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Large Class of Non-Convex Models in the Calculus of
Variations
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Abstract: This article develops duality principles and numerical results for a large class of non-convex
variational models. The main results are based on fundamental tools of convex analysis, duality theory
and calculus of variations. More specifically the approach is established for a class of non-convex
functionals similar as those found in some models in phase transition. Finally, in the last section we
present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to double well models similar as those found in the phase
transition theory.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,14,15] and on a D.C.
optimization approach developed in Toland [16].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results
on convex analysis and duality theory are addressed in [5-7,9,13].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological
space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be
represented by another Banach space U*, through a bilinear form (-,-)i; : U x U* — R (here we are referring
to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and
continuous, we assume the existence of a unique u* € U* such that

Fu) = (0, € UL M
The norm of f, denoted by || f ||+, is defined as

I fllus = sup{[{w, u*)ul « fullu <1} = [Ju*[|u-- 2
uel

At this point we start to describe the primal and dual variational formulations.

2. A general duality principle non-convex optimization

In this section we present a duality principle applicable to a model in phase transition.
This case corresponds to the vectorial one in the calculus of variations.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202302.0051.v5
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 February 2023 doi:10.20944/preprints202302.0051.v5

20f 15

Let Q) C R" be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.
Consider a functional | : V — R where

I(”) = F(vulr' o /V”N) +G(”1/' o /uN) - <Mj,fj>L2,

and where
V=Au=(uy, - ,un) € WPQRY) : u=uyonaQ},

feL?(RN),and 1 < p < +oo.

We assume there exists « € R such that

=i

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global
optimum point may not be attained for | so that the problem of finding a global minimum for | may
not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting Vy = WP (RN), Y1 = Y; = [2(Q;RN*"), Y, = Y§ = L2(Q;RN*"), Y3 = Y§ =
L2(Q;RN), at this point we define, F; : VxVy - R, G : V - R, G :V - R,G3: Vy — Rand
Gy:V =R, by

K
F(Vu,V9) = F(Vin+ Yy, -, Vuy+Vn) + 5 /Q Vi, - Vi dx

K
+7 /Q V(P]‘ . V47]' dx 3)
and K
Gl(ul/ . ,Mn) — G(ul/ c /MN) + 71 /Qu]' Uj dx — <ui,fl‘>L2,
_K d
Gz(Vul,- o ,qu) = 7/()Vu] . Vu] X,
K>
Gi(Ver, -, Vy) = Tfﬂwj-wj dx,
and K
1
G4(M1,- . ,MN) = 7 Qu]- Mj dx.

Definenow [ : V x Vj — R,

T, ¢) = F(Vu+ V) + G(u) — (ui, fi) 2.
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Observe that

F(Vu,V¢)+ Gy(u) — Go(Vu) — G3(Vp) — Gy (u)
F(Vu, V) + Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (4, 23) 12

+ sup {(v1,27) 12 — Ga(v1)}
11€Yq

J1(u, ¢)

IN

+ sup {(v2,23)12 — G3(v2)}

€Y,

+ sgg{(u, z3)2 — Ga(u)}

= FR(Vu,V¢)+Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (u,23) 2
+G;(21) + G3(23) + G4 (23)
= Jiwez"), @
YueV, eV, z8 = (z,25,23) € Y =Y x Y5 x Y5,
Here we assume K, Ky, K, are large enough so that F; and G; are convex.
Hence, from the general results in [16], we may infer that

inf _ nf . -
(”"/’)IQVXVO (u.9) (u,¢,z*)g\1/xvoxy* Ji(u, ¢,27) 5)

On the other hand

inf > inf ,¢) > inf = inf ,
ARG 2 ing 0 9) 2 Il Q) = fnf J)
where Qj(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf = inf (u, ¢, 2%).
JgV](u) (u,(p,z*)ér‘}'xVoxY* Ji (u 9.2 )

Moreover, from standards results on convex analysis, we may have

inf Jy (u,¢,2") inf {F, (Vi V) + G (u)
—(Vu,21) 2 = (V, 23) 12 — (u,23) 12
+G;(21) + G3(23) + Gi(z3)}

= sup {—F (01 +21, V) = Gi(v3 +23) = (V§,23) 12

(vy,05)eC*
+G;(21) + G3(23) + Gy (z3)}, (6)
where
C'={v" = (v,v3) € Y7 X Y3 : —div(v]);i + (v3); =0,Vi € {1,--- ,N}},
F (01 + 21, V¢) = sup {(o1,2] +v7)12 — Fi(v1, V) },
Z]1€Y1
and
Gi(v3 +23) = sup{(u,v3 +23)12 — G1(u) }.
ueVv
Thus, defining

J2(¢,2%,0%) = F (v1 +21, Vo) = G{ (v2 +23) = (V§,23)12 + G3(21) + G3(22) + Gy (23),
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we have got

inf J(u) = inf  Ji(u,¢)

uev (,$)EV x Vo

- inf S,

(1,,2*) VXV x Y*

= 232&{4}350{;21& J3(¢,2" 0 )}} )

Finally, observe that

inf /(1)

ueV

— . f . f * 3 *’ *
o {;QVO {;‘;g hige >}}

> sup { inf  J5(¢,2%, v*)} . 8)
veecr L(Z59)eY* x V),
This last variational formulation corresponds to a concave relaxed formulation in v* concerning
the original primal formulation.

3. Another duality principle for a simpler related model in phase transition with a respective
numerical example

In this section we present another duality principle for a related model in phase transition.
Let ) = [0,1] C R and consider a functional | : V — R where

2/ 2 1)?dx+Z /u dx — (u, f)2,

and where
V={uecW"4Q) : u(0) =0and u(1) = 1/2}

and f € L?(Q).
A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting Vy = Wy*(Q), at this point we define, F: V — Rand F; : V x Vy — Rby

_ %/Q((u’)z—l)z dx,

Filug) =5 [ (0 +¢ 7 =17 dx.

and

Observe
F(u) > inf Fy(u,¢) > Qr(u), Vu eV,
PV

where Qr (1) refers to a quasi-convex regularization of F.
We define also
F:VxVy—R,

F3:VXVO—>R
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and
G:VxVy—=R

E(u,¢) = %/Q((u’—&—cp')z —1)2 dx—l—%/nuz dx — (u, )2,

F(u,¢) = F2(”r¢)+§/0(u/)2dx
Ky N2
+ | (97 dx )
and

Glug) = 5 [P dx
+5b [ (9)? dx (10)

2 Ja
Observe that if K > 0, K; > 0 is large enough, both F3 and G are convex.
Denoting Y = Y* = L2(Q)) we also define the polar functional G* : Y* x Y* — R by

G*(v% o) = sup  {(u,0%)p2 + (9, 05)12 = G(u,9)}-

(u,(P)GVXVO
Observe that
. > . * * * _ * _ * .
l}glfl](”) z ((u,q)),(v*,vgglerxVOx[Y*]Z{G (v*,00) = (u,v") 2 = (P, vp) 12 + F3(u, ) }

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J; : V x Vp x [Y*]2 — R, where
Ji(u, ¢, 0%, 05) = G* (0", 05) = (u,0") 12 = (§,05) 12 + F5(u, )-

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm.

1. SetK~150and K; = K/20and 0 < ¢ < 1.
2. Choose (u1,¢1) € V x Vp, such that ||u1 |10 < K/4 and |1 ]|1,00 < K/4.
3. Setn =1
4. Calculate (v}, (v§)n) solution of the system of equations:
a]f(unrcpnr U:[/ (’08>H) — 0
ov*
and
a]ik(unlcpn/ U;fl/ (’08)1’1> — 0
oV ’
that is e
aG (vn, (Uo)n) _ un —_ 0
ov*
and 3G* (o* (o
(Un/ (UO)") — ¢y = 0

*
v}
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so that
. 9G (un, Pn)
On = ou
and 3G( )
%\ % u 7
(w3); = g

5. Calculate (1,11, ¢,+1) by solving the system of equations:

a]ik (Lln+1/ (Pn—i-l/ U:, (7’3)")

u =0
and N T~
a]l (”n-i-lr Pnt1,0p, (Uo)n) -0
o
that is
—’0:; + W =0
and

N 0F5 (1,11, ¢y
_(Uo)n+—3( g(;¢+1) =0

6.  Ifmax{|tn — upt1llcos |Pn+1 — Pnllo} < € thenstop, else set n := n + 1 and go to item 4.

For the case in which f(x) = 0, we have obtained numerical results for K = 1500 and K; = K/20.
For such a concerning solution 1 obtained, please see Figure 1. For the case in which f(x) = sin(7x)/2,
we have obtained numerical results for K = 100 and K; = K/20. For such a concerning solution u
obtained, please see Figure 2.

0.5

0.4 r b

0.2 ]

Figure 1. solution ug(x) for the case f(x) = 0.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical
sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average
behavior of weak cluster points for concerning minimizing sequences.
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0.5
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04 r b

0.35 ]

031 ]

0.25 ]

02 ]

0.15 b

04 f 1

0.05 ]

Figure 2. solution ug(x) for the case f(x) = sin(7x)/2.
4. A convex dual variational formulation for a third similar model

In this section we present another duality principle for a third related model in phase transition.
Let Q = [0,1] C R and consider a functional | : V — R where

) = 5 [min{( =12 ' + 172} dx 5 [ dx= G frn,

and where
V={uecW?Q) : u(0)=0and u(1) = 1/2}

and f € L2(Q).

A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate
sense to be specified.

At this point we define, F: V — Rand G : V — R by

F(u) = %/ﬂmin{(u’—l)z,(u’+1)2}dx

— 1 "2 o /
- 2/Q(u) dx /Q|u|dx+1/2
Fi(u')

(11)

and

G(u) = %/Quz dx — (u, f)a.

Denoting Y = Y* = L?(Q)) we also define the polar functional F; : Y* — Rand G* : Y* — Rby

F(0) = ng;{<v'v*>L2_Fl<0)}

_ %/Q(v*y dx+/0 10| dx, (12)
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and
G*((0")) = 51615{—@//0*&2 —G(u)}
_ %/Q((v*)’+f)2 dx—%v*(l). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf J(u) = max{~F(v") = G"(~(=")")}.

Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some 9" € Y*.
Moreover, the corresponding solution 1y € V is obtained from the equation

Finally, the Euler-Lagrange equations for the dual problem stands for

{ (v)" + f — 0" — sign(v") =0, in0), (14)

(@)(0) =0, (v*)'(1) = 1/2,
where sign(v*(x)) = 1if v*(x) > 0, sign(v*(x)) = —1,if v*(x) < 0 and

—1 < sign(v*(x)) <1,

if v*(x) = 0.

We have computed the solutions v* and corresponding solutions 1y € V for the cases in which
f(x) =0and f(x) = sin(mx)/2.

For the solution u(x) for the case in which f(x) = 0, please see Figure 3.

For the solution u(x) for the case in which f(x) = sin(7tx) /2, please see Figure 4.

0.6

05

031

02

Figure 3. solution u((x) for the case f(x) = 0.
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0.6

04 r b

02 ]

041t 1

Figure 4. solution ug(x) for the case f(x) = sin(7x)/2.

Remark 4.1. Observe that such solutions ug obtained are not the global solutions for the related primal
optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequences.

4.1. The algorithm through which we have obtained the numerical results

In this subsection we present the software in MATLAB through which we have obtained the last
numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation

(v*)'(0) =0, (v*)'(1) =1/2. (15)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

0"~/ (0%)2 + e,

where a small value for e; is specified in the next lines.
A3 e oA KA A A A A A A KA

{ (v*)" + f/ —v* — sign(v*) =0, inQ,

clear all

mg = 800; (number of nodes)
d=1/mg;

e1 = 0.00001;

fori=1:mg

yo(i,1) = 0.01;

y1(i,1) = sin(wrxi/mg)/2;

Ol LN

end;
6. fori=1:mg—1

dy1(i,1) = (y1(i+1,1) —y1(i,1))/d;

end;
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13.

14.

for k =1:3000 (we have fixed the number of iterations)
i=1;

hy =1/+/v0(i,1)2 +ey;

myy =1+ d? s hy +d>?;

mso(i) = 1/ma;

z(i) = mso(i) * (dy1 (i, 1) * d2);

fori=2:mg—1

h3 =1/+/v0(i,1)? + ey;

mip = 2+ hy xd? +d*> — m50(i — 1);

m50(i) = 1/myp;

2(i) = mso(i) * (z(i — 1) + dy (i, 1)  d?);

end;

v(ms, 1) = (d/2+z(mg — 1))/ (1 — mso(ms — 1));
fori=1:mg—1

v(mg —1,1) = mso(mg — i) * v(mg — i+ 1) + z(mg — i);

end;
v(mg/2,1)
V0 = U;

end;
fori=1:mg—1

u(i,1) = (0(i +1,1) — 0(i, 1)) /d + 11 (i, 1);

end;
fori=1:mg—1
x(i) =ix*d;

end;

plot(x,u(:,1))

bR R R R R R R R
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5. An improvement of the convexity conditions for a non-convex related model through an
approximate primal formulation

In this section we develop an approximate primal dual formulation suitable for a large class of

variational models.
Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,

[10].

At this point we start to describe the primal variational formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness . The boundary of (), which is assumed to be regular (Lipschitzian), is denoted by o).
The vectorial basis related to the cartesian system {x1, x5, x3} is denoted by (a,, a3), where « = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to (). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

= {ﬁa, 123} = fiqa, + fizaz.
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The Kirchhoff-Love relations are
ﬁﬂ( (xl/ X2, x3) = ul’é(xl/ x2) - x3w(x1/ x2),tx
and 13(x1, X2, x3) = w(x1, X2). (16)
Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where
u = {u = (1, w) € W2(QR?) x W22(Q)),
Jw
ua:w:gzo on o0}
= Wy (O R?) x W2 (Q).
It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator A : U — Y x Y, where Y = Y* = L?(Q);R?>*?), by
A(u) = {y(u),x(u)},
_ utx,ﬁ + M‘B,,x w,aw,ﬁ
’YDélB(u) - 2 + 2 4
Kalg(u) = —Wap-
The constitutive relations are given by
Nyg (u) = HupruYau (u), (17)
Maﬁ(u) = hocﬁ/\yKAy(u)r (18)

where: {H, B )\Il} and {ha B = %Hal; A }, are symmetric positive definite fourth order tensors. From

now on, we denote {Hygau} = {Hapry} ' and {apry} = {haprn} -
Furthermore {N,g} denote the membrane force tensor and {M,4} the moment one. The plate
stored energy, represented by (G o A) : U — R is expressed by

1 1
(Gon)(u) =5 [ Nup()vap(u) dx+ 5 | Mup(u)ap(u) dx (19)
and the external work, represented by F : U — R, is given by
F(u) = <w,P>L2+<ua,Pa>L2, (20)

where P, P;, P, € L?(Q) are external loads in the directions a3, a; and a, respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) = F(u)

Define now J3 : U — R by
J3(u) = J(u) + Js(w).

where
Kbw —K(b w—1/100)

(
a a
Js(w) = 10 /Q (o) g7z 4+ 10 /Q RO o

In such a case fora = 2.71, K = 185,b = P/|P| in Q and

U={uecl : ||w|es<00land Pw > 0a.e. in O},

doi:10.20944/preprints202302.0051.v5
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we get
z(u) 3](”)+3]5(”)
ow  odw ow
. 9J(u)
~ S 1 0(+3.0), @1)
and
?Ju) ?J(u) + 0%J5(u)
ow?  ouw? ow?
%] (u)
=3 + O(850). 22)

This new functional [3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

2
Indeed, we have obtained a gain in positiveness for the second variation aa]ug‘ ), which has
increased of order O (700 — 1000).
Moreover the difference between the approximate and exact equation

9J (u)

Jw =0

is of order O(+£3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N /m?, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

6. An approximate convex variational formulation for another related model

In this section, we obtain an approximate convex variational formulation for a related model,
more specifically, for a Ginzburg-Landau type equation.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by Q).

Consider a functional | : V — R where

J(u) = %/QVqudx—i—%/Q(uz—ﬁ)zdx
—(u, 2 (23)
where ¥ > 0,4 >0, >0,V = Wy*(Q) and f € L*(Q).

We define
AT ={uecV :uf>0 ae inQ},

Vo={ueV: ||luo<1},

and
Vi=Wwn AT,

At this point we define v = 1/10 so that
J(u) = ho)
_10%y ® 5
- T/()Vz;-dex+§/()((10z;) ) dx
—(100, f) 2. (24)

doi:10.20944/preprints202302.0051.v5
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Moreover we define
1
() = *h(v)
10’7 2
- / Vo Vodx+ o [ ((100% — p) ax
—< v, )iz (25)
and J3 : U3 — R where
J3(v) = J2(v) + J5(v)
where
3 (5bw) K3 (5 b w—0.5)
J5(v) = Kq /071n( Tk x+/ @ K dx | .
Here K3 =1/360,a =271, K=2,b= f/|f| in Q and
Uy={veV: fov>0, ae inQ},
Uy={v eV : |v]o<1/10},
and
Uz = Uy N Uy.
Thus, with such numerical values, we may obtain
Is(v) _ 9f(v) 8]5( )
0v v 0v
~ ah( ) +O(£0.3), (26)
and
9*J3(v) _ 9*J2(v) n 9*J5(v)
00?2 00?2 00?2
9*J2(v)
S +0(70). 27)

Remark 6.1. This new functional [; has a relevant improvement in the convexity conditions concerning the

previous functional J.

9*J(v)

Indeed, we have obtained a gain in positiveness for the second variation =325,

order O(5 — 14).
Moreover the difference between the approximate and exact equation

9)2(v)
v

which has increased of

=0

is of order O(=£0.3) which for appropriate parameters v > 0, « > 0 and B > 0, corresponds to a small
perturbation in the original equation. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

Finally, for this last example, we highlight it is relatively easy to improve even more both such an
approximation quality and the convexity conditions concerning the original variational model.

With such statements and results in mind, we may prove the following theorem.
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Theorem 6.2. Suppose v > 0, &« > 0 and B > 0 are such that

&J3(v)
3 0,
in U3
Assume also, vy € Us is such that
6J3(vo) = 0.

Under such hypotheses, |3 is convex on Us so that

J3(vo) = ZI]TGHLE J3(v).

Moreover,
3] (ug) =0+ O(£ 0.3),

where ug = 10vy € V1
Proof. From the hypotheses
9*J3(v)
90?2

in U3, so that [3 is convex on the convex set Us.

>0

Consequently, since 6]3(vg) = 0, we obtain

J3(vp) = min J3(0).

vels

Finally, from the approximation indicated in the last remark and uy € V; we get
0] (up) = 0+ O(£0.3).

The proof is complete.
O
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