
Article

Not peer-reviewed version

Duality Principles and Numerical

Procedures for a Large Class of

Non-convex Models in the

Calculus of Variations

Fabio Botelho 

*

Posted Date: 15 February 2023

doi: 10.20944/preprints202302.0051.v3

Keywords: Duality theory; non-convex analysis; numerical method for a non-smooth model

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2321302


Article

Duality Principles and Numerical Procedures for a
Large Class of Non-Convex Models in the Calculus of
Variations

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, Florianópolis - SC, Brazil;

fabio.botelho@ufsc.br

Abstract: This article develops duality principles and numerical results for a large class of non-convex

variational models. The main results are based on fundamental tools of convex analysis, duality theory

and calculus of variations. More specifically the approach is established for a class of non-convex

functionals similar as those found in some models in phase transition. Finally, in the last section we

present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex

optimization.

The main duality principle is applied to double well models similar as those found in the phase

transition theory.

Such results are based on the works of J.J. Telega and W.R. Bielski [2,3,14,15] and on a D.C.

optimization approach developed in Toland [16].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results

on convex analysis and duality theory are addressed in [5–7,9,13].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,

unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological

space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be

represented by another Banach space U∗, through a bilinear form 〈·, ·〉U : U × U∗ → R (here we are referring

to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U → R linear and

continuous, we assume the existence of a unique u∗ ∈ U∗ such that

f (u) = 〈u, u∗〉U , ∀u ∈ U. (1)

The norm of f , denoted by ‖ f ‖U∗ , is defined as

‖ f ‖U∗ = sup
u∈U

{|〈u, u∗〉U | : ‖u‖U ≤ 1} ≡ ‖u∗‖U∗ . (2)

At this point we start to describe the primal and dual variational formulations.may be added if

there are patents resulting from the work reported in this manuscript.

2. A General Duality Principle Non-Convex Optimization

In this section we present a duality principle applicable to a model in phase transition.
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This case corresponds to the vectorial one in the calculus of variations.

Let Ω ⊂ R
n be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

Consider a functional J : V → R where

J(u) = F(∇u1, · · · ,∇uN) + G(u1, · · · , uN)− 〈ui, fi〉L2 ,

and where

V = {u = (u1, · · · , uN) ∈ W1,p(Ω;RN) : u = u0 on ∂Ω},

f ∈ L2(Ω;RN), and 1 < p < +∞.

We assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global

optimum point may not be attained for J so that the problem of finding a global minimum for J may

not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting V0 = W
1,p
0 (Ω;RN), Y1 = Y∗

1 = L2(Ω;RN×n), Y2 = Y∗
2 = L2(Ω;RN×n), Y3 = Y∗

3 =

L2(Ω;RN), at this point we define, F1 : V × V0 → R, G1 : V → R, G2 : V → R, G3 : V0 → R and

G4 : V → R, by

F1(∇u,∇φ) = F(∇u1 +∇φ1, · · · ,∇uN +∇φN) +
K

2

∫

Ω

∇uj · ∇uj dx

+
K2

2

∫

Ω

∇φj · ∇φj dx (3)

and

G1(u1, · · · , un) = G(u1, · · · , uN) +
K1

2

∫

Ω

uj uj dx − 〈ui, fi〉L2 ,

G2(∇u1, · · · ,∇uN) =
K1

2

∫

Ω

∇uj · ∇uj dx,

G3(∇φ1, · · · ,∇φN) =
K2

2

∫

Ω

∇φj · ∇φj dx,

and

G4(u1, · · · , uN) =
K1

2

∫

Ω

uj uj dx.

Define now J1 : V × V0 → R,

J1(u, φ) = F(∇u +∇φ) + G(u)− 〈ui, fi〉L2 .
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Observe that

J1(u, φ) = F1(∇u,∇φ) + G1(u)− G2(∇u)− G3(∇φ)− G4(u)

≤ F1(∇u,∇φ) + G1(u)− 〈∇u, z∗1〉L2 − 〈∇φ, z∗2〉L2 − 〈u, z∗3〉L2

+ sup
v1∈Y1

{〈v1, z∗1〉L2 − G2(v1)}

+ sup
v2∈Y2

{〈v2, z∗2〉L2 − G3(v2)}

+ sup
u∈V

{〈u, z∗3〉L2 − G4(u)}

= F1(∇u,∇φ) + G1(u)− 〈∇u, z∗1〉L2 − 〈∇φ, z∗2〉L2 − 〈u, z∗3〉L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)

= J∗1 (u, φ, z∗), (4)

∀u ∈ V, φ ∈ V0, z∗ = (z∗1 , z∗2 , z∗3) ∈ Y∗ = Y∗
1 × Y∗

2 × Y∗
3 .

Here we assume K, K1, K2 are large enough so that F1 and G1 are convex.

Hence, from the general results in [16], we may infer that

inf
(u,φ)∈V×V0

J(u, φ) = inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗). (5)

On the other hand

inf
u∈V

J(u) ≥ inf
(u,φ)∈V×V0

J1(u, φ) ≥ inf
u∈V

QJ(u) = inf
u∈V

J(u),

where QJ(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf
u∈V

J(u) = inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗).

Moreover, from standards results on convex analysis, we may have

inf
u∈V

J∗1 (u, φ, z∗) = inf
u∈V

{F1(∇u,∇φ) + G1(u)

−〈∇u, z∗1〉L2 − 〈∇φ, z∗2〉L2 − 〈u, z∗3〉L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}

= sup
(v∗1 ,v∗2)∈C∗

{−F∗
1 (v

∗
1 + z∗1 ,∇φ)− G∗

1 (v
∗
2 + z∗3)− 〈∇φ, z∗2〉L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}, (6)

where

C∗ = {v∗ = (v∗1 , v∗2) ∈ Y∗
1 × Y∗

3 : − div(v∗1)i + (v∗2)i = 0, ∀i ∈ {1, · · · , N}},

F∗
1 (v

∗
1 + z∗1 ,∇φ) = sup

v1∈Y1

{〈v1, z∗1 + v∗1〉L2 − F1(v1,∇φ)},

and

G∗
1 (v

∗
2 + z∗2) = sup

u∈V

{〈u, v∗2 + z∗2〉L2 − G1(u)}.

Thus, defining

J∗2 (φ, z∗, v∗) = F∗
1 (v

∗
1 + z∗1 ,∇φ)− G∗

1 (v
∗
2 + z∗3)− 〈∇φ, z∗2〉L2 + G∗

2 (z
∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3),
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we have got

inf
u∈V

J(u) = inf
(u,φ)∈V×V0

J1(u, φ)

= inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗)

= inf
z∗∈Y∗

{

inf
φ∈V0

{

sup
v∗∈C∗

J∗2 (φ, z∗, v∗)

}}

. (7)

Finally, observe that

inf
u∈V

J(u)

= inf
z∗∈Y∗

{

inf
φ∈V0

{

sup
v∗∈C∗

J∗2 (φ, z∗, v∗)

}}

≥ sup
v∗∈C∗

{

inf
(z∗ ,φ)∈Y∗×V0

J∗2 (φ, z∗, v∗)

}

. (8)

This last variational formulation corresponds to a concave relaxed formulation in v∗ concerning

the original primal formulation.

3. Another Duality Principle for a Simpler Related Model in Phase Transition with a Respective
Numerical Example

In this section we present another duality principle for a related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω

((u′)2 − 1)2 dx +
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 ,

and where

V = {u ∈ W1,4(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting V0 = W1,4
0 (Ω), at this point we define, F : V → R and F1 : V × V0 → R by

F(u) =
1

2

∫

Ω

((u′)2 − 1)2 dx,

and

F1(u, φ) =
1

2

∫

Ω

((u′ + φ′)2 − 1)2 dx.

Observe

F(u) ≥ inf
φ∈V0

F1(u, φ) ≥ QF(u), ∀u ∈ V,

where QF(u) refers to a quasi-convex regularization of F.

We define also

F2 : V × V0 → R,

F3 : V × V0 → R
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and

G : V × V0 → R

by

F2(u, φ) =
1

2

∫

Ω

((u′ + φ′)2 − 1)2 dx +
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 ,

F3(u, φ) = F2(u, φ) +
K

2

∫

Ω

(u′)2 dx

+
K1

2

∫

Ω

(φ′)2 dx (9)

and

G(u, φ) =
K

2

∫

Ω

(u′)2 dx

+
K1

2

∫

Ω

(φ′)2 dx (10)

Observe that if K > 0, K1 > 0 is large enough, both F3 and G are convex.

Denoting Y = Y∗ = L2(Ω) we also define the polar functional G∗ : Y∗ × Y∗ → R by

G∗(v∗, v∗0) = sup
(u,φ)∈V×V0

{〈u, v∗〉L2 + 〈φ, v∗0〉L2 − G(u, φ)}.

Observe that

inf
u∈U

J(u) ≥ inf
((u,φ),(v∗ ,v∗0))∈V×V0×[Y∗ ]2

{G∗(v∗, v∗0)− 〈u, v∗〉L2 − 〈φ, v∗0〉L2 + F3(u, φ)}.

With such results in mind, we define a relaxed primal dual variational formulation for the primal

problem, represented by J∗1 : V × V0 × [Y∗]2 → R, where

J∗1 (u, φ, v∗, v∗0) = G∗(v∗, v∗0)− 〈u, v∗〉L2 − 〈φ, v∗0〉L2 + F3(u, φ).

Having defined such a functional, we may obtain numerical results by solving a sequence of

convex auxiliary sub-problems, through the following algorithm.

1. Set K ≈ 150 and K1 = K/20 and 0 < ε ≪ 1.
2. Choose (u1, φ1) ∈ V × V0, such that ‖u1‖1,∞ ≪ K/4 and ‖φ1‖1,∞ ≪ K/4.
3. Set n = 1.
4. Calculate (v∗n, (v∗0)n) solution of the system of equations:

∂J∗1 (un, φn, v∗n, (v∗0)n)

∂v∗
= 0

and
∂J∗1 (un, φn, v∗n, (v∗0)n)

∂v∗0
= 0,

that is
∂G∗(v∗n, (v∗0)n)

∂v∗
− un = 0

and
∂G∗(v∗n, (v∗0)n)

∂v∗0
− φn = 0
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so that

v∗n =
∂G(un, φn)

∂u

and

(v∗0)
∗
n =

∂G(un, φn)

∂φ

5. Calculate (un+1, φn+1) by solving the system of equations:

∂J∗1 (un+1, φn+1, v∗n, (v∗0)n)

∂u
= 0

and
∂J∗1 (un+1, φn+1, v∗n, (v∗0)n)

∂φ
= 0

that is

−v∗n +
∂F3(un+1, φn+1)

∂u
= 0

and

−(v∗0)n +
∂F3(un+1, φn+1)

∂φ
= 0

6. If max{‖un − un+1‖∞, ‖φn+1 − φn‖∞} ≤ ε, then stop, else set n := n + 1 and go to Item 4.

For the case in which f (x) = 0, we have obtained numerical results for K = 1500 and K1 = K/20.

For such a concerning solution u0 obtained, please see Figure 1. For the case in which f (x) = sin(πx)/2,

we have obtained numerical results for K = 100 and K1 = K/20. For such a concerning solution u0

obtained, please see Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1. Solution u0(x) for the case f (x) = 0.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2. Solution u0(x) for the case f (x) = sin(πx)/2.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical

sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average

behavior of weak cluster points for concerning minimizing sequences.

4. A Convex Dual Variational Formulation for a Third Similar Model

In this section we present another duality principle for a third related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx +
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 ,

and where

V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate

sense to be specified.

At this point we define, F : V → R and G : V → R by

F(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx

=
1

2

∫

Ω

(u′)2 dx −
∫

Ω

|u′| dx + 1/2

≡ F1(u
′), (11)

and

G(u) =
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 .

Denoting Y = Y∗ = L2(Ω) we also define the polar functional F∗
1 : Y∗ → R and G∗ : Y∗ → R by
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F∗
1 (v

∗) = sup
v∈Y

{〈v, v∗〉L2 − F1(v)}

=
1

2

∫

Ω

(v∗)2 dx +
∫

Ω

|v∗| dx, (12)

and

G∗((v∗)′) = sup
u∈V

{−〈u′, v∗〉L2 − G(u)}

=
1

2

∫

Ω

((v∗)′ + f )2 dx −
1

2
v∗(1). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on

convex analysis, we have

inf
u∈V

J(u) = max
v∗∈Y∗

{−F∗
1 (v

∗)− G∗(−(v∗)′)}.

Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation

is attained at some v̂∗ ∈ Y∗.

Moreover, the corresponding solution u0 ∈ V is obtained from the equation

u0 =
∂G((v̂∗)′)

∂(v∗)′
= (v̂∗)′ + f .

Finally, the Euler-Lagrange equations for the dual problem stands for

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2,
(14)

where sign(v∗(x)) = 1 if v∗(x) > 0, sign(v∗(x)) = −1, if v∗(x) < 0 and

−1 ≤ sign(v∗(x)) ≤ 1,

if v∗(x) = 0.

We have computed the solutions v∗ and corresponding solutions u0 ∈ V for the cases in which

f (x) = 0 and f (x) = sin(πx)/2.

For the solution u0(x) for the case in which f (x) = 0, please see Figure 3.

For the solution u0(x) for the case in which f (x) = sin(πx)/2, please see Figure 4.
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Figure 3. solution u0(x) for the case f (x) = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4. solution u0(x) for the case f (x) = sin(πx)/2.

Remark 4.1. Observe that such solutions u0 obtained are not the global solutions for the related primal

optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning

minimizing sequences.

4.1. The Algorithm Through Which We Have Obtained the Numerical Results

In this subsection we present the software in MATLAB through which we have obtained the last

numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that

is, for solving the equation

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2.
(15)
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Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

|v∗| ≈
√

(v∗)2 + e1,

where a small value for e1 is specified in the next lines.

*************************************

1. clear all
2. m8 = 800; (number of nodes)
3. d = 1/m8;
4. e1 = 0.00001;
5. f or i = 1 : m8

yo(i, 1) = 0.01;

y1(i, 1) = sin(π ∗ i/m8)/2;

end;
6. f or i = 1 : m8 − 1

dy1(i, 1) = (y1(i + 1, 1)− y1(i, 1))/d;

end;
7. f or k = 1 : 3000 (we have fixed the number of iterations)

i = 1;

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 1 + d2 ∗ h3 + d2;

m50(i) = 1/m12;

z(i) = m50(i) ∗ (dy1(i, 1) ∗ d2);
8. f or i = 2 : m8 − 1

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 2 + h3 ∗ d2 + d2 − m50(i − 1);

m50(i) = 1/m12;

z(i) = m50(i) ∗ (z(i − 1) + dy1(i, 1) ∗ d2);

end;
9. v(m8, 1) = (d/2 + z(m8 − 1))/(1 − m50(m8 − 1));

10. f or i = 1 : m8 − 1

v(m8 − i, 1) = m50(m8 − i) ∗ v(m8 − i + 1) + z(m8 − i);

end;
11. v(m8/2, 1)
12. vo = v;

end;
13. f or i = 1 : m8 − 1

u(i, 1) = (v(i + 1, 1)− v(i, 1))/d + y1(i, 1);

end;
14. f or i = 1 : m8 − 1

x(i) = i ∗ d;

end;

plot(x, u(:, 1))
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5. A Convex Dual Variational Formulation for a Third Similar Model

In this section we present another duality principle for a third related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx +
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 ,

and where

V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate

sense to be specified.

At this point we define, F : V → R and G : V → R by

F(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx

=
1

2

∫

Ω

(u′)2 dx −
∫

Ω

|u′| dx + 1/2

≡ F1(u
′), (16)

and

G(u) =
1

2

∫

Ω

u2 dx − 〈u, f 〉L2 .

Denoting Y = Y∗ = L2(Ω) we also define the polar functional F∗
1 : Y∗ → R and G∗ : Y∗ → R by

F∗
1 (v

∗) = sup
v∈Y

{〈v, v∗〉L2 − F1(v)}

=
1

2

∫

Ω

(v∗)2 dx +
∫

Ω

|v∗| dx, (17)

and

G∗((v∗)′) = sup
u∈V

{−〈u′, v∗〉L2 − G(u)}

=
1

2

∫

Ω

((v∗)′ + f )2 dx −
1

2
v∗(1). (18)

Observe this is the scalar case of the calculus of variations, so that from the standard results on

convex analysis, we have

inf
u∈V

J(u) = max
v∗∈Y∗

{−F∗
1 (v

∗)− G∗(−(v∗)′)}.

Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation

is attained at some v̂∗ ∈ Y∗.

Moreover, the corresponding solution u0 ∈ V is obtained from the equation

u0 =
∂G((v̂∗)′)

∂(v∗)′
= (v̂∗)′ + f .
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Finally, the Euler-Lagrange equations for the dual problem stands for

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2,
(19)

where sign(v∗(x)) = 1 if v∗(x) > 0, sign(v∗(x)) = −1, if v∗(x) < 0 and

−1 ≤ sign(v∗(x)) ≤ 1,

if v∗(x) = 0.

We have computed the solutions v∗ and corresponding solutions u0 ∈ V for the cases in which

f (x) = 0 and f (x) = sin(πx)/2.

For the solution u0(x) for the case in which f (x) = 0, please see Figure 5.

For the solution u0(x) for the case in which f (x) = sin(πx)/2, please see Figure 6.
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Figure 5. solution u0(x) for the case f (x) = 0.
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Figure 6. solution u0(x) for the case f (x) = sin(πx)/2.
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Remark 5.1. Observe that such solutions u0 obtained are not the global solutions for the related primal

optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning

minimizing sequences.

5.1. The Algorithm Through Which We Have Obtained the Numerical Results

In this subsection we present the software in MATLAB through which we have obtained the last

numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that

is, for solving the equation

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2.
(20)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

|v∗| ≈
√

(v∗)2 + e1,

where a small value for e1 is specified in the next lines.

*************************************

1. clear all
2. m8 = 800; (number of nodes)
3. d = 1/m8;
4. e1 = 0.00001;
5. f or i = 1 : m8

yo(i, 1) = 0.01;

y1(i, 1) = sin(π ∗ i/m8)/2;

end;
6. f or i = 1 : m8 − 1

dy1(i, 1) = (y1(i + 1, 1)− y1(i, 1))/d;

end;
7. f or k = 1 : 3000 (we have fixed the number of iterations)

i = 1;

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 1 + d2 ∗ h3 + d2;

m50(i) = 1/m12;

z(i) = m50(i) ∗ (dy1(i, 1) ∗ d2);
8. f or i = 2 : m8 − 1

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 2 + h3 ∗ d2 + d2 − m50(i − 1);

m50(i) = 1/m12;

z(i) = m50(i) ∗ (z(i − 1) + dy1(i, 1) ∗ d2);

end;
9. v(m8, 1) = (d/2 + z(m8 − 1))/(1 − m50(m8 − 1));

10. f or i = 1 : m8 − 1

v(m8 − i, 1) = m50(m8 − i) ∗ v(m8 − i + 1) + z(m8 − i);

end;
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11. v(m8/2, 1)
12. vo = v;

end;
13. f or i = 1 : m8 − 1

u(i, 1) = (v(i + 1, 1)− v(i, 1))/d + y1(i, 1);

end;
14. f or i = 1 : m8 − 1

x(i) = i ∗ d;

end;

plot(x, u(:, 1))

6. An Improvement of the Convexity Conditions for a Non-Convex Related Model Through an
Approximate Primal Dual Formulation

In this section we develop an approximate primal dual formulation suitable for a large class of

variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet, [10].

At this point we start to describe the primal variational formulation.

Let Ω ⊂ R
2 be an open, bounded, connected set which represents the middle surface of a plate

of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian), is denoted by ∂Ω.

The vectorial basis related to the cartesian system {x1, x2, x3} is denoted by (aα, a3), where α = 1, 2 (in

general Greek indices stand for 1 or 2), and where a3 is the vector normal to Ω, whereas a1 and a2 are

orthogonal vectors parallel to Ω. Also, n is the outward normal to the plate surface.

The displacements will be denoted by

û = {ûα, û3} = ûαaα + û3a3.

The Kirchhoff-Love relations are

ûα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α

and û3(x1, x2, x3) = w(x1, x2). (21)

Here −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =
{

u = (uα, w) ∈ W1,2(Ω;R2)× W2,2(Ω),

uα = w =
∂w

∂n
= 0 on ∂Ω}

= W1,2
0 (Ω;R2)× W2,2

0 (Ω).

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We also define

Ũ = {u ∈ U : ‖u‖∞ < K5/2},

for a real constant K5 > 0 to be specified in the next lines, and the operator Λ : U → Y × Y, where

Y = Y∗ = L2(Ω;R2×2), by

Λ(u) = {γ(u), κ(u)},

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ.
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The constitutive relations are given by

Nαβ(u) = Hαβλµγλµ(u), (22)

Mαβ(u) = hαβλµκλµ(u), (23)

where: {Hαβλµ} and
{

hαβλµ = h2

12 Hαβλµ

}

, are symmetric positive definite fourth order tensors. From

now on, we denote {Hαβλµ} = {Hαβλµ}
−1 and {hαβλµ} = {hαβλµ}

−1.

Furthermore {Nαβ} denote the membrane force tensor and {Mαβ} the moment one. The plate

stored energy, represented by (G ◦ Λ) : U → R is expressed by

(G ◦ Λ)(u) =
1

2

∫

Ω

Nαβ(u)γαβ(u) dx +
1

2

∫

Ω

Mαβ(u)καβ(u) dx (24)

and the external work, represented by F : U → R, is given by

F(u) = 〈w, P〉L2 + 〈uα, Pα〉L2 , (25)

where P, P1, P2 ∈ L2(Ω) are external loads in the directions a3, a1 and a2 respectively. The potential

energy, denoted by J : U → R is expressed by:

J(u) = (G ◦ Λ)(u)− F(u)

6.1. The Primal Dual Variational Formulation

In this subsection we establish a concerning approximate primal dual formulation.

For K1 ≫ 1, K5 = 1/50, K3 = 2K1K5/3
5 , define J∗1 : Ũ × Y∗ → R by

J1(u, v∗) = J(u) +
K1

2

∫

Ω

(v∗(K5 + w)− K3)
2 dx +

1

2K2
1

∫

Ω

(v∗)2 dx.

The Euler-Lagrange equations for J∗1 stands for

∂J∗1 (u, v∗)

∂w
=

∂J(u)

∂w
+ K1(v

∗(w + K5)− K3)v
∗ = 0,

and

∂J∗1 (u, v∗)

∂v∗
= K1(v

∗(w + K5)− K3)(w + K5) +
v∗

K2
1

= 0,

The solution v∗ of this last equation is given by

v∗ = (K1K3(K5 + w))/(1/K2
1 + K1(K5 + w)2), (26)

so that, in such a case

K1(v
∗(w + K5)− K3)v

∗ = −((4K6
1K10/3

5 (K5 + w))/(1 + K3
1(K5 + w)2)2)

≈ −(4K1/3
5 )

= O
(

4(50)−1/3
)

. (27)

Hence, at a critical point, we have

∂J(u)

∂w
= 0 +O

(

4(50)−1/3
)

,
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so that the original equation
∂J(u)

∂w
= 0

is approximately satisfied in an appropriate sense.

Finally, defining

J2(u) = inf
v∗∈Y∗

J∗1 (u, v∗),

we obtain
∂2 J2(u)

∂w2
=

∂2 J∗1 (u, v∗)

∂w2
+

∂J∗1 (u, v∗)

∂w∂v∗
∂v∗

∂w
,

so that for v∗ and
∂v∗

∂w

obtained from (26) we have

∂2 J2(u)

∂w2
=

∂2 J(u)

∂w2
+

4K6
1K10/3

5 (−1 + 3K3
1(K5 + w)2)

(1 + K3
1(K5 + w)2)3

≈
∂2 J(u)

∂w2
+ 12K−2/3

5

=
∂2 J(u)

∂w2
+O(12(50)2/3). (28)

Remark 6.1. This new functional J2 has a relevant improvement in the convexity conditions concerning the

previous functional J.

Indeed, we have obtained a gain in positiveness for

∂2 J(u)

∂w2
,

which has increased of order

12(50)2/3

.

Moreover the difference between the approximate and exact equation

∂J(u)

∂w
= 0

is of order 4(50)−1/3 which corresponds to a small perturbation in the original equation for a load of P = 1500 N,

for example. Summarizing, the exact equation may be approximate solved in an appropriate sense. Finally, we

highlight the constants K1, K3, K5 specified are suitable for a large class of materials and loads but obviously

does not comprise all models and possible numerical values. In some other non-standard cases or even other

models may be necessary to redefine such constants.

Remark 6.2. Another simpler way for improving the convexity conditions of J is to define J3 : Ũ → R by

J3(u) = J(u) + 10
∫

Ω

eKw

K3/2
dx.

In such a case for K = 100 and

Ũ = {u ∈ U : ‖w‖∞ ≤ 0.01},

we get
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∂J3(w)

∂w
=

∂J(w)

∂w
+ 10

eKw

K1/2

≈
∂J(w)

∂w
+O(1.5), (29)

and

∂2 J3(w)

∂w2
=

∂2 J(w)

∂w2
+ 10 eKw K1/2

≈
∂2 J(w)

∂w2
+O(50). (30)

This new functional J3 has a relevant improvement in the convexity conditions concerning the previous

functional J.

Indeed, we have obtained a gain in positiveness for the second variation
∂2 J(u)

∂w2 , which has increased of order

O(50).

Moreover the difference between the approximate and exact equation

∂J(u)

∂w
= 0

is of order O(1.5) which corresponds to a small perturbation in the original equation for a load of P =

1500 N/m2, for example. Summarizing, the exact equation may be approximate solved in an appropriate sense.

6.2. A Third Way of Improving the Convexity Conditions Concerning the Original Variational Model

Another third way for improving the convexity conditions of J is to define J3 : Ũ → R by

J3(u) = J(u) +
267

10

∫

Ω

aK7 b w

K8 ln(a)
dx.

where here

a = 1.000000000001

b = P/|P| and K = 115.

Thus, we may obtain

∂J3(u)

∂w
=

∂J(u)

∂w
+ 0.232174 b a266001988046875 b w

≈
∂J(u)

∂w
+O(1), (31)

and

∂2 J3(u)

∂w2
=

∂2 J(u)

∂w2
+ 61.7642 b2 a266001988046875 b w

≈
∂2 J(u)

∂w2
+O(100), (32)

where in this case

Ũ = {u ∈ U : ‖w‖∞ ≤ 0.01 and b w ≥ 0, a.e. in Ω}.

Remark 6.3. This new functional J3 has a relevant improvement in the convexity conditions concerning the

previous functional J.
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Indeed, we have obtained a gain in positiveness for the second variation
∂2 J(u)

∂w2 , which has increased of order

O(100).

Moreover the difference between the approximate and exact equation

∂J(u)

∂w
= 0

is of order O(1) which corresponds to a small perturbation in the original equation for a load of P = 1500 N/m2,

for example. Summarizing, the exact equation may be approximate solved in an appropriate sense.

Finally, for this last example, we highlight it is relatively easy to improve both such an approximation

quality and the convexity conditions concerning the original variational model.
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