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Abstract: This article develops duality principles and numerical results for a large class of non-convex
variational models. The main results are based on fundamental tools of convex analysis, duality theory
and calculus of variations. More specifically the approach is established for a class of non-convex
functionals similar as those found in some models in phase transition. Finally, in the last section we
present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to double well models similar as those found in the phase
transition theory.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,14,15] and on a D.C.
optimization approach developed in Toland [16].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results
on convex analysis and duality theory are addressed in [5-7,9,13].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological
space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be
represented by another Banach space U*, through a bilinear form (-,-)yy : U x U* — R (here we are referring
to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and
continuous, we assume the existence of a unique u* € U* such that

f(u) = <ulu*>U/vu el (1)
The norm of f, denoted by || f ||+, is defined as

I fllus = sup{[{w, u*)ul « fullu <1} = [Ju*[|u-- (2)
uel

At this point we start to describe the primal and dual variational formulations.

2. A general duality principle non-convex optimization

In this section we present a duality principle applicable to a model in phase transition.
This case corresponds to the vectorial one in the calculus of variations.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Let Q) C R" be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.
Consider a functional | : V — R where

I(”) = F(vulr' o /V”N) +G(”1/' o /uN) - <Mj,fj>L2,

and where
V=Au=(uy, - ,un) € WPQRY) : u=uyonaQ},

feL?(RN),and 1 < p < +oo.
We assume there exists « € R such that

=i

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global
optimum point may not be attained for | so that the problem of finding a global minimum for | may
not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting Vy = WP (RN), Y1 = Y; = [2(Q;RN*"), Y, = Y§ = L2(Q;RN*"), Y3 = Y§ =
L2(Q;RN), at this point we define, F; : VxVy - R, G : V - R, G :V - R,G3: Vy — Rand
Gy:V =R, by

K
F(Vu,V9) = F(Vin+ Yy, -, Vuy+Vn) + 5 /Q Vi, - Vi dx

K
+7 /Q V(P]‘ . V47]' dx (3)
and K
Gl(ul/ . ,Mn) — G(ul/ C. /MN) + 71 /Qu]' Uj dx — <ui,fl‘>L2,
_K d
Gz(Vul,- o ,qu) = 7/()Vu] . Vu] X,
K>
Gi(Ver, -, Vy) = Tfﬂwj-wj dx,
and K
1
G4(M1,- . ,MN) = 7 Qu]- Mj dx.

Definenow [ : V x Vj — R,

T, ¢) = F(Vu+ V) + G(u) — (ui, fi) 2.
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Observe that

F(Vu,V¢)+ Gy(u) — Go(Vu) — G3(Vp) — Gy (u)
F(Vu, V) + Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (4, 23) 12

+ sup {(v1,27) 12 — Ga(v1)}
11€Yq

J1(u, ¢)

IN

+ sup {(v2,23)12 — G3(v2)}

€Y,

+ sgg{(u, z3)2 — Ga(u)}

= FR(Vu,V¢)+Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (u,23) 2
+G;(21) + G3(23) + G4 (23)
= Jiwez"), @)
YueV, eV, z8 = (z,25,23) € Y =Y x Y5 x Y5,
Here we assume K, Ky, K, are large enough so that F; and G; are convex.
Hence, from the general results in [16], we may infer that

inf _ nf . -
(”"/’)IQVXVO (u.9) (u,¢,z*)g\1/xvoxy* Ji(u, ¢,27) )

On the other hand

inf > inf ,¢) > inf = inf ,
ARG 2 ing 0 9) 2 Il Q) = fnf J)
where Qj(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf = inf (u, ¢, 2%).
JgV](u) (u,(p,z*)ér‘}'xVoxY* Ji (u 9.2 )

Moreover, from standards results on convex analysis, we may have

inf Jy (u,¢,2") inf {F, (Vi V) + G (u)
—(Vu,21) 2 = (V, 23) 12 — (u,23) 12
+G;(21) + G3(23) + Gi(z3)}

= sup {—F (01 +21, V) = Gi(v3 +23) = (V§,23) 12

(vy,05)eC*
+G;(21) + G3(23) + Gy (z3)}, (6)
where
C'={v" = (v,v3) € Y7 X Y3 : —div(v]);i + (v3); =0,Vi € {1,--- ,N}},
F (01 + 21, V¢) = sup {(o1,2] +v7)12 — Fi(v1, V) },
Z]1€Y1
and
Gi(v3 +23) = sup{(u,v3 +23)12 — G1(u) }.
ueVv
Thus, defining

J2(¢,2%,0%) = F (v1 +21, Vo) = G{ (v2 +23) = (V§,23)12 + G3(21) + G3(22) + Gy (23),
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we have got

inf J(u) = inf  Ji(u,¢)

uev (,$)EV x Vo

- inf S,

(1,,2*) VXV x Y*

= 232&{4}350{;21& J3(¢,2" 0 )}} (7)

Finally, observe that

inf /(1)

ueV

— . f . f * 3 *’ *
o {;QVO {;‘;g hige >}}

> sup { inf  J5(¢,2%, v*)} . (8)
veecr L(Z59)eY* x V),
This last variational formulation corresponds to a concave relaxed formulation in v* concerning
the original primal formulation.

3. Another duality principle for a simpler related model in phase transition with a respective
numerical example

In this section we present another duality principle for a related model in phase transition.
Let ) = [0,1] C R and consider a functional | : V — R where

2/ 2 1)?dx+Z /u dx — (u, f)2,

and where
V={uecW"4Q) : u(0) =0and u(1) = 1/2}

and f € L?(Q).
A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting Vy = Wy*(Q), at this point we define, F: V — Rand F; : V x Vy — Rby

_ %/Q((u’)z—l)z dx,

Filug) =5 [ (0 +¢ 7 =17 dx.

and

Observe
F(u) > inf Fy(u,¢) > Qr(u), Vu eV,
PV

where Qr (1) refers to a quasi-convex regularization of F.
We define also
F:VxVy—R,

F3:VXVO—>R
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and
G:VxVy—=R

E(u,¢) = %/Q((u’—&—cp')z —1)2 dx—l—%/nuz dx — (u, )2,

F(u,¢) = F2(”r¢)+§/0(u/)2dx
Ky N2
+ | (97 dx 9)
and

K /
Glu,¢) = E/Q(u )2 dx
eS| (¢')? dx (10)

2 Ja
Observe that if K > 0, K; > 0 is large enough, both F3 and G are convex.
Denoting Y = Y* = L2(Q)) we also define the polar functional G* : Y* x Y* — R by

G*(v% o) = sup  {(u,0%)p2 + (9, 05)12 = G(u,9)}-

(u,(P)GVXVO
Observe that
. > . * * * _ * _ * .
l}glfl](”) z ((u,q)),(v*,vgglerxVOx[Y*]Z{G (v*,00) = (u,v") 2 = (P, vp) 12 + F3(u, ) }

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J; : V x Vp x [Y*]2 — R, where
Ji(u, ¢, 0%, 05) = G* (0", 05) = (u,0") 12 = (§,05) 12 + F5(u, )-

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm.

1. SetK~150and K; = K/20and 0 < ¢ < 1.
2. Choose (u1,¢1) € V x Vp, such that ||u1 |10 < K/4 and |1 ]|1,00 < K/4.
3. Setn =1
4. Calculate (v}, (v§)n) solution of the system of equations:
a]f(unrcpnr U:[/ (’08>H) — 0
ov*
and
a]ik(unlcpn/ U;fl/ (’08)1’1> — 0
oV ’
that is e
aG (vn, (Uo)n) _ un —_ 0
ov*
and 3G* (o* (o
(Un/ (UO)") — ¢y = 0

*
v}
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so that
« _ 9G(un, pn)
On = ou
and 3G( )
%\ % u 7
(w3); = g

5. Calculate (1,11, ¢,+1) by solving the system of equations:

a]ik (Lln+1/ (Pn—i-l/ U:, (7’3)")

u =0
and N T~
a]l (”n-i-lr Pnt1,0p, (Uo)n) -0
o
that is
—’0:; + W =0
and

N 0F5 (1,11, ¢y
_(Uo)n+—3( g(;¢+1) =0

6.  Ifmax{|tn — upt1llcos |Pn+1 — Pnllo} < € thenstop, else set n := n + 1 and go to item 4.

For the case in which f(x) = 0, we have obtained numerical results for K = 1500 and K; = K/20.
For such a concerning solution 1 obtained, please see Figure 1. For the case in which f(x) = sin(7x)/2,
we have obtained numerical results for K = 100 and K; = K/20. For such a concerning solution u
obtained, please see Figure 2.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical
sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average
behavior of weak cluster points for concerning minimizing sequences.

0.5

04r b

02 ]

Figure 1. Solution u(x) for the case f(x) = 0.
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Figure 2. Solution u((x) for the case f(x) = sin(7x)/2.

4. A convex dual variational formulation for a third similar model

In this section we present another duality principle for a third related model in phase transition.
Let QO = [0,1] C R and consider a functional | : V — R where

) = 5 [min{(u =12 ' + 172} dx 5 [ dx— (u frn,

and where
V={uecW?Q) : u(0)=0and u(1) = 1/2}

and f € L2(Q).

A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate
sense to be specified.

At this point we define, F: V — Rand G : V — R by

F(u) = %/ﬂmin{(u’—l)z,(u’+1)2}dx

— 1 "2 o /
- 2/Q(u) dx /Q|u|dx+1/2
Fi(u')

(11)

and

G(u) = %/Quz dx — (u, f)a.

Denoting Y = Y* = L?(Q)) we also define the polar functional F; : Y* — Rand G* : Y* — Rby

F(0) = ng;{<v'v*>L2_Fl<0)}

_ %/Q(v*y dx+/0 10| dx, (12)
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and
G*((0")) = 51615{—@//0*&2 —G(u)}
_ %/Q((v*)’+f)2 dx—%v*(l). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf J(u) = max{—F/ (v*) — G*(—(v*)")}.
ueVv vreY*
Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some 9" € Y*.
Moreover, the corresponding solution 1y € V is obtained from the equation

Finally, the Euler-Lagrange equations for the dual problem stands for

(0")" + f' = 0" = sign(v") =0, inQ,
{ (v*)/(0) =0, (v*)'(1) =1/2, (14)

where sign(v*(x)) = 1if v*(x) > 0, sign(v*(x)) = —1,if v*(x) < 0 and

—1 < sign(v*(x)) <1,
if v*(x) = 0.
We have computed the solutions v* and corresponding solutions 1y € V for the cases in which
f(x) =0and f(x) = sin(mx)/2.
For the solution u(x) for the case in which f(x) = 0, please see Figure 3.
For the solution u(x) for the case in which f(x) = sin(7tx) /2, please see Figure 4.

Remark 4.1. Observe that such solutions ug obtained are not the global solutions for the related primal
optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequernces.

0.6

05

041

03

0.2

0.1

Figure 3. Solution u((x) for the case f(x) = 0.
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0.6

0.5

04

03r

0.2

0.1

Figure 4. Solution 1y(x) for the case f(x) = sin(7mx)/2.

4.1. The algorithm through which we have obtained the numerical results

In this subsection we present the software in MATLAB through which we have obtained the last
numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation
{ (0*)" + f' —v* — sign(v*) =0, inQ, (15)
(v°)/(0) = 0, (v)'(1) = 1/2

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

0" &/ (v*)* + e,

where a small value for e; is specified in the next lines.
42424 4 6 5 336 3 3 30 3 5 o e 4 6 6 3 e S 3 A A e e AN

clear all

mg = 800; (number of nodes)
d=1/ms;

e1 = 0.00001;

fori=1:mg

yo(i, 1) = 0.01;

y1(i,1) = sin(w*i/mg)/2;

AR

end;
6. fori=1:mg—1

dy1(i,1) = (1 (i +1,1) —y1(i,1))/d;

end;
7. for k =1:3000 (we have fixed the number of iterations)

i=1;

s =1/ /el 1P o

myp =1+ d% «hy +d>?;

mso(i) = 1/ma;

z(i) = mso (i) * (dy1 (i, 1) * d2);
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8 fori=2:mg—1
s = 1/v/o0lL 12 + e
mip =2+ hy xd? +d*> — m50(i — 1);
m50(i) = 1/mqy;
z(i) = mso(i) * (z(i = 1) +dy1 (i, 1) * d*);
end;

9. wo(mg,1)=(d/2+2z(mg—1))/(1—mso(mg—1));
10. fori=1:mg—1

v(mg —1i,1) = mso(mg — i) * v(mg — i + 1) + z(mg — i);

end;
11.  ov(mg/2,1)
12. vo=v;

end;
13.  fori=1:mg—1

u(i,1) = (v(i+1,1) —0(i,1))/d + y1(i,1);

end;

14. fori=1:mg—1
x(i) =ixd;
end;

plot(x,u(:,1))

R R R R R R S R R R S S

5. An improvement of the convexity conditions for a non-convex related model through an
approximate primal formulation

In this section we develop an approximate primal dual formulation suitable for a large class of
variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet, [10].

At this point we start to describe the primal variational formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness h. The boundary of (3, which is assumed to be regular (Lipschitzian), is denoted by 9.
The vectorial basis related to the cartesian system {x1, x, x3} is denoted by (a,, a3), where &« = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to (). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

= {MA,X, ﬁ3} = fiqa, + fizas.
The Kirchhoff-Love relations are

Ao (X1, X2, x3) = g (1, X2) — x3Ww(X1, X2) &

and 43(xq, x2, x3) = w(x1, x2). (16)

Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where

U = {u=(u,w) € WAOR) x W2(Q),
ua:w:g—fzo on 02}

= WA (R?) x W2(Q).

doi:10.20944/preprints202302.0051.v11
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It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator A : U — Y x Y, where Y = Y* = [2(Q; R?*?), by

Au) = {y(u),x(u)},

Uy g+ U, Waw,
’yaﬁ(u) = a/g 2 ’Ba az ’B/

Kap(U) = —W ap.
The constitutive relations are given by
Nug (u) = HopruYau (u), (17)
Ma‘g(u) = h“ﬁ)\ﬂK)\ll(u)’ (18)

where: {H, B /\H} and {h,x pAn = %H,Xﬁ A }, are symmetric positive definite fourth order tensors. From

now on, we denote {Hygru} = {Hapryu} ' and {hapr} = {hapap} ™
Furthermore {N,z} denote the membrane force tensor and { M,z } the moment one. The plate
stored energy, represented by (G o A) : U — R is expressed by

(GoA)(u) =5 / Nog (1) (1) dx + = / Mg (1) g (1) dx (19)
and the external work, represented by F : U — R, is given by
F(u) = <w, P>L2 + (U, Pa>L2/ (20)

where P, P, P, € L2(Q) are external loads in the directions a3, a; and aj respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) — F(u)

Define now J3 : U — R by
Ja(u) = J(u) + J5(w).

where
GKbw a—K(bw=-1/100)

J5(w) _10/1 Nk dx+10/wdx.

In such a case fora = 2.71, K = 185,b = P/|P| in ) and

U={uel : ||w|o<00land Pw > 0ae.in Q},

we get
z(u)  9J(u) +3]5(”)
ow  odw ow
~ a](”) +O(£3.0), (21)
and
Phw) ?(u) + 0%J5(u)
ow?  ouw? ow?
2
ITW) 4 o(8s0). 22)

ow
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This new functional [3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

2
Indeed, we have obtained a gain in positiveness for the second variation aa]ug‘ ), which has
increased of order O (700 — 1000).
Moreover the difference between the approximate and exact equation

9] (u)
Jw

=0

is of order O(+£3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N /m?, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

6. An approximate convex variational formulation for another related model

In this section, we obtain an approximate convex variational formulation for a related model,
more specifically, for a Ginzburg-Landau type equation.

Let Q C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q.

Consider a functional | : V — R where
_ . o 2 o2
J(u) = Z/QVM Vudx—l—z/o(u B)- dx
—(u, f)12, (23)

where y > 0,4 >0, >0,V = Wy*(Q) and f € L(Q).
We define
AT ={uecV :uf>0 ae inQ},

Vo={ueV : ||uo<1},

and
Vi=Wwn AT,

At this point we define v = 1/10 so that
Jw) = Ji(v)
10%y « 9
- T/QVU-Vde—I—E/Q((mv) ) dx
—(100, f) ;2. (24)
Moreover we define
R©) = ()
2(v) = 1071 %
10y % 5
- /Qw Vodx+ 2 [ (100 - p) dx
—(v f)12 (25)
and J3 : U3 — R where

J3(v) = Ja(v) + J5(v)

where
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K (5bw) (5 b w—0. 5)
J5(0) = K4 m+/ dx | .
Here K4 =1/360,a =271, K=2,b :f/\f| in O and
U={veV: fv>0 ae inQ},
Uy={veV : ||v]e<1/10},
and
Uz = U, N Uy.
Thus, with such numerical values, we may obtain
Is(v) _ 9h(v) , Is5(©)
0v Ju v
8]3( ) 4 O(+0.3), (26)
and
Pha(v) _ 0*)a(v) n 9J5(v)
o2 ov? 002
0%)>(v)
32 + O(7.0). (27)

Remark 6.1. This new functional J1 has a relevant improvement in the convexity conditions concerning the
previous functional .

Indeed, we have obtained a gain in positiveness for the second variation 5’28];9’) , which has increased of
order O(5 — 14).

Moreover the difference between the approximate and exact equation

8]2(0)
dv

=0

is of order O(=40.3) which for appropriate parameters v > 0, « > 0 and B > 0, corresponds to a small
perturbation in the original equation. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

Finally, for this last example, we highlight it is relatively easy to improve even more both such an
approximation quality and the convexity conditions concerning the original variational model.

With such statements and results in mind, we may prove the following theorem.

Theorem 6.2. Suppose v > 0, &« > 0 and p > 0 are such that

&J3(v)
3z 0,
in U3
Assume also, vy € Uy is such that
6J3(vo) = 0.

Under such hypotheses, |3 is convex on Us so that

J3(vo) = min J3(0).

vels
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Moreover,
5] (ug) =0+ O(£ 0.3),

where ug = 100y € 1

Proof. From the hypotheses
PJ3(v)
902
in Us, so that [3 is convex on the convex set Us.
Consequently, since 6J3(vg) = 0, we obtain

>0

J3(vo) = min J3(0v).

vels

Finally, from the approximation indicated in the last remark and ug € V; we get
0] (ug) = 04 O(£0.3).
The proof is complete. [

7. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical
point for the corresponding primal one.

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

Consider a functional | : V — R where

J(u) = F(ux,uy) = (u, f)r2,

V =W,?(Q) and f € L2(Q).
Here we denote Y = Y* = L2(Q)) and Y; = Y; = L2(Q) x L2(Q).
Defining
Vi={ueV : ule <K}

for some appropriate K; > 0, suppose also F is twice Fréchet differentiable and

det {BZF(”"’ ty) } £0,

801802

Yu € Vj.
Definenow F; : V = Rand F, : V — Rby

_ € 2 € 2
Fy(uy, uy) = F(ux, uy) + 5 /Q us dx + 5 /Quy dx,

and
5

€
Fz(ux,uy) =5 /Qu,zc dx + 5 /Quﬁ dx,

where here we denote dx = dxjdx;.
Moreover, we define the respective Legendre transform functionals F; and F; as

Ff(v*) = (v1,0]) 12 + (v2,03) 12 — Fi1(v1,02),
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where v1,v, € Y are such that
x aFl(vl,'Uz)
] = ————,
801
 _ aFl(Ul,Uz)
vy = ————=,
avz
and
FZ*(U*) = <01, UT —|—f1>L2 + <Uz, U;>Lz — Fz(vl, 02),
where v1,vy € Y are such that
an (’01,7)2)
* _
Ul +f1 == 78'01 ’
* an(Ul,'UQ)
vy = ———.
8’02
Here f; is any function such that
(fl)x = f, in Q.
Furthermore, we define
J'(0") = —F(@©)+F (@)
1 1
= —F()+5 /Q(sz )R dx+ o /Q(v;)z dx. (28)

Observe that through the target conditions
’U'T + f 1= EUy,

vy = elly,

we may obtain the compatibility condition
(01 + fi)y = (v2)x = 0.
Define now
A" = {v" = (v],v3) € B;(0,0) C Y] : (v] + f1)y — (v3)x =0, inQ},

for some appropriate ¥ > 0 such that J* is convex in B,(0,0).

Consider the problem of minimizing J* subject to v* € A*.

Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the
associated Lagrangian

Ji(@% ) =" (©") + (¢, (01 + fly = (02)x)12,

where ¢ is an appropriate Lagrange multiplier.
Therefore

R = —F )+ o [+ AP dxs o [ (092 dx
e, (07 + )y — (03):)re @)

The optimal point in question will be a solution of the corresponding Euler-Lagrange
equations for J.
From the variation of ] in v] we obtain
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aF* * *
v} € ay
From the variation of J{ in v; we obtain
aF* * *
SO Sl @31)
dv; e o0x
From the variation of J{ in ¢ we have
(01 + f)y — (02)x = 0.
From this last equation, we may obtain u € V such that
vl + f = euy,
and
vy = Elly.
From this and the previous extremal equations indicated we have
aF* *
_ 71 (f ) Uy — aj — 0,
v} ay
and OE: (") 5
_onlw 9% _
303 +uy + Y 0.
so that aF, )
* N ux_q)y/uy“‘q)x
vi+f= 0, ,
and
. O (ux — @y uy + 9x)
Uz - .
802
From this and Equations (30) and (31) we have
(aa*(v*)) (aFf‘(v*)>
—¢ —€
a7 /. vy y
+(01 + fi)x + (03)y
= —elxx — Uy + (07)x + (03)y + f = 0. (32)
Replacing the expressions of v} and v3 into this last equation, we have
oF (uy — @y, uy + OF (uy — @y, uy +
—suxx—suyy+< 1 (;Py L (px)> +( 1t ;Py k (pX)) +f=0
01 x (%] y
so that
(aF(”" “dvly F q”‘)> + (aF(”" “fvly T m) +f=0,inQ. (33)
al)l x 802 y

Observe that if
Vip=0

then there exists #i such that u and ¢ are also such that

ux_(Py:ﬁx
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and
Uy + ¢x = 1y.

The boundary conditions for ¢ must be such that & € WS 2,
From this and Equation (33) we obtain
oJ(i) = 0.

Summarizing, we may obtain a solution & € W&'z of equation 6] (i) = 0 by minimizing J* on A*.
Finally, observe that clearly [* is convex in an appropriate large ball B,(0,0) for some
appropriate r > 0

8. Another primal dual formulation for a related model

Let O C R? be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

_ . 4 2 2
Ju) = Z/QVM Vudx—i—z/n(u B)- dx
—(u, f)12, (34)
«>0,B>0,7>0,V=W>2Q)and f € L2(Q).
Denoting Y = Y* = L?(Q), definenow J; : V x Y* — Rby

Ji(u,v) = —%/QVqu dx — (u?,v3) 2

K

+71 /Q(—'yvzu +20ku — f)? dx + (u, )2
1 *\2 *

+ﬂ/0(vo) dx+/3/nvo dx, (35)

Define also
AT={ueV :uf>0 ae inQ},
Vo={ueV : |ul|lo <Kz},

and
Vi=WnN AT

for some appropriate K3 > 0 to be specified.
Moreover define
B ={vg €Y : [loglle < K}

for some appropriate K > 0 to be specified.
Observe that, denoting
¢ = —yV2u+205u — f

we have 2 ( )
%5 (u, v§ 1 2
AN UL T 4K
8(03)2 " +4Kqiu
2T (u, v,
% = yV? — 20§ + Ky (—yV? + 205)?
and 2

230, = K1 (29 +2(—yV?u 4 20}u)) — 2u
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so that

det{8?]; (u,v})}

2

_ PLiwop) Pi(wog) (9% (wvp)

8(03)2 ou? Judv;
Ky (—7V? +205)? B YV2 + 208 + dau?
« «
—4K39? — 8Ky p(—V? + 204 )u + 8Ky pu
+4Ky (—yV?u + 204 u)u. (36)

Observe now that a critical point ¢ = 0 and (—yV?u + 205u)u = fu > 0in Q.
Therefore, for an appropriate large K; > 0, also at a critical point, we have

det{&zﬁ‘ (u,v5)}

2 — V2 4 2pF)2
— 4K1f”_MT(u)+K1M>O' (37)

Remark 8.1. From this last equation we may observe that J{ has a large region of convexity about any critical
point (uo,d), that is, there exists a large r > 0 such that ] is convex on B, (ug, 9j)).

With such results in mind, we may easily prove the following theorem.
Theorem 8.2. Assume Ky > max{1, K, K3} and suppose (ug, 03) € Vi x B* is such that
01 (uo,9y) = 0.

Under such hypotheses, there exists r > 0 such that ] is convex in E* = B (uo,9;) N (V4 x B¥),

0] (ug) =0,
and
—J(uo) = J1(uo, 99) = inf Ji(u,v5).
(u,05)€E*

9. A third primal dual formulation for a related model

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider the functional | : V — R where

J(u) = %/()Vu-Vudx+%/Q(u2—,B)2dx
—(u, 2, (38)

€>0,8>0v9>0,V=Wy*Q)and f € L*(Q).

doi:10.20944/preprints202302.0051.v11
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Denoting Y = Y* = L?(Q), definenow J; : V x Y* x Y* — Rby
Ji(u,071,05) = 1/ Vu-Vudx—l—}/ K u? dx
1\%, 01,7 2 Ja 2 Jo
N (07)”
_<M,01>L2 + E/Q m dx
+& (vf — (—yV?u) — Ku)? dx
2 Jot
1/K u—vif dx + dx+ (u, f)
2J)a? (—20; + K) L
1 *\2 *
~5a /Q(vo) dx ﬁ/ﬂvo dx. (39)
Define also
At={ueV :uf>0ae inQ},
V, = {M eV . ||u||oo < Kg},
and
Vi=V,NA"
for some appropriate K3 > 0 to be specified.
Moreover define
B = {0 € Y : [[oglle < Ki}
and
D* ={o; €Y" : |o1]| < Ks},
for some appropriate real constants K4, K5 > 0 to be specified.
Observe that we may obtain
82 * M,U*,U* 1 K
Ji( o 0):K1+ ! i o
9(v7) —205+K = (=205 +K)
82 * u,v*,v*
i (au21 0) _ —YV2 + K+ K (—yV? +K)? + Ky
and 25 )
7] (u,vy,v5) 5 K>
TR A e ey
so that
det {aZH(u, v, 2f) }
0udv;
2
_ 0%J; (u, v}, v5) 9% (u,v3, v}) B 9%J; (u, v}, v§)
9(v])? ou? oudv]
6K (= V) (= V2 4 205)? + (—y V2 + 208) (—y VA (—205) Ky — vy — 4yV?)
B 2(—yV2 +v§)?
= H(vp). (40)

With such results in mind, we may easily prove the following theorem.
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Theorem 9.1. Assume K = 29V?, K = 10(—yV?) and K; > max{1, |K|, Ky, K3, Ky, K5} and suppose
(ug,07,05) € Vi x D* x B* is such that

and

Assume also 5 .
971 (uo, 93, v5) <0,
9(v5)?
Vo, € B*.
Under such hypotheses, we have that
6] (uo) = 0,

and

~—
—~
=
o
~
I

]ik (MOI ﬁT/ ﬁé)

= inf { sup H‘(u,vi‘,vé)}

(u,vi‘)eleD* UéEB*

sup { inf Ji(u, v{,va)} . (41)

v B (u,0])€Vy xD*

Proof. The proof that
6] (ug) =0
and
J(uo) = Ji (10,91, %)
may be easily made similarly as in the previous sections.
Moreover, from the hypotheses,

* Ak Ak : * kooak
ug, 07,05) = inf u,v3,o
Ji (uo, 97, 95) (u,v{)eleD*]l( ,01,0p)

and

J1 (uo,01,95) = sup Ji(uo, 01,p)-
vy€B*

From this, a standard saddle point theorem and the remaining hypotheses, we may infer that
J(uo) = Ji(uo,7,9)

— inf { sup Ji(u, v{,vé)}

(u,0])€V xD* v €B*

= sup { inf  Ji(u, UT,US)}. (42)
(u,03

v €B* )EVy X D*

The proof is complete. [
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10. A fourth primal dual formulation for a related model

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider the functional | : V — R where

J(u) = %/QVu~Vudx+%/Q(u2—,B)2dx
—(u, f) 12, (43)

€>0,8>0v>0,V=W*Q)and f € L*(Q).
Denoting Y = Y* = L2(Q)), definenow J; : V x Y* x Y* — Rby

IT(M,US,UT) = 1/ VuVudx—i—l/ Ku2dx
)2
<u vl L2+2/ mdx
1
ot ey Jol0h = e =) e e
2]. (UO dX—ﬁ/ ZJO dx (44)

where ¢ > 0 is a small real constant.
Define also
At={ueV :uf>0 ae inQ},

Vo={ueV : |ul|o <Kz},
and
Vi = VzﬂA_'_

for some appropriate K3 > 0 to be specified.
Moreover define
B = {o§ € Y" : |[oflle < Ku}
and
D= {oj € Y" : |lojl| < K},

for some appropriate real constants K4, K5 > 0 to be specified.
Observe that, defining
9= 05— ali®— p)

we may obtain

*J; (u,v5,v7) _ 2
ou? VIRt a+e v (PoH—s
0%J5 (u, v, v) B 1
9(v;)2 25 +K
and
azfi‘(u,vg,vi‘)

oudvj =1
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so that

det { 3T (u, 05, 07) }

0udv;

2
B 82]1‘(14, vy, 05) azji‘(u,v’l‘,vg) azfi‘(u, vy, 05)
B d(v})? ou? 0udv;
V24205 + 422 2.0
—2v5+K
= H(u,vp). (45)

However, at a critical point, we have ¢ = 0 so that, we define
C;ja:{uEV : ¢ <0}
From such results, assuming K > max{K3, K4, K5}, define now
Eyy ={u €V : H(uvp) > 0}.
With such results in mind, we may easily prove the following theorem.
Theorem 10.1. Suppose (1o, 93,05) € E* = (V1 N Cys N Egs ) x D* x B* is such that
617 (0, 55, 7) = 0.
Under such hypotheses, we have that

0] (ug) =0

and

I(M(]) = inf ](u)

uevy
= Ji(uo, 91, %)

= inf { sup Ji(u, vf,vé)}

(u,v7)€VI xD* 04 €B*

- sup{ int ff(u,vf,v@}. (46)
(u,03

v E€B* )eVy xD*

Proof. The proof that
6] (up) =0
and
J (uo) = Ji (uo, 07, p)
may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

* Ak AR . * * A%
Ji (o, 07, 0p) = (u,v{)lg‘ixD* Ji (u, 01, %p)
and

Ji (0,07, 09) = sup Ji(uo, 07, 0p)-
vy EB*
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From this, from a standard saddle point theorem and the remaining hypotheses, we may infer that

J(uo) = Ji(uo,97,%)
= inf sup Ji(u, 05,0
(u,03)€V; x D* {USEIB)" 1( 7 Y1, O)
= su inf Ji(u,0f,03) ¢ . 47)
vSeg*{(u,v{)eleD* 1( P O)
Moreover, observe that
Ji (uo, 07,%5) = inf  Ji(u,07,9)

(u,05)€Vy xD*

1/Vu-Vudx+5/u2dx
2 Jao 2 Ja

K
+<”2rﬁ6>L2 — 5 /Quz dx

1 A Ak
—ﬂ/ﬂ(vg)zdx—ﬁ/nvo dx
1

BPICE) /0(775 —a(u? ) dx — (u, f) 2

sup {7/ Vu - Vudx + (u?,05)
vpEY* 2 Jo
—i/(v*)z dx — /v* dx
20 Jo 0 P o’
1

ate /Q(vé —a(u? - B))* dx — (u,f)Lz}

- . &® 2 ;2
= Z/QVu Vudx—i—z/ﬂ(u B)- dx
—(u, f)2, Yu € Vq. (48)

IN

IN

Summarizing, we have got
J(uo) = Ji (uo, 01,95) < inf J(u).
uevy
From such results, we may infer that

J(uo)

o 0

- ]ik(MOIZ)l/UO)

= inf { sup Ji(u, v{,vé)}

(u,v{)EleD* USGB*

= sup { inf Ji(u, v{,vé)}. (49)

v;€B* (u,07)€Vy xD*

The proof is complete. [
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11. A fifth primal dual formulation for a related model

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider the functional | : V — R where

J(u) = %/QVu~Vudx+%/Q(u2—,B)2dx
—(u, 12, (50)

€>0,8>0v>0,V=W*Q)and f € L*(Q).
Denoting Y = Y* = L2(Q)), definenow J; : V x Y* — Rby

Ji(u,v5) = %/QVu-Vudx—(uz,zﬁ)Lz
1
FSae) Jo (2 = ) dx— {u )
1
~3 /Q(vf;)z dx—,B/QvS dx, (51)

where ¢ > 0 is a small real constant.
Define also
AT={ueV :uf>0 ae inQ},

Vo={ueV : |ul|lo <Kz},

and
Vi=Wn AT

for some appropriate real constant K3 > 0.
Moreover define
B* = {v5 € Y* : [vglleo < Ka}

for some appropriate real constant K4 > 0.
Observe that, denoting ¢ = v} — a(u> — B), we may obtain

I (u, vp) 2
T = —'yV +ZUO

2

+a—4u2 —ZLa
®+¢€ o+
= H(u,vp), (52)
and 5 ( )
o°J7 (u, v 1 1
o(v5)? __;+DC+€<0

However, at a critical point, we have ¢ = 0 so that, we define

Define also,
Eyy ={u €V : H(uuvp) > 0}.

With such results in mind, we may easily prove the following theorem.
Theorem 11.1. Suppose (o, 05) € E* = (V1 N Cy; N Egz ) x B* is such that

0J7 (ug, 05) = 0.
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Under such hypotheses, we have that
6] (ug) =0

and

J(ug) = inf J(u)

u€V1
= Ji(uo, %)

= inf {sup ]i‘(u,vé)}

uevy USGB*

= sup {inf ]f(u,vg)}. (53)

v4E€B* ueVy

Proof. The proof that
6](ug) =0
and

J(uo) = Ji (uo, 0p)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

Ji (0, 05) = inf J} ()
%

and
Ji (1o, 9) = sup Ji (uo, v5)-
vy EB*
From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J1 (10, 9p)

= inf { sup H(urvg)}

uevy US cB*

J(uo)

= sup {inf ]f(u,vé)}. (54)

v} €B* ueVy
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Moreover, observe that

Ji(uo,0) = inf J(u, ;)

ueVy

IN

1/ Vu-Vudx + (u?,0)) 2

zla/(z??j) dx—ﬁ/ by dx

ey o0 — el =) dr = (s

sup {;/{)Vu-Vu dx + (u?, %)

vpEY*

21a/(v° dx—ﬁ/ vy dx

g Jo# = 0l = B (uf)s |

- 7 : 22— p)?
= Z/QVu Vudx—kz/n(u B)” dx
—(u, f)2, Yu € V1. (55)

IN

Summarizing, we have got
J(uo) = Ji (uo, 9y) < inf J(u).
ueVy
From such results, we may infer that

J(wo) = inf J(u)

u€V1
= Ji(uo, %)

= inf {sup ]f(u,vg)}

uevy US cB*

= sup {mf i (u, vo)} (56)

vy EB* uevy
The proof is complete. [

12. One more primal dual formulation for a related model

Let QO C R® be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVu-Vudx+%/Q(u2—ﬁ)2dx
—(u, )12, (57)

€>0,8>0 v9>0,V=Wy>*Q)and f € L*(Q).


https://doi.org/10.20944/preprints202302.0051.v11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 April 2023 doi:10.20944/preprints202302.0051.v11

27 of 36
Denoting Y = Y* = L?(Q), definenow J; : V x Y* x Y* — Rby
Ji(u,03,05) = I/ Vroudx+5/ u? dx — (u,v%) 2
1 791,90 2 fo) 2 Q 7 Y1/ L
1 (@)
2 Jo Tam TR Sl
* * 2
+I£ atf il dx
2 Jo\-7V2+K —2v{+K
1 *\2 *
~% /Q(ZJO) dx [S/Qvo dax, (58)
Define also
AT={ueV :uf>0 ae inQ},
Vh, = {M ev . Hu||oo < K3},
and
Vi=WnNn AT
specifically for a constant K3 = 4/ ﬁ.
Moreover define
B' = {05 € Y* ¢ [0l < Ku}
and
D* = {vi € Y" : [[of]lw < Ks}
for some appropriate real constants K4 > 0 and K5 > 0.
Observe that 2y )
PJ; (,07, 0% )
A
PJ;(w,05,05) 1 N K?(—=yV? + 205)*
d(v7)? - =205 +K  [(=yV2+K) (=205 + K)]?’
i (n,01,98) _
ou 0} ’
so that
2
e (Pt 0) T of,08) P (wvg,05) (9 (w0, )
ou v} 9(v7)? Ju? ou v}
_ o[ K@=V +205) +2(=7V? +205)%)
(=rV2 +K)(—20v§ + K)?
= H(vp). (59)

With such results in mind, we may easily prove the following theorem.
Theorem 12.1. Assume K > max{K3z, Ky, K5, 1} and suppose (up, 05, 0;) € Vi x D* x B* is such that
0J1 (ug, 07,95) = 0.

Suppose also H(95) > 0.
Under such hypotheses, we have that
6](ug) =0
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and

J(uo) = inf ¢ J(u)+

uev; 2 Ja

2
K2 (—=yV2u + 205u — f) i
—yV2+K

= Ji(uo,91, %)

— inf { sup ]i‘(un?ﬁ/vé)}

(u,v{)eleD* 7]663*

= sup {( inf ]f(u,vf,vg)}. (60)
u, 0}

3B )eVy xD*

Proof. The proof that
8] (ug) = —yV2ug + 2a(u* — )ug — f =0,

9 = a(ug — p)

and

KZ _ vZ 26 o 2
I(uo)ZI(Mo)ﬂLz/()(( i _”70;2?;0 f>> dx = Ji (uo, 01,0p)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

* Ak Ak : * kooak
ug, 07,05) = inf u,v3,o
Ji (o, 97, 95) (u,v;)eleD*]l( ,01,0p)

and

Ji (ug,03,05) = sup Jj (uo,97,70p).
vy €B*

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo) = Ji(uo,97,%;)

inf { sup Ji(u, vf,va)}

(u,v{)eleD* USGB*

= sup {( inf ]f(u,vf,vé)}. (61)
u, vy

vsEB )EVy xD*
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Moreover, observe that

Jiluo 01,06) = inf p Jiwoi05)

< z/ Vu - Vudx 4 (u?,04) 2
/(A* dx—,B/ o dx — (u, f)2
2 _ 2 Ak 2
+£ (—yV*u +205u — f) i
2 —yV2+4+K
<

sup {g/QVu-Vu dx + (u?,vf)

vpEY*
21“/(7’0 dx—,B/vde u, f)

LR ((crPut2su— ) "
2 Ja —yV24+K

_ . & 2 2
= Z/QVu Vuderz/Q(u B)- dx

—(u, )12
2
K? (—yV2u +205u — f)
+7 0 ( _'sz K dx, Yu € V.

From this we have got

* Ak Ak ’)/ a
Ji (ug,97,05) < E/QVu-VuderE/Q(uzfﬂ)zdxf<u,f>Lz

Iﬁ ((—7V2u+2ﬁ8u—f)
9

) —yV24+K

Therefore, from such results we may obtain

- K ((—yV2u+205u— )\
J(uo) = ulg‘gl {]( )"‘7 ( —yV2+K dx

= Ji(uo, 97, %)

= inf { sup HF(MHUT/Z%)}

(ll,’UT)GV]XD* USEB*

= sup{ inf H(u,vizvm}.

v €B* (u,v3)€VixD
The proof is complete. [

13. A convex primal dual formulation for a related model

In this section we present a convex primal dual formulation.

2
) dx, Yu € V.
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(62)

(63)

(64)

Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q).
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Consider the functional | : V — R where
_ . & 2 2
J(u) = 2/0Vu Vudx—i—z/n(u B)- dx
_<u,f>L2, (65)
«>0,B>0,7>0,V=W>2Q)and f € L*(Q).
Denoting Y = Y* = L?(Q), definenow J; : V x Y* x Y* — Rby
Ji(u,031,05) = z/ Vu-VuderE/ u? dx — (u,v%) 2
1 Y190 2 Q 2 aQ 7 Y1/ L
1 (01)
+5 0 —20; +de —(u, f)2
Kl 2 Kl * * 2
+2 (0 + f — (=9 V2 4+ K)u)? dx+8K2 (0] — (—2v5 + K)u)* dx
K
- / (05)2 dx — B / o3 dx. (66)
for appropriate real constants K; > 0, K3 > 0 to be specified.
Define also
AT ={uecV :uf>0 ae inQ},
Va={ueV : |ullo <Ks},
and
Vi=Wwmn AT,
Moreover define
B = {05 € Y* ¢ [0l < Ku}
and
D" = {0 €Y : |[of]le < K5}
for some appropriate real constants Ky > 0 and K5 > 0.
Observe that, denoting
¢ =0 —a(u?—p),
we have
2T (u, v, vt K
]1(7210) (—yV2+K) + K1 (—yV2 + K)? + —5 (=205 + K)?
ou 4K3
—4 Kya?u® + K1 9(2a), (67)
9J; (u,0,03) Ki
= K
3(0])? oot K T
9J; (1,07, 05)

Kl *
= —1—-K(—yV2+K) — 1z (726 K),

ou Jv} z
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so that
2
o (PR PR wo1,00) T w0d,05) (97,5, 25)
ou 9v§ 9(v7)? ou? ou v}
= O(KK?)
> 0,inV; x D* x B". (68)

With such results in mind, we may easily prove the following theorem.

Theorem 13.1. Assume Ky > K > max{K3, Ky, K5, 1} and suppose (ug, 07, 05) € Vi x D* x B* is such
that
01 (up, 07, 95) = 0.

Under such hypotheses, we have that

0J(up) =0
and
o) = inf {1+ 5 [ (19 2050 - P
= (0,8, 3)

= inf { sup ]f(%ﬂﬁﬂ’é)}

(M,’UT)EleD* "USEB*

= sup{ inf H(u,vi‘,vé)}. (69)

vieB* (u,v5)€Vy xD*

Proof. The proof that
8] (uo) = —yV?ug +2a(u® — B)ug — f =0,
05 = a(u3 — )
and

K A% * Ak Ak
J0) = J(uo) + 5 [ (=7VPu0 -+ 285m0 — ) dx = Ji (w0, 07, 55)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses and from the above lines, we have that J; is convex in (u#,v]) and
concave in v on Vi X D* x B*, so that

“(ug, 07,03 = inf “(u,0F, 0
Ji (o, 97, 95) (u,v;)elep*h( ,01,0p)

and
Ji (uo,07,95) = sup Jj (uo,97,7p).
vy EB*
From this, from the standard Min-Max theorem and the remaining hypotheses, we may infer that

J(uo) = Ji(uo,91,0p)

inf { sup Ji(u, UT,US)}

(u,0])€Vy xD* vi€B*

sup { inf  Ji(u, v’{,vé)}- 70)

vieB* (u,0])€Vy xD*
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Moreover, observe that

Flwo 0 0h) = inf G, 0))
U1 1

7 i
S E/()Vu-Vudx+(u2,vo>Lz
1 A\ 2 _ Ak _
_E/O(UO) dx ﬁ/ovo dx — (u, f) 2
K A%
+71 Q(—'yVZu—l—ZvOu—f)Z dx
< sup {7/ Vu - Vudx + (u?,0})
vpEY* 2 Jo
1 *\2 * _
—E/Q(Uo) dx ﬁ/ovo dx — (u, f) 2
K Ak
+71 Q(—7V2u+2270u7f)2 dx}
_ . & 2 2
= 2/0Vu Vudx—kz/n(u B)- dx
—(u, f)2
—l—% Q(—'yVZu +20%u — f)? dx, Yu € V.

From this we have got

* Ak Ak Y &
Ji (1o, 97,05) < E/()Vu-Vudx—kE/Q(uZ—ﬁ)zdx—<u,f)Lz

+% /Q(—'yvzu +205u — f)? dx, Yu € V.
Therefore, from such results we may obtain
J(ug) = inf < J(u)+ &/ (—yV2u +205u — f)? dx
uEVl 2 (@)
= Ji(uo, 97,%)

— lnf { Sup ]{(H,,UT,US)}

(u,07)€Vy xD* v;EB*

= sup { inf ]f(u,v’{,vfj)}.
(w07

v} €B* )eVy xD*
The proof is complete. [

14. Another convex primal dual formulation for a related model

In this section we present another convex primal dual formulation.
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(71)

(72)

(73)

Let O C R? be an open, bounded and connected set with a regular boundary denoted by 9Q).

Consider the functional | : V — R where

J(u) = %/QVu-Vudx—i—%/Q(uz—ﬁ)zdx
—(u, f) 12,

«>0,B>0,7>0,V=W>2Q)and f € L*(Q).

(74)
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Denoting Y = Y* = L?(Q), definenow J; : V x Y* — Rby
* * _ Y 2 %
Ji(u,v5) = E/QVu-Vu dx + (u”,v5) 2
+?/ utdx — (u, )12
1
5 [ @ +ap) 75)
and [5: V xY* = R, by
* * _ Y 2 %
(u,v) = 5 QVu~Vu dx + (u”,v5) 2
—l—% (—yV2u 4 205u — 2(a — e)u® — )% dx
Q
a;e/ utdx — (u, )2
1
5 [ @ +ap) (76)
Define also
AT={ueV :uf>0 ae inQ},
Va={ueV : |ullo <Ks},
and
Vi=Wn AT,
Moreover define
B = {0 € Y ¢ [[o5lleo < Ku}
for some appropriate constants K3 > 0 and Ky > 0.
Observe that, for K; = 1//¢, we have
82 * u’v*
% (—7V? + 205 + 6(a — e)u?) + Ky (=7 V> + 205 + 6(a — e)u?)?
+Ky (—yV2u + 205u 4+ 2(a — e)u® — £)12(a — e)u dx, (77)
82];(1,{,03) — K141/l2 _ 1
9(vg)? €
< 0,VueV, vy B (78)

Define now
Ax(u,v}) = (—yV2u + 20ku +2(a — e)u® — £)12(a — €)u,

C*={(u,v)) € VxB* : ||A2(u,v5)]|e0 < €1
for a small real parameter ¢; > 0.
Finally, define
02As(u,vf)
Eva—{uGVauz>0 .

Observe that
EUS [aR%
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is a convex set, Vo; € B* (for the proof of a similar result please see Theorem 8.7.1 at pages 297, 298
and 299 in [5]).)
With such results in mind, we may easily prove the following theorem.

Theorem 14.1. Assume Ky > 1> €1 and suppose (1o, 9;) € Vi x B* is such that
61;(”0/ ﬁé) =0

and ug € Eqy.
Under such hypotheses, we have that

6] (ug) =0
and
J(ug) = inf {](u) + ﬁ/ (—yV2u +205u +2(a — e)u® — f)? dx}
u€V1 2 O
= J2(uo, %)
= U?;I];)* {uig‘g J5 (u, US)} . (79)

Proof. The proof that
8] (uo) = —yVuo + 2u(u? — B)ug — f =0,

and
K
J(uo) = J(ug) + ?1 /Q(—quo + 205ug + 2(a — e)u% — f)2 dx = J5 (1o, 05)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses and from the above lines, since /5 is concave in vj on Vi x B* and
ug € Eﬁa, we have that
J3 (0, 55) = inf J3 (u,95)
uevy

and
J2 (10, %) = sup J5(uo, vp)-
vy EB*
From this, from the standard Saddle Point Theorem and the remaining hypotheses, we may infer
that

J(uo) = J3(uo,%5)

= inf {sup ]f(U/UTrUS)}

ueVy

vy EB*
= sup {inf ];(u,va)}. (80)
vsEB ueVy
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Moreover, observe that

J3(uo,09) = inf J5(u,9))

ueVy

IN

v . 2 ok a—¢ 4
Z/QVu Vu dx + (u”,05) 2 + > /Qu dx

e L@+ B dx— (u, ).

+% (—yV2u 4 205u +2(a — e)u® — )% dx

sup{ /Vu Vu dx + (u?, 0] L2+ /u dx

N
vpEY*

21.9/ (vh + aB)? dx — (u, )2

2/ (= VU + 205u + 2(a — e)u® — f)? dx}

= J(u)+ % (—yV2u 4 205u +2(x — )u® — f)? dx, Yu € V. (81)

IN

From this we have got

J5 (uo, 05) < J(u) / (—yV2u +205u +2(a — e)u® — f)? dx, Yu € V. (82)

Therefore, from such results we may obtain

J(ug) = inf {](u)+I;1/(2(7V2u+2730u+2(0<e)u3f)2 dx}

ueVy
= J2(uo, %)

= sup {in‘£ I;(M,US)}. (83)

vy €B* uev
The proof is complete. [
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