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Abstract: We investigate a family of nonlinear partial differential equations which are singularly
perturbed in a complex parameter € and singular in a complex time variable t at the origin. These
equations combine differential operators of Fuchsian type in time f and space derivatives on horizontal
strips in the complex plane with a nonlocal operator acting on the parameter € known as the formal
monodromy around 0. Their coefficients and forcing terms comprise polynomial and logarithmic
type functions in time and are bounded holomorphic in space. A set of logarithmic type solutions
are shaped by means of Laplace transforms relatively to ¢ and € and Fourier integrals in space.
Furthermore, a formal logarithmic type solution is modeled which represents the common asymptotic
expansion of Gevrey type of the genuine solutions with respect to € on bounded sectors at the origin.

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; initial value problem;
formal power series; formal monodromy; singular perturbation

MSC: 35C10; 35C20

1. Introduction

In this paper, we examine a family of singularly perturbed nonlinear partial differential equations
modeled as

Q(3;)u(t,z,€) = (et)P(td;)°° Rp (3 )u(t, z,€) + P(t,z,€,td;,3;)u(t, z,€) + f(t,z,€)
+ H(log(et),z,€,{Pj(dz)u(t, z,€) }jcy,, {1Qj(9z)véu(t, z,€) }iep,) (1)

for vanishing initial data #(0,z,e) = 0. The constants dp,ép > 1 are natural numbers and
Q(X),Rp(X),P;(X) forj € J1,Qj(X) for j € J», where ]y, ] are two finite subsets of the positive integers
N*, stand for polynomials with complex coefficients. The linear differential operator P(t,z,€,td;,9;)
depends analytically in a perturbation parameter € on a disc D, with radius g > 0 centered at 0 and
relies polynomially in the complex time ¢ and holomorphically with respect to the space variable z
on a horizontal strip framed as Hg = {z € C/|Im(z)| < B} in C, for some given width 28 > 0. The
forcing term f(t,z, €) is a map of logarithmic type represented as a sum

f(tz€) = filt,z€) + folt,z €) log(et)

were fj(t, z,€),j = 1,2, are polynomials in ¢, with holomorphic coefficients in z on H g and in € on De,.
The map H(vo,z,€,{v}}jcj,, {wj}je,) is a specific polynomial of degree at most 2 in its arguments vy,
{vj}jej, and {w;}cj,, which relies holomorphically in z on Hg and in € on D,. The precise shape of H
is framed in (14).

The nonlinear term H of (1) involves not only powers of Pj(az)u(t, z,€), ] € J1, but also powers
of derivatives of y}u(t,z,€) where v is a nonlocal operator acting on u(t,z,€) which represents
the so-called monodromy operator around 0 relatively to €. In the literature, the concept of formal
monodromy around a point a in C appears in the construction of formal fundamental solutions to
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linear systems of differential equations with so-called irregular singularity at the given point 4, known
as the Levelt-Turrittin theorem, see [1]. It asserts that a differential system of the form

XY (x) = A(x)Y(x) )

for analytic coefficients matrix A(x) € M, (C){x} near 0 with n > 1, for an integer r > 2, with an
irregular singularity at 0, possesses a formal fundamental solution with the shape

A

Y(x) = P(x/)x exp (9(x'))

for some well chosen integer e > 1, where P(y) € GL,(C[[y]][1/y]) is a formal meromorphic
invertible matrix, ¢(x'/¢) is a diagonal matrix whose coefficient are polynomials in x /¢ with complex
coefficients and C € M, (C) is related to the so-called formal monodromy matrix M € GL,(C) by the
formula M = exp(27iC). It is worth remarking that this formal monodromy matrix extends in the
formal settings the so-called monodromy matrix that appear in the representation of fundamental matrix
solutions to systems (2) with reqular singularity of the form

where H is an invertible matrix with meromorphic coefficients near 0, for a matrix E giving rise to the
monodromy matrix N € GL,(C) by means of N = exp(27iE). The matrix N is obtained as analytic
continuation of the fundamental matrix solution Y (x) along a simple loop 7 going counterclockwise
around the origin 0 with base point x by means of the identity

where v*Y denotes the analytic continuation along 7, see [2]. In the same manner as the analytic
continuation operator y* acting on analytic functions, a formal monodromy operator v* acting on
various spaces and rings (such as the so-called Picard-Vessiot rings) through the formulas 7*(z*) =
%™z for complex numbers A € C and 7*(I) = I + 2i7t where I is the symbol for the Log function,
has been introduced and studied from an abstract and algebraic point of view in the textbook [1].

In our context, the action of the formal monodromy v on u(t, z, €) can be reformulated as a shift
mapping on angles 6 — 6§ + 27 in polar coordinates by means of the change of functions

u(t,z,e) =v(t,zr,0)
for e = reV~1?, with radius r > 0 and angle 6 € R, through the formula
Yiu(t,z,e) = o(t,z, 1,0 +2m).

In this way, the main equation (1) can be recast as some nonlinear mixed type partial difference-differential
equation for the map v(t,z,7,0). In the framework of nonlinear difference equations in the complex
domain with the shape

y(z+1) = F(z y(2))

for C"—valued analytic maps F in a neighborhood of (co,1) for some yy € C", we notice that
important results concerning asymptotic features of their solutions have been obtained by several
authors, see [3-5]. In comparison with these results, we do not reach asymptotic expansions as 6 goes
to infinity in the equation fulfilled by v but we rather plan to get exact asymptotics as the real singular
perturbation parameter r > 0 approaches the origin.

We highlight our premise that the main equation (1) counts in powers of the basic differential
operator td; which is labelled of Fuchsian type. We refer to [6] for many sharp results about Fuchsian
ordinary and partial differential equations. However, under the sufficient conditions required on
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(1) listed in Subsection 2.3 it pans out that (1) will be reduced throughout the work to a coupling
of two partial differential equations, stated in (47) and (48), that comprise only powers of the basic
differential operator ull(lﬂaul, for a well chosen integer k1 > 1, of irregular type in a complex variable
u1. The definition of irregular type differential operators is given in the classical textbook [7] in the
ordinary differential equations settings displayed in (2) and in the work [8] in the framework of partial
differential equations.

In the present contribution, we aim to cook up a set of holomorphic solutions to (1) and to describe
their asymptotic expansions as € tends to 0 (stated in Theorem 1 of Subsection 8.2). These solutions are
shaped as logarithmic type maps that involve Fourier/Laplace transforms. Namely, under the list of
requirements which mould (1) and detailed in Subsection 2.3, one can outline

* A set of properly selected bounded open sectors {&p} ey, for some finite set I} C N and 7
centered at 0.

* A family of holomorphic functions u,(t,z,€), p € I, which conform (1) on the domain 7" x Hg x
&p. Bach solution uy, p € I, is expressed as a sum

up(t,z,€) = uyp(t,z,€) +up(t,z,€)log(et)
where each component u i (t,z,€),j =1,2,is represented as a Fourier/Laplace transform

k

= 1 e Tk \/jlzde
ipltn€) = gy [ [ mme)exp (= (e L

where the commonly named Borel/Fourier map w; 4, (t,m, €) stands for a function

- which is analyticnear T =0
- with (at most) of exponential growth of some order k; > 1 on an infinite sector containing

the halfline Ld,, = [O, —i—oo)eﬁdp with respect to T for suitable direction d p € R
- continuous and subjected to exponential decay with respect to m on R
- with analytic dependence in € on the punctured disc D, \ {0}.

Furthermore, owing to their Laplace integral structure, the components {u; , } yc1, own asymptotic
expansions of Gevrey type in the parameter €. Indeed, for given j = 1,2, all the partial functions
€ uj,(t,z,€), p € I}, share a common asymptotic formal power series expansion

Gi(e) = ¥ Gt 2,

n>0
on &y, with bounded holomorphic coefficients G, ; on 7 x Hg. These asymptotic expansions turn out

to be of Gevrey order 1/k; on every sectors £,, meaning that constants K, ;, M, ; > 0 can be singled
out for which the error bounds

A €" N+1 N+1, N1
|1/£]',p(t,Z, 6) — ?;)Gn’j(t,z)ﬁ| < Kp,j(Mp,j) F(l + Tl)|€|

hold for all integers N > 0, all € € &y, uniformly in t € 7 and z € Hp. At last, we verify that the
formal logarithmic type expression

A A

G(e) = Gy(e) + Ga(e) log(et)

itself obeys the main equation (1).

Throughout the proof of our main result, we show that the components u ]-,p(t, z,€),j=1,20f
the built up solutions u,, p € Iy, to (1) turn out to be embedded in a larger family of maps u; ,(t,z,€),
j=1,2, for all integers 0 < p < ¢ — 1 for some integer ¢ > 2. These maps are bounded holomorphic
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on products 7 x Hp x &, where £ = {&) }o<p<—1 stands for a set of bounded sectors, entailing £,
for p € I;, which represents a good covering in C* (see Definition 7). Each map u]-,p(t, z,€),j=1,2,is
modeled as a rescaled version of a bounded holomorphic map (u1,z) + U; 4, (11,2, €) through

wjp(tz,€) = U, (et z,€)

on domains Uj 4, X Hpg for any fixed € € De, \ {0}, where U, 4, are bounded sectors bisected by the
direction d), depicted in Definition 8 of the work. The set of maps {uz,d,, }o<p<c—1 is shown to solve a
specific nonlinear partial differential equation with coefficients that are polynomial in 7, holomorphic
with respect to € on Dg, and relatively to z on Hg displayed in (36). The set of maps {Ul,dp Yo<p<c-1
conforms a particular nonlinear partial differential equation stated in (37) whose coefficients and
forcing term bring in not only polynomials in #; and holomorphic dependence relatively to € on D,
and to z on Hg but also polynomial reliance on the maps {Uz,dp }o<p<c—1 and their derivatives with
respect to 11 and z. In this sense, the maps {uj,dp Yo<p<c—1,7 = 1,2, solve a coupling of nonlinear partial
differential equations. The asymptotic property for the components u; ,(t,z,€),j = 1,2, of u,(t,z,€)
stems from sharp exponential bound estimates for the differences of neighboring maps u; 1 — 1,
reached in Proposition 10, for which a classical statement for the existence of asymptotic expansions of
Gevrey type can be applied, see Subsection 8.1.

In this work, as mentioned above, we restrict ourselves to quadratic nonlinearities. Besides, they
are chosen in a way to respect the natural triangular structure of the systems of partial differential
equations satisfied by the components u j,p(t, z,€),j = 1,2 stated in (193), (194), which stems from the
linear part of (1). It means that its resolution is reduced to the study of a coupling of two equations
which comprise one single equation satisfied by u, ,(t,z,€) and a second equation for uy ,(t,z, €) with
coefficients and forcing term that involve u, ,(t, z, €). The treatement of a more general case with non
triangular structure is postponed to a futur paper.

The approach developped in this work can be extended to the construction of both formal and
genuine holomorphic solutions to comparable problems as (1) with higher order logarithmic terms

u(t,z,e) = i uj(t,z,€)(log(et))
j=0

for n > 2, for suitable nonlinear terms and forcing terms chosen properly in a similar way as the ones
in the present work. We focus on the complete description for the case n = 1 for the sake of simplicity
in order to give the readers a clear idea of the main purpose of the study and avoiding cumbersome
notations and computations.

Logarithmic type solutions have been extensively studied in the framework of nonlinear partial
differential equations with so-called Fuchsian type and described in the Chapter 8 of the textbook by R.
Gérard and H. Tahara [6]. Namely, these authors consider nonlinear partial differential equations with
the shape

(£0)"u(t, x) = F(t,x,{ (3 5u(t, x) } w1, ®)

where I, = {(j,a) € Nx N"/j+ |a] < m,j < m} for some integers m,n > 1, for analytic maps
F(t, x, Z) near the origin in C x C" x C%@d(In) Under conditions of non resonance of the characteristic
exponents at x = 0 combined with some Poincaré condition on the characteristic polynomial associated
to (3), they have described the holomorphic solutions to (3) with at most polynomial growth in f on
bounded sectors centered at 0, for x near the origin in C" as the maps written in the form of a
convergent logarithmic type expression

u(t,x) =ug(t,x)+ ) (l’i,j,k(x)ti+2?:1jlpl(x)(log(t)>k
(ijk)ETm

for J;y = {(i,j,k) € Nx Nt x N/i+2m|j| > k+2m,|j| > 1} where
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— g stands for convergent power series near the origin
—  pi(x),1 <1 < p are the characteristic exponents with positive real parts at x = 0
—  ¢;;x(x) are holomorphic coefficients near x = 0.

In the case of so-called equations of irregular type or non Fuchsian type, in which our present
work falls, less results are known and represents a favourable breeding ground for upcoming research.
Nonetheless, in that trend, we mention the remarkable recent general result [9] obtained by H. Tahara.
This work extends a paper by H. Yamazawa which treats linear partial differential equations, see [10].
Therein, the author examines nonlinear partial differential equations

Pt {(800)3u(t, 1)} ayer,,) = 0 @

with Ly, = {(j,&) € N x NK/j + |a| < m}, for some integers m, K > 1, which possess a formal series
(which is divergent in the generic situation)

a(t,x) = Y un(t,x)

n>1

solution where each term u,, n > 1, is analytic with respect to t on some appropriate bounded sector
S centered at 0 in C and holomorphic near 0 relatively to x on some disc Dy in CK. In general, these
expressions 1, might involve combinations of functions of the form t*(*) for holomorphic maps A,
powers of t and log(f) and analytic functions with respect to x on Dg. The author introduced a
so-called Newton polygon associated to the equation (4) along the formal solution #(t, x). In the case
this Newton polygon possesses p > 1 slopes and under some additional technical requirements, the
author builds up a new formal solution

D(t,x) =Y wu(t,x)

n>1

to (4) which is subjected to the next two features

¢  The formal series @i and @ are asymptotically equivalent in the sense that for any A > 0, there
exists Ny > 1, such that
sup |(t0;)/0%(y — )| < CJt4
xeDpg
forallt € S,j+ |a| < m, some constant C > 0, any N > Ny, where i1y and @y denote the partial

sums of the N first terms of i and .
e  The formal series @ is multisummable on S with respect to ¢, uniformly in x on Dg, in a sense

that enhances the classical multisummability process described in [7] and gives rise to a genuine
holomorphic solution w(t, x) of (4) on S x Dy crafted as iterated analytic acceleration operators
and Laplace integral of some Borel transform of .

Thereupon, it turns out that w(t, x) admits #(t, x) as an asymptotic expansion as ¢ tends to 0 on S
in the sense that for any A > 0, there exists Ny > 1 such that
sup |w(t, x) — dn(t x)| < C|t|4
xeDpg
forallt € S, some constant C > 0, any N > Np.
At last, in the linear setting, some general results reaching beyond the structure of logarithmic
type solutions have been achieved. Namely, for Cauchy problems

a(x, D)u=v, DZOM|XO:0 =0, 0<h<m

involving linear differential operators a(x, D) of order m > 1 with holomorphic coefficients in x =
(x)o<jcn in C"*1, existence and uniqueness results for so-called ramified solutions around certain
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characteristic hypersurfaces K in C"*!, provided that v is ramified around K, have been obtained by
several authors, see [11], [12], [13].

2. Layout of the main equation

2.1. Laplace transforms and Fourier inverse maps

In this brief subsection, we include some preliminary material about Laplace transforms and
Fourier inverse maps that will be used in the ongoing sections.

Let k > 1 be an integer. We remind the reader the definition of the Laplace transform of order k as
stated in [14].

Definition 1. Weset Sy 5 = {1 € C* : |d —arg(7)| < &} as some unbounded sector with bisecting direction
d € R and aperture 25 > 0 and D, as a disc centered at 0 with radius p > 0. A holomorphic function
w: S45U D, — Cis considered that vanishes at 0 and suffers the bounds : there exist C > 0 and K > 0 such
that

w(7)] < Clr| exp(KllF) ©)

forall T € Sy 5. The Laplace transform of w of order k in the direction d is set up as the integral transform

L@)(T) =k [ w(w)exp(~(3)"

du
u

along a half-line L, = [0, +o<>)e\g“y C Sas U {0}, where v hinges on T and is chosen in a way that

cos(k(y —arg(T))) > &y, for some fixed real number 61 > 0. The function L (w)(T) is well defined,
holomorphic and bounded on any sector

Saprik ={T €C*:|T| <RY¥ , |d—arg(T)| < 6/2},

provided that 0 < 6 < 7 +25and 0 < R < é;/K.

From the above very definition the next practical feature is deduced : if w(T) = Y¥,>1 W, T" represents
an entire function w.r.t T € C with the bounds (5), its Laplace transform L (w)(T) does not depend on the
direction d in R and represents a bounded holomorphic function on D g1/« whose Taylor expansion is represented
by the convergent series X(T) = Y_,;»1 wnI'(%)T" on Dyisx, where T'(x) stands for the Gamma function.

The next Banach spaces have been introduced in [15] and used in several works by the author.
Definition 2. Let B,y € R. We set E g, as the vector space of continuous functions h : R — C such that

[R(m) ] g0y = Slé%(l + |m[)! exp(Blm|)[h(m)]

is finite. The space E g, endowed with the norm ||.||(g,) becomes a Banach space.

Finally, we restate the definition of the inverse Fourier transform acting on the latter Banach
spaces and some of its handy formulas relative to derivation and convolution product as detailed
in [14].

Definition 3. Tuke f € Eg ) with p > 0, yu > 1. The inverse Fourier transform of f is shaped as the integral
map
1 +

FUAE = gz [, £om) expl(y/ e

e}


https://doi.org/10.20944/preprints202301.0582.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2023

7 of 60

for all x € R. The function F~1(f) extends to an analytic bounded function on the strips
Hy = {z € C/|Im(z)| < B'}. (6)

for all given 0 < B/ < B.
a) The function m — ¢(m) = v/ —1mf(m) belongs to the space Eg,,_1y and the next identity

:FH(f)2) = FH(9)(2)

occurs on Hﬁ.

b) Let g € Ep,,,) and set
1 Foo

l/’(m):W . i

m —my)g(my)dmy

as the convolution product of f and g. Then,  belongs to E(g ,,) and moreover the product formula

holds for all z € Hg.

2.2. Formal monodromy around the origin

In this subsection, we define the notion of formal monodromy operator around the origin acting
on different classes of objects. Following the description of abstract formal monodromy operator as
stated in Subsection 3.2 of [1], we first provide a definition of formal monodromy acting on logarithmic
type expressions involving formal power series with coefficients in Banach spaces.

Definition 4. Let T be a bounded open sector centered at 0 in C* and let
Hy = {z € C/[Im(z)| < B} 7)

be a strip with width 28’ > 0. We denote Oy (T x Hg:) the Banach space of bounded holomorphic functions on
T x Hg equipped with the sup norm and we set as Oy (T x Hg )[[€]] the vector space of all formal series

a(t,z,e) =) an(t,z)e"

n>0

with coefficients belonging to Oy (T x Hgy). Let l1(t, z,€), 12 (t, z, €) be two elements of Oy (T x Hy)[[€]],
we set the formal logarithmic type expression

i(t,z,e) = 01(t,z,€) + x(t,z,€) log(et) (8)

where log(x) stands for the principal value of the logarithm of a complex number x € C*.
We define the formal monodromy operator around O relatively to €, denoted v} as acting on 1 by means of

Yii(t,z,€) = 1 (t,z,€) + 2/ —1ila(t, z,€) + 12 (t, 2, €) log(et) 9)

The next definition of formal monodromy extends the concept of monodromy operator around 0
acting on analytic functions on a punctured neighborhood of 0 as analytic continuation along a simple
loop aroung the origin as described in [2], Section 16.

doi:10.20944/preprints202301.0582.v1
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Definition 5. Let T, & be bounded open sectors centered at 0 in C and Hg be a strip defined by (7). We set
Op(T x Hg x &) as the Banach space of bounded holomorphic functions on T x Hg x & endowed with the
sup norm. Let u(t,z,€),uz(t,z,€) be two elements of Oy (T x Hg x £). We set

u(t,z,€) = uy(t,z,€) + us(t,z €)log(et) (10)

that represents a holomorphic function for all (t,z,e) € T x Hg x & with et ¢ (—o0,0]. The formal
monodromy operator around 0 relatively to € denoted <y} acts on u through the formula

yeu(t,z,€) = ui(t,z,€) + 2mv/ —1uy(t, z,€) + us(t, z, €) log(et) (11)

Notice that if uy and uy are holomorphic on a full punctured disc centered at 0 relatively to €, the formal
monodromy y¥ given above coincides with the analytic continuation along a simple loop skirting counterclockwise
the origin 0 with base point €.

We observe that each components i1, of (8) (resp. 11,1z of (10)) can be expressed by means of 7
and 21 (resp. u and yZu) through the formulas

sz(t,z,e) = %\/%M (v: —idl)ﬁ(t,z,e) o 12
ni(t,ze) = ilt,ze) =[5 (vé —id)i(t, z,€)] log(et)

and . _
uy(t,z,€) = 5 _m('y;‘ — 1d1)u(t,z,e) | 13)
ui(t,z,e) = u(tze)— [zﬁn (v& —id)u(t, z,€)] log(et)

where id represents the identity operator acting on O (7 x Hg)|[[e]] in (12) and on Oy (T x Hg x &)
in (13).
2.3. Outline of the main problem

The principal problem under study in this work is shaped as follows

Q(0,)u(t,z,€) = (et)0 (t0;)°PRp (9, )u(t, z,€) + Dz_:l e®1ia(z,€)(0;)% Ry (32)u(t, z, €)
1=1

(v& —id)u(t, z,€)] log(et)

2 \Eﬂ(v’é —id)u(t,z,€)] log(et) | + b (z, e)zéﬂ

+CQ1Q2Q1(az)[2\/;DT(7: —id)u(t,z,€)] x QZ(az)[z\/%n(’Yz —id)u(t,z,€)] x log(et)
2\/;171(7: —id)u(t,z,e€)]
T

s (vt~ d)ult 2, )] oget

g, Po02) [5 A (10 — )t 2,€)] % By(@:) [3 A= (0 — (e z,e)] (10

1
2/ —1m

+ f(t,z,€) +c1(z,€) |

(vi—id)u(t,z,e€)

+b1(z,€) [u(t, z,€) — [

+ cp,p, Py (32) [u(t, ze)— | (v —id)u(t,z €)] 1og(et)]

X Pz(az)[

+ cp,p, P3(92) [u(t, z€) - | (v —id)u(t,z €)] 1og(et)}

X P4(E)Z) |:u(t,Z, 6) - [
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for vanishing initial data (0, z, €) = 0. On the way in reaching our main result Theorem 1, we need to
impose a list of constraints on the building blocks of (14). Namely,

¢ Thenumbers D > 2,dp,0p > 1and A;,d;,0; > 1,1 <1 < D — 1 are integers that are subjected to
the next restrictions
1. We assume the existence of an integer k; > 1 with

dp = dpk;. (15)
2. The inequalities
dl > tslkl (16)
hold forall1 <1 <D —1.
3. The bounds
kidp — 1> ki4; (17)
are asked forall1 <1< D —1.
4. The lower estimates
A > 146k (18)

are mandatory foralll </ <D —1.
*  The constants cg,o,, ¢ PP iqs j = 1,3,5 are non vanishing complex numbers that are chosen close

enough to 0 (the precise constraints that these numbers are asked to obey are stated later on in the

work, see Section 5 and Section 6).
e The maps Q(X),R/(X), I = 1,...,D and Qi(X), Q2(X) along with Pj(X), 1 < j < 6 are
polynomials with complex coefficients. We require that

deg(R;) < deg(Rp) (19)
forl1<I<D-1and

deg(Rp) > deg(Q1) , deg(Rp) > deg(Q2) , deg(Rp) > deg(P;) (20)

for 1 < j < 6. Furthermore, we require the existence of an unbounded sectorial annulus

Sorp, =1z € C/rgr, < |zl , larg(z) —dory| < 1oRrp} (21)

with bisecting direction dg r,, € R, aperture 779 g, > 0 and inner radius rg g,, > 0 (prescribed
later in the work), for which the next inclusion

{@/m c R} C SQ,RD (22)

RD(\/ —1111)
occurs.

The forcing term f(t,z, €) is built up in the next manner. It is written as a sum

f(tz€) = filt,z€) + folt,z €) log(et) 23)

where the components f, fo are set up as follows. Let [1,J» C N* be finite subsets of the positive
integers. For | = 1,2 and j; € J;, we denote m — Fj j (m, €) maps that

*  appertain to the Banach space E 4 ,) for some f > 0 and

i>deg(R)+1, p > max(deg(Qr) +1,deg(Qz) + 1),
i > max(deg(P) + 1, deg(P1) +1) (24)
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forall1<I1<D-1,j=1,3,5
e rely analytically on € on some disc D¢, with radius €9 > 0 for which constants F; j ., > 0 exist
such that
sup ||Fy,j,(m, €|l (pu) < Fjeo- (25)

EGDeO

For I = 1,2, let us introduce the polynomials in the variable T with coefficients in E (B1)”

]:l(T/ m,e) = Z ]:l,]'l(mle)TjZ
Ji€l

and set the integral representations

k e T T AT
F(T,z,e) = W/Ld [m }—Z(T,m,e)exp(—(?)kl)eﬁzm7dm
1

where Ly, = [0, +o0)eV 141 is a halfline in direction d; € R that relies on T under the constraint
cos(ky(dy —arg(T))) > 0. According to Definition 1, we observe that F; and F, are polynomials in T
and can be expanded in the form
F(T,z€) = ¥ Fj(ze)T ()T
el l k

for coefficients given by the inverse Fourier integral expressions

1 Foo

7(2@1/2 . .E,jl(m,e)eﬁzmdm

F (z,€) =
that are, according to Definition 3, bounded holomorphic on the product Hg X De, for any given
0 < B’ < B, where Hy is the horizontal strip given by (7), for | = 1,2. Eventually, we set the

components
fi(t,z,€) = Fi(et, z,¢€) (26)

of (23) as a time rescaled version of F, for | = 1,2, that represent bounded holomorphic functions on
C x Hg X De.

The coefficients 4;(z,€),1 <1< D —1, ¢1(z,€) and b; (z,€),j = 1,2 are manufactured as follows.
Letm — Aj(m,e),1<1<D-1,mw Cy(m,e)and m — Bj(m,e),j = 1,2, be maps that

*  belong to the Banach space E(g ), for the real numbers > 0 and p > 1 given above
e that depend analytically in € on D¢, and for which positive constants A; ., 1 <1 < D —1, Cy ¢,
Bje,, j = 1,2 can be singled out with

sup [|A;(m, )|l < Ate, » sup [[Ci(m,€)l(gu) < Ciey

GEDQO GEDGO
sup |[Bj(m, €)ll(pu) < Bje,- (27)
eeDeO
We set
1 +o0 — 1 +oo -
a(z,€) = W/iw Al(m,e)eﬁzmdm , c1(z,€) = Wlm Cl(m,e)eﬁzmdm,
1 +eo Vs
bi(2,€) = iz [, Bilmee)e " am
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forl1 <1 < D-1,j = 1,2. Owing to Definition 3, the maps 4;, 1 <[ < D —1, ¢; and bj,j =1,2
represent bounded holomorphic maps on the product Hg' x De,, for any prescribed 0 < g’ < B.

3. Couplings of related initial value problems
3.1. A coupling of associated partial differential equations
We seek for solutions u(t, z, €) to our main equation (14) in the form
u(t,z,e) = U(et,log(et), z,€) (28)

for some expression U (11, Uy, z, €) in the four independent variables 11, uy, z, €. We furthermore assume
that U is an affine map relatively to 1, meaning that U is polynomial of degree at most one in u5.

We first disclose an equation fulfilled by U (u1, up, z, €) provided that u(t, z, €) solves (14) given by
(33). According to the usual chain rule applied at a formal level at this stage of the work, we first observe
that

toru(t, z,€) = t[9¢(et)] (9u, U) (et, log(et), z, €) + [tor (log(et))] (u, U) (€t, log(et), z, €)
= [(u10y, + 9, ) U] (et,10g(et), z,€). (29)

Besides, owing to the assumption that U is affine in 1y, we can decompose U in the form
U(uy,up,z,€) = Uy (uy,z,€) + Uz (uy,z,€)up (30)
for some expressions Uj(ul,z,e), j =1,2.If one sets
uj(t,z,€) = Uj(et, z, €) (31)
for j = 1,2, through (28), one arrives at the next expansion of u,
u(t,z,€) = ui(t, z,€) + us(t,z,€) log(et). (32)

As a result, in view of the formulas (12), (13) together with the identity (29) and the definitions (26),
(31), we check that u(t, z, €) formally solves the equation (14) if the expression U (u1, uy, z, €) is subjected
to the next equation

Q) U (11, 12,2, €) = P (134, + duy)°P Rp (32)U (1, 112, 2, €)

D-1
+ Z (—:Al*dlutlilal(z, €)(u10u, + auz)élRl(az)U(ul,uz,z,e) + [ (uy,z,€) + Fa(uq,z,€)up
1=1

+c1(z,€)Un(uy, z,€)uy + by (z,€)Uq (u1, z,€) + ba(z,€)Un (141, 2, €)

+c0,0, [Ql (02)Ua(u1, z, 6)] [Qz(az)UZ(ulzz G)]
+ Cp, P, [Pl(az)ul (1/!1,2, €)} [ (az) z(ul,Z 6)]
+Cp3p4 [P3(8Z)U1(u1,z G)} [P4(az) 1(M1 )]

+ cpspy [P5(92) Un (11, 2,€)] x [Pg(02)Un(u1,2,€)]. (33)

In the next step, we derive some coupling of partial differential equations that the components U; and
U, are asked to fulfill and displayed in (36), (37).
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Owing to the fact that the operators 119, and d,,, commute to each other, the binomial formula
helps us to rewrite (33) in the form

op!

Q(9:)U(uy, ug, z,€) = uP [ )3 %(”@ul)plaﬁ;RD(aZ)U(”l’uz’z’ 6)]

pr+pa=op PL'P2

D—-1 d 51!

T e e x [ 8 o R 0,0

=1 pi+pa=6 P1P2:

+ Fi(u1,z,€) + F(u1,2,€)us + c1(z,€)Un (11, z,€)up + by (z,€) Uy (11,2, €) + ba(z,€)Un (11, 2, €)

0010 [Ql(az)UZ(ule' 6)] X [Qz(az)UZ(ul’z'e)

+cpp, [P1(8Z)U1 (uer' 6)} X [P2 (az)uz(ul,z,e)
+ cpyp, [P3(02) Uy (uq,2,€)] X [Py(02)Uq (11,2, €)]

+ cpspy [P5(92) Un(u1,2,€)] X [Pe(0z)Un(u1,2,€)].  (34)

Uz

—

Besides, from the decomposition (30), we observe that
du, U(uq,up,z,€) = Up(uy, z,€) , aﬁél,l(ul,ug,z,e) =0

whenever p, > 2. We reach the next equation

Q(0:) [Uy(ur,z,€) + Un(uy, 2, €)uz] = u‘liD [(ulaul)‘sDRD(az)(Ul(ul,z,e) + Up (11,2, €) 1)

D-1
—|—5D(u18u1)‘SDflRD(aZ)UQ(ul,z,e)} + ) eA’*dluf’al(z,e) [(ulaul)‘S’Rl(az)(Ul(ul,z,e)
=1

+ Uy (1,2, €)uz) + 51(ulaul)‘s’*le(az)Uz(ulrZ,G)} + Fi(u1,2,€) + Fa(uy,z,€)un

+c1(z,€)Un(uq,z,€)uz + bi(z,€)Uy (11, 2,€) + ba(z,€) Uz (uq, 2, €)
+¢0,0, [Q1(92)Ua(u1,2,€)| x [Q2(92)Un (11,2, €) | uz
+cp,p, [P1(02) Uy (u1,2,€)] X [Pa(0z)U(u1,2,€)]
+ cpyp, [P3(02)Un (11, 2,€) | x [Pa(02)Uy (uq, 2, €)]
+ cp,p, [P5(02) Un(uq, 2, €)] X [Pe(0z)Uz(u1,2,€)]. (35)

Finally, by dint of identification of the powers of u, in the above equality, it turns out that this last
equation (35) holds if the expressions U; and U, are asked to satisfy the next coupling of two partial
differential equations

Q@)U (11,2, €) = uP [(ulaul)5DRD(aZ)u2(u1,z,e)}
D-1
+ Z eAl*dlu‘f’al(z,e)(uli)ul)‘SIRI(BZ)Uz(ul,z,e) + Fy(uy,z,€) +c1(z,€)Ua(uy, z, €)
1=1

+¢0,0, [Q1(02)Ua (11,2, €)] x [Q2(92)Ua(u1,2,€)]  (36)

and
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Q(a:)Uy (uy,2,€) = ulP [(ulaul)‘sDRD(Ez)Ul(uLZ’ €)

) D—1
+5D(u13u1)"D*1RD(3z)U2(u1,Z,€)} + ) Nyl (z,€) [(ulaul)5ZRl(az)U1(u1,Z,€)
i=1

+ 5z(u18u1)‘5”1Rz(az)Uz(u1,z,e)} + Fi(u1,z,€) + bi(z,€)Uy (11,2, €) + ba(z,€)Un (11,2, €)

+Cp1p2 [Pl(az)lll(ul,z,e)] X [Pz(az)UZ(ul,Z,é‘)] -|-C133p4 [P3(az)ul(u1,2,€)] X [P4(az)u1(u1,z,e)]
+ cpypy [P5(92)Un(u1,2,€)] X [Ps(0z)Un(u1,2,€)]  (37)

3.2. A coupling of auxiliary convolution equations

We search for solutions to the coupling of partial differential equations (36), (37) in the form of a
Laplace transform of some order k; > 1 and inverse Fourier integral

+o00 d'l'
V=1
Uj 4, (u1,2,€) 271)1/2 /Ld / wj,a, (T,m,€) exp (— (- ) k) v —tzm —dm (38)

for j = 1,2, where Ly, = [0, +oo)eﬁd1 stands for a halfline in suitable directions d; € R which
depend on T in a way that cos(k; (d1 — arg(u7))) remains strictly positive.
Here, we assume that for all e € DEO \ {0}, the so-called Borel-Fourier maps (T, m) — wjq, (T, m,€),

j = 1,2, belong to the Banach space F ¢ for well chosen constants v, p > 0 and for the prescribed

(v Pijikipe
constants 8, # in Subsection 2.3 that is described in the upcoming definition

Definition 6. Let €y, v, B, i, 0 > 0 be positive real numbers and ky > 1 be an integer. Let € € D, \ {0}. We

set as Sy, an unbounded sector centered at 0 with bisecting direction d; € R. We denote F( the vector

v.Buk1p€)
space of all continuous maps (t,m) — h(t,m) on (S4, U D,) x R, holomorphic w.r.t T on Sy, U D,, such that

the norm

1T, m)l]

_ le| T2k Tk
Bikie€) = sup (1+ |m\)yeﬁ|m|m(1 + |g| Dexp (- V|g| ) [h(T,m)|

TESdl UDp,me]R

turns out to be a Banach space.

is finite. The vector space F( 11,k1,0,€)

v :3 Hrklsz )

The main purpose of this subsection is to determine coupling convolution equations for the
Borel-Fourier maps wj 4, outlined in (49) and (50), (51). We depart from some features of the Laplace
transforms under the action of multiplication by a monomial and differential operators that were
already stated and proved in our foregoing work [16], Lemma 2.

Lemma 1. The next identities hold.
1. The action of the differential operator u’{lﬂaul on the integral representations U; 4, is given by

ki+1
u;' " oy, Uja, (u1,z,€)

- k1 Foo ki, .. Tk \/jlzmdl
_7(2@1/2 /Ldl /700 (kT w],dl(’r,m,e)] exp ( (ul) )e Tdm. (39)

2. Let m" > 1 be an integer. The multiplication by u'l”, acting on U; 4, is expressed through

, k1 too gk T m' g ds
u™ U 4, (u1,z,€) = 7/ / {7/ R T w (sVR m e —}
1 ]rdl( 1 ) (27_[)1/2 Ldl o r(%) 0 ( ) ],d1< ) s

x exp (— (u—:)kl)eﬁzmd%dm. (40)
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3. Let m +— A(m) be a map that belongs to E g ). We set

1 Foo V=T
a(z) = i /700 A(m)eY " dm.
The action of multiplication by a(z) on U, 4, is expressed by means of
+c>o —+o00
a(z)u],dl (ul,Z € 271_ 1/2 /Ld / 1/2 / A(Tl’l - ml)wj,dl (Tr my, e)dmli|

x exp (— (ull)kl)emzmd%dm. (41)

4. Let Hi(X) € C[X], k = 1,2, be polynomials. The action of the differential operators Hy.(9-) combined with

the product of the resulting functions Hy(9;)U,; 4, for k = 1,2, j = 1,2 maps U; 4, into a Fourier-Laplace
transform,

[H1(92)Uy g, (u1,2,€)] x [Ha(32)Upg, (11,2, €)]

k +oo 1 +oo T k 1/k
- (27T)1/2/L / {(271:)1/2/ Tl/o Hi(v/=10m = m) g, (2 = )7, m = my,€)
dl —00 —0o0

X Hz(\/jlml)wp,dl (Sl/kllmlr G) dsdml]

_
(th1 —s)s
(DT 4T
x exp ( (ul) )e 7‘_alm. (42)
forgiven1 <1I,p <2

The next useful lemma already stated in the previous work by A. Lastra and the author [17] will
show up in the process.

Lemma 2. For all integers p1 > 1, positive integers ag p, > 1, for 1 < q < pq can be singled out such that

(1104, )P1 Z ag,p, Uy aul
q=

with a1,p, = ap,p, = L.

With the help of this lemma, the equations (36) and (37) can be remodeled in the form

Q(9z)Uz(uy,z,€) = u1 [ Z 4,50 U aul)RD(az)Uz(ul,z,e)}
. 5
+ Y el (ze)( Z ag,5,u100, ) R (92)Ua (1, 2,€) + Fa(u1, 2, €) + c1(2,€) Uz (u1, 2, €)
=1 q=1

+CQ1Q2 [Q](aZ)UQ(ul,Z,G)] X [Qz(az)UQ(ul,Z,é’)] (43)

doi:10.20944/preprints202301.0582.v1
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and
Q(3)Uy (11, 2,€) = u? [( Z ag,5,410%, ) Rp (9:)U1 (11, 2, €)
q=1
Sp—1
+6p ( Z aql(gD_luzazl)RD(E)Z)Uz(ul,z,e)}
q:
+ Z ebi- "llu a(z, € {( Zaqtglu o, )Ry (32)Uy (uq, 2, €)
I= q=1
51
+a( ) aq/,sl_luzazl)Rl(az)lb(ul,z,e)} + F(uq,z,€) + b1(z,€)Uy (11,2, €) + ba(z,€)Un(uy, z,€)
q=1

+ cpyp, [P1(92)Un (u1,2,€)] X [Pa(02)Un(u1,2,€)] + cpyp, [P3(02) Ui (11,2, €)] x [Py(92) Uy (u1,2,€)]
+ cpspy [P5(92)Ua (11, 2,€)] X [Pe(02)Un (1, 2,€)]  (44)

The upcoming identity will also be called into play for the derivation of the coupling convolution
equations. This technical formula was introduced in the work [18].

Lemma 3. Let k1,6 > 1 be integers. Real numbers A,;rp,for 1 < p <6 —1 can be found such that

w0, = (0 kT Ay o)
1<p<s—1

holds, where we assume by convention that the sum Yy <,<s_1[..] vanishes for 6 = 1.
Owing to the assumption (15), the splitting
dD+q:q(k1+1)+dD,q (45)

holds for suitable integers d Dg =1, provided that 1 < g < Jp — 1. Furthermore, under the constraint
(16), the decomposition
di+q=qki+1)+d, (46)

occurs for well chosen integers dl,q >1,aslongas1 <I<D-1land1<g <.

doi:10.20944/preprints202301.0582.v1
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Ultimately, by means of the above two relations (45) and (46), the lemma 3 can be applied in

order to rewrite both equations (43), (44) only with the help of the basic irregular differential operator

leaul Namely,

Q(07)Up(uq,z,€)
Sp—1

d
= (X agapuy” {(”]fﬁlaul)q‘i‘ ) Aq,p“’fl(q p)( 1Haul) } D(az)uz(ul,z,e))
q=1 1<p<g-1

+ |:(u]1(1+1au1)6D + Z A op, Pullq((SD p)( 11<1+1au1)p] RD(aZ)UZ(ullzf 6’)
1<p<ép-1

D-1
+ ( 2 b=y (z,¢€)

I=1

5 p
y k1+1 k k1+1
[ Lagan (04 0w)T 4 T Agpu! T (00 )P) Ry () Ui, 2, €)] )
q=1 1<p<g-1
+ E(uy,z,€) +c1(z,€)Uz(uy, 2, €)

+ 0,0, [Q1(32)Us (11,2, €)] x [Q2(02)Un(uq,2,€)]  (47)

together with

Q(0z)Uy (u1,z,€)
op—1

( Z 9,60t 'q[ )T+ Y Aq,pulfl(q Pl (ufi19,,)r ]RD(az)ul(ul/Z/€)>
1<p<g-1
k
+ [(ulil—i_laul)(SD + Z A DPull((SD p)( Il(ﬁ_laul)p] RD(az)ul(u1,Z, €)
1<p<ép-—1
op—1 J o
+dp 21 agp 11 [ (u "1“aul)q+l<; lAq,pull([’ P 5 194,)7 | Ro (3:) U (11, 2, €)
9= <p<q-
D-1
+ ( ) e 1g)(z,€)
=1
9
k ki (g—
X [Z”qﬁz”l [( lHau) Z Aq,pull(q p)(”I{ﬁlaul)p]Rl(az)ul(ulr%e)
q=1 1<p<g-1
5—1 ; ;
+ 6 Zl”qréz—lull'”[(ulflﬂaul)”+1<; 1Aq,pu11(” p)( 113,.)7 ]Rz(az)UZ(ul,z,e)D
9= <p<q-

+ Fi(uy,z,€) +b1(z,€)Uy (11, 2,€) + ba(z,€)Up(uq, 2, €)
+ cpyp, [P1(02) Uy (1, 2,€)] X [Po(02)Un(uq,2,€)]
+ cpyp, [P3(02)Un (11, 2,€) | x [Pa(02)Us (uq, 2, €)]
+ cpyp, [P5(92) Un(u1,2,€)] X [Pe(0:)Ua(ug, z,€)]  (48)

On the ground of the identities disclosed in Lemma 1, this hindmost coupling of equations (47) and
(48) allows us to reach the next statement.
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The maps Uj 4, (u1,z,€),j = 1,2, displayed in (38) solve the closing coupling (47) and (48) if the

Borel maps w; 4, (T, m, €), j = 1,2, fulfill the next coupling of convolution equations
Q(V=1m)wp g, (T,m,€)

‘5D71 kl 'L'kl dD,q d

T D4 _q s

(X o gy [ @ = a6 ) e (575 0)

q=1 I'(%%)
k ky p,g k1 (7-p)

L ‘ P10 A kK| P 1/k ds
+ Agp / (th—s) & (k1 (s 1) P g, (s 1,m,€)*}
1SF§771 1—-<dD,q+k1 (qu)) 0 1 S

1

x Rp(V=Tm)) + | (ki T)cop g, (7, m, €)

k 1 k1 (6p—p)
! R e o K k ds
+ Y Asy )/o (th—s) "1 (k1 (s )k P, 4 (51 l,m,e)?}

ki(dp—
1ot T(

X RD(\/Tlm)

A—d o Doy 1 e 1/k kg \ 4
+ 2 ePl— ’[Zuqﬁl dlq)/ (T 1 —s) k1 WLOO Al(m—TYl1,€)(k1(s 1) 1)
T

1
ds T ™ dgthlezr)
1/k Z k
X Rl(\/jlml)wz,dl (S 11ml/€) S dml + Aq,pqp))/o (T 1T — S) kl

dy,+ki(qg—
1<p<g-1 r(%

-1

1 oo ds
172 /_m Ay(m — my, €) (ky (s5)R0) PR (/= Ty e g, (51/k1,m1,€)?dmlﬂ

"
1 e
+ Fo(t,m,e) + 202 L Ci(m —my, €)wy g, (T, mq, €)dmy

1 +o0 71
+ €010, 7(27_[)1/2 [m Tkl /0 Ql(\/ —1(m — ml))wzldl((’[kl — 5)1/k1,m — ml,e)

X Qo(V=1my)wy g, (s**1,my, €) dsdmy  (49)

-
(thi —5)s
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along with
Q(V—1m)ws g, (T, m,€)
! ki ™ g 4 ds
= ( ). “qﬁn[ in, /0 ) I (CTE A L A (Sl/kl,m,e)?
q=1 F(T)

kq dp,g+ki(9=p)

T T R R | ds
+ ) Atw,(_))/o (th—s) & (k1(51/k1)k1)pw1,d1(Sl/kl,m,e)?}

x Rp(v/—1m) )+ [ (kyTht ‘SDRD(Fm)wldl(T m,€)

10p=p) 4 ds
+ ) Ast,p iz 5D p /O Tk (kl(sl/kl)kl)pa)Ldl(sl/kl,mle)?
l<p§§D71
xRD(\/—lm)}
‘5D71 kl Tkl dD,q d
T R | S
+ (00 X apaor [ [ @9 T a0, (15, )
= T() 7o i

k

k 1 dp g+k1(q—p)
L v A1 1/ki\ky \ P 1/k ds
+ ), Ay / (th—s) & (k1 (s 1)) Py 4, (s 1,m,€)*}
1<pzg | or(feathi@ply Jo ! s

ky
x RD(\/—lm)>
D-1 B k k1 dlq . 1 +o0
> e K Z I ey r(a) J / (=" iz /,oo At = m ) (ka (sTE )
ds Tkl ! M,l
X R (v —=1mq)w 4 (Y%, my, €)= dmy + Ag —/ (th —s)” ®
! 5 1S]§q*1 qPF(W) 0
1 e 1/kyykp P 1/k ds
x (271)1/2 /_oo Ay(m —my,€) (ky (s ")) "Ry (v =1my )wy g, (s ,ml,e)?dm])
k kl dl 00
T e oq +
((51 Z ag0-1]—r— / (T —5)® 71/2/ Ay(m —my,€) (ky (V1)) TR (vV=Tmy)
(%) 0 (2m) —o0

kq k dl,q+k1 (7-p)

X W (sl/kl m 6) dsdm + Z A i /T 1 (Tkl s) k1
2,d 1M, €)= 1 P 4 dhilo—p) . -
1 S 1<p<g-1 r(%ﬁp)) 0

1 oo kyyk k ds
X 2n)i72 /700 Aj(m —my, €) (ki (s"F)R) PR, (v =1my w4, (s 1,7711,6)?03"11])}

+ A(t,m,e) (50)
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where

1 Foo
A(t,m,e) = Fi(t,m,e) + e /700 By(m —my,€)wy 4, (T, my, €)dmy

1 +oo
* W /_oo By(m — my, €)ws 4, (T, my, €)dmy

1 —+o00 Tkl
+CP1P2W/ Tk1/0 Pl(\/—l(m—ml))wlldl((rkl —s)l/kl,m—ml,e)

—0
1
X Py (v =1my)ws 4, (sl/kl,m1,€)mdsdm1
o] ky
Femp [T [T BT ) (25— )5, m )
34 (27.[)]/2 oo 0 1,d1 7 7
1
X Py(vV —1my)w 4, (sl/kl,ml,e)mdsdml
) k
by [T [ BT ) (7 )5 )
56 (27.[)]/2 oo 0 2,dq ’ 7

X Po(V/=1m1)wy g, (sV*1,my, €) dsdmy (51)
S

1
(T —s)
4. Linear and bilinear convolution operators acting on Banach spaces

In this section, we examine continuity properties of several linear and bilinear convolutions
operators that are applied on the Banach spaces given in Definition 6 and that unfold in the above
coupled equations (49) and (50), (51).

Proposition 1. Let y1 > 0, 3 > —1 be integers and set o € R. Let Sy, be an unbounded sector centered at
0 with bisecting direction dq € R and fix p > 0 as some positive real number. Let a., (T, m) be a continuous
map on the closure (Sy, U D) % R subjected to the upper bounds

M
|y, (T,m)| < ﬁ (52)
provided that T € Sy, U Dy, all m € R, for some constant M, > 0. We take for granted that
1
71Zk1(’r3+1),72>—1,72+73+H+120. (53)
Then, we can single out a constant Cy > 0 (relying on 7y, j = 1,2,3, ky and v) for which
o [Tk 1/k
o (et [ (741 = )57 £, m)ds] 1,
<G M'Yl |€|k1 (r2+1) | |f(T/ m) | |(1/,‘B,y,k1,p,e) (54)

dq
holds as long as f belongs to the Banach space F(V, Bk pe)

4 .
Proof. Let f € P(V, Bikipe) By definition, the bounds

T

1 Tk —y -
|f(Trm)| < ||f||(v,ﬁ,y,k1,p,e)|g|meXP (V|g| 1)(1 + |m|) He Blm] (55)
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ensue provided that T € Sy, U D, and m € R. According to the assumption (52), the latter bounds
warrant the next estimates

1
B(t,m) = |a%(T,m)Tk1/ (Th —s)12573 £ (s1/K1 ) dis|
0

k
M71||f| (v.B.1k1,0€) |T|k1 /|T 1 (|T|k1 B h)’Yzh’Ys KWi/k #
- (A+rhm 0 el 14 22

‘€|2k1

h
exp (vw)dh
X (14 |m])~*e Flml (56)

forallt € S5, UD,, allm € R.
We further perform the change of variable ¢ = 11/|e|}! in the above integral and get

L
Moy 11w, kip.e) HE /\s\kl (|T|k1 _ )’Yz
([t 0 e

'Y3+ﬁ; vg 4
1+g2° ¢

x |e[ar2t1 ) (1 4 || )~HePIml (57)

B(t,m) <

8

aslongast € S; UDyand m € R.
We introduce the function

X 1 1
— AN P vg
G(x) /O(x A e

for all x > 0. In the next lemma, we uncover upper bounds for G for large values of x.
Lemma 4. The function G(x) is well defined and continuous for all x > 0. Furthermore, there exists a constant

Kg > 0 for which
x“rs+ﬁ

G(x) <K

VX
<Koirme (58)

forall x > 1.

Proof. We first explain why G(x) is well defined and continuous for x > 0. Indeed, by means of the
change of variable ¢ = xg; for 0 < g; < 1, we can recast G(x) in the form

’Ys+ﬁ 1

_ 72*73+;%+1 /1 . T2 Lt vag
G(x)=x 1 ; (1—-g1)"g 1+(xg1)ze dg

which is a finite quantity for all x > 0 and represents a continuous map w.r.t x, according to the last
inequality of (53).

In order to reach bounds for large x > 1, we apply a strategy stemming from Proposition 1 in our
joint work [19]. Namely, we split G(x) into two pieces,

G(x) = Gi(x) + Ga(x) (59)

where

x/2 1 1
Gl = [ (r—g) g T e
1(x) A (x—g)"g Trgt 8

and

x 11
G :/ o\ L g4
2(x) m(x PONEY's gl e

We first focus on bounds for Gy (x). Two cases arise.
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e Assume that —1 < 7, < 0. In that situation, we observe that (x — ¢)72 < (x/2)72 provided that
0 < g <x/2,for x > 0. Therefore, bearing in mind the constraints (53),

X 2 gl 73t +1
Gi(x) < (= 7261/3(/2/ 73 Mo — x/z Y2 +Y3 3] €Vx/2 (60)
1(¥) < (3) , 8 8 773+%+1( )
forall x > 0.
e Suppose that 7, > 0. We check that (x — )72 < x72 for any 0 < ¢ < x/2. Hence, paying regard
to (53),

Gy (x) < x72¢v¥/2 /x/Z gﬂmﬁdg _ (1/2)734-%%-1;x72+73+ﬁ+1evx/2 (61)
- 0 Y3+ klfl +1

whenever x > 0.

In a second step, we provide upper estimates for G(x). We notice that 1 + g% > 1+ (x/2)?, for
x/2 < g < x. Hence,

Ga(x)

Ga(x) < S /x (x *8)7287#%3%518 ST (62)
1+ (x/2)2 Jx2 1+ (x/2)?

where

~ x 1
Ga(x) = /0 (x —g)12g" Hesdg

for all x > 0. From the sharp bounds established in Proposition 1 of [16], we can pinpoint a constant
K7 > 0 (depending on 77, v3, k1, V) with

« 1
Go(x) < Kyx PR gvx
for all x > 1, under the conditions (53). As a result, we get that

x“r3+ﬁ
Gz(x) <K

S Kq mevx (63)

provided that x > 1.
At last, gathering the bounds (60), (61) and (63), we deduce the awaited bounds (58) from the
splitting (59). O

We turn to the bounds for the map B(t, m). We identify two alternatives.

*  Assume that T € S5, U D, is chosen such that

s

i 1. (64)

Owing to Lemma 4 and the first constraint of (53), we get from the upper bounds (57) some
constant C;1 > 0 with

(1e/ef)™

C1gt/e
|T/¢€] Tk

B k1 ,0.€) W exp (V|E| 1)

x (14 |m|)"Fe Pl (65)

B( , < M'Yl | |f| (v.B.pk10.€) |T|k] |€|k1(72+73+1)K

s e o

X (L4 m|) e P < Cyy My, e 12Dl
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forall T € Sy, U D, chosen under (64).
*  Suppose that T € Sy, U D, fufills
7|

0< <1 (66)

e[t
Based on (57), we arrive at some constant C1, > 0 such that
<"1

k
B(T, ) < M’71||f||(1/,/3/%klzp,€) |T|k1 /‘e‘kl (ﬁ . )’)/2 73+ﬁ 1
G+ Fn T G -

T
X exp (V|g|k1) le[1 (273 (1 4 | |)~H e Bl

g >dg

|T/€|
< |If] ’(V,ﬁlﬂ,klrpre)m

x [Cra|t[a |12+ e HRT My, (14 [7/e[*)]

exp (v|[1) (1 + m]) e P

[7/€]

ki(v3+1) ki (72+1)
S I:C],ZM'MGO 2] |€| 1\'r2 ||f| |(1/,‘B,]/l,k1,p,€) 1 + |T/€‘2k1

T u
exp (v|—["1) (1 +[m|) Ve i
(67)
whenever T € S;, U D, is restricted to (66).

Eventually, the combination of the above bounds (65) and (67) yields the expected result (54). O

Proposition 2. Let Q(X),R(X) € C[X] be polynomials and p > 0 be a real number subjected to the
constraints

deg(R) > deg(Q) , R(V—1m) #0 , u > deg(Q)+1 (68)
forall m € R. Then, a constant Cy > 0 (depending on Q,R and p) can be selected such that

1 o0
||m  flm = m) Q(V—1m1)g(t, my)dma | g1k, p.e)

< Callf (m)ll (g1 (T 1)l (v,8,101,06)  (69)

dq

holds provided that f € Eg ) and g € F(v,ﬁ,y,kl,p,e)'

Proof. The proof mirrors the one of Proposition 2 in our recent work [20]. Indeed, let us choose g in

I—“(dv1 Bk pE)" The very definition of the norms displayed in Definitions 2 and 6 allows the bounds
T 1 Tk Ty
8@ m)l <18l pkpe] 5] 15 /e OF (|2 [ (A ) He Pl (70)

provided that 71 € S3, U Dy and m; € R together with

FOm)] < [ (m)]] gy (1 + |m]) ~He Bl (71)

for all m € R. These two bounds (70) and (71) yield the next estimates

(7, m)| = \IWL_M) /::f(m ) Qv Tmy)g(x, my ) |

T 1 T —u —Blm
< |‘f(m)||(ﬁ,y)||g(T,m)||(u,/S,y,kl,p,e)’E‘mexp (V|E|k1)(l+|m|) He—Fl ‘Cz.l (72)
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where
Cor = (1+ |m|)Feblml 1 /+°° e~ Flm=m| |Q(ﬁm1)|e‘ﬁ‘ml‘dm1.
[R(V/=Tm)| J=eo (1 |m —my|)F (14 [my])F
According to the triangular inequality, we observe that
m| < [m —mq| + [m] (73)

for all real numbers m, m; € R and by construction of the polynomials R, Q asked to fulfill (68), two
constants Q, % > 0 can be pinpointed such that

Q(V=Tmy)| < Q1+ [mi)*#Q, [R(V=Tm)| = R(L+ |m|)?s")

whenever m, m; € R. Thereby, the next upper bounds

dm1 (74)

9 1
Co1 < =Zsup(l+|m V_deg(R)/
21 = gy b+l e (L I — (L g eB@)

are reached whose right handside is a finite quantity under the restrictions (68), owing to Lemma 2.2
from [15] or Lemma 4 of [21].
Eventually, gathering (72) and (74) yields the foretold bounds (69). O

Proposition 3. Let ki > 1bean integer. Let Q1(X), Q2(X) and R(X) be polynomials with complex coefficients
such that

deg(R) > deg(Q1) , deg(R) > deg(Qz2) , R(V—1m) #0 (75)
forall m € R. We require the positive real number u > 0 to satisfy
p > max(deg(Q1) +1,deg(Q2) +1). (76)
Let m — b(m) be a continuous function on R such that

1
[b(m)| < R(v=1m)| (77)

forall m € R. Then, one can find a constant Cz > 0 (relying on Q1,Q2,R, k1 and v) such that

||b(m)TH /0 1 /;m Q1 (V=T (m — ma)) F((T5 — )V, 1 — my)

1
X Qa(V—Tmy)g(s"*1,my) (ki gy . pakipe)
< C3| |f(T/ m) | |(v,ﬁ,y,k1,p,e) ‘ |g(T/ m) | |(v,/3,;4,k1,p,e) (78)
dy
forall f,g € P(v,ﬁ,u,kl,p,e)‘
Proof. Take f, g in the space F(dv1 Bkipe) According to the definition of the norm, the next two bounds
T 1 Tk -
[f(Tm)| <|If] |(1/,‘B,y,k1,p,e)|g|m exp (v] - [) (1 + m|)He P (79)
and
T Tk oy -
80 m < Nglli s 5 1T e 7em @ () A m)~He=P (80)
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hold provided that T € S5, U Dy and m € R. These bounds together with the assumption (77) prompt

= pone [ [ QU ) 9

X Qa(v/—1mq)g(s/*1, my) dsdm |

_
(thr —s)s

|R Fm|/+°°Q1 (V=1(m — m))||Qa(v/=Tmy)|(1 + |m — my|)~Fe Flm=rm

(1 + |m1|) Fe™ mml'dml"f||(v,/3,y,k1,p,e)||g||(1/,/3,y,k1,p,e)

k
« [t /lrl U (|t)f = )V 1k kg 1
0 €] 14 (efa-n2? el 14 (It —h)h

|€‘2k1

dh x exp (v\£|k1) (81)

h2
|€|2k1

forallt € §;, UDpand m € R.
By construction, we check that some positive constants 91,92 and R can be picked out in a way
that

|Qu(v/=T(m —m1))| < Qu(1+ |m —my)*BO),|Qy(V =Ty )| < Q2(1+ [y |48,
[R(V=Tm)| > R(1+ |m|)255) - (82)

for all m,m; € R. As a result and keeping in mind the inequality (73), we deduce the next bounds for
the first piece of the right handside of (81), namely

|/+w|Q1 (m —my))||Qa(vV/—=1my)| (1 + |m — my|) ~FePlm=ml

x (14 |my|) " Fe Plmldm, < Q;{Qz (14 |m|)~FePlml (83)
where
— j—deg(R) / 1
D= oup 1+l oo (L [ — g )P 9B (1 5 g 9@

is a finite quantity under the conditions (75), (76), as explained in Lemma 2.2 from [15] or Lemma 4 of
[21]. Besides, according to Lemma 3 of our recent work [22], there exists a constant K, (relying on k)
such that

k
I e B (A R
el

forallT € S5, UDp,alle € Dg, \ {0}.
Counting up the above two bounds (83), (84), it results from (81) that

|T/¢€l -
DKkl||f||(v,ﬁ,y,k1,p,e)||g||(1/,ﬁ,y,k1,p,e) 1+ |T/€|2k1 (1 + |m|) He Blm|

219,
D(t,m) <
(r,m) < 2L
T
X exp (v\g|k1) (85)
whenever T € §; U D, and m € R. The estimates (78) follow. [J

5. Solving the first convolution equation (49)

In this section we uniquely solve the auxiliary convolution equation (49) stated in Subsection 3.2
within the Banach spaces displayed in Definition 6. Our approach consists in rearranging (49) into a

doi:10.20944/preprints202301.0582.v1
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fixed point equation (disclosed later on in (129)). In a first stage, we ask to perform a division by the
next parameter depending polynomial
Pu(t) = Q(v/=1m) — Rp(v=Tm)k{P 710 (86)

provided that T € Sy, U D,. Decisive lower bounds concerning P, are displayed in the next lemma.

Lemma 5. For a convenient choice of the inner radius rq g, > 0 and aperture g r, > 0 of the sector Sg g,
(introduced in (21)), unbounded sectors Sd, centered at 0 with bisecting direction di € R and a small radius
p > 0 can be distinguished in a way that the next lower estimates

1
|Pu(T)| = Cp(rg,r,) % [Rp(V/—1m)|(1 + |7])f1op~1 (87)
hold for some well chosen constant Cp > 0, provided that T € Sa, UDy, forallm € R.

Proof. Owing to the fact that the complex roots g;(m), 0 < I < kidp —1 of T +— Py (7) can be
explicitely computed, we factorize the polynomial as follows

Pu(7) = —Rp(v/=Im)kPIIP ! (1 — gy(m)) (88)

with

Q(v—1m L Q(v—1m 1 27l
ai(m) = (1% )|5 )50 exp (VT (arg( ( )5 Vs " ko))
|Rp (v —1m)|k}" Rp(v/—1m)ki® " k19D~ K10p
forall0 <! <kjép —1,foranyt € Cand m € R.
We pinpoint an unbounded sector S;, centered at 0, a small disc D, and we position the sector

So,r, given in (21) in a way that the next two properties hold:
1) A constant M; > 0 can be found such that

[T = qi(m)| = M1 (1 + |7]) (89)

forall 0 <1 <kidp —1,all m € R, whenever T € S5 U D,.
2) There exists a constant M, > 0 with

T — g1, (m)| > Ma|qy, (m)] (90)

for some 0 < Iy < dpky —1,allm € R,all T € S5, U D,.
We now explain how the above two bounds can be established.

e We deem the first inequality (89) in observing that under the hypothesis (22), the roots g;(m)
are bounded from below and obey |g;(m)| > 2p forallm € R, all0 < I < dpky — 1 for a
suitable choice of the radii rg g, 0 > 0. Furthermore, for allm € R, all 0 < < épky — 1, these
roots are penned inside an union Q of unbounded sectors centered at 0 that do not cover a full
neighborhood of 0 in C* whenever the aperture 77g g, > 0 of Sg g, is taken small enough. Hence,
a sector S;, may be chosen such that

Sdl neQ=ao.

Such a sector satisfies in particular that for all0 < I < §pkj — 1, the quotients q;(m) /T lay outside
some small disc centered at 1in C for all T € Sy, all m € R. Eventually, (89) follows.

*  The sector Sy, and disc D, are selected as above. The second lower bound (90) ensues from the
fact that for any fixed 0 < Iy < dpk; — 1, the quotient T/g;,(m) stays apart a small disc centered
atlin Cforall T € Sy, UD,, allm € R.

doi:10.20944/preprints202301.0582.v1
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Departing from the factorization (88) and paying regard to the two lower bounds (89), (90) reached
overhead, we arrive at

. krop—1 ) KD Q(V=Tm)| 1 k1op—1
[P ()| > MY'P™ " Ma|Rp (v/—1m) [ky (|RD(\/jlm)|k(1SD) (1+ 7))

1
> Cp(rgRry) 1 [Rp (V=Tm)|(1+ [}~ (91)
aslongast € S5 UD,, forallm e R. O

We introduce the next nonlinear map

He(w(t,m)) :=
ép—1 k1 *1 dpg d
( Z a4,6p [7T y / (Tkl —s) k 1k‘}sqw(sl/kl,rn)—s
! Dgy JO S
7=1 Pm(T)r(ﬁ)
kl Tkl dD,qukl(qu) _ d
+ Z Aq,p ; =) / (Tkl _s) 3] 1kfspw(51/k1/m)7s}
1<p<g—1 Py (7)[(F2ARP kiq Ly Jo s
X RD(\/—lm))
k k1
T ok Sp—p—1p.p 1k 48
+ As —/ (T —5)P P kysPw (s ™, m) —
[KPg’Dl PP P, (T)T(8p — p) Jo 1 s}
X Rp (v —1m)
kl k dki/f 1

[ s
d T — S 1 71/2/ 1 m—m1,€ 15
Py (T)T( qu) 0 (2m) —o0

+ Z ef™ dl[Zam[
X Rl(\/—1m1)w(sl/k1,m1)%dm1

ky dj g +k1(9-p)

r oA RCEDR
+ q,p a4 k(7 / T —S 1
1<psg—1 pm(T)r(%(‘?P)) 0

1 tee ds
< A R R T s, ) o]
Fo(t,m,e€) 1 /+oo
C - 12 7 d
- Pm( ) (2n)1/2P (1) /-0 1(m = my, €)e (T, my )dmy
+oo
+C010 T N2 T (27) 1/2P / kl/ Ql (m—mq))w ((Tklfs)l/kl,m—ml)
1
X QZ( V _1m])W(51/k1,ml)mdem] (92)

In the next proposition, we establish that H. represents a shrinking map on some suitable ball of the
Banach space mentioned in Definition 6.

Proposition 4. Let us select a well chosen inner radius rq r,, > 0 and aperture o r,, > 0 of the sector Sq g,
jointly with an unbounded sector Sy, and radius p > O that heed the requirements of Lemma 5 and obey the
additional condition

—1¢ S3, UD,. (93)

Then, one can single out a radius €y > 0 small enough, constants Cy ¢, > 0and cg, o, € C* close enough to 0
and a fitting radius @, > 0 in a way that for all € € D, \ {0}, the map H enjoys the next two features
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e Theinclusion
HE(sz) - B(Dz (94)
holds, where we denote Be, the closed ball of radius @, > 0 centered at 0 in the space F(dJ Bk o)’
e The1/2—Lipschitz condition R
1
||H€(w1) - He(wz) | |(v,ﬂ,y,k1,p,e) < E | |w1 - w2| (v.B,1k1,0€) (95)

d
T F1 .
occurs for all wy,wy € (W, Bik0€)

Proof. We take aim at the first item stating the inclusion (94). We prescribe some real number @, > 0

and take w(t, m) in Fh , for given € € D¢, \ {0}, such that

(v.,B,1.k1,p.€)

||w| €) < @.

(v,B.u.k1,0,

We provide explicit bounds for each term of the map H. applied to w.
According to Proposition 1 and Lemma 5, we observe that

ky ™ D _ d
ey [ (=)0 TSRy (V= Tmewo (s, m) |
0

Py (T) (VB pkipe)
C _
< 1 |€| (0p=0ky | ‘w(T/ m) | |(1/,,8,;4,k1,p,e) (96)
Cp(rqrp) "D
for1 < g <Jp — 1 along with
s o+ ' dp g+k1(9—p) 1 ) ds
/k
||Pm(T) /0 ("1 —s) kA sPRp(V—1m)w(s 1,m)?] (W, B k10 )
Cy _
< 1 ‘€| (0p=plk | Iw(T/ m) | |(1/,ﬁ,;4,k1,p,e) (97)
Cp (rQ’RD)kl‘SD
for1<p<g—1withl <g<Jp—1and
Tkl Tkl k 5 7p71 p 1k ds
||Pm(T) /0 (T 1 S) D S RD(\/jlm)W(S 1,m)?| (Vr,BrVrklzprE)
C _
< 1 ‘€| (0p=p)ka | ’w(T/ m) | |(1/,,8,;4,k1,p,e) (98)
Cp(rqrp)f°P

aslongas1 < p < dp — 1. In order to handle the next piece, under the constraint (93), we can recast

Tkl ™ d’J_l +o00
flome) = m/o (Tkl —s)h /700 Aj(m —my, €)s
- k1op—1
% Rl(ﬁml)w(sl/kl,ml)ﬁdml _ Rp(v=1m)(1 + 1)!’n

s Py (T)
1 /+°°A ( )R (ﬁ )

R T 1m) m—mi, € —1m

Rp(v/—Tm) J-e ' 1,€)R 1

kq

X [77 /Tk1 (th —s)%qilsqw(sl/kl m )&]dml (99)
(]—|—T)k15D*1 0 s 1T s .

forallt € S5, UDpy, m € Rwith1 <1 <D —1and 1 < g < §;. Based on Lemma 5, we check that
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‘RD(\/—lm)(l—i-T)kl‘SD’l‘ - 1
— 1
Py (T) CP(TQ,RD) k19p

provided that T € S;, U D,, m € R. Owing to the assumptions (19) and (??), the proposition 2 together
with (100) yield

(100)

1

| |51 (Tr m, €) | ‘ (v,B.u.k1,0€) < ﬁc2| |Al (mr 6) | |(ﬁ,;4)
Cp (rQ,RD) k19p
k ky q
T T k A1 1/k ds
X | \W /o (1 —s)f “sTw(s/™, m)? v,k p0e)- (101)
Besides, a constant My, 5, > 0 can be pick up such that
1 MklréD
G| S G e (102)

forall T € S;, U D, assuming the condition (93). The condition (17) together with (102) enable us to
apply Proposition 1 and prompt
kq

dr d
k w1 1/k 5
(T 1 S) kq Sqw(s / 1,m1)?||(v,‘5’%k1,ple)

[I———

A+ oo Jy
d

< CiMig el o, m)

(V/,B,}l,kl,p,e) . (103)

Eventually, bearing in mind (27), we deduce from (101) complemented by (103) that

1 d
wppkpe) S~ CaAie,CiMy, 5ple| | |w (T, m)] (104)

Cp(rorp )"0

Hgl(T/ m/€)|

(v.B,uky0€)

The ensuing block is remodeled as

Tkl

E(t,me) = m/(: (th—s)” &

400 _ ki6p—1
X/ Al(m—ml,e)s”Rl( /—1m1)w(sl/k1,m1)ds RD(V 1m)(1+T) 10D

5o = P(7)

1 +oo
S Y Aj(m —my,€)R; (v —1m
Rp(v/—1m) /—oo i 1,€)Ri( 1)
k g d,g+k1(a—p)
L L N e S SR ) ds
X [(1+T)k1‘5'3*1/0 (T s) 1 sPw(s'*1,mq) S }dml. (105)

forallt € S5, UDp, m e Rwith1<I<D-1,1<g<¢and1 < p <gq—1,under (93).
The assumptions (19), (??) and the upper bounds (100) warrant the application of Proposition 2
which triggers

1
20T m, )| p ki pe) S - CallAi(m, )l g
p(rorp) 1’0
k ky dj o+kq (q—p)
™ T k 'qkifl p 1/k ds
gt fy @=L m Tl 109

The condition (17) coupled with (102) grant the use of Proposition 1 and beget

doi:10.20944/preprints202301.0582.v1
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k kq g +k1(9-p)
L Tk A1 1/k
- - — P
||(1+T)k15D71/o (Th—s) & sPw(s 1””1) | (v Bik10€)
d; ,+k1(g—
< Clel,(SD |€| Lt (9=7) | |W(T/ m) (v,Bk1,0€)" (107)
At last, not forgetting (27), we deduce from the joint bounds (106), (107) that
| |52 (Tr m, 6) (v,B,1k1,0.€)
1 _
< 1 CzAlxéo Cle1/§D |€|dl'q+k1 =) | |w(T/ m) | |(v,/5,;4,k1,p,e) . (108)
Cp (rQ,RD ) kidp
We control now the piece F,(t,m,€)/ Py (T). In accordance with Lemma 5, we notice that
1 1
< max 109
‘ Py (7T) ’ - (109)

Cr(rorp )klf’D meR RD(V 1m)

provided that T € S, U D, and m € R, whose right handside is a finite quantity since Rp(v/—1m) # 0
holds from (22) for all m € R. Besides, owing to the definition of F; given in Subsection 2.3 and the
bounds (25), we deduce

\Fa(t,me)| < Y Fajyeo(1+|m|)Fe Pl ||2 (110)

1]2,€0
2€)2
for all T € C, m € R. The combination of the bounds (109) and (110) grants
1 1

ko) < max | o]
CP(TQ’R )kl‘sD meR RD( m)

x sup (1 |m)RePE|(1 4 | 2P exp (- v|S[R)
TE€8y, UDp,meR T € €

% (X Fajpe(1+ [ml) e Pzl

||]:2(T/mr€)/Pm(

J2€)2
1 1 k 2%k
< —————max|—————| sup exp(—v|Z[")(1+|ZP)
CP(TQ RD)ﬁ meR RD( _1m) TESd UDP
< (T Fajpelet? 2127
€2
1 1 ;
< max ‘eo X sup e ”1(1 + x%k) 2 F2 060 ey (111)

Cp (rQ,R )liD mek ‘ RD( m) x=0 €2
which represents a finite quantity bearing in mind that /, C N* contains only positive integers.

We address the ensuing linear part of H.. Paying regard to (109) and the bounds (27), Proposition
2 prompts

1 e
] Py (1) /—oo Cy(m —my, €)ew (T, my)dm | |(1/,/54l,klfp,e)

1
< max

‘ 1
CP(rQ RD)kl%D meR RD(\/ —117’1)

1
max

- T
CP(FQRD)M%D meR RD( —177’1)

CallCa(m, €)1 10 (T, ), 0000

[YSpmIC AT (112)

B k,0€)"
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At last, we manage the nonlinear tail piece of H.. We first factorize
1 1
= G(t,m 113
Pu(t)  Rp(v/—1m) () Y
where 1
IG(t,m)| < ————— (114)

Ch(ro.rp) D

forall T € Sy UDp and m € R, according to (87). This latter decomposition together with the
assumption (20) enable the application of Proposition 3 which yields

k1

e [ T w9 )

I Pu(T)
x Qo (V—Tmy)w (s, my)

1
(T —s)s dsdm||(y,p,k,,0,6)

<L

C (rQ,RD ) kléD

llw (T, m)[7 (115)

(v.Bpkrp.€)

We select eg > 0, C1¢, > 0and cg, g, € C* close enough to 0 and take suitably @, > 0 in a proper way
that the next inequality

op—1

1 C1 Sp—q)k
( )3 |”q,§D|[ o, K] : e(()D Dk o
7= F(F) Crlrgry)ap
1 C _
p 1 (dp—p)k
L 1Ay dp,gtki(9—p) k e 1@2})
1<p<g-1 I"("?T) CP(rQ,RD)kléD
kY C So—p)k
+ |: Z |A5D,P 1"(5 ! ) 1 (D P) 1092:|
1<p<ép—1 D—P Cp(ror,) D
q
—d k 1 1 dy,
+ Z 6 I{Z |”q,51 t (27_[)1/2 1 CZAZ,eOClel,égeolqab
T) Cp(rqrp) P
K 1 1 dz +ki(q—p)
+ Z |AW . _ 1/2 T C2A1e,C1 Mk, 5 g 2]
1<p<g—1 F(id"ﬁkkll(q p)) (2m)V/ Cp(ror,) ' 0 19p€ }
1 k1 2k ]2 1 -1
+ ————F— max 7‘6@ xsupe " (14 x71) Z Fpje x/2
CP(rQ/RD)hl&D mek [Rp (v =1m) x20 neh o
1 1 1
+ max’ ’Czcle @7
1/2 0
(2m) Cr(ror, )kléD meR | Rp (v/—1m)
1 Cs
+ |CQ1/Q2| (271_)1/2 T (D% S @7 (116)
Cp(rgrp) 1

holds. Observe that the first six blocks of the left handside of (116) can be made small since they
contain positive powers of €y, owing in particular to the constraint (18) imposed on (14) and its last
two terms can be dwindled provided that the positive constants Cy ¢, and cg, o, are chosen nearby the
origin.

Eventually, the collection of all the bounds overhead (96), (97), (98), (104), (108), (111), (112), (115)
restricted by (116) gives rise to the inclusion (94).

doi:10.20944/preprints202301.0582.v1
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We mind the second item addressing the 1/2—Lipschitz feature. Take wq,w; inside the ball
By, of the space Fg} Bk ) whose radius @, has been prescribed in the first item discussed above.
We display norm estimates for each block of the difference He(w1) — He(wy). Based on the bounds

reached formerly in the proof of the first item, we check the next list of six estimates. Namely,

LA a4 1/k 1/k ds
e [ @ =9 TR (V=Tm) (wr (s, m) = (s m)) Z i e
Py (t) Jo s
Cy _
< 1 |€|(5D q)lewl(T/ Wl) - WZ(Trm)l (v,Bu.k1,0€) (117)
CP(T’Q,RD)kl‘SD
for 1 <gq < ép — 1 along with
k k1 dp q+k1(q—p)
1 T |
e = Ry (VIm)
m
ds
X (wr(s%1, m) —a)z(sl/klln’l))?| W B1ik10.)
C _
< —————e| o |y (r,m) — wa (T, m) [, gy pe) (118)
CP(TQ,RD)kléD
for1<p<g—1withl <g<Jp—1and
hooT Sp—p—1 — 1/k 1/k ds
||7/ (T t— S) D~P SPRD( _1m)(wl (S llm) - w2<s 1rm))*| (v,B.uk1,0€)
Py (t) Jo s
C _
< —————e| 0P |y (r,m) — woa (T, m) [, gy pe) (119)
CP(”Q,RD>kléD
aslong as1 < p < §p — 1. Furthermore,
g p
k kq d
na! T g q +oo
Iy o =9 [ Al =, e)s Ry (V= Tm)
m —00
ds
X (wl (Sl/kll ml) — w2 (Sl/klr ml)) ?dml | ‘ (v,B,pk1,0€)
1 d
< ﬁCZAZ,Goclel,éD |€| & | |(U1 (T/m) - WZ(T/m)| (v,B1k1,0€)" (120)
Cp(rgrp)"1°p
holdsfor1 <!/ < D —1and 1 < g < ¢ together with
k kq dy g+k1(q—p) o0
" T Aq -1 +
5 | =TT [ A= my )5 Ry (V=Tmy)
- _
ds
X (w1 (Sl/kl, ml) — Wy (Sl/kl, ml)) ?dml | ‘ (v,B,1k1,0,€)
1 _
< G Ay, C1 M, 5 €] H =P |wy (T, m) — wa (T, m)] Wb ukpoe) (121)

= CP (rQ,RD ) kléD
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for1<I<D-1,1<g<¢and1 < p <g—1inarow with

1 o
||Pm(T) /—oo Ci(m —my, &) (wi(T,m) = w2 (T, my) ) [l p.c)

1
< max

CP(rQ RD)ﬁ meR ‘RD(V —11’”)

[C2Creoleor (T, m) = wr (T, )| g0 o) (122)
Upper estimates for the rear part of He(wq) — He(ws) ask some groundwork. Indeed, according to
the classical identity ab — cd = (a — ¢)b + ¢(b — d), we reshape

kq

A(t,m) = 1 /JmTkl/oT Qi (V=1(m — m))wr (71 = )51, m — my)

Pu(t) J-oo
x Qz(ﬁmowl(s“kl,ml)(Tkll_s)sdsdml
B pmlm [ /0 Q1 (V=T(m = m))wr (741 = )5, m — my)
x Qz<ﬁml>w2<s“kl,ml>(Tkll_s)sdsdml
- Pml(r) /::o o /0“ Q1 (V=10 = ) [wor ((2F1 = )5, — ) — (4 = )44, — )]

x Qo (V=1m)wr (s51,m1) + Q1 (V=1(m — my) )wa ((TF1 — 8)1¥1,m — m1) Qo (v —1my)

x [wy(sYF1,my) —wz(sl/kl,ml)” dsdmq. (123)

o

(thr —s)s

Keeping in mind the factorization (113) with (114), the proposition 3 sparks of a constant C3 > 0 with
kq

e [ [ QT =)

x ey ((TF = )V81,m — my) — wa (791 — $)VE m — my)]
1
X QZ( Vv —11’7’1)6(]] (Sl/kl, Wll)mdsdml | |(V/ﬁr]4/kllpr€)
1
< ﬁc3||wl (T/ m) - wZ(Trm>||(1/,,S,y,k1,p,e)||wl (T/ m)ll(v,ﬁ,y,kl,p,e) (124)
Cp(rqrp) P
and
1 +oo P T ”
e [ ™ [ Q=T = m)wa((74 = )15, = ) Qa(V/=Tm)
Ppu(t) J-eo 0
1
X [wl (Sl/kl,ml) - wz(sl/kl,ml)]] mdem1||(U,ﬁ,}l,k1,p,€)
1
< ﬁc3||wl (T/ m) - wZ(Trm>||(v,/5,y,k1,p,e)||w2(T/ m)”(v,ﬁ,y,kl,p,e) (125)

Cp(ro,r,)" D
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The remodeling (123) of A(T, m) together with (124), (125) lead to
| |A(T/ m) | |(v,/5,y,k1,p,e)
1
< —— C3(||w1(T,m)||(V,/3,y,k1,p,e) + ||w2(71m)||(v,ﬁ,;4,k1,p,e))
CP(rQ,RD)kléD
X | |(U1 (T/ m) - wz(T, m) | (v.B,1k1,0€)
1
< ———— 2@ ||wi (T, m) — wo (T, m) || (v,p pky pe)- (126)
Cp (rQ,RD ) k19p

We enclose the constants €y > 0, C1¢, > 0 and cg, o, € C* in the vicinity of the origin allowing the
next inequality

o1 1 C
1 op—q)k
(X lagonl [ =K ey "
=1

d 1
T(F)  Cplrgr,)fD
1 C] Sp—p)k
L 1Ay dp,g+ki(9—p) K LG‘SD i 1})
1<p<q-1 N(—=—=——) Cpr(rggr,)"
kY -
[ T sl G o]
1<p<ép—1 (6p —p) Cp(rorp) D
Rl o k] 1 1 d
N—d ¥
+ Z 601 1 [ Z |’1q,51|[ d} 22 —— C2A1'60C1Mk1,5peolq
=1 g=1 T kTq (27r) CP(TQ,RD)kl(jD
Kt 1 1 dy ki (g—p)
1 Lgtkg—p
+ Z |Aq,p| dl +k1(q—p) (271—)]/2 1 CzAlle(]Clelr&DeO ! }j|
1<p<g-1 r( A 12 7) CP(T’Q’RD)kl(sD

+ ! ! max 1 C,C
2¢1,
(2m)1/2 Cp(rg RD)ﬁ meR | Rp (v —1m) «
1 Cs
*leov0:l 172 20, <1/2. (127)
Cp(rgrp) 1P

The merging of the above bounds (117), (118), (119), (120), (121), (122), (126) subjected to (127) triggers
the 1/2—Lipschitz attribute of H.. Notice that the foremost five blocks of the left handside of (127) can
be taken small scaled since they contain positive powers of €y due to the constraint (18) imposed on
(14) and its two tail terms can be downsized provided that the positive constants Cy ¢, and ¢, o, are
chosen close to the origin.

In the closing part of the proof, we fix the radius @, > 0 and select the quantities €9 > 0, C1 ¢, > 0
together with cg, o, € C* close enough to 0 that conform both (116) and (127). For these values,
the map . is endowed with both inclusion and shrinking properties (94), (95) for all € € D¢, \ {0}.
Proposition 4 follows. O

The forthcoming proposition displays a solution to the first convolution equation (49) shaped in
the Banach spaces described in Definition 6.
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Proposition 5. Let us choose an appropriate inner radius rq g, > 0 and aperture ngr, > 0 of the sector
So,rp, together with an unbounded sector Sy, and radius p > 0 that conform the requirements of Lemma 5.
Then, a radius ey > 0 and constants Cq ¢, > 0, cg, 0, € C* can be pinpointed sufficiently close to 0 together
with a proper radius @, > 0 in a manner that for all € € De, \ {0}, a unique solution w, 4, (T, m,€) to (49)
exists such that

*  themap (T,m) — wy 4, (T, m,€) appertains to Fh

under the constraint
(v.B.pkr,p0.€)

sup ||wag, (T,m,€)|

) < @ (128)
e€Dey \ {0}

(v.B.u.k1,0€

*  the partial map € — w4, (T, m, €) stands for an analytic map from D, \ {0} into C, for any prescribed
T € Sq,UDpandm € R.

Proof. We take the constants ey > 0, C1¢, > 0, cg, 0, € C* together with @, > 0 reached in
Proposition 4. We observe that the closed ball B,, C FEiVl B k1)
the distance d(x,y) = [[x = ¥|[(v,,,k; p,¢)- The proposition 4 claims that . induces a contractive map
from (Bg,,d) into itself. It follows from the classical Banach fixed point theorem that H. possesses a

unique fixed point wy 4, (T, m, €) inside the ball Bw,, for all € € D¢, \ {0}, meaning that

represents a complete metric space for

He(wz,dl (Tr m, 6)) = Wy 4, (T' m, €) (129)

holds. Furthermore, the map w4, (t,m,€) relies analytically on € since H does on the domain
D¢, \ {0}. On the other hand, we check that the convolution equation (49) can be rearranged as the
equation (129) by shifting the term

(klrkl )‘SDRD(\/ —1m)w2rd1 (t,m,€)

from the right to the left handside of (49) and dividing by the resulting equation by the map Py, (1)
given by (86). As a result, the unique fixed point w; 4, (7, m, €) of H. enclosed in By, precisely solves
(49). The result follows. [

6. Building up a solution to the second convolution equation (50) with (51)

In this section, we cook up a unique solution to the auxiliary convolution equation reached in (50)
with (51) inside the Banach spaces described in Definition 6.

The roadmap follows the one of the previous section and consists in recasting (50) with (51) into a
fixed point equation for a certain nonlinear map G, stated in Proposition 7.
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The map G is set up as follows. We mind the map w; 4, (7, m, €) stemming from Proposition 5
and the polynomial P, (1) displayed in (86). Let

5D 1 k] Tkl de,qf d
Ge(w(T,m) < Z g5 D[Tiﬂb/ (th —s) R lkzsqw(sl/kl,m)—s
=t "L (r)r(Re) Jo :
k kq dp,q+k1(9-p)
™ T =241 T k ds
+ Y Agyp gy /0 (" —s)" H KsPa(s! 1/,,1)?}
1<p<q-1 Pu(T)T ()

X RD(H’”))

Tk] ! k 5 ds
As - - 1 g)op— P 1 Psp st/
+ { 2 op,p Pm(T)r(5D _ p) /0 (T S) 18 (U(S m) s

1<p<ép-1
x RD(\/—lm)}
k

dp—1 k1 1 dpg d
+(0p Y. ag5p-1 S (th —s) R lkqsqwzd (sl/kl,m,e)—s
4 49D p (T)I'(dD/q) 0 1 /01 S
m N
Tkl k dD,q+k1 (q—p) dS

™
k — % Lr 1/k
+ E Agp ( )r(dD,ﬁkl(’iP))/o (thr —s) 3 kysPaws 4, (s / 1,1’?1,6)?}
k

1<p<g-1 Pu(T .
x RD(\/—lm)>

] k kq d)
™ T 4 q 1 400
+ Z et Z ol */ (1 —s)® 7/ Aj(m —my,e)k]st
[(q I Pm(r)l"('%”) 0 20172 ) o
d k ™ dgthilaze)
X Rl(\/—1m1)w(sl/k1,m1)§dm1 + ) A, T ; / (th —s)" !
) Jo

q.r 4 ke (g—
1<p<g—1 Pm(T)F(W

! i ds
< gy | A=y RS R T o615, )
o—1

(51 Z aq/‘sl 1[ u

Py (T)T )

kl Tkl k le_l 1 +o0 .
(dlq)A (Tl _S) kq W/_oo Al(m_mlle)lequ(\/jlml)

ds h o )
X Wa,d, (Sl/klfmlfe)?dml + Z Agp dp gtk (g—p) /0 (th—s) 5

-1

1 e p 1/k ds
X )17 /700 Ay(m —my, €)k}s" Ri(V/—1my)wy g, (s / l,ml,e)?dml])}

+ Ag.(t,m,e) (130)
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where
Fi(t,m,e 1 +oo
Age(T/mle) = I()m(T) )+ Pm(T)(ZT[)l/Z /—oo Bl(m_m]_,e)(U(T,ml)dml
1 too
+W/w By(m — my, €)wp g, (T, mq, €)dmy
—+00
+CPlPZP 27r 1/2/ Tl/ Py(v/=1(m — my))w (T — )51, m — my)
1
X Py(V/—1my)ws 4, (s 1/k 1/’”1’6)7(14:1 — S)Sdsdml
e ki 17k
ene e | o [y )25 ), )
1
X I4 —Imq)w(s , M) ———dasamq
Py(vV—1 Uk s dsd
e ) / Ps(v/ = — 1) )wn, (1 = )55, m — )

1
X Po(V —1my )wy g, (s /klrmlfe)m

In the next proposition we discuss the 1/2—Lipschitz feature of Ge on some well chosen ball in
the Banach spaces depicted in Definition 6.

dsdmy (131)

Proposition 6. Let a timely inner radius rg r,, > 0 and aperture g r,, > 0 of the sector S r,, in a row with
an unbounded sector Sy, and radius p > 0 chosen to fulfill the specifications of Lemma 5. We also take for
granted the additional condition (93) required for the sector Sy, and the disc Dp.

Then, one can target a small radius €9 > 0 along with constants Bj ¢, > 0, cp,p,,, € C*, for j =1,2 and
k = 1,3,5 proximate to 0, coupled to a fitted radius @1 > 0 in a way that for all € € D, \ {0}, the map Ge
boasts the next two properties

* G maps By, into itself, where Bo, stands for the closed ball of radius @y centered at 0 in the space
dy

Vr.B/l‘/kl/Pfé)‘ . "
®  The norm downsizing condition

||ge<wl) - ge(WZ)

(132)

1
(whukipe) < 5 llwr = 1kp6)

holds whenever wy, wy € F(v,ﬁ,y,kl,p,e)
Proof. We heed the flrst item asserting the inclusion. We fix some real number @; > 0 and pick up an
element w(t,m) in 1-"(1/ﬁﬂk1 o) for e € D, \ {0}, with

el l(w,p)e1,00) < @1-

Concrete bounds are presented for each piece of the map G, applied to w.
The estimates for the first three blocks of G, are merely the same as the ones obtained in (96), (97)
and (98). Namely, owing to Proposition 1 and Lemma 5, we observe that

k

k 1 dp

A N TR < o - 1k 45

e /0 (1) B IR (V=T (s, m)
C

————|e|0 DR |w(T, m)
Cp(rorp)f0

(VB krp)

IN

(wpukipe)  (133)
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for 1 <gq < Jp — 1 along with

k

kq ™ dD,q*"l(’?*P) -~ d
oo [ @ =9 A T Ro(VIme (s m) D
0

Py (7T) v,B,1k1,0.€)
G _
S T e g 039
CP rQ/RD 1°D
for1<p<g—-1withl <g<Jp—1and
Tkl Tkl « So—p_1 1/k ds
5 | @ =) 1 Ry (V) (s, ) i e
Cy _
< 1 |€|((SD p)kl||w(Trm)||(v,ﬁ,y,k1,p,e) (135)
CP(TQ,RD)kldD

aslongas1 < p <ép—1.
The next two pieces of G, follow from Proposition 1 and Lemma 5 together with the estimates
(128) reached in Proposition 5. Indeed, we arrive at

ky ™ D _ d
ey [ (=) 5 TSRy (VT g, (514, m, ) |
0

Py (T) (VB kip€)
C _
S A |€| (o= | |w21d1 (T' m, 6) | |(v,,8,;4,k1,p,e)
Cp(ro,rp) "0
< %M@D*q)h@z (136)
Cp(rorp) "0

for1 < g <Jp —1in a row with

kl Tkl dD,qukl(q*V) _ d
I [ @ =9 & TRy (VIm)wn, (15, m,e) T

Py (T) (v.B.pkr0.€)
G _
< ﬁk“él) PR |y 4, (T, 1, €)||(v,,1k1,0€)
CP(T’Q,RDy‘l‘SD
C
< fe|PrPhg, (137)
Cp(rgrp) "0

for1<p<g—1withl <g<ép—-1
The estimates for the following two components of G, simply recast the ones obtained in (104)
and (108). Indeed,

Tkl Tkl k d]zl_l +o0 q
—_— ™l —3s)hk / Aj(m —mq,€)s
Iy =9 [ A= me)

X Ry(v/ —1m1)w(51/k1,m1)%dm1|

1
< ———————CoA1 o, CiMy, 5, €] M [ (T, m)

Cp (rQ,RD ) k1op

(v.B,u.k1,0€)

(v.B.uk1,06) (138)
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forl1 <g<4;and1 <1< D —1in parallel with
ENINEEES
Py (t) Jo
oo ds
X L Aj(m —mq,e)sPR;(V —1m1)w(sl/k1,m1)?dm1| (W ptk10€)
1 _
< ——Co A1, C1My, 5, €] M ) [co (T, m) ], 0, ) (139)
Cp(rgry) "D

forl <p<g—1land1l <g < withl <] < D — 1. Furthermore, the two ensuing constituents of G¢
mirror the one reached in (104) and (108) and draw on the estimates (128) from Proposition 5. Namely,

h ™ ) Y _q oo
» _
(v.B.pk1,0.€)

ds
X Ry(V —1my)wy 4, (sl/kl,m1,6>?dm1|
1 d
1 C2Al/€0 Clel/(SD |€| b | |w2,d1 (Tr m, €) | |(V,ﬁ,;4,k1,p,e)

CP<TQ,RD) k19p

<

1
———— A ,Ci My, 5, l€ i@,  (140)
Cp(rqrp)f

<

for1<g<—1land1 <[ <D —1intandem with

k ky dj g +k1(9—p)
" T A
/ (Tkl —_ S) kl
0

Py (7)
oo P ()T 1/k ds
X / Al(m —my, G)S Rl( —1m1)w2,d1 (s 1, ml,e)?dml | ‘ (v,ﬁ,pt,kl,p,e)

—o0
1 dj ,+k1(g—
< T C2A1,€O CleL(SD ’e| 14tk (q—p) | |w2,d1 (T, m, €)| (Baknpe)
Cp(rg,rp) "0
1 —
< T C2A1,60 C Mklf5D |€|d1,fi+k1(‘7 p)(Dz (141)
Cp(rgrp) "0

providedthat1 < p <g—land1<g<é —1with1 <I<D-1.
The next element of G, we pay regard is F1 (7, m,€)/P,(7) and is displayed in (131). Its bounds

are obtained in a similar way as the ones reached in (111). Indeed,

||]:1(T/ m, 6)
P (1) (v.B.pki,p€)
1 1 ok -1 -1
< max‘ ‘eo x supe V¥ (1 4 x%1) Y Fij e 6‘61 X/ (142)
Cp(rg Rp)ﬁ meR | Rp (v/—1m) x>0 h€h o

which can be subsided close to 0 provided that ¢y > 0 is tiny enough since 0 & J;.
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We handle the second and third pieces of Ag_ (T, m, €). Paying heed to (109) and the bounds (27),
Proposition 2 kindles

1 Feo
||7Pm(r) /700 By(m —my, €)w (T, my)dmi| (g 0e)
1 1
= max Col By (m, )| (g 0y [l (T, m) [0, .1
Cp(rQRD)ﬁ meR RD(\/—lWl)‘ (B1) (v Bkipe€)
1
< max’ CoB1 ¢, ||w(T, m)|| ko). (143)
Cp(rQRD)ﬁ meR | Rp (v/—1m) @ (vhpkipe)

and bearing in mind the estimates (128) from Proposition 5,

1 [+
”T(r) /—oo Ba(m —my, €)wpa, (T, my, €)dm|l,p1 5, p,0)
1 1
< max| [CallBa(m, €)1 02, (7, 5
CP(”QRD)ﬁ meR RD(\/—lm) (Bu) 1 (v.B.1k1,0€)
1 1
S g max ‘CZBZ,eO(DZ- (144)
7y

CP(TQ RD)kl%D meR ‘RD(\/ -1

ensues.
Thanks to the factorization (113) with (114) and the bounds (128) from Proposition 5, we can apply
Proposition 3 in order to address the last three terms of Ag_(7,m, €). Namely,

1 oo T k 1/k
Tl/ P. —1(m—m wtl—s/l,m—m
Iy Lo ™ BV = m)e(( =) )
1
X PZ( \% _1m1)w2,d1 (Sl/klr my, e)mdemlH(v,ﬁ,y,kl,p,e)
Cs
< - _1_ | |w(Tr m) | |(1/,/S,y,k1,p,e) | |w2,d1 (T/ m, 6) | |(v,/5,;4,k1,p,e)
CP(T’Q’RD)kl‘SD
G
< 1 ||w(T/m)| (v,ﬂ,y,k1,p,e)w2 (145)
CP(TQ,RD)kléD
together with
g [ [ P/ (e85 m )
P (1) oo 0 3 1 , 1
1
X P4(\/ —1m1)w(sl/k1, ml)mdsdml | |(1/,13,]/l,k1,p,€)
Cs
< —— (T, m)| [}, gk pe) (146)

Cp (TQ,RD ) k19p
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as well as
1 “+o0 K Tkl k 1/k
||Pm(T) /_oo ! /0 Ps(v/=1(m —m1))wp a, (5 — )51, —my, €)
1
X Pé(\/jlrm)wz,dl (Sl/kl, my, €) mdsdml | |(Vfﬁ,%k1fpf€)
Cs G
< ————||wag, (T, m, e)||(vﬁ%k11p’ ) < ﬁ@% (147)
Cp (TQR kD CP(erRD)klaD

We pin down the constants €y > 0 and Bje, > 0, cp,,p, € C*,forj=1,2and k = 1, 3,5 proximate to

0 together with a suitable radius @; > 0 in a way that the next inequality

ép—1
e

a
T(F2)  Cplror, )kl‘sD

1 C B
p 1 (JD p)kl
N PR e T e )
=p=a ( 12} ) CP(TQ,RD) 1D

k¥ _
+ Z |A5D/P T(s ! G 1 e(()(SD P
1<p<ép-—1 (6p = p) Cp(ro,r,) %D

1

sp—1
+ (90 X lagaprl[ Kl —— el
g=1 F(k—q) Cp(ro,rp) %

1 C _

p 1 (6p—p)k
+ 2 |Ag,p prpEE - K —eyP 1@2})

1<p<q-1 (=5 —") Cp(rgr,)a®
ki 1 1 dy
CrA; ., C1 My, 5,.€ 'q(Dl

d 1/2 1 €0 1.9D~0
r() P2 Cp(ro p, ) B

+ Z &' " { Z 124,51

k¥ 1 1 digtki(g—p)
oL Ay d:q+k11(qu) (27r)1/2 —CoAle,CiMi, 5,60 @]
1<p=q-1 (=) Cp(rgrp) ™’

o] k] 1 1 i
+5l Z aq,élfl[ dlq (27_[)1/2 LC2A1,€OC1M’(1,5D€(] (’OZ
=1 I(¢h) Cp(rorp) "0
kY 1 1 Stk
1qtk(q P)(Dz”

+ ), |Agpl— C2A e, Ci My, 5
+k 1/2 1 0 1060
1§P<q*1 F( Lg kll(q P)) (27T) CP(”Q,RD) 1305

+hAg <@ (148)
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holds where

A 1 max‘ 1 ‘e
G — 0
Cr(rgrp) ™0 "< Ro(v=Tm)

—yxk i1—1 i —
x supe V¥ (1 + x%1) Y Fije€g x! !
x20 heh

1 1 ‘ 1 ‘
max | ————=—=—|C2B1 ¢, @1
(2mr)1/2 Cr(rax )ﬁ meR | Rp (v/—1m) «
D
1 1 max ‘ 1
(271’)1/2 meR

+

" Rp(v/=1m)

1 ‘CZBZ,eOCOZ
Cp(rgrp) "0
1 Cs

—@1@ + |cpy p, |

1
@MY2 ¢4 (rory )T (2m)1/2

C
3 (D%

+ [cp,,p | ool )k%
P rQrRD 1°D
1 G 2
+ |CP5 P6| )
Pol (5 V172 1
( 7'() CP(”Q,RD)kléD

(149)

We check that all the terms on the left handside of (148) except Ag can be tapered off since they contain
positive powers of €y > 0 in particular due to the constraint (18). Besides, the constant Ag can be lessen
provided that the constants €y and By CP Py forj =1,2and k = 1, 3,5 are taken in the vicinity of 0.

At last, stacking up all the above bounds (133), (134), (135), (136), (137), (138), (139), (140) (141),
(142), (143), (144), (145), (146), (147) under the contingency (148) yield that G- maps By, into itself.

In the second part of the proof, we address the second item of Proposition 6. Let wq,w» be
elements of the ball B, of the space Fg/l/ B k1 .€) with radius @; > 0 chosen as in the first part of the
proof.

We provide norm estimates for each part of the difference Ge(wq) — Ge(wz). The bounds for
the foremost five blocks of the difference are barely the ones found in (117), (118), (119), (120), (121).
Namely,

LA a 1/k 1/k ds
||Pm(r) /0 (' —s) B $TRp(V—1m) (wy (s, m) — wy(s 1,m))?| (W, B1k00)
C _
< ——1 el DRy (1, m) — wa (T, M) |y ppkype)  (150)
Cp(rorp)f1op
for1 < g < Jp — 1 along with
k kq dp g+k1(q-p)
™ T k 24 2 T q
™ —5 ky sPR —1m
I b @ 9) p(v=Tm)
ds
X (wi(sV%1, m) —wZ<Sl/k1,m))?| (B 1tk0€)
C _
< —1L|€|(5D PR | (T,m) — w) (T, m)| (B ukipe) (151)
Cp(TQ’RD)kl‘jD
for1<p<g—-1withl <gq<Jp—1and
hooT Sp—p—1 1/k 1/k ds
e /0 (24— )0 P15 Rpp (/= Tm) (wn (515, m) = w55, ) 1 s )
C _
< —————[e| P |wy (T, m) — W (T, m)|| (g k) (152)

Cp (TQ,RD ) kyop

doi:10.20944/preprints202301.0582.v1


https://doi.org/10.20944/preprints202301.0582.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2023 doi:10.20944/preprints202301.0582.v1

42 of 60
aslong as1 < p < ép — 1. Furthermore,
k kq d
fald! /T k g _q /+°0
™ —35) K A;(m—myq,€)s"R; (v —1m
||Pm(T) 0 ( ) . l( 1 ) l( 1)
ds
X (w1 (sl/kllml) — Cdz(sl/kl,ml)) ?dm1| (v, Bk 0€)
1
< ﬁczAl/eoclelréD |€|dl"7 | |w1 (T, m) — LLJZ(T, m) | |(v,/3,y,k1,p,e)' (153)
Cp(rqr,) "0
holdsfor1 <1 < D —1and 1 < g < §; together with
k kq d g+k1(q—p)
™@ T k 4 -1 +o00
- ™ —35 ky / A;(m —mq,€)sPRy(v/ —1m
I =9 [ Ay =, )R (V= Tm)
ds
X ((U] (Sl/kl, ml) ) (sl/k1, ml)) ?dml | ‘ (v,B,1,k1,0.€)
1 _
< CoA1 CiMy s, el TP [y (T, m) — o (T,m) [ oy ) (154)
Cp(rgrp)f1%p

for1<1<D-1,1<g<¢and1 < p < q— 1. Besides, bounds for the sixth piece of G¢(w1) — Ge(w2)
result from (143) and are written

1 oo
||Pm(T) /wo By (m —my, €) (wr (7, my) = wa(T,m1) )| v, ks pe)

1 1
< max ‘ ’CZBL ||ewr (
Cr(rge,) it "< | Ro(V=1m) [

T,m) — wy (T, m)| (155)

(v.B.pkp€)

The treatment of the seventh piece of Ge(w1) — Ge(wy) springs from (145). Indeed,

k

"p,f(T) [N A T)

X (wr (T4 = 8)V81,m —my) — wp (741 — )91, m —my))
X PZ( \ _1m1)w2,d1 (Sl/kl/mlle)

C3

dsdm |
s

1
(c —3)

(v,B.uk1,0.€) ’ |w2,d1 (T, m, 6) |

(v pkip€)

<

( )% le(r,m) - w2(T/ m)l (v,B.uk1,0€)
Cp YQ,Rp 1°D

Cs
< ————Nlwi(t,m) — w2 (T, m)|| (1,8 k1 pe) @2 (156)

Cp(rgrp) R0
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The hindmost term of the difference Ge(w1) — Ge(w2) can be processed in a similar way as for the
difference (123) given by (126). Namely,

1

”Pm(r)

/_+OO o /oTkl Ps(vV/=1(m — my))ewy (T = )51, 1m0 — my)

x Py(v/—1my)wy (Sl/kl,ml) dsdm
s

_ Pml(r)/:om h /Orl P3(¢j1(m—m1))w2((rkl —S)l/kl,m —my)

x Py(v/=1my)wy(s/%1, my)

(Tkl — S)S deml | |(V'/5rl’lxkl ,p,E)
1
< 1 C3 (| |w1 (T, m) | (v,Buk1,0€) + | |(4J2 (T/ m) | |(v,ﬁ,y,k1,p,e))
CP(YQ,RD)kl‘SD
X | |w1 (T/ m) - WZ(T/ m) | (v.B.1k1,0€)
1
< ﬁc32@1 | |(,U1 (T, m) — a)z(T, m) | |(1/,ﬁ,y,k1,p,e)‘ (157)
Cp (TQ,RD) k1op

We skirt the constants g > 0, By ¢, > 0 and cp,p, € C*, cp,p, € C* nearby the origin in a manner that
the next inequality

op—1

I G (6p—q)k
( )y |”q159|[ 0y ki —€ .
9=1 I(Z')  Cplrgry)™D

1 C _
p 1 (dp—p)k
L 1Ay dpgt+ki(q—p) & m— 1})
1o (R e oy
Ky Ci Sp—p)k
4 Z |A5D,p r((s 1_ ) — 6( D P) 1
1<p<ép—1 D—P CP(TQ,RD)I{l&D
D—1 (5] kq 1 1 d
A—d 1 1,
+ Z 601 l[ Z |aq,51 [ d; (27_[)1/2 1 CZAI,eoclel,(SDGO q
1=1 g=1 F(k—l") CP(”Q,RD)kléD
k¥ 1 1 d; s +k1(g—p)
+ Z |AM’| d, +k11(qu) (2m)1/2 LCZAlfeoclelﬁDeOl/q 1 H
1<p=<g-1 (=% —) Cp(rg,r,) A%
1
+Sg < 5 (158)
holds where
1 1 1
Sg = max‘ ‘CZBl,e
ROV Cp(rg ry) i e  RD(V=Tm) L
+ [cp,,p, | ! Cs @3 + |cp, p,| ! Cs 2@,
LRl V172 1 s Pl 5 V172 1 .
@72 Cp(rgrp) o0 @M Cp(rgry) i
(159)

We notice that all the terms appearing in the left handside of (158) excluding Sg can be dwindled since
they involve positive powers of € according to the constraints (18). Furthermore, the term S¢g can be
depleted whenever the constants By ¢, > 0 and cp,p, € C*, cp,p, € C* are taken close to 0.
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In the end, the coupling of all the above bounds (150), (151), (152), (153), (154), (155), (156), (157)
under the condition (158) triggers the shrinking feature (132) for the map G..

In conclusion, we select the radius @7 > 0 and pinpoint the constants ey > 0, B jeo > 0, forj=1,2,
along with cp, p, € C*, for k = 1,3,5 nearby the origin, in a way they obey both (148) and (158).
These values taken for granted, the map G fulfills both inclusion and shrinking properties described
in the items of Proposition 6. [

The oncoming proposition provides a solution to the second convolution equation (50) with (51)
crafted in the Banach spaces displayed in Definition 6.

Proposition 7. Consider an appropriate inner radius rq r,, > 0 and aperture g r,, > 0 of the sector Sg r,,
together with an unbounded sector Sy, and radius p > O that respect the requirements of Lemma 5. Then, a
radius €9 > 0 along with constants Bj ¢, > 0, for j = 1,2 and cp, p,, € C*, for k =1,3,5 can be pinned down
nearby 0 together with an appropriate radius @1 > 0 in a way that for all € € De, \ {0}, a unique solution

w14, (t,m,€) to (50), (51) exists that is favoured with the next features

*  themap (T,m) — w4, (T, m,€) belongs to Fg/l B 1 1,0,€) under the restriction
sup | |w1,d1 (Tr m, €) | ‘ (v,B.u.k1,0€) < @. (160)
€€D¢\{0}

*  the partial map € — wy 4, (T, m, €) stands for an analytic map from De, \ {0} into C, for any prescribed
T €Sy, UDpandm € R.

Proof. Let the constants ¢y > 0, Bje, >0, forj=1,2and cp_p € C*, for k = 1,3,5 together with
@1 > 0 be fixed as in Proposition 6. The proposition 6 asserts that G induces a contractive map from

the closed ball and complete space B, into itself for the distance d(x,y) = ||x — y| ) inherited

(v.Bpkrp.e
from the norm on the Banach space Fg/l Biikipe)
The classical Banach fixed point theorem then claims that Ge boasts a unique fixed point

wy 4, (T, m, €) inside the ball B, , for all € € D, \ {0}. In other words,
Qe(wlldl (t,m,e)) = w14, (t,m,€) (161)

holds. Furthermore, the map w; 4, (7, m, €) depends analytically on € since G itself does on the domain
D¢, \ {0}. On the other hand, we observe that the convolution equation (50) can be reorganized as the
equation (161) by moving the term

(lekl )‘SDRD(\/ —1m)a)1,d1 (t,m,€)

from the right to the left handside of (50) and dividing by the resulting equation by the map P,,(7)
given by (86). As a result, the unique fixed point wy 4, (T, m,€) of Ge penned in By, precisely solves
(50), (51). The result ensues. [

7. Building up a finite set of holomorphic solutions to the coupling of partial differential
equations (36), (37)
7.1. Fourier-Laplace transforms solutions to the pairing (36), (37)

In this section, we exhibit genuine analytic solutions expressed by means of Fourier-Laplace
transforms to the coupling (36), (37) reached at the end of Subsection 3.1.

doi:10.20944/preprints202301.0582.v1
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Proposition 8. For all unbounded sectors Sy, with bisecting direction di € R and disc D, that obey the
demands of Lemma 5, we introduce the two partial maps

k too T e AT
(ullz) = Uj,dl (ull z, €) = W/L / a)j,dl (Tr m, 6) exp ( - (a)kl)eﬁzm7dm (162)
dl,ul -

for j = 1,2, for all € € D, \ {0} where the Borel map w4, is manufactured in Proposition 5 and solves
(49), the Borel map w4, is crafted in Proposition 7 and fulfills (50), (51) and the radius €9 > 0 is taken

in agreement with Proposition 5 and Proposition 7 and Ldl’”l = [0, +oo)emd1fu1 stands for a halfline in a
direction dy ,, € R suitably chosen and described below.
The maps U; 4, (u1,2,€), j = 1,2, are endowed with the next two properties.

*  They define holomorphic functions that are bounded by a constant not relying on € on a product Uy 4, X Hg
where Uy 4, represents a bounded open sector centered at 0 with bisecting direction dy, for any given
0<p <B.

*  The map Uy 4, (u1,2,€) solves the equation (36) for prescribed initial data Uy 4, (0,z,€) = 0. The map
Uy 4, (11,2, €) is subjected to the equation (37) for vanishing data Uy 4,(0,z,€) =0

The sector Uy 4, is submitted to the next technical constraints:
1. A positive real number Ay > 0 can be singled out with the next property: for all uy € Uy 4,, a direction
di,u, € R (that might rely on u1) can be favoured with
eVl € Sy, , cos(ky(dy,, —arg(ui))) > Aq. (163)
2. The radius ry, b 0 of Uy 4, withstands the next upper bounds

el

1k
0 <ru, <58 w+ &)k

1,d

(164)

for some positive real number Ay > 0, where Ay > 0 is defined in the above item.

Proof. We discuss the first item of the proposition. We mind the maps w, 4, and wy 4, constructed in
Propositions 5 and 7 and we select a bounded sector U 4, that matches the above prerequisite (163)
and (164). We set u € Uy 4, and take

T =reV 1 ¢ Ly

1,141

for given real number r > 0 where d ,, is the direction chosen above. Then, then next two inequalities
for the Borel maps hold.

e A constant @, > 0 can be found for which the next bounds

T = 1
w2, (T, €)lexp (= () [le =]

<@ (14 |m|)_l‘e_5|m\i exp (V(é)kl) exp ( — (L)h cos (ky (dy,, — arg(ul))))e—mlm(z)

el |uq|
/ 1 r r
< @y (1 + |m|)Me= BN — exp (v(—)1) exp (= (—)1A
2( m]) €] p( (|€|) ) P( (|u1|) 1)
o —(B—pm| 1 A
< @y(14 |m|)te B=F)l ‘Hexp(—(|€|}(l)rkl) (165)

hold forallr > 0, all m € R.
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*  Similarly, a constant @; > 0 can be singled out with the bounds
T - 1
@i, (T,m, )l exp (= (L)) [le¥ ]|
1 T
1= (Bl 1 Ay
< @1(1+ |m]) e & (— ()t 6s)

provided that r > 0 and m € R.

As a result, we reach the next two upper bounds for the maps U; 4., j = 1,2. Namely,

k10 too ] A] k oo oy
[Un g, (11, 2,€)| < (27r)1/2/0 o (- (g ) [ e 6

+oo - +oo /
< (2’2116)012/2/0 exp(—Alrlfl)drl /4» e F=F)IMdm  (167)

by means of the change of variable r = |e|r; in the integral together with

+o0 +o0
Uy 4, (11, 2,€)] < (21(71;)011/2 /0 exp(—Alr’lﬁ)drl /_oo e~ (B=B)ml gy, (168)
foralluy € Uyq,,z € Hy and all € € Dg, \ {0}. We observe that the right handside of both (167) and
(168) are unconstrained constants relatively to € on Dg, \ {0}. The first item ensues.

Concerning the second item, we remind from Proposition 5 (resp. Proposition 7) that the Borel
map wy 4, (T,m,€) (resp. w4, (T,m,€)) is shown to solve the associated convolution equation (49)
(resp. (50), (51) ). By tracking reversedly the computations made in Subsection 3.2, we deduce that for
all € € D, \ {0}, the next properties hold.

*  The holomorphic map U, 4, (11,2, €) given by the expression (162) for j = 2 obeys the equation
(47), then fulfills (43) and finally solves (36) on the domain U, 4, X Hg, for prescribed initial data
Uy 4,(0,z,€) = 0.

*  The holomorphic map Uy 4, (11, z, €) expressed in the form (162) for j = 1 conforms to the equation
(48), then satisfies (44) and finally is subjected (37) on the domain U, 4, X Hp/, for vanishing initial
data Uy 4,(0,z,€) = 0.

The second item of Proposition 8 follows. [J

7.2. Construction of a finite family of genuine solutions to the coupling (36), (37) and sharp bounds for the
neighboring differences of related maps

We need to refer to the usual definition of a good covering in C* given in the textbook [23].

Definition 7. Let ¢ > 2 be an integer. We consider a set £ = {Ep}o<p<c—1 of open bounded sectors &,
centered at 0 endowed with the next three properties

1. The intersection of two neighboring sectors &, and &, 11 is not empty for any 0 < p < ¢ — 1, where the
convention £ = & is chosen.

2. The intersection of any three sectors £y, £, and &, for distinct integers p,q,r € {0,...,c — 1} is empty.

3. The union of all the sectors £ is subjected to

¢—1
U & =u\ {0}

p=0

for some neighborhood U of 0 in C.

doi:10.20944/preprints202301.0582.v1
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Such a set £ is designated as a good covering in C*.

The next definition displays some domains in C which are crucially involved in the set up of
genuine solutions.

Definition 8. We consider two finite sets of bounded open sectors centered at 0,

Uy = {Uig,bo<p<c—1 + €={Epto<p<c
and a bounded sector ‘T centered at 0, for which the next list of constraints is required.

1. Foreach 0 < p < ¢ —1and fixed € € De, \ {0}, for some given radius ey > 0, the sector Ul,dp has
bisecting direction d, € R and obeys the next three rules

* Foreach0 < p < ¢ —1, one can single out an unbounded sector Sy, centered at 0 with bisecting
direction dy, that is subjected to the requirements of Lemma 5 (namely for which the lower bounds

(89) and (90) hold).
e Foreach 0 < p < ¢ — 1, a positive real number A, > 0 can be selected in a way that for all

uy € Uy q,, a direction dyy, (that might depend on uy) can be found with
oV lpuy ¢ Sa, , cos(ki(dpu, —arg(u1))) > Ap. (169)
*  Theradius ry, 4y 0 of Uy 4, is constrained to the next upper bounds

el

1/k
0< rul,dp < Ap W

(170)

for some positive real number A, > 0, where A, > 0 is determined in the above item.

2. The radius v+ > 0 of the sector ‘T satisfies the restriction
Ak

p

r < =~ a1
T (V+Ap)1/k1

where Ay, Ay are specified in 1. for 0 < p < ¢ — 1. Besides, the sectors &, share a common radius given
by ep, for0 <p <g-—-1
3. Forall0 < p < ¢ —1, the sectors £y and T stick to the feature

€t € Ulldp

provided that € € Eyand t € T.
4. The set € stands for a good covering in C*. Furthermore, the aperture of the sector T is taken nearby 0 in
a way that the set

L={pe{0,...,¢—1}/et & (—o0,0], forall e € Ey,all t €T}
is not empty.
These sets Uy, € and the sector T form a so-called fitting collection of sectors.

In the next proposition, we shape a finite family of analytic solutions to the coupling of auxiliary
problems (36), (37).

Proposition 9. We consider a fitting collection of sectors Uy, € and T in the sense of Definition 8. The solutions
to (36), (37) are cooked up as follows.
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—  The equation (36) possesses a finite set of holomorphic solutions (u1,z) — Uz,d,, (u1,z,€), for0 < p <
¢ — 1, on the domain Uy 4, x Hg, for all € € De, \ {0}, where € is proximate to 0, forany 0 < B’ < B,
that fulfills the initial condition U, 4, (0,z,€) = 0. These maps enjoy the next two qualities: for each
0<p<g-—1,

1. themap (uy,z) — Uy, (11,2, €) is bounded by a constant unconstrained to € in De, \ {0}, on the

product Ul,d,, X Hg.
2. themap Uy, (11,2, €) is represented as Fourier inverse and Laplace transforms,

Up 4, (111,2,€)
k

__ "M e (UK \/jzmdl
~ 202 /Ldp,ul /foo waa,(T,m,€) exp ( (Ml) )e - dm (171)

where the Borel maps (T, m) — wy 4, (T, m, €) appertain to the Banach space
dp

F(U/ B ki) and are subjected to

sup | |w2,dp (T/ m, (—Z) | |(1/,[3,;4,k1,p,e) < @ (172)
€€Dey\{0}

for suitable constants @, > 0 and radius p > 0, for all € € D, \ {0}.

—  The equation (37) (where the expression Uy (u1, 2, €) needs to be replaced by Uy 4, (11,2, €)) owns a finite
set of holomorphic solutions (u1,z) — Ul,dp(m,z,e),for 0 < p <¢—1,on the domain Ul,d,, x Hg, for
all € € De, \ {0}, where € is closed to 0, for any 0 < B’ < B, with the initial condition Uyq, (0,z,¢) =0.
These maps are endowed with the next two features: for each 0 < p < ¢ —1,

1. themap (u1,z) — Uy a,(u1,2,€) is bounded on the product Uy 4, x Hg by a constant not relying

to e in D¢, \ {0}.
2. themap Uy 4,(u1, 2, €) is expressed by means of a Fourier inverse and Laplace transforms,

Us,g, (1,2, €)
k

-1 e (T \k \/7ilzmdiT
= @ /Ldp,,,l [m wi,a,(T,m,€) exp ( (Ml) Je - dm (173)

where the Borel maps (T, m) — wy 4, (T, m, €) are crafted in the Banach space
d

v .
F(V, BikLoe) with bounds

sup | |w1,dp (T/ m, 6) | |(v,/3,y,k1,p,e) <@ (174)
€€De, \{0}

for appropriate constants @1 > 0 and radius p > 0, for all € € D, \ {0}.

Proof. The proposition 9 is a downright consequence of Proposition 8 and of the very definition of
fitting collections of sectors depicted in Definition 8. O

In the next proposition we examine a finite set of maps related to the analytic solutions of the
coupling (36), (37). In particular, we obtain a control on their consecutive differences which turns out
to be an essential information in the study of their parametric asymptotic expansions.

Proposition 10. Let us prescribe a fitting collection of sectors Uy, € and T in accordance with Definition 8.
Foreach 0 < p < ¢ — 1, we set up the maps

ujp(t z,€) = U, (et z,€) (175)
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for j = 1,2, where U; 4, are described in Proposition 9. The next attributes hold: for all0 < p < ¢ —1,

*  the maps uj,(t,z,€), j = 1,2, are bounded holomorphic on the product T x Hg x &, and satisfy
ujp(0,z,€) =0,
*  one can exhibit constants M, ; > 0 and K, ; > 0 such that

Ky,
|1jps1(t,z,€) —uj,(t,z,€)| < M ;exp (— ’€|k1) (176)
forallt € T,alle € 5p+1 NEp,allz € Hﬁ/,forj = 1,2, where we adopt the convention Ujc = ujp.

Proof. The first item is a direct outcome of the properties of the maps U;,, j = 1,2, stated in
Proposition 9 and from the characteristics 2. and 3. of the sectors £, and 7 listed in Definition 8.

The second item follows from a path deformation argument. Indeed, let us take p € {0,...,¢c — 1}
and j € {1,2}. For any given m € R and fixed € € D¢, \ {0}, the partial maps T — w;g4, (T, m,€),
k = p,p +1, represent analytic continuation on the sector S; of a common analytic map we denote
T — wj(T,m, €) on the disc Dp.

For any prescribed € € £,11 N &p and t € T, we deform the oriented path L, — Ly, into the

p+1et
union of three oriented curves

—  Two halflines

Ly [0/2,+00)eY " Miret | Ly iy = —[p/2,+o00)e¥ Tt

p1,etip/2 =
—  An arc of circle 0
Cp,p+1,et;p/2 - {Ee\/jw/e € (dp,et/ dp—l—l,et)}

centered at 0 with radius p/2 that connects the above two halflines.

Then, the classical Cauchy’s theorem enables us to reshape the next difference into a sum of three
contributions

uj,P-‘rl (t/ z, €) - uj,p(tr Z, G)

k
- (27‘[;1/2 /

Ldp+1,er?f7/2

+OO Tk ] dt
/ (Ujrdp+1(T/m,€)eXp(— (a) 1)6\/72m?dm

__hk e _ (T /1w 4T
(2m)1/2 /Ldpet;p/z ~/*oo “jidy (r,m, ) exp ( (et) e T dm

+ _k / /How‘(T m,e)exp (— (l)kl)ev *1zm—drdm (177)
(2m)1/2 Je JAET et T

We provide upper bounds for the first piece of (177)

b= i
ez ),

p.p+letp/2

+o0 - _ o
/ Widy i1 (t,m,€) exp ( — (f)kl)e\/ilzmidm‘.
dpt1,e00/2 o ct -
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Based on the bounds (165), (166) and (172), (174) together with the requirements asked in Definition 8,
we arrive at

@k, oo +eo Api1
I <17/ —(B=B")Iml 4 / L Pl g
1= 2mn " oy TP e

2wiky oo / ‘oo 1 leff 1 Apia Api1
j —(B—B')m / b P+l k-1 _ Bptl gy
B (2”)1/2/0 ‘ am X p/2 el {Aerl kyrki=1 }{ e[ e ( et ' )}dr

20iky 1 el 1 ox (_Ap+1
= OB Ayt ki(p/2)fi 1 P LT el

provided thate € £,,1 N &y, t € T and z € Hy.
In the same vein, we can get upper bounds for the second piece

oo T 1 AT
— ‘(271 7 /Ld , / Wjd, (t,m,e)exp (— (et)kl)eﬁzm7dm)
2

of (177). Namely,

(0/2)1) (178)

20k 1 et 1 A
j*1 e Ky
e By ST Y R T a79)
foralle € £,11NEy, t € T andz € Hy.
At last, we handle the integral along the arc of circle closing (177),
T ki o/ —1zm dt
I3 = / / wi(t,me)exp (— (=) )e —dm)|.
27'[ 1/ Copi1etips2 ] P et ) T ‘
Owing to the bounds (172) and (174), we observe that
/2 /2)M
lwi(t,m,e)| < @;(1+ |m|)"Fe~ ﬁ\m\f)' g exp (1/(p|€|k)1 ) (180)

aslongas T € Cppy1erp/2,Mm € Rand € € £y11 N Ep. Besides, in view of the restrictions discussed in
Definition 8 1. it follows that

cos(kq (0 —arg(et))) > Ay 1 = min(Ay, Api1) (181)

forallt € T, e € £,,1 N &y, granted that the angle 6 belongs to (dpet, dpi1,et) OF (dpy1,er, dpet). By
virtue of (180) and (181), we come up with some constant Ap’p+1 > 0 with

k (D +oco 12
lgsagﬁ%(/ Al
7T 00

priet 1 (p/ 2)k (p/2)" 4
— =do
‘/Wt T P g o (= T B |

2k1(Dj

= @025 — p)

1 App+1 ki P
|dpi1et — dp,et|g exp (— o[ (p/2)%) 5 (182)
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contingentupon t € T, € € £p11 N Ep and z € Hy. Hence, we deduce that

2k1(D] AP Pl . Ap Pt .
< , ) 4, :
Iz < 2m)172(p— ﬁ,)|dp+let dp,et 3T |exp( el (p/2)") exp ( 2lelk (0/2)7)
2k16@] o ~p,p+1 .
< meﬂft _dp'€t|§Ck1/p/Ap,p+] exp (— 2leff (0/2)%)  (183)
holds, where

A
= supxexp (— —22(p/2)h12h)

Ckllp,ﬁp,pﬂ >0

aslongase € ,11NEy, t €T and z € Hy.
In summary, the splitting (177) along with the bounds (178), (179) and (183) beget the awaited
estimates (176). O

8. Main statement of the paper. Construction of a finite set of holomorphic solutions to the
leading problem (14). Description of their parametric asymptotic expansion

8.1. Parametric Gevrey asymptotic expansions of the associated maps (175)

We first call to mind a result known as the Ramis-Sibuya theorem, see Lemma XI-2-6 in [23].

Theorem (R.S.) Let {&p }o<p<c—1 be a good covering in C* be fixed as described in Definition 7. We denote
(I, ||.|lr) a Banach space over C. Forall 0 < p < ¢ — 1, we set Gy : £, — F as holomorphic functions that
obey the next requirements

1. The maps Gy are bounded on &y forall 0 < p < ¢ — 1.

2. The difference ©y(e) = Gp11(€) — Gp(€) defines a holomorphic map on the intersection Z, = £,,11 N Ey
which is exponentially flat of order kq, for some integer ky > 1, meaning that one can select two constants
Cp, Ap > 0 for which

A
||®p(€)||IF <GCp exp(—ﬁ)

holds provided that € € Z,, for all 0 < p < ¢ — 1. By convention, we set G = Go and &; = &.

Then, one can find a formal power series G(€) = ¥, Gn€” with coefficients Gy belonging to F, which
is the common Gevrey asymptotic expansion of order 1/ky relatively to € on &, for all the maps Gy, for
0 < p < ¢ — 1. It means that two constants Kp, My > 0 can be singled out with the error bounds

al o N+1 N+1, N+
|1Gp(€) Z e"|lp < KpM, " T(1+ T)|€| (184)

for all integers N > 0,alle € Ep,all0 < p <¢g—1.
In the next proposition we exhibit asymptotic expansions of Gevrey type for the two sets of related

maps introduced in Proposition 10, {u i (t,z, €)}0§p§g—lr j = 1,2, relatively to the variable €.

Proposition 11. We denote IF g/ 7 the Banach space of bounded holomorphic functions on the product T x Hpg
which are C—valued, equipped with the sup norm. Then, for j = 1,2, a formal power series

— Y Gyj(t,2) (185)

n>0
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with coefficients Gy, j(t,z),n > 0, in g, 7 can be shaped that obey the next error bounds. Forall0 < p < ¢—1,
two constants K, ; > 0 and My, ; > 0 can be chosen with

up [, (62,6) = 3" Guj(ty2) o] < Ky (M )NHIT(1 4+ L) e (186)
sup [Ujp\t 2, mj\br2) 1S Bp,jiMp)j ke

teT n=0
ZEHﬁ/

for all integers N > 0, all € € &p.

Proof. Letj=1,2. Forall0 < p < ¢ —1, let us define the maps G; , : £, — Fg 7 by the expression
Gip(e) == (t,z) = ujp(t z,€). For 0 < p < ¢ — 1, these functions share the next two features:

—  The maps G;j,, are bounded holomorphic on the sector £, according to the first item of Proposition
10.
—  The differences ©; ,(€) := Gj11(€) — Gj,(€) are submitted to the bounds

o) <M Ky,
103 (€)ls < Myjexp (- 1)

for the constants M,; >0 and Kp;j >0 obtained in Proposition 10, whenever € € 5p+1 Né&y,
where the convention G = Gjg and & = & is in use.

As a result, the requirements 1. and 2. of the Theorem (R.S.) are matched for the sets of maps
{Gj,p }nggg_l, j = 1,2. We deduce the existence of formal series G]'(e), j = 1,2, which are the Gevrey
asymptotic expansion of order 1/k; relatively to € on &, shared by all the maps G, for0 < p <¢—1.
This is tantamount to the statement of Proposition 11 and the awaited bounds (186). O

8.2. Statement of the main result

The next statement stands for the pinnacle of our work.

Theorem 1. Let us prescribe a fitting collection of sectors Uy, £ and T accordingly to Definition 8. We take for
granted that all the conditions (15), (16), (17), (18), (19), (20), (22),(23), (24), (25), (26) and (27) enumerated
in Subsection 2.3 are fulfilled.

Then, provided that the constants €9 > 0 and Cy ¢, > 0, Bje, >0, j = 1,2, along with cg,g, € C* and
cpp,y € €, j=1,3,5are nonvanishing and taken proximate to 0, the main equation
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Q(9,)u(t,z,€) = (et)0 (t0;)°PRp (9, )u(t, z,€) + Dil e®1ta(z,€)(10;)% Ry (32)u(t, z, €)

=1
+ f(t,z,€) +c1(z,€) [ZJLln (v& —id)u(t, z,€)] log(et)
+b1(z,€) [u(t, z,€) — [2\/1—7171(7: —id)u(t z,¢€)] 1og(et)} +by(z, 6)2\/;17r(72 —id)u(t,z,e€)
+ CQleQl(aZ) [2\/1_71”(7: - id)u(t,z,e)] x Q2(0z) [2\/1—17_[ (ve — id)u(tlzle)] x log(et)

+ e Pr(@:) [u(tz,¢) - [2\/;1”(7: ~id)u(t,z,€)] log(et)|

< Pa(2s) [ (2 — id)u(t 2,0

+ ¢p,p, P3(9z) [u(t,z, €) — [2\/;171(72 —id)u(t z,¢€)] log(et)}
X Py(07) [u(t,z, €) — [2\/;171(72 —id)u(t z,¢€)] log(et)}

+ cpsp, P5(02) [ZJ;ln (ve —id)u(t,z,€)] x Pg(9:) [2\/1—7171(7: —id)u(t,z,€)] (187)

with vanishing initial data
u(0,z,6) =0 (188)

possesses a finite set of bounded holomorphic solutions (t,z,€) — up(t,z,€), for all p € Iy, where I is the
subset of {0, ..., ¢ — 1} introduced in the item 4. of Definition 8, on the domain T x Hg x Ep. In the equation
(187), the formal monodromy operator around 0, yZ acts on the analytic map € — u,(t, z, €) through Definition
5 by use of (11). The next additional features hold.

e Foreach p € I, the solution u, can be expressed by means of a Fourier/Laplace transform

up(t,z,€) = upp(t,z,€) +up(t z,€)log(et) (189)
where
k1 oo T\ ky\ /=T dt
uj,(t,z,€) = / / wjq (T, me)exp (— (=) )eV " —dm (190)
1P (27-[)1/2 Ldp,er?ﬂ/z oo AP ( et ) T
. d
for Borel maps (T, m) — wj4,(t,m,€), j = 1,2, that belong to the Banach space P( 15’ B 1k 0) under the

restrictions (172) and (174).
*  The two components u;,(t,z,€), j = 1,2, of up(t,z,€) are endowed with Gevrey asymptotic expansions
Gj(e) given by (185) of order 1/ky relatively to € on &, displayed in (186).
e Ifone sets the formal expression

G(e) = G(e) + Gy (e) log(et), (191)
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then, G(€) conforms to the next equation

D-1
Q(9:)G(e) = (et)™ (t9)*P Rp (9:)G (e) + Y e™tUay(z,€) ()" Ry (92) G (e)

1=1
+fltze) +aze) s \/;m (12 — id)G(e)] log(et)
+m@mﬂ©@—{héh;ﬁ—mf@ﬂbgaﬂ+m@£5¢:ﬂw94@@@
+¢0,0,Q1(92) [2\/;“1(72 - id)G(G)] x Q2(92) [2\/;17_[ (7e — id)@(e)] x log(et)

+cp,p,P1(92) [G(e) - [2\/;171

(72 —id)G(e)] log(et) |

< Do) [ (0t~ ) ()
e, Po(2:) [B(6) — 52— (07 — )] log(et)|
< Pu(2:) [(6) ~ [ (07 — i) G(e)] log(et)|

1 1
2v/ =171 2v/ =171

where the formal monodronty operator around 0, % acts on the formal expression € +— G(€) by means of
the formula (9) from Definition 4.

+ cp,p,P5(32) | (v —id)G(e)] x Ps(92)[ (i —id)G(e)] (192)

Proof. For all p € I}, where I is the set described in the item 4. of Definition 8, we define
up(t,z,€) = uyp(t,z,€) +u,(t,z,€)log(et)

where the maps u; , are introduced in (175) of Proposition 10.

As a result of the definition of I; together with the first item of Proposition 10 and the classical
limit lim,_,o x* log(x) = 0, for any natural number & > 1, we check that the map u,(t,z, €) represents
a bounded holomorphic function on the product 7" x Hg x & that vanishes at t = 0, meaning that
up(0,z,€) =0forallz € Hy and € € &).

According to Proposition 9, we know that for each € € D¢, \ {0},

—  themap (uy,z) — U, (u1,z,€) stands for a solution of the equation (36) on the domain Uy g, x
Hg
B'r
—  themap (uy,z) — Uy 4, (11,2 €) embodies a solution of (37) where the expression Uy (u1, z,€) is
asked to be replaced by Uy 4, (uq,z,€) on the domain Uy, X Hp.

Then, on the basis of the computations (35), (34) and (33) performed reversedly from Subsection 3.1, we
deduce that u p(t, z,€) solves the main equation (14), rephrased as (187), on the domain 7 x H B X Ep,
forall p € I;.

The first item of Theorem 1 follows from the Fourier/Laplace representation of the maps
Uj,dp (u1,z,€),j =1,2, displayed in Proposition 9 that are used to define the components u j,p(t, z,€) in
(175).

The second item of Theorem 1 merely restates the result obtained in Proposition 11.

We focus on the third item. We first need to disclose partial differential equations that the maps
Ujyp (t,z,€),j = 1,2 turn out to fulfill. Indeed, the usual chain rule enables the next computation

tosujp(t,z,€) = (4100, Uja,) (€t 2, €)

doi:10.20944/preprints202301.0582.v1
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forall0 < p<¢—1,j=1,2 provided thatt € T, € € E'p and z € Hﬁ/. According to the statement
discussed in Proposition 9, that the partial map (u1,z) — uz,d,, (u1,z,€) matches the equation (36) on
the domain Uy 4, x Hg/, whenever € € De, \ {0}, we observe that the map u, (1, z, €) satisfies the next
equation

Q(02)ugp(t,z,€) = (et)p [(tat)‘sDRD (92)uz,p(t,2,€)]

D-1
+ Y e td’al(z,e)(tat)élRl(az)uz,p(t, z,€) + Fa(et, z,€) +c1(z,€)up(t, 2, €)
=1

+¢01,0, [Q1(92)uz,p(t,2,€))] x [Qa(dz)uzp(t,z,€)]  (193)

aslongaste T,z € Hg and € € &y. On the other hand, since the partial map (u1,z) ul,d,, (u1,z,€)
obeys the equation (37) on the domain Uy 4, x Hg, for € € De, \ {0}, it follows that the map u1(f, z, €)
fulfills the next equation coupled to (193),

Q(0:)u1,p(t,z,€) = (et)0 [(t3r)°PRp (3= )ur (1, 2, €)

D-1
—|—(5D(t8t)‘sD*1RD(az)uzlp(t,z,6)] + Y eAltd’al(z,e)[(tat)élRl(az)ullp(t,z,e)
=1

+ 51(t8t)5171R,(8z)u2,p(t, z,€)| + Fi(et,z,€) 4 bi(z,€)u1 p(t,2,€) + by (2, €)uz p(t, 2, €)
+cppy [P1(0z2)un,p(t 2, €)] X [Pa(0z)ua,p(t 2, €)] + cpyp, [P3(92)u1,p(t,2,€)] X [Pa(9z)ur p(t 2, €)]
+ CP5Pp, [P5(az)u2,p(t/ Z,G)] X [P6 (az)uZ,p(t/ Z, 6)] (194)

provided thatt € T,z € Hy and € € &).

The next classical result (stated in Proposition 8 p. 66 from [7]) will be essential to deduce recursion
relations for the coefficients G, ;(t,z), n > 0 of Gj (€) from the partial differential equations that govern
the components uj,p(t, z,€),j=1,2

Proposition 12. Let f : G — F be a holomorphic map from a bounded open sector G centered at 0 in C* into a
complex Banach space F equipped with a norm ||.||g. The next statements are equivalent

—  There exists a formal power series f(€) = ¥,q fu€" /n! in F[[€]] which is the asymptotic expansion of f
on G, meaning that for all closed sector S of G centered at 0, one can associate a sequence (c(N, S))N>o of
positive real numbers such that

N-1

If(e) = X fue"/nlllz < (N, S)le|™

n=0
forall e € S, all integers N > 1.
—  All n—th derivatives of f denoted f)(€) are continuous at 0 and satisfy
lim || ") (€) — fullz =0
ecG
for all integers n > 0.
We first derive some recursion relations for the coefficients G, »(t,z), m > 0. To that aim we take

the derivative of order m > 0 on the left and right handside of (193) relatively to € for any integer
m > 0. Indeed, owing to the Leibniz rule, we deduce
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m m' my dD dD 5D nyp
Q(02)0 Uz p(t,2,€) = (0" €"P )P (9;) P Rp (9:) [0¢ 1z p (1, 2, €) |
my -y =m my mip:
D-1 m!
+ ) Y W(a?leA’)t‘i’ x [(92%ay(z,€)] x (01)°Ry(92) [0 U p(t, 2, €)]

=1 my+my+mz=m

I
+0l'Fy(et,z,€) + ) Lz[azllcl(z,e)] X [0e2up,p(t, 2, €)]

m!
+ €01,0, Z 1 1 [Ql(az)aznlulp(tl Z, 6)] X [Qz(az)aZ”uz,p(t, Z, 6)] (195)
my +1y=m myimop.

forallm > 0,allt € T,z € Hy and € € £,. Owing to the asymptotic expansion (186) for j = 2, the
application of Proposition 12 yields the next limits

lim sup [9g'uz,,(t,2,€) — Gpp(t,z)| =0 (196)
0 et
€€ zeHy

for all integers m > 0 and any given 0 < p < ¢ — 1. We let € tend to 0 on the sector &, in the above
equality (195) and with the help of (196) combined with the observation that both maps u , (t,z,€) and
G (t,z) are holomorphic with respect to (t,z) on the product 7" x Hg, we reach the next relation for
the coefficients G, »(t,z), m > 0,

Q@IGaltiz) = ¥ (@) )0 (12:)0 Ro(@:) G (1, 2)

my+my=m my !
o m! my A d 1y 1
+ Z Z W(ae € ’)(O)t I'x [(ae lll)(Z,O)] X (tat) lRl(az)Gm3l2(t,Z)

=1 my+my+mz=m

1
+ 0l Fy(et,z,€)|ep + @M z,0)| X Gy, 2(t, z
etz oot T SR (OM)E0] X Cusalt)
m!
+e0,00 2 o 1Q1(02)Gu 2(42)] % [Q2(02)Gimy2(t2)] (197)
1y +rmg=m T1-1M2:

for all m > 0, provided thatt € 7,z € Hg.

This enables us to display some partial differential equation fulfilled by the formal expansion
G (€). Namely, we know that the maps € — €70, € + €®1, € > a;(z, €) together with € — F,(et, z, €)
are analytic on the disc Dg,. Their convergent Taylor series are expressed as

m dp m A m
edD — Z (a€ € ')(0) e , EA] _ 2 (ae € ')(0) e , IZI(Z,G) _ 2 (ae 111)'(2,0) Em,
TR m>0 " m=0 M
"c1)(z,0 ' Fy(€t,2,€)|e—g
c1(z,€) = mgb %em , Bet,z,e) = mgb < o [e=0 m (198)

for all € € De,. Then, departing from (185), we get the formal Taylor expansion of the next pieces that
involve G; (). Namely,

(eD)™[(t9:)°" Rp (0:)Ga(e)]

(9E"e™)(0)
m1!

Gm2,2(t, Z)

(t9;)°PRp (9) -

o[ ¥

m>0 ~my+my=m

]em (199)
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and
€Mt (z,€)(19;) Ry (3,)Ba ()
_ (31e)(0)  ((3E%a)(2,0) Gy 2(t,2)1
a td’ mgo [m1+m22+m3—m m1! 8 [ m2! ] 8 (tat)lel(aZ)T}e (200)
along with
Ay (9"c1)(z,0)1  Gmy2(t2)7]
c1(z,€)Ga(e) = Eo |:m1+;2—m [ -~ ] x ! }e (201)
and
[Q1(22)Ga(e)] x [Q2(02)Ga(e)]
Q (az)Gml, (t,z) Q (az)sz, (t/Z) m
- (=L m1!2 ] x [=2 mzlz e (o2)

m>0 ~my+mpy=m

As a result, the relation (197) and the above formal expansions prompt the next partial differential
equation satisfied by G, (¢),

Q(92)G2(e) = (et)™ [(t3;)°° Rp(2:)Ga(e)]

D-1
+ ) €Mt a;(z,€)(10;)% Ry (3,)Ga(€) + Fa(et, z,€) + c1(z,€) B (e)
=1

+¢0,,0,[Q1(32)Ga(€)] x [Q2(9:)Ga(e)]. (203)

In the next part of the proof, we exhibit recursion relations for the coefficients Gy, 1(t,z), m > 0. We
proceed by taking the m—th derivative of both handsides of (194) with respect to € for any given
integer m > 0. Indeed, the Leibniz rule yields

Q) 'up(t,z,€) = ) " [az”ledD]thx[(tat)éDRD(az)[ae’”Zul,,,(t,z,eﬂ

Imn!
M=y +my mq.mp.

D-1 |
m:

+0p(t0;)°P IR (9;) [002uy (¢, z,€)] | + —

: [ ‘ ’ H 1:21 m1+m22+m3:m my!my!ms!

x [oeM]th x [(92a;)(z,€)] x [(tat)‘S’Rl(az)[(82"3u1,p)(t,z,e)]
+ 6, (t:) 1R, (95) [(9e"uz,p) (1, Z,G)H + 3 (Fy(et, z,€))

bX @) )] % [@2%0,)(2 )

ml!mz!

+ o) #,1!12![(3?1172)(216)] x [(082uz)(t,2,€)]
+cp,p, E L.[Pl(az)(aénlul,ﬁ(f,z,é?)] X [P2(92)(9¢%uz,p(t, 2, €)]
+epp ) L.[P3(82>(82n1u1,p)(t,z,6>] x [Py(3) (3211, (¢, 2, €)]

+omp, ) L!![PS(az)(agluz,p)(f/er?)]><[Pe(az)(aﬁnzuz,p)(ffzre)] (204)
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forallm > 0,allt € T,z € Hﬂ/ and € € &p. Besides, the asymptotic expansion (186) for j = 1 warrants
the application of Proposition 12 in order to reach the limits

lim sup [9g'uy,,(t,z,€) — Gya(t,z)| =0 (205)

0 e

for all integers m > 0 and any prescribed 0 < p < ¢ — 1. We allow the parameter € to get close to 0
in the relation (204). Based on the above limits (205) combined with (196) and the fact that the maps
ujp(t z,€) and Gy, j(t,z), j = 1,2 rely holomorphically in the variable (¢,z) on the product 7" x Hg,
we obtain the next relation for the coefficients G, 1(t,z), m > 0,

Q(3)Gpa(t,z) = ), m [(98"e)(0)] 1P x [(tat)(sDRD(az)GmZ,l(trz)

Sl mq'lmy!
, D-1 m!
+ 6p(toy) DflRD(az)GMz,Z(tIZ)] + )

=1 my+my+mz=m

x [(M1eb)(0)]#h x [ ay)(2,0)] x [(tat)ﬁzR,(az)GmS,l(t,z)

ml!m2!m3!

+ 51(t8t)‘5’*1R1(az)Gm&z(t,z)} +0f (Fi(et,z,€)) e

Y @) (2,0)] X Gy (t2)

| |
M=ty +my T2

Y [(@Mb)(2,0)] X Gya(t 2)

| |
M=ty +my T2

temp Y P(02)Gonyr (1,2)] X [Pa(32) Gy (h,2)]

| |
m=y +my T2

+ Cpyp, 2 L' [P3 (az)Gm1,1(trZ>] X [P4 (az)GmZ,l(t/Z)]

lmo !
M=y 411y mqnip:

m!
+ CPsPs ZJF 71’}11'7’}12' [P5(82)Gm1,2(t,z)] X [P6(az)Gm2,2(t,Z)] (206)
m=my+my . :

forallm > 0, whenevert € T and z € Hpgr.

This latter recusion relation leads to some partial differential equation governing the formal
expression G1(€) given by (185). In the process, we use the convergent Taylor expansions (198)
together with

0" F;(et,z,€).—
Fi(et,ze) = Y = 1 - )i Ogm | bi(z,e) =)
m>0 : m>0

(9¢'0j)(2,0)

em (207)

for j = 1,2 which are valid for all € € D, and from which the next list of computations are deduced

(et)0 [(t3;)°° Rp (22) Gy (€) + 0p (t9;)°P ' Rp (3:) G (€)]
— 4o §° { 5 A

|
m>0 - m=my+my mi:

sz,l (t, Z)

[(830)°P Rp(8:) =2

sz,z(t, Z)

+0p(t9:)* ' Rp(a:) ol

e (208)
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and
e®1tMay(z,€) [(101) R (92) G (€) + 81 (891) Ry (8:)Goa )]
my A ny t
_ay [y GO, GENE0) (g, Smalt)
m>0 - my+nmp+mz=m my: myp: m3!
G t,
8105 R (0. 22 e ao9)
along with
A B (90;)(2,0) Gy, j(t,2)7
bi(z,€)Gj(e) = Z[ Y -~ X }e (210)

m>0 ~m=mqy+myp

for j = 1,2. Futhermore, the next identities hold

[P1(02)G1(€)] x [P2(02)Ga(e)]
=) [ ) [Pl(az)G’"%(t’z)] X [PQ(BZ)MHG'" (211)

| |
M>0 - m= o 1- my:

with

[P;;(E)Z)Gl(e)} X [P4(E)Z)(G1(e)]
=), [ ). [Pg,(az)W] x [m(agw]}em (212)

|
m>0 ~m=mqy+my m2.

and

[P5(32)Ga(€)] x [Pe(32)Ga(e)]
-y = [pS(aZ)M] y [pé(az)wﬂem 213)
mq:

|
m>0 - m=mqy+my my:

As a consequence of the above computations, the relation (206) triggers the next partial differential
equation fulfilled by G1(e) and coupled with (203),

Q(9:)G1(e) = (et)™ [(t;)°° Rp (3:)G (e)

+ 0p (t3¢)°P 1R (9,)Go (€ |+ Z Mt (z, e)[(tat)élRl(E)z)Gl(e)
1=1

+5l(fat)5’71Rl(az)Gz(€)] + Fi(et,z,€) + bi(z,€)G1(e) + ba(z,€)C ( )

+cpp, [P1(02)Gr(€)] X [Pa(02)Ga(€)] + cpyp, [P3(02)Gr(€)] x [P4(0:)G ( )]
+ cpsp, [P5(02)Ga(€)] % [Ps(02)Ga(e)]. (214)

In conclusion, we have checked by means of (203) that the power series G, (€) formally solves the
same partial differential equations as the function uy,(t,z,€) stated in (193). In addition, through
(214) and (194) we observe that the formal power series G (¢) and the map u1,,(t,z,€) obey identical
coupled partial differential equations. Then, drew on the computations (35), (34) and (33) performed
reversedly from Subsection 3.1, we deduce that the formal expression G (€) stated in (191) conforms
the same equation as the analytic map u,(t,z, €) given in (187) and recast as (192) where the formal
monodromy operator around 0 given by 7 acts on the formal expression G (€) by dint of the formula
(9) in Definition 4. This completes the proof of the third item of Theorem 1. [
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