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Abstract: We present an analysis of the Dirac equation when the spin symmetry is changed from SU(2) to the

quaternion group, Q8, afforded by multiplying one of the γ-matrices by the imaginary number. The reason for

doing this is to introduce a bivector into the spin algebra. This modifies the Dirac equation which separates

into two distinct and complementary spaces: one describing polarization and the other coherence. The former

describes a 2D structured spin and the latter its helicity, generated by a unit quaternion. May 2024
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Introduction

Spin, first observed by Stern and Gerlach [1], reveals two states of up and down. Spin is measured
to be angular momentum of

√
3

2 h̄ magnitude, a vector quantity, belonging to the SU(2) group. Spin is a
fundamental property of Nature, purely quantum with no classical analogue. The mathematical basis
for spin is the Dirac equation [2]. Dirac’s analysis introduces his relativistic equation by linearizing the
Klein-Gordon Equation while respecting conservation of mass and energy. He was led to his gamma
matrices with four states rather than the two that are measured [3]. He surmised that his equation
described two spins rather than one. The two are mirror image twins of each other, which Dirac
interpreted as a matter-antimatter pair [2]. From this hole theory, antimatter production, and the sea of
electron model followed [4].

Under the quaternion group, the two point particles that Dirac found are replaced by one struc-
tured particle called quaternion spin, or Q-spin, that carries two complementary properties: polariza-
tion and coherence. The coherence is helicity which spins the axis of linear momentum in free-flight,
Figure(1), giving the two helicity states of L and R. In addition, two mirror states, [5] emerge which
describe two orthogonal magnetic axes, each with magnetic moment of µ, that are perpendicular to the
axis of linear momentum on the same particle. The figure shows that Q-spin is geometrically equivalent
to a photon. The two magnetic fermionic axes, e3 and e1 each carry a spin 1

2 , which can couple to give
a composite spin 1 boson, e13. All three axes are orthogonal to e2, see Figure(1). Structured spin makes
the intrinsic angular momentum of Dirac spin, extrinsic.

To motivate the discussion, consider the well know equation for the geometric product of Pauli
spin components,

σiσj = δij + εijkiσk (1)

Arising from Geometric Algebra, [6,7] the first term describes a symmetric component that gives rise to
polarization and measured Dirac spin. The second term is anti-symmetric and depends upon a bivector,
iσk and the Levi Civita third rank anti-symmetric tensor. Since i cannot simultaneously be equal and
not-equal to j, the geometric product, Eq.(1), is complementary. There is, however, no bivector in the
Dirac equation. We introduce a bivector by multiplying a gamma matrix by the imaginary number,
γ̃2

s ≡ iγ2
s . This makes the Dirac field complex, which is origin of helicity. It is the purpose of this paper

to include this anti-symmetric term as a property of spin, even though it is not measurable.
The procedure here has similarities to Penrose’s Twistor Theory, [8] [9]. Essentially Twistor Theory

complexifies Minkowski space, a four dimensional real manifold M, into a complex Twistor space,
T. As a complex space, it has two projections into helicity states of + and −, denoted by PT±. The
boundary between the two, PN, is real space of null vectors which are lightrays from the light cone.
Different slices in T lead to different projections, groups and algebras.
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A spin 1
2 in free-flight.

Figure 1. Two properties of spin: two orthogonal spin 1
2 polarization vectors, σ1 and σ3, perpendicular

to the direction of linear momentum, Y. The helicity, generated by iσ2, is in the direction of propagation,
e2 = Y, and spins R or L. The two spin 1

2 vectors, σ3 and σ1, couple to give a composite boson, e13, of
magnitude 1. These properties show spin is geometrically equivalent to that of a photon.

Here we complexify the Dirac field in spin spacetime, and not Minkowski space. No additional
parameters are introduced and the field is determined by a non-Hermitian Dirac equation. Under
parity, this splits into complementary spaces. In the following, these ideas are formalized.

This paper is the first of several in which the properties and foundations of Q-spin are presented.
A second paper, “Spin with helicity" [10] discusses the geometry and conservation of correlation. A
third paper, [11], studies and simulates the correlation between a pair of spins. A general summary,
[12] describes some consequences of this symmetry change..

Formally this four state spin is called Q-spin to distinguish it from the usual Dirac spin. A modified
form of the Dirac equation is presented that admits both polarization and helicity, complementary
elements of reality. It describes spin as it exists in the absence of interactions, and therefore in free-flight.
Additionally, when measured, the boson spin decouples into a fermion of spin 1

2 . This is the measured
spin Dirac formulated.

Q-spin is a boson of odd parity in free flight, a wave; and a fermion of even parity when measured,
a particle.

Spin Spacetime Algebra

No bivector is found in the Dirac equation because his point-particle spin is defined in Minkowski
space which is a four dimensional real manifold. In contrast, introducing a bivector gives spin structure,
and since it can be oriented randomly relative to Minkowski space, we introduce spin spacetime,
(βs, e1, e2, e3), which is the Body Fixed Frame, BFF of one spin. Minkowski space is the Laboratory
Fixed Frame (β, X, Y, Z), LFF.

Dirac’s gamma matrices,
(
γ0, γ1, γ2, γ3), represent the 4x4 Dirac field. Within this field there are

two point particle spins of 1
2 : each described by the three Pauli spin components and the identity,

(I, σX, σY, σZ) which belong to the SU(2) group; each is the mirror twin of the other: Dirac’s matter-
antimatter pair.

Introducing γ̃2
s = iγ2

s complexifies, [8,9], spin spacetime (subscript s). Minkowski space obeys
Clifford algebra Cℓ1,3. In contrast, the Clifford algebra of spin spacetime is Cℓ2,2. The immediate
consequence of introducing the bivector is the Dirac equation becomes non-hermitian with two fields
expressed by

(
γ0

s , γ1
s ,±γ̃2

s , γ3
s
)
, the solutions are mirror states, ψ± with no parity. The ± division is

complex conjugation.
The mirror states can be combined into odd and even parity states, and upon doing this, the field

separates once more into two distinct spaces and the algebra changes from Cℓ2,2, to a 2D plane with
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Minkowski and spin spacetime.

Figure 2. A spin is oriented in spin spacetime by the BFF basis vectors (e1, e2, e3) which spins about
the axis e2 so that in Minkowski space, with components (X, Y, Z), only a smeared out image of the
precessing spin is projected. The lower right insert contrasts Dirac spin and Q-spin, which is displayed
as the resonance formed from the coupling of the (3,1) axes.

algebra Cℓ1,2; and a connection to the S3 hypersphere via γ̃2
s . Spin spacetime decomposes into two

complementary spaces: polarization spacetime, (0,1,3) of even parity, and coherence space, (2), of odd
parity. It has the structure of a 2D plane of polarization, see Figure(2).

The bivector, iσ2, connects spin spacetime to the complementary space of the helicity states,
generated by quaternions in the S3 hypersphere. This has four spatial dimensions, and cannot be
measured. Its only role is to spin the axis of linear momentum, Y = e2 either L or R which are the two
helicity states. Note that in free-flight the helicity generates its own S3 hyperspace. Otherwise it does
not exist.

Q-spin is one particle with four states, not two particles with two states each. This is an entirely
different interpretation from Dirac’s matter-antimatter pair. We do not deny antimatter is produced,
but not under quaternion symmetry. We show, below, that Q-spin also solves the negative energy
problem Dirac encountered.

When spin is measured the helicity stops and the usual two polarized states of up and down are
observed in some direction, |±, n̂⟩. Away from polarizing fields, the spinning axis of linear momentum
averages out the spin polarization. Only the helicity is then present.

The spin polarized structure can be expressed in Minkowski space. The bivector cannot.

Mirror states and parity

The spin space-time gamma matrices
(
γ0

s , γ1
s ,±γ̃2

s , γ3
s
)
, anticommute and have a different signa-

ture from Minkowski space,

η̃
µν
s =


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 (2)

so the term γ̃2
s is not a spatial component, but rather time-like and a frequency.
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Mirror states of Q-spin.

Figure 3. The mirror states of a Q-spin with ψ+ on the right and ψ− on the left. Note that adding these
states is independent of iσ2 and subtracting them is independent of σ1 and σ3.

The commutation relations are changed from the usual three dimensional generator of rotations
in Minkowski space,

Sij
(3) =

i
4

[
γi, γj

]
=

1
2

εijkσk I4 (3)

to ones that generate rotations in only two dimensions in spin spacetime

Sij
(2) =

i
4

[
γi

s, γ
j
s

]
=

i
2

εi2jσ̃s2 I4 (4)

Si2
(2) =

i
4

[
γi

s, γ̃2
s

]
=

i
2

εi2jσsj I4 (5)

The former equation describes rotations in the 31 plane about the direction 2; whereas the imaginary
term in the latter equation damps all rotation attempts out of the 31 plane.

Two new equations in spin spacetime follow from the gamma algebra which gives a non-
Hermitian equation by virtue of γ̃2

s ,(
iγ0

s ∂0 − iγ1
s ∂1 ± iγ̃2

s ∂2 − iγ3
s ∂3 − m

)
ψ± = 0 (6)

and we suppress the subscript s on the derivatives.
By treating a spin in free-flight in an isotropic environment, the two axes (1, 3) are indistinguish-

able. Therefore, permutation with the parity operator, P13 does not change the (1, 3) dependence in
Eq.(6), but the bivector, iσ2 = σ3σ1 is anti-symmetric to 13 permutation. Therefore the above equations
admits two solutions in left and right handed coordinate frames, which are mirror states, [5,13]

P13ψ± = ψ∓ (7)

see Figure(3). The anti-commutation of the γ
µ
s matrices ensures that energy is conserved and the

Klein-Gordon equation is recovered.
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Spin decoupling.

Figure 4. The longer arrow denotes the direction of the polarizing field. The two polarization axes
form Q-spin of even parity from the coupling of two mirror states.
(middle top), The two mirror states in free flight, e1 and e3 couple to give the boson spin 1.
(left and right) The axis closer to the field axis aligns.
(middle lower) When the boson spin is close to the field, it precesses as a spin 1 before decoupling into
its fermion components.
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Adding and subtracting the two equations in Eq.(6) leads to their separation into a Hermitian
part and an anti-Hermitian part,(

iγ′0
s ∂0 − iγ1

s ∂1 − iγ3
s ∂3 − m

)
Ψ+ = 0 (8)

γ̃2
s ∂2Ψ− = 0 (9)

where the two mirror states combine into states with odd and even parity, P13Ψ± = ±Ψ± with the
definition,

Ψ± =
1√
2

(
ψ+ ± ψ−) (10)

The even parity states describe polarization and the odd parity states describe its helicity.
The separation of the Dirac field into reflective states means each axis precesses in the opposite

direction. These two polarization axes, each with a magnetic moment µ, constructively interfere
producing the resonance, and purely coherent spin, see Figure(4), (middle upper). Such a resonance
structure lowers the energy and stabilizes the 2D structure over that of two point particle spins.

The Hermitian part, Eq.(8), is the same as the usual Dirac equation, but in two dimensions rather
than three. It describes a disk, as visualized in Figs.(1) and (2).

The bivector component, (2), describes a massless Weyl spinor in coherent space, Eq.(9). Within
this space, time does not exist beyond the constant frequency of its spinning. Time and rest mass remain
in polarization space. Similar to the two complementary inverse spaces of position and momentum,
here the two spin spaces carry the two complementary properties of polarization and coherence.

Redefine the spinor mirror states as ψ+ ≡ ψR and ψ− ≡ ψL.

The Weyl spinor

From Eq.(9) and using reference [3,14] a Weyl spinor transforms under boosts and rotations as

ψR →
(

1 − iχ
σ2

2
+ iβ

σ2

2

)
ψR(0) (11)

ψL →
(

1 − iχ
σ2

2
− iβ

σ2

2

)
ψL(0) (12)

Since time exists only in polarization space, Eq.(8), a boost of polarizations carries along the spinors.
There are no boosts in coherent space; the left and right wave functions are equal;

ψR = ψL (13)

and the state is a unit quaternion which spins the axis of linear momentum in coherence space (2) by
angle χ, thereby generating the helicity,

ψL(χ) = exp
(
−i

χ

2
σ2

)
ψL(0) =

(
cos

χ

2
− iσ2 sin

χ

2

)
ψL(0) (14)

The usual definition [15] identifies helicity as the projection of the spin vector onto the axis of linear
momentum in Minkowski space. The helicity of the axis, L or R, gives spin state as +1 or −1. Spin and
helicity are related and not independent. Q-spin is quite different .

Here helicity is defined only in quaternion space, the S3 hypersphere, [16–18] where there is no
momentum with which to contract. Choosing Y = e2 connects Minkowski space to spin spacetime
and finally to the S3 hypersphere, where the component iσ2 generates the quaternion in Eq.(14), and
provides a mechanism for helicity.

Within the spinning disc in the (3,1) plane, the two ferminoic axes couple to give the composite
boson of spin 1. However, the rapid spinning averages out the boson polarization in the disc, so only
the helicity is present in free flight. That is, in free-flight an electron is a boson of odd parity, e−B .
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Helicity is a distinct element of reality and complementary to observed polarized spin. All we
observe of the helicity in our spacetime is its stereographic projection which is the spinning of the Y
axis, giving a spinning disc of angular momentum in Minkowski space, Figure(2).

The 2D spin equation.

Transform from the BFF of the spin, to the LFF using,

e3 = cos θZ + sin θ cos ϕX + sin θ sin ϕY

e1 = − sin θZ + cos θ cos ϕX + cos θ sin ϕY

e0 = cos ϕY − sin ϕX

(15)

giving,
γ1

s =
(
− sin θγ3 + cos θ cos ϕγ1 + cos θ sin ϕγ2

)
γ3

s =
(

cos θγ3 + sin θ cos ϕγ1 + sin θ sin ϕγ2
)

p3 = p · e3 = (cos θpZ + sin θ cos ϕpX + sin θ sin ϕpY)

p1 = p · e1 = (− sin θpZ + cos θ cos ϕpX + cos θ sin ϕpY)

(16)

and the following expression is independent of θ,

γ1
s p1 + γ3

s p3 = γ3 pZ +
(

cos ϕγ1 + sin ϕγ2
)
(cos ϕpX + sin ϕpY) (17)

Taking the linear momentum in the direction Y = e2 requires setting ϕ = 0,

γ1
s p1 + γ3

s p3 = γ1 pX + γ3 pZ (18)

The polarization in spin spacetime is projected onto Minkowski space. The spinning from helicity is in
coherent space which spins the polarization in Minkowski space.

In contrast, the usual Dirac point particle, 2-state fermion spin is formed when e−B encounters a
polarizing field. We denote this by e−F , which is even to parity. A fermion electron has two states of up
and down. For boson electrons the two polarized states are suppressed, leaving the two helicity states
of L and R.

Define a momentum vector p = p3e3 + p1e1 and the equation for 2D polarization becomes(
E − m −p · œ
+p · œ −(E + m)

)(
u+

v+

)
= 0 (19)

where the even parity state is written as Ψ+ =

(
u+

v+

)
. This leads to the same Klein-Gordon equation

in Minkowski and spin spacetime,

(
∂2

0 − ∂2
Z − ∂2

X − m2
)

ψ = 0 (20)(
∂s

2
0 − ∂2

3 − ∂2
1 − m2

)
ψs = 0 (21)

with eigenvalues for the latter of,

E = ±
√

m2 + p2
3 + p2

1. (22)

We interpret the two energy states as internal energy which is absent for point particles. This is caused
by the left and right spinning of the two spin axes on the same particle, see Figure(4). As mirror
states, they are depicted as being in phase with equal, but opposite, energy. The two couple to give
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the resonance spin of 1. Precession as shown gives one component of, say, m = +1. Reversing these
precessions gives the m = −1 component. The m = 0 component cannot form since it would violated
the reflective symmetry between the mirror states. Note also a photon has no m = 0 component.

The two axes form the resonance boson, Figure(4). Rather than Dirac’s matter-antimatter pair,
Q-spin resolves the negative energy problem Dirac encountered because the two axes must have equal
energy, but spin oppositely.

Define the helicity matrix, Hg = γ1γ̃2γ3, which give the spatial gamma matrices,

σi ⊗ Hg = σi ⊗
(

0 +I
−I 0

)
= γi (23)

The gamma algebra of Q-spin is virtually the same as for Dirac spin.

Quaternion Spin

In this section we present more specific equations that describe the structure and some properties
of Q-spin. Generally the equations are given that lead to the illustrations in Figure(4).

Figure (5) shows the BFF with the Y axis perpendicular to the screen. The four bisectors are
shown, and the first quadrant is labeled e3e1. Also shown is the long LFF Z axis oriented relative to the
BFF by angle θ. The field axis, a, is oriented by angle θa from Z, and finally, the boson spin, e31 is at
angle θ13 from the Z axis.

The spinning disc is orthogonal to the direction of motion, and therefore the polarizing filter and
the disc are co-planar.

The complementary attributes of spin, polarization and coherence, simultaneously exist, but only
one is manifest at any instant. Just as the geometric product, Eq.(1), is the sum of two complementary
contributions, so we extend the usual definition of spin, σ, to define Q-spin, Σk, as possessing both
these properties,

Σk = σk + hk
g = σk + ε · iσk : (k = 1 or 3) (24)

Motivated by the geometric product, Eq.(1), the geometric helicity operator, hg = ε · iσ, is an anti-
symmetric, anti-Hermitian, second rank tensor of odd parity, [10].

The state operator, ρ, expresses the expectation values for Hermitian observables, A, of a system,
and is defined by the quantum trace over the operators, [19],

⟨A⟩ = Tr(Aρ) (25)

Despite the helicity being an element of reality, it is not an observable in Minkowski space, where we
observe. Therefore, we express the pure state operator of Q-spin in terms of the normalized sum of the
two orthogonal axes giving,

ρ =
1
2

(
I +

1√
2
(σ3 + σ1)

)
=

1
2
(I + œ · r) (26)

The vector is identified r = 1√
2
(e3 + e1) in the BFF. From this, the expectation values are calculated for

the spin axes, Σ3, Σ1 using Eq.(26),

⟨Σ1⟩ = ⟨σ1⟩+ ε · ⟨iσ1⟩ =
1√
2
(e1 + ie3Y)

⟨Σ3⟩ = ⟨σ3⟩+ ε · ⟨iσ3⟩ =
1√
2
(e3 − ie1Y)

(27)
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with ⟨œi⟩ = + 1√
2

ei, and the vector products,

ε · ⟨iœ1⟩ = +i
1√
2

e3Y; ε · ⟨iœ3⟩ = −i
1√
2

e1Y (28)

Permuting each axis in Eq.(27), shows the two fermionic axes are mirror states, P13⟨Σ1⟩ = ⟨Σ3⟩∗.
The first term in Eq.(27) is the usual spin polarization that is observed. The second shows the planes
orthogonal to the axes: e1 is orthogonal to e3Y, and e3 is orthogonal to e1Y. These terms form the
wedge, or vector product from GA, [6] leading to the formulation of helicity.

In free-flight the angular momentum of the two axes, Eqs.(27), constructively interfere to produce
the resonance spin being a boson of magnitude 1,

Σ31 = Σ3 + Σ1 (29)

Substituting Eqs.(27) gives the free-flight boson in the BFF, exp
(
±i π

4 Y
)
= 1√

2
(1 ± iY),

⟨Σ31⟩ = e1 exp
(
−i

π

4
Y
)
+ e3

(
+i

π

4
Y
)

(30)

This shows each axis multiplied by a unit quaternion that rotates around the Y axis. The e1 axis is
rotated by −π

4 , and e3 axis is rotated by +π
4 . Hence the two axes coincide and bisect the first quadrant

and form the resonant boson spin labeled by e31 in Figure(5). Bisectors of all the quadrants are found,
corresponding to the boson resonance spins which can occupy any quadrant at any instant. Each
quadrant gives the same results, so we use the first.

In Figure(5), the axis of linear momentum, Y, is orthogonal to the e1e3 plane, showing once again
the geometric equivalence with a head-on view of a photon with the orthogonal magnetic and electric
components oscillating out-of-phase.

Equation (30) couples the two fermionic axes which is depicted in the middle figure forming the
spin 1. When the boson is influenced by a polarizing field, it decouples into a fermion.

Measured spin

Rotate Eq.(30) to the LFF using Eqs.(15) with ϕ = 0 and contract with a polarizing field, oriented
by angle θa,

a = cos θaZ + sin θaX (31)

gives a unit quaternion,
a · ⟨Σ3⟩ = cos(θa − θ)− i sin(θa − θ)Y

= exp(−i(θa − θ)Y)
(32)

In a field, each orthogonal axis is described by a unit quaternion.
When a boson spin encounters a field a, the least action principle dictates the closer axis is

influenced more than the further axis. This destroys the mirror property between the axes as one aligns
with the field. The helicity stops as the second fermionic axis, orthogonal to the aligning axis, spins
about the first, see the left and right panels of Figure(4). In the presence of a field, the expectation value
of the boson spin is

a · ⟨Σ31⟩ = a · ⟨Σ1⟩+ a · ⟨Σ3⟩ (33)

Competition between axes

Equation (30) shows Q-spin in its BFF. Transforming to the LFF and using Eq.(31) leads to,

a · ⟨Σ31⟩ =
1√
2

(
cos(θa − θ) exp

(
+i

π

4
Y
)
+ sin(θa − θ) exp

(
−i

π

4
Y
))

(34)
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Q-spin in a field..

Figure 5. The BFF showing the e3e1 plane and the bisectors of the quadrants with boson spins of 1. The
e13 boson is labeled. The plane is oriented in the LFF by the Z axis, and the angle θ31 is shown. Also θa

orients the field vector a in the LFF. The angle θ is the orientation of a spin vector on the Bloch sphere.

where the projections determine the contributions from each axis in the LFF,

a · e3 = cos(θa − θ)

a · e1 = sin(θa − θ)
(35)

This expression shows the competition between the two axes. Equation (35), gives the projections of e3

and e1 onto the field direction,
Consider some angles which can be seen from Figure(5), and using Eq.(35) shows that if θa − θ = 0

or π
2 , then the field is aligned with the e3 or e1 axis respectively. However, polarization along these

axes is reduced from unity to 1√
2

, see Eq.(34). This is because the polarization of the orthogonal axis to
the aligned axis is averaged out, and thereby reduces it. To get the full polarization, the angle must be
aligned with the resonance boson spin. This occurs by choosing θa − θ = π

4 . From Figure(5), this value
shows the field co-linear with the bisector, with equal contributions from both the e3 and the e1 axes,
so the polarization has magnitude of 1. Choosing θa − θ = −π

4 shows the field vector co-linear with
the −e31 axis, orthogonal to e31 with zero value.

The boson projections

If the field is co-linear with the boson spin, then it precesses without uncoupling. This is illustrated
in the lower middle part of Figure(4), but as the field is oriented further from the bisector, the precession
changes to nutation, wobbles and then decomposes as the field strength increases and moves further
from the resonance spin and closer to one of the axes. From Figure(5) the bisector lies 45o from either
e3 or e1 axes. We therefore assume, again motivated by the least action principle, the boson decouples
directly, without nutation, when the field axis lies greater than 22.5o from the bisector. Within the
45o wedge on either side of the bisector, we assume that the boson spin remains intact until the field
strength overpowers the spin-spin coupling, and it decouples.

Depending of these orientation effects, Q-spin either persists as a boson, or rapidly decouples to a
fermion.
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Working in the first quadrant defined by e1e3, and, using Eq.(15) with ϕ = 0, then the relation
between bisector in the the BFF and the LFF is,

(e3 + e1) = (cos θ − sin θ)Z + (cos θ + sin θ)X

(e3 − e1) = (cos θ + sin θ)Z + (sin θ − cos θ)X
(36)

Alternately, Eq(35) projects e1 and e3 onto the field direction. First express Q-spin in its BFF, see Eq.(27),

⟨Σ31⟩ = ⟨Σ3⟩+ ⟨Σ1⟩ =
1√
2
((e3 + e1) + i(e3 − e1)Y) (37)

Substitution of Eqs.(36) leads to,

a · ⟨Σ31⟩ =
1√
2

(
(cos θ − sin θ)e−iθaY + (cos θ + sin θ)e+i( π

2 −θa)Y
)

=
1√
2

(
(cos θa + sin θa)eiθY − (cos θa − sin θa)e−i( π

2 −θ)Y
) (38)

In each equation, each axis is multiplied by a unit quaternion, and the two are orthogonal. From
Eq.(36), and contracting with Z and X, shows the first term is the projection of the bisectors along the
LFF Z axis, and the second term is the projection along X. These projections depend only on the spin’s
orientation via θ,

(e3 + e1) · Z = (cos θ − sin θ)

(e3 + e1) · X = (cos θ + sin θ)
(39)

A similar interpretation follows from the second line of Eq.(38). These can be compared to Eq.(34)
which projects the axes e3 and e1 rather than their bisector, Fig(5). Either equation can be used to
determine the spin polarization.

Q-spin as quaternions

Equations (34) or (38) lead to a quaternion in terms of the angle differences (θ31 − θa) which is
independent of θ,

a · ⟨Σ31⟩ = exp(i(θ31 − θa)Y) (40)

In the first quadrant the bisector is normalized to

e31 =
1√
2
(e3 + e1) (41)

with the angle given by,
e31 · Z = cos θ31

e31 · X = sin θ31
(42)

Clearly Eq.(40) shows that Q-spin aligns with the field when the angles are equal, θa = θ13. When
aligned, as discussed above, and when the field is off-set by a small amount, then the boson does not
decouple but precesses as a spin 1 with magnetic moment of 2µ. This is shown in the middle lower
panel of Fig(4).

To determine which fermion axis will align, use Eq.(34) or (38)and determine which has the larger
magnitude. The larger axis aligns, and its sign then determines if the aligned spin is up or down. Note
that the two axes, e3 and e1, have opposite spin components.
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Consider further, Eq.(34), which can be written as,

a · ⟨Σ31⟩ = exp
(

i
(π

4
− (θa − θ)

)
Y
)

= ei π
4 Ye+iθYe−iθaY

(43)

This shows that the Q-spin is determined by the product of three quaternions. The first is a phase, see
Eq.(28), that rotates to the bisector of the (31) quadrant; the second is a geometric factor that orients the
disc and is determined at the source; the third is a field quaternion that pulls the axis.

The EPR paradox

These features of Q-spin are crucial, [10], to understanding the extra correlation found in coinci-
dence EPR experiments, [20–22] and which is more fully discussed in paper three, [10]. That is, the spin
orientation relative to the field direction, and the strength of spin coupling relative to the field strength,
provide two mechanistic pathways for the boson decoupling. The violation of Bell’s Inequalities, [23],
is due to the transition from a free-flight boson to a measured fermion.

Despite the fact measurement reveals two real states, spin is a complex element of reality, and
defined by Eq.(24). We have shown down to Eq.(43) that spin is governed by unit quaternions.

Consider the correlation between an EPR pair which, using Q-spin, is written as a product state
between Alice and Bob,

E(a, b) = a · 1
2

(〈
ΣA

31

〉〈
ΣB

31

〉∗
+
〈

ΣA
31

〉∗〈
ΣB

31

〉)
· b

=
1
2

exp
(

i
(π

2
− (θa − θ)

)
Y
)

exp
(

i
(π

2
+ (θb − θ)

)
Y
)
+ c.c.

= − cos(θa − θb)

(44)

We have taken the angle θ to be θ ± π
2 for Alice and Bob so the two spins at the source have common

orientation of θ that differs by π to maintain the two anti-parallel. Since we only measure in real
space, then similar to light, the complex part can by removed by forming linear or circularly polarized
components.

In EPR coincidence experiments, only the real part is measured, but the complexity is essential to
give the observed result, − cos(θa − θb), with a CHSH =2

√
2. To see this, drop the bivector to give the

usual vector spin and the correlation is reduced to a product state, [10,11]

E(a, b)class = a ·
〈

σ1
〉〈

σ2
〉
· b = − cos θa cos θb (45)

This has a CHSH correlation of 2, and satisfies Bell’s inequalities, whereas the full correlation in
Eq.(44) with CHSH = 2

√
2, violates the inequality. The part that violates Bell’s Inequalities is the

correlation due to helicity, [10,11]. By including helicity, spin is complex which obviates the need for
non-locality. Bell’s Theorem, [24], proves real classical systems cannot locally violate his inequality, but
is inappicable to complex complementary quantum properties.

Discussion

In free-flight, the spinning disc is reminiscent of the worldsheet Susskind introduced, [25]. A 2D
system is also an anyon, [26], which can be either a fermion or a boson. An important point about the
boson in free-flight is the spinning axis averages out the boson polarization, Figure(1), so only the odd
parity helicity remains. Upon measurement, a transition from a boson to a fermion occurs giving the
usual two-state Dirac spin.

The motivation behind Twistor theory is that Nature is fundamentally complex, and we measure
the real part. Q-spin supports this concept as seen from the discussion above on EPR. The coherence
carried by the helicity accounts for the violation of Bell’s Inequalities, [11]. Dropping the complexity
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removes the quantum coherence, leaving only the classical correlation that obeys Bell’s Inqualities.
Without helicity, we have Dirac’s two state spin, and no coherent properties.

Introducing the bivector into spin algebra significantly changes our view of a spin from a struc-
tureless point particle of intrinsic angular momentum in Minkowski space to a four dimensional
structured spin with extrinsic angular momentum in spin spacetime. There are four axes that compose
Q-spin. One is the axis of linear momentum spun by the quaternion. Two more are the magnetic axes
which couple to give the fourth, being the boson spin, see Figure(1).

The question arises as to whether Q-spin exists and is more fundamental than point particle
spin. That Q-spin and a photon have structure and properties in common, is compelling, Figure(1).
Other quantum observables come in complementary pairs, like position and momentum etc., in spaces
that are the inverse of each other. It is therefore reasonable that spin also has two complementary
properties, real polarization in it’s spin spacetime, and imaginary coherence on the S3 hypersphere.

Measurement has a central premise that the act of observation perturbs the system. Q-spin makes
a distinction between measurement of a Fermi electron, e−F (polarized, particle, fermion, even to parity)
and free-flight of a Boson electron, e−B (coherence, wave, boson, odd to parity). They epitomize the
particle-wave duality. An advantages of Q-spin lies in its expression in terms of quaternions. One can
envisage a spin to be a stable qubit, where the two axes carry opposite spin. The evolution is calculated
by products of quaternions, Eq.(43), and the coherence maintains correlation between gates.

The mathematical foundations of Q-spin are the same as usual Dirac spin. Changing symmetry
from SU(2) to Q8 is our only modification to the Dirac field. The solution to the 2D Dirac equation
and the spin spacetime gamma algebra carry over from the usual treatment without difficulty. One
advantage of Q-spin is it gives alternate interpretations of some troubling properties: non-locality
is repudiated, [11]; negative energies of the antimatter particle are resolved; and a number of other
changes challenge our existing view off the microscopic, see [12].

Simply stated, Nature is complex and a free-flight electron is a boson of odd parity, and a measured
electron is a fermion of even parity.

Acknowledgments: The author is grateful to Hillary Sanctuary, PhD, EPFL Switzerland, for useful and helpful
discussions.
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