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Abstract: Untargeted metabolomics is a powerful tool for measuring and understanding complex 

biological chemistries. However, employment, bioinformatics and downstream analysis of mass 

spectrometry (MS) data can be daunting for inexperienced users. Numerous open-source and free-

to-use data processing and analysis tools exist for various untargeted MS approaches, including 

liquid chromatography (LC), but choosing the ‘correct’ pipeline isn’t straight-forward. This tutorial, 

in conjunction with a user-friendly online guide presents a workflow for connecting these tools to 

process, analyse and annotate various untargeted MS datasets. The workflow is intended to guide 

exploratory analysis in order to inform decision-making regarding costly and time-consuming 

downstream targeted MS approaches. We provide practical advice concerning experimental design, 

organisation of data and downstream analysis, and offer details on sharing and storing valuable MS 

data for posterity. The workflow is editable and modular, allowing flexibility for updated/ changing 

methodologies and increased clarity and detail as user participation becomes more common. Hence, 

the authors welcome contributions and improvements to the workflow via the online repository. 

We believe that this workflow will streamline and condense complex mass-spectrometry ap-

proaches into easier, more manageable, analyses thereby generating opportunities for researchers 

previously discouraged by inaccessible and overly complicated software. 
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1. Introduction 

With the advent of remote working, it became apparent that researchers conducting 

untargeted metabolomics analysis required resources to learn how to process mass spec-

trometry data remotely. After over a decade of experience with proprietary software, the 

challenge was to address a number of issues with current common practices and embrace 

the open-source approach to metabolomics data processing and analysis that can have a 

future legacy. 
Notably, all software approaches discussed here are free, as the authors believe it is 

important that the discussed pipelines are accessible to all. This resource will not only 

address the growing need for tutorials on untargeted metabolomics workflows but will 

also improve over time so that it can be integrated into full multi-omics workflows, as 

highlighted by [1]. 
The newly developed workflow presented here converts mass spectrometry data, 

specifically from Waters (Wilmslow, UK) instruments to an open format for experiments 

in which there are no predefined molecules to be compared between two or more classes 

(groups) of samples. Untargeted metabolomics workflows seek to inform differences be-

tween two or more classes (groups) of samples. 
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Untargeted metabolomics is an increasingly popular tool for identifying perturba-

tions within a metabolome and revealing phenotypic complexity in systems [1-4]. It is 

commonly the first part of a two-step research pipeline, where untargeted studies are used 

to gather information, identify the metabolome, and generate hypotheses. This is followed 

by targeted metabolomics which measures specific compounds and requires a priori 

knowledge of the whole metabolome [1,4,5]. 

There are many sources of variation throughout the process of metabolomics as well 

as several different methods and tools used by the community [6-8]. This variation can 

stem from sampling methods, machinery and model used, analytical methods employed 

and the deficit of standardised guidelines [9-11]. The aim is to provide a guide which will 

help to move towards standardised methodology and comparable research across the 

field of metabolomics. As a collaborative, developing and open-source resource, the hope 

is that it will be widely used. 

Untargeted metabolomics can produce huge quantities of multi- dimensional data, 

which is difficult to visualise. This guide aims to navigate through all the data and jargon. 

It is worth noting, however, that an untargeted approach is intended for forming hypoth-

eses, rather than being hypothesis-driven. The workflow aims to address the question: 

Which compounds might be responsible for the difference in metabolomic finger-

print between the classes (groups) of samples? 

There may not be a definitive difference or unquestionable compound identification 

from this workflow. Rather, it will direct further research and potential compounds to 

focus on for targeted analysis. 

2. Results 

2.1. How to use this guide 

This tutorial guides the user through the untargeted metabolomics workflow that has 

been developed with some explanation of what each stage achieves. Further details are 

available in step-by-step guides on the associated website (https://untargeted-metabolom-

ics-workflow.netlify.app/ accessed on 27 January 2023), which includes links to relevant 

open-source tools, and our own interoperable code where appropriate. This tutorial co-

vers the steps required to process LC-ESI-MS data, however detailed instructions for pro-

cessing MALDI-ToF-MS and DI-ESI-MS using similar open-source tools are also available 

on the associated website. 

2.1.1. Stages of an untargeted metabolomics workflow 

The workflow has been divided into stages. The following number codes are used in 

the online guide as well as in the R code and workflow diagram (for an abridged version 

of this diagram see figure 1). 
00. Overviews, workflow diagram & useful information 
01. Metabolite extraction 

02. Data acquisition (Mass Spectrometry) 

03. Converting data to open format 

04. Data pre-processing 

05. Extracting & formatting peak table & metadata 

06. Multivariate analysis (PCA) & further analysis (if applicable) 

07. Putative metabolite identification 

08. Archiving data & citing resources 

Stages 01 and 02 are not covered in great detail in this documentation which focuses 

primarily on data processing and analysis. 
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Figure 1. Workflow diagram for processing and analysis of untargeted LC-MS metabolomics data. 

a) sample selection and preparation. b) Mass spectrometry analysis of samples. c) Conversion of 

data to open format. d) Data pre-processing and (e) production of a feature matrix with experi-

mental information included. f) Statistical analysis for selection of features of interest and (g) iden-

tification of features of interest by comparison with literature and existing metabolite databases. 

2.1.2. Assumptions 

For this workflow to function, the user must have: 

 a basic understanding of R and RStudio, and of metabolomics technologies in general 

(experienced R users are also encouraged to consider tools such as the RforMassSpec-

trometry initiative https://rformassspectrometry.org accessed on 27 January 2023); 

 access to the internet and remote access to raw data; 

 used Waters mass spectrometers and MassLynx software to obtain data (or equiva-

lent steps and outcomes from other instruments); 

 access to a sample list from MassLynx and treatment information (i.e. metadata, 

though our code can help format this); 

 files with unique identifiers, ideally in the format of the following example: 

experiment-identifier_001.raw 

experiment-identifier_002.raw 

experiment-identifier_003.raw 

Dealing with technical replicates (each with their own .raw file) is addressed in the 

associated website (https://untargeted-metabolomics-workflow.netlify.app/ accessed on 

27 January 2023). 

2.1.3. Experimental structure 

Difficulties in analysis and/ or workflows can arise from complexities in experimental 

structure. Many terms are used interchangeably in different contexts. Most tools for un-

targeted metabolomics are set up for one factor analysis with two or three levels e.g. 
 case vs control 
 wild-type vs transgenic line 
 Strain 1 vs. strain 2 vs. strain 3 

However, more complex experimental designs are quite often implemented e.g. 
 Two factors with two or more levels in each such as +/- treatment for two strains 
 Time course for one or two factors such as +/- treatment for two strains over three 

time points 
To begin, consider the expectations of which groups of metabolite fingerprints may 

differ from one another, and to what extent. Think logically about the questions the anal-

ysis is required to answer and how the data may be classified. 
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 What are the biological replicates being analysed and are they independent of each 

other (or has the same organism/ population been sampled multiple times)? 
 Are there technical replicates (i.e. repeated runs of the same sample)? 
 Are Quality Control (QC) samples required? Are analytical standards needed? (See 

box 2.1.5) 
 What groupings are required to answer the research questions outlined? 

It is recommended to get the meta-data (e.g. treatment information) organised early 

(See 2.1.6). 

2.1.4. Quality Control 

Quality control (QC) can mean different things to researchers from different fields. 

For quality control of your mass spectrometry run, there are a few simple options for 

checking that there has not been subtle (or not so subtle) variation accumulating during 

the run. Decisions must be made on which one (or more) of these are necessary depending 

on the type of sample to be analysed and the MS techniques employed: 

 Spike all prepared samples with a compound for which the m/z (and RT) is known 

and which is unlikely to be otherwise present in the experimental samples; 

 Prepare a pooled QC sample from an aliquot of each of the samples and include this 

at regular intervals in the MS run; 

 Include blanks and/ or extraction blanks at regular intervals in the MS run; 

 Use lock mass calibration (for Waters instruments). 

There are some basic data quality control steps you can take to limit errors during 

processing and analysis: 
 Check file sizes of .raw files across the MS run; 

 Check file sizes of converted .mzML files - reconvert any that are unexpected; 

 Compare spectra between technical replicates 

2.1.5. Nice, neat metadata for analysis 

To process and analyse data using our workflow, two .csv files are required (these 

can be created in excel, R, google sheets etc. depending on preference) as long as the order 

and headings of the columns follow the pattern detailed below. 

For samplelist.csv the following columns are required (which can be obtained from 

the MassLynx Sample List generated by the software that controls the MS run): 

 “Filename”: this is a list of the filenames of the .mzml files (the part before the .mzml) 

 “Filetext”: this is the name that has been manually added to the metadata of that 

sample in MassLynx (this can be found at $$ SampleID: in the _HEADER.txt file of 

the original .RAW folder if it is not already known) 

 “MSFile” or an equivalent column that contains either “pos” or “neg” within it Any 

other columns will be ignored in this file 

For treatments.csv at least two columns are required (but it can include as many as 

necessary to describe the metadata of your experiment): 

 “Filetext”: this must contain all the distinct values of “Filetext” from  

 samplelist.csv 

 “Variable1”: the naming of this column is left to the user (but spaces are to be 

avoided: instead use “-” or “_"). For example, in an MS run comparing a wild-type to 

a control for example, this column could be named “treatment” and filled with “WT” 

and “C” as appropriate 

 “Variable2” etc: further variables. This may include batch identifiers (for example if 

many samples were run over multiple days), treatments or environmental variables 

These are kept in a folder with the .mzml data files. Examples can be found on the 

website at https://untargeted-metabolomics-workflow.netlify.app/03_conversion-to-

open-format/05_samples-treatments/ accessed on 27 January 2023. 
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2.2. Metabolite extraction and data acquistion 

Details of quenching, metabolite extraction or choice of mass spectrometry platform 

are not covered here, as they will likely be specific to the organism and/ or tissue involved 

and the questions being addressed. Figure 2 provides a conceptual overview of metabolite 

extraction and data acquisition from plant tissues. See [12-15] for introductory guidance 

and [16] for a specific metabolite extraction method appropriate to plant tissues for this 

workflow. 

 

 

Figure 2. Conceptual diagram of an untargeted metabolomics workflow, from leaf to mass spec-

trometry analysis. After sample harvest (a), metabolic reactions in a sample tissue must be first 

quenched (b; i.e. via liquid N immersion), the sample homogenised and the cell walls broken (c) to 

permit extraction of compounds within the cells using a range of solvents (d). Extracts may then be 

diluted and submitted to mass spectrometry analysis (e; e.g. UPLC-ESI-MS).  

2.3. Converting data to open format using Proteowizard 

Converting .RAW files (which contain a large amount of data and metadata about 

the run in separate files) to a more manageable format, such as .mzML (the standard open-

data format for mass spectrometry [17]) is essential. .RAW files are specific to Waters soft-

ware and are not compatible with many open-source tools. To convert .RAW to .mzML, 

Proteowizard software [18] is used. This comprises two applications: SeeMS and MSCon-

vert. 

SeeMS is useful for viewing chromatograms and spectra without access to proprie-

tary software like MassLynx. MSConvert performs conversion of the MS data but depend-

ing on the type of MS used, different settings/ parameters in MSConvert may be required, 

detailed in the online step-by-step instructions to complete stage 03: (https://untargeted-

metabolomics-workflow.netlify.app/03_conversion-to-open-format/03_msconvert-lcms/ 

accessed on 27 January 2023). 

It is critically important to check the size of .mzML files once converted. They should 

all be similar. SeeMS can be used to check any that seem unusual and reconvert any with 

an incongruous file size (problems in conversion can arise, for instance from intermittent 

internet connection when converting files from a remote drive). 

2.4. Preprocessing data 

Untargeted metabolomics datasets can be huge! To get from compressed (but still 

huge) .mzML files to a tractable peak table that can be interrogated with multivariate sta-

tistics, it is necessary to do a little bit of data "tidying". 

A peak table is a data-frame consisting of aligned spectra with concentration or in-

tensity values against a set of features - mass to charge ratio (m/z) or m/z with retention 

time (RT). The file size will be dependent on sample number but will be smaller than the 

.mzML files. 

Different downstream tools for multivariate statistics will require the peak table in 

slightly different formats, so the code included in this guide will help with formatting for 

some common uses (e.g. MetaboAnalyst one factor and two factor peak tables) as well as 

helping format treatment information as metadata so that peak tables can be interrogated. 
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Depending on the MS approach, different stages are involved but they broadly fall 

into: 

 baseline correction and/ or noise reduction (estimating what part of the detected 

intensity is the sample and “cleaning away” or adjusting the spectra to show only the 

signal believed to be associated with the sample); 

 normalisation and/ or standardisation (these can mean a range of different things to 

different people but broadly cover accounting for differences in sample volume or 

concentration or total intensity of the signal); 

 grouping and peak picking (wave-form algorithms are used to determine which 

parts of the spectra constitute separate peaks utilising their m/z value); 

 alignment or peak matching (assessing across samples to determine whether peaks 

with slightly different m/z values are the same peak so that samples can be compared 

more reliably). 

By the end of this stage, data will be processed into a single table containing all the 

m/z and intensity values required for down-stream analysis. This stage relies on the use 

of open-source software (XCMS online [19] for LC-ESI-MS and MassUp [20] for MALDI-

ToF-MS and DI-ESI-MS) to process the data. These provide user interfaces for well-docu-

mented R packages (XCMS [21] and MALDIquant [22] respectively) and provide the ad-

vantage of coping well with large datasets and, in the case of XCMS online, being run 

remotely. 

For detailed instructions on pre-processing, consult stage 04 of our online guide 

(https://untargeted-metabolomics-workflow.netlify.app/04_data-preprocessing/ accessed 

on 27 January 2023). 

To extract a peak table from pre-processed data, use code provided in stage 05 of our 

online guide (https://untargeted-metabolomics-workflow.netlify.app/05_extracting-for-

matting-peak-table/ accessed on 27 January 2023). 

2.5. Multivariate analysis 

There are often two key questions when analysing a new untargeted metabolomics 

dataset: 

 Are the metabolomic fingerprints distinct classes (treatment groups) different from 

each other? 

 Which features of the metabolomic fingerprint are causing them to be different from 

each other? 

To answer the first question, data ordination, for instance using Principal Component 

Analysis (PCA), provides an unsupervised approach (the model is unaware of the classes 

to which the samples belong). A PERMANOVA can be used to provide statistical corrob-

oration of patterns observed in the PCA. If clear differences between classes in the PCA 

are apparent, then pairwise differences between classes (treatment groups) can be inves-

tigated via exploring the loadings or using a pairwise analysis such as t-tests or volcano 

plots.  

For a subsequent supervised analysis, OPLS-DA (orthogonal projections of latent 

structures) will accentuate the differences between any two classes, which will typically 

present “strong” differences between two randomly assigned classes. To limit false-posi-

tives it is important to consider the native separation in the data (i.e. through an unsuper-

vised ordination, like PCA) for a robust biological justification for comparing two partic-

ular classes. 

In the online guide, demonstration is given on how to perform these analyses using 

a free online platform and how to run some alternative code in R. MetaboAnalyst [23] is 

an online platform on which untargeted metabolomics data can be loaded, normalised, 

analysed and visualised. However, there is a strong emphasis on detailed statistics that 

may be more appropriate for targeted analyses, so the user must have a clear understand-

ing of their objectives in choosing amongst the options.  
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MetaboAnalyst is interoperable with R and the underlying code can be accessed us-

ing the button at the top left of the “Results” page. Examples of figures produced with 

this approach can be found in figure 3. The advantage of running the code is that the user 

can integrate it with other analyses (and formatting for figures). In contrast, the advantage 

of MetaboAnalyst is that it guides the user through the process and has some useful sense-

checks and vignettes available. 

Details can be found via the excellent tutorials and documentation provided by 

MetaboAnalyst [24]. 

It is also possible to analyse the same peak tables using SIMCA (Umetrics) or other 

proprietary softwares. However, it is much harder (and more costly) to use these re-

motely, and it is harder to document any analysis for sharing with other researchers. Other 

software worth considering includes MSDial, MetaboKit and MeV [25-27]. 

 

 

Figure 3. Conceptual diagram of examples of multivariate analysis outputs of untargeted metabo-

lomics analysis, all produced using open-source or freely available software. (a) Principal compo-

nent analysis (PCA) 2-D scores plot produced with pcaMethods and ggplot2 packages in R; (b) OPLS-

DA scores plot produced using the muma package in R; (c) scores plot created using ggplot2 package 

and data produced by the muma package in R; (d) example list of features of interest highlighted by 

an OPLS-DA using muma in R; (e) example of metabolites highlighted within a KEGG pathways 

global Esterichia coli metabolism map. 

2.6. What are my metabolites? 

It is very important to consider that this stage of the metabolomic process is not au-

tomated and can be incredibly time-consuming and challenging to do, so it is advisable 

that the preceding analysis has been adequately assessed for its effectiveness before com-

mitting time at this stage. 

Annotating metabolomic features is challenging - there are some automated annota-

tions included with e.g. XCMS that rely on the CAMERA package [28] amongst others. 

However, these often struggle with unusual experimental structures and/ or large da-

tasets, or “unusual” (i.e. non-human) metabolites. Thus, reducing the number of metabo-

lomic features to those that are causing a significant (in terms of reliability and magnitude) 

difference between two classes of samples is advisable. 

To ascertain the identity of these features, comparing the m/z (or m/z at specific RT) 

values highlighted by multivariate analysis with databases of reference m/z and with ex-

perimental data from the literature (usually available in a publication or in repositories 

like MetaboLights [29] and Metlin [30]) is key. 

Stage 07 of the online guide provides guidance on using a range of databases to help 

annotate “metabolites of interest” (https://untargeted-metabolomics-workflow.net-

lify.app/07_putative-metabolite-id/ accessed on 27 January 2023). These include: 
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 METLIN to search by m/z; 

 KEGG PATHWAY and KEGG COMPOUND [31] to corroborate likelihood of detect-

ing certain compounds in the study organism/ sample and to gain insight on biolog-

ical function; 

 Data repositories such as MetaboLights; 

 Details of how to find other relevant databases (MassBank, PubChem, MetaCyc, 

Metabolomics Workbench [32-35]); 
 Reporting Metabolomics Standards Initiative (MSI) identification levels (see also 

[36]). 

2.7. Sharing metabolomics data 

Metabolomics data from even a small study can be very large. It can also be very 

complex. But there are ways of sharing it with the wider scientific community (and indeed 

the public) without too much trouble. It is insufficient to only prepare a data availability 

statement or simply share graphs or peak tables. 

Metabolomics data can be analysed in lots of different ways, so it is important to 

comply with the FAIR principles [37]: 

 Findable 

 Accessible 

 Interoperable 

 Reusable 

Institution-based data repositories are an option, but they often require extra levels 

of support to submit large datasets and there is no guarantee that access to other research-

ers is feasible. 

More useful is a field-specific repository where data will be made available together 

with other relevant data sets. Furthermore, these repositories provide guidance on appro-

priate data formatting, allowing it to be compatible with other published data to form part 

of potential future meta-analyses. Some journals will have specific guidelines on which 

repository to use [38]. 

Set aside time at the start of any project for submitting data to a repository. It is not 

optional! 

2.7.1. MetaboLights repository 

MetaboLights is a data repository specific to metabolomics studies [29]. Data from 

NMR, GC-MS, LC-MS, and MALDI amongst others, may be submitted. 

The repository is maintained and curated by the European Bioinformatics Institute 

(EMBL-EBI) meaning that the data it holds is well-formatted and integrated with several 

other standardised databases and ontologies (ways of describing methods, data and 

metadata). This “future-proofs” the data stored, making it not only open-access but also 

more findable and reusable, as well as facilitating integration with other -omics data, if 

required. 

MetaboLights has various stages of submission, validation and then curation by ex-

perts to make sure each submission has all the relevant metadata needed to recreate the 

analysis undertaken. Following curation, there is a review process and finally data can be 

added to the repository and made available. 

Because of the curation process, there can be a significant lag between submission 

and data being available so early submission is advisable. However, once submitted, there 

is a reference that can be linked to any publication. 

Account creation is required, after which, a video tutorial guide on using the submis-

sion portal is available. Additional hints and tips on this can be found on the associated 

website (https://untargeted-metabolomics-workflow.netlify.app/08_data-archiving-cita-

tion/02_metabolights/ accessed on 27 January 2023). 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2023                   doi:10.20944/preprints202302.0056.v1

https://doi.org/10.20944/preprints202302.0056.v1


 

 

2.8. Citation of the tools used in the workflow 

It is important to cite the version used and/ or the date accessed as these tools and 

repositories are regularly updated: 

 Cite all R packages used in our functions (see function at start of each R code to pro-

duce list of references) 

 Use citation(R) and RStudio.Version() to get the version information for R and RStu-

dio that you have used for analysis; 

 Proteowizard (SeeMS and MSConvert) citation; 

 Up to date Metaboanalyst citation; 

 Up to date XCMS online and METLIN citations; 

 MassUp citation; 

 MassBank citation (include access date); 

 Up to date ECMDB citation (don’t forget any other organism specific metabolite da-

tabases used); 

 Up to date KEGG citation (including BRITE, COMPOUND and PATHWAY); 

 Up to date PubChem citation; 

 Write a data availability statement in any publication that links to your archived data 

in MetaboLights. 

3. Conclusions 

At this point the choice in preparing and analysing metabolomics data is at the dis-

cretion of the research group. This guide is a useful starting point that leads the reader 

through an openly available, best-practice, pipeline. Complex data and analytical pro-

cesses can be overwhelming, but by engaging in discussion forums, sharing ideas, trou-

bleshooting, and having access to a community of like-minded researchers these processes 

can become more accessible and facilitate exploration of exciting biological questions. 
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