations for these tokens
are obtained after passing through 12 encoder layers. The representation for the first token (R(cpg))
contains the aggregate sequence representation and is passed through a pooler layer (with a Tanh
activation function) and then a linear classification layer. Class probabilities for the requirement
belonging to the three categories (design, functional, and performance) are estimated and the
requirement is classified into the category with the highest estimated probability, ‘Design” in this
case.

.38 -0.23 -0.54 — > Design
argmax

Design Functional Performance

[Rws | Rim | Rowt | Rosens | Rows | Roe | Rocions | Ro | R | Ruooios | Ri | Raww | Res |
f f f f f f f f f f
Encoder 12
Pre-trained BERTg,s¢ uncasen Encoder 1
i i f i i i f i i f f i i
[Ects | Bum | Fowo | Eowen | Eoms | Eoe | Fooimwt | Fo | Epon | Fooie | Ew | Enaw | Fosm

Figure 10. The detailed methodology used for full-fine-tuning of BERTpasg-UNncaseD is shown here.
Ejame represents the embedding for that particular WordPiece token which is a combination of position,
segment, and token embeddings. Ryame is the representation for every token after it goes through
the BERT model. Only Rcg) is used for requirement classification since its hidden state contains the
aggregate sequence representation [17].

The following section discusses the performance of aeroBERT-Classifier in more detail and
compares its performance to that of bart-large-mnli on an aerospace requirements classification task.

5. Results

5.1. aeroBERT-Classifier Performance

aeroBERT-Classifier was trained on a dataset containing 279 requirements. The dataset was
imbalanced, meaning there were more of one “type” of requirement as compared to others (136 design
requirements compared to 89 functional, and 54 performance requirements). Therefore, precision,
recall, and F1 score were chosen as the metrics for evaluating the model performance on the test
set, as compared to accuracy. Table 9 provides the aggregate values for these metrics along with
the breakdown for each requirement “type”. The model was able to identify 92% (Recall) of design
requirements present in the test set, however, of all the requirements that the model identified as
design requirements, only 80% (Precision) belonged to this category. Similarly, the model was able to
identify 80% of all the functional requirements and 75% of all the performance requirements present in
the test set. The precision obtained for functional and performance requirements were 0.89 and 0.86,
respectively.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

15 of 21

Table 9. Model performance for aeroBERT-Classifier on the test set.

Requirement type Precision Recall F1 score
Design (0) 0.80 0.92 0.86
Functional (1) 0.89 0.80 0.84
Performance (2) 0.86 0.75 0.80
Average 0.85 0.82 0.83

The precision, recall, and F1 score for each requirement “types” were aggregated to obtain these
scores for aeroBERT-Classifier and were found to be 0.85, 0.82, and 0.83, respectively. Various iterations
of the model training and testing were performed, and the model performance scores were consistent.
In addition, the aggregate precision and recall were not very far off from each other, giving rise to
a high F1 score (harmonic mean of precision and recall). Since the difference between the training
and test performance is low despite the small size of the dataset, it is expected that the model will
generalize well to unseen requirements belonging to the three categories.

Table 10 provides a list of requirements from the test set that were misclassified (Predicted label
Actual label). A confusion matrix summarizing the classification task is shown in Figure 11. It is
important to note that some of the requirements were difficult to classify even by the authors with
expertise in requirements engineering.

Table 10. List of requirements (from test set) that were misclassified (0: Design; 1: Functional; 2:
Performance).

Requirements Actual Predicted

The installed powerplant must operate without any hazardous characteristics during
normal and emergency operation within the range of operating limitations for the 2 1
airplane and the engine.

Each flight recorder must be installed so that it remains powered for as long as possible

without jeopardizing emergency operation of the airplane. 0 2
The microphone must be so located and, if necessary, the preamplifiers and filters of the
recorder must be so adjusted or supplemented, so that the intelligibility of the recorded 5 0

communications is as high as practicable when recorded under flight cockpit noise
conditions and played back.

A means to extinguish fire within a fire zone, except a combustion heater fire zone,
must be provided for any fire zone embedded within the fuselage, which must also 1 0
include a redundant means to extinguish fire.

Thermal/acoustic materials in the fuselage, must not be a flame propagation hazard. 1 0

The test set contained 13 design, 10 functional, and 8 performance requirements (Table 9). As
seen in Table 10 and Figure 11, out of the 13 design requirements, only one was misclassified as a
performance requirement. Of the 8 performance requirements, 2 were misclassified. And 2 of the 10
functional requirements were misclassified.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

16 of 21

12

Design 10

Functional

True label

Performance

Design Functional Performance
Predicted label

Figure 11. Confusion matrix showing the breakdown of the true and predicted labels by the
aeroBERT-Classifier on the test data

The training and testing were carried out multiple times, and the requirements shown in Table 10
were consistently misclassified, which might have been due to ambiguity in the labeling. Hence, it is
important to have a human-in-the-loop (preferably an SME) who can make a judgment call on whether
a certain requirement was labeled wrongly or to support a requirement rewrite to resolve ambiguities.

5.2. Comparison between aeroBERT-Classifier and bart-large-mnli

aeroBERT-Classifier is capable of classifying requirements into three “types”, as shown in Table 8.
bart-large-mnli, on the other hand, is capable of classifying sentences into provided classes using
NLI-based zero-shot Text Classification [54].

All the requirements present in the test set were classified using bart-large-mnli to facilitate
the comparison with the aeroBERT-Classifier. The names of the “types” of requirements (design
requirement, functional requirement, and performance requirement) were provided to the model for
zero-shot text classification.

Figure 12 shows the true and the predicted labels for all the requirements in the test set. Upon
comparing Figure 11 to Figure 12, aeroBERT-Classifier was able to correctly classify 83.87% of the
requirements as compared to 43.39% by bart-large-mnli. The latter model seemed to be biased towards
classifying most of the requirements as functional requirements. Had bart-large-mnli classified all
the requirements as functional, the zero-shot classifier would have rightly classified 32.26% of the
requirements. This illustrates the superior performance of the aeroBERT-Classifier despite being
trained on a small labeled dataset. Hence, while bart-large-mnli performs well on more general tasks
like sentiment analysis, classification of news articles into genres, etc., using zero-shot classification,
its performance is degraded in tasks involving specialized and structured texts such as aerospace
requirements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

17 of 21

Design

Functional

True label

Performance

Design Functional Performance
Predicted label

Figure 12. Confusion matrix showing the breakdown of the true and predicted labels by the
bart-large-mnli model on the test data

6. Conclusions & Future Work

The main contributions of this paper are the creation of an open-source classification corpus for
aerospace requirements and the creation of an LM for classifying requirements. The corpus contains a
total of 310 requirements along with their labels (Design, Functional, and Performance) and was used
for fine-tuning a BERTpasE-uncasep LM to obtain aeroBERT-Classifier. A performance assessment of
aeroBERT-Classifier achieved an average F1 score of 0.83 across all three requirement “types” in the
unseen test data.

Finally, aeroBERT-Classifier performed better at classifying requirements than bart-large-mnli.
This shows the importance of using labeled datasets for fine-tuning LMs on downstream tasks in
specialized domains.

A logical next step to advance this work would be to obtain more requirements to add to
the corpus as well as more “types” of requirements. In addition, comparing the performance of
aeroBERT-Classifier to a LM trained on aerospace requirements from scratch and fine-tuned for the
sequence classification task would be an interesting avenue for further exploration.

7. Other details

Author Contributions:

* Archana Tikayat Ray: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
Software, Validation, Visualization, Writing—original draft preparation, Writing—review and editing
Bjorn F. Cole: Conceptualization, Data curation, Writing—review and editing

Olivia J. Pinon Fischer: Conceptualization, Writing—review and editing

Ryan T. White: Methodology, Writing—review and editing

Dimitri N. Mavris: Writing—review and editing

Data Availability Statement: The annotated requirements dataset can be found on the Hugging Face platform.
URL: https:/ /huggingface.co/datasets /archanatikayatray /aeroBERT-classification.

Acknowledgments: The authors wish to thank NVIDIA Applied Research Accelerator Program for hardware
support. We would also like to thank the Hugging Face community for making BERTpasg-uNcaseD available,
which was essential to this work.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

18 of 21

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
CFR Code of Federal Regulations

COND Condition

FAA Federal Aviation Administration

FAR Federal Aviation Regulations

GPT Generated Pre-trained Transformer

INCOSE International Council on Systems Engineering

LM Language Model

LOC Location (Entity label)

MBSE Model-Based Systems Engineering
MISC Miscellaneous
MNLI Multi-Genre Natural Language Inference

NE Named Entity

NER Named Entity Recognition
NL Natural Language

NLI Natural Language Inference
NLP Natural Language Processing
NLP4RE Natural Language Processing for Requirements Engineering
ORG Organization (Entity label)
RE Requirements Engineering
RES Resource (Entity label)

SME Subject Matter Expert

SOTA State Of The Art

SYS System (Entity label)

SysML Systems Modeling Language
UML Unified Modeling Language

ZSL Zero-shot learning

References

1. Guide to the Systems Engineering Body of Knowledge; BKCASE Editorial Board, INCOSE, 2020; p. 945.

2. INCOSE. INCOSE INFRASTRUCTURE WORKING GROUP Charter (accessed Jan. 10, 2023). pp. 3-5.

3. NASA. Appendix C: How to Write a Good Requirement (accessed Jan. 05, 2022). pp. 115-119.

4. Firesmith, D. Are your requirements complete? J. Object Technol. 2005, 4, 27-44.

5. NASA. 2.1 The Common Technical Processes and the SE Engine. J. Object Technol. (accessed Jan. 10, 2023), 4.
6. Nuseibeh, B.; Easterbrook, S. Requirements Engineering: A Roadmap. Proceedings of the Conference on

The Future of Software Engineering; Association for Computing Machinery: New York, NY, USA, 2000; ICSE
’00, p. 35—46. doi:10.1145/336512.336523.

7. Regnell, B.; Svensson, R.B.; Wnuk, K. Can we beat the complexity of very large-scale requirements
engineering? International Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2008, pp. 123-128.

8. Firesmith, D. Common Requirements Problems, Their Negative Consequences, and the Industry Best
Practices to Help Solve Them.]. Object Technol. 2007, 6, 17-33.

9. Haskins, B.; Stecklein, J.; Dick, B.; Moroney, G.; Lovell, R.; Dabney, J. 8.4. 2 error cost escalation through the
project life cycle. INCOSE International Symposium. Wiley Online Library, 2004, Vol. 14, pp. 1723-1737.

10. Bell, T.E.; Thayer, T.A. Software requirements: Are they really a problem? Proceedings of the 2nd
international conference on Software engineering, 1976, pp. 61-68.

11. Dalpiaz, F; Ferrari, A.; Franch, X.; Palomares, C. Natural language processing for requirements engineering:
The best is yet to come. IEEE software 2018, 35, 115-119.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

19 of 21

12. Ramos, A.L; Ferreira,].V.; Barcel6,]. Model-based systems engineering: An emerging approach for modern
systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2011, 42, 101-111.

13. Estefan, J.A.; others. Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE Focus
Group 2007, 25, 1-12.

14. Jacobson, L.; Booch,].R.G. The unified modeling language reference manual 2021.

15. Ballard, M.; Peak, R.; Cimtalay, S.; Mavris, D.N. Bidirectional Text-to-Model Element Requirement
Transformation. IEEE Aerospace Conference 2020, pp. 1-14.

16. Lemazurier, L.; Chapurlat, V.; Grossetéte, A. An MBSE approach to pass from requirements to functional
architecture. IFAC-PapersOnLine 2017, 50, 7260-7265.

17. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, 2019, [arXiv:cs.CL/1810.04805].

18. Ferrari, A.; Dell’Orletta, F.; Esuli, A.; Gervasi, V.; Gnesi, S. Natural Language Requirements Processing: A
4D Vision. IEEE Softw. 2017, 34, 28-35.

19. Abbott, R.J.; Moorhead, D. Software requirements and specifications: A survey of needs and languages.
Journal of Systems and Software 1981, 2, 297-316.

20. Luisa, M.; Mariangela, F.; Pierluigi, N.I. Market research for requirements analysis using linguistic tools.
Requirements Engineering 2004, 9, 40-56.

21. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. The Stanford CoreNLP Natural
Language Processing Toolkit. Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations; Association for Computational Linguistics: Baltimore, Maryland, 2014;
pp. 55-60. doi:10.3115/v1/P14-5010.

22. Natural Language Toolkit. https://www.nltk.org/. (accessed: 01.10.2023).

23. spaCy. https://spacy.io/. (accessed: 01.10.2023).

24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L..; Polosukhin, I. Attention
is all you need. Advances in neural information processing systems 2017, 30.

25. Lewis, M,; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L.
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and
Comprehension. CoRR 2019, abs/1910.13461, [1910.13461].

26. Zhao, L.; Alhoshan, W.; Ferrari, A.; Letsholo, K.]J.; Ajagbe, M.A.; Chioasca, E.V.; Batista-Navarro, R.T. Natural
language processing for requirements engineering: A systematic mapping study. ACM Computing Surveys
(CSUR) 2021, 54, 1-41.

27. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. ArXiv 2019, abs/1910.01108.

28. Goldberg, Y. Neural network methods for natural language processing. Synthesis lectures on human language
technologies 2017, 10, 1-309.

29. Jurafsky, D.; Martin,].H. Speech and language processing (draft) 2021.

30. Niesler, T.R.; Woodland, P.C. A variable-length category-based n-gram language model. 1996 IEEE
International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings. IEEE, 1996,
Vol. 1, pp. 164-167.

31. Bengio, Y.; Ducharme, R.; Vincent, P. A Neural Probabilistic Language Model. Advances in Neural
Information Processing Systems; Leen, T.; Dietterich, T; Tresp, V., Eds. MIT Press, 2000, Vol. 13.

32. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 2013.

33. Graves, A. Generating Sequences With Recurrent Neural Networks. [1308.0850v5].

34. Cho, K,; van Merrienboer, B.; Caglar Gtilgehre.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP, 2014.

35. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings; Bengio, Y.; LeCun, Y., Eds., 2015.

36. Sutskever, I; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Advances in neural
information processing systems 2014, 27.

37. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, L; others. Language models are unsupervised
multitask learners. OpenAlI blog 2019, 1, 9.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

20 of 21

38. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan,].D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.;
Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.;
Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish,
S.; Radford, A.; Sutskever, I.; Amodei, D. Language Models are Few-Shot Learners. Advances in Neural
Information Processing Systems; Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; Lin, H., Eds. Curran
Associates, Inc., 2020, Vol. 33, pp. 1877-1901.

39. Raffel, C.; Shazeer, N.; Roberts, A ; Lee, K; Narang, S.; Matena, M.; Zhou, Y.; Li, W,; Liu, PJ. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research
2020, 21, 1-67.

40. Sun, C; Qiu, X.; Xu, Y.; Huang, X. How to fine-tune bert for text classification? China national conference on
Chinese computational linguistics. Springer, 2019, pp. 194-206.

41. Alammar, J. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). https://jalammar.
github.io/illustrated-bert/.

42. Ray, A.T,; Pinon-Fischer, O.J.; Mavris, D.N.; White, R.T.; Cole, B.F,, aeroBERT-NER: Named-Entity
Recognition for Aerospace Requirements Engineering using BERT. In AIAA SCITECH 2023 Forum.
doi:10.2514/6.2023-2583.

43. Dima, A.; Lukens, S.; Hodkiewicz, M.; Sexton, T.; Brundage, M.P. Adapting natural language processing for
technical text. Applied Al Letters 2021, 2, e33.

44. Sharir, O.; Peleg, B.; Shoham, Y. The cost of training nlp models: A concise overview. arXiv preprint
arXiv:2004.08900 2020.

45. Dai, AM.; Le, Q.V. Semi-supervised sequence learning. Advances in neural information processing systems
2015, 28.

46. Peters, M.E.; Ammar, W.; Bhagavatula, C.; Power, R. Semi-supervised sequence tagging with bidirectional
language models. arXiv preprint arXiv:1705.00108 2017.

47. Radford, A.; Narasimhan, K., Salimans, T.; Sutskever, I. Improving language understanding with
unsupervised learning 2018.

48. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv preprint
arXiv:1801.06146 2018.

49. Hugging Face. https://huggingface.co/. (accessed: 01.10.2023).

50. Alammar, J. The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/.

51. Cleland-Huang, J.; Mazrouee, S.; Liguo, H.; Port, D. nfr. https://doi.org/10.5281/zenodo.268542.

52. Hey, T,; Keim, J.; Koziolek, A.; Tichy, W.F. NoRBERT: Transfer learning for requirements classification. 2020
IEEE 28th International Requirements Engineering Conference (RE). IEEE, 2020, pp. 169-179.

53. Zero-Shot Learning in Modern NLP. https:/ /joeddav.github.io/blog/2020/05/29/7ZSL.html. (accessed:
01.10.2023).

54. Yin, W.; Hay, J.; Roth, D. Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment
Approach. CoRR 2019, abs/1909.00161, [1909.00161].

55. Williams, A.; Nangia, N.; Bowman, S. A Broad-Coverage Challenge Corpus for Sentence Understanding
through Inference. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018, pp. 1112-1122.

56. Alhoshan, W.; Zhao, L.; Ferrari, A.; Letsholo, KJ. A Zero-Shot Learning Approach to Classifying
Requirements: A Preliminary Study. Requirements Engineering: Foundation for Software Quality; Gervasi,
V.; Vogelsang, A., Eds.; Springer International Publishing: Cham, 2022; pp. 52-59.

57. Beltagy, I.; Lo, K,; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv preprint
arXiv:1903.10676 2019.

58. Araci, D. Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint
arXiv:1908.10063 2019.

59. Lee,].; Yoon, W,; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 2020, 36, 1234-1240.

60. Alsentzer, E.; Murphy,].R.; Boag, W.; Weng, W.H.; Jin, D.; Naumann, T.; McDermott, M. Publicly available
clinical BERT embeddings. arXiv preprint arXiv:1904.03323 2019.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2023 d0i:10.20944/preprints202302.0077.v1

21 of 21

61. Lee,].S.,; Hsiang, J. Patentbert: Patent classification with fine-tuning a pre-trained bert model. arXiv preprint
arXiv:1906.02124 2019.

62. Wheatcraft, L.S. Everything you wanted to know about interfaces, but were afraid to ask. https://reqexperts.
com/wp-content/uploads/2016/04/Wheatcraft-Interfaces-061511.pdf.

63. Spacey, J. 11 Examples of Quality Requirements. https://simplicable.com/new/quality-requirements.

64. Loshchilov, I, Hutter, F, Decoupled Weight Decay Regularization; arXiv, 2017.
doi:10.48550/ ARXIV.1711.05101.

65. Fundamentals of Systems Engineering: Requirements Definition. Available online: Available
online: https:/ /ocw.mit.edu/courses/16-842-fundamentals-of-systems-engineering-fall-2015/
72bc41156a04ecb94a6c04546f122af MIT16_842F15 Ses2_ Req.pdf (accessed on 1 October 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

