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Abstract: We investigate a family of nonlinear partial differential equations which are singularly
perturbed in a complex parameter ǫ and singular in a complex time variable t at the origin. These
equations combine differential operators of Fuchsian type in time t and space derivatives on horizontal
strips in the complex plane with a nonlocal operator acting on the parameter ǫ known as the formal
monodromy around 0. Their coefficients and forcing terms comprise polynomial and logarithmic
type functions in time and are bounded holomorphic in space. A set of logarithmic type solutions
are shaped by means of Laplace transforms relatively to t and ǫ and Fourier integrals in space.
Furthermore, a formal logarithmic type solution is modeled which represents the common asymptotic
expansion of Gevrey type of the genuine solutions with respect to ǫ on bounded sectors at the origin.

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; initial value problem;
formal power series; formal monodromy; singular perturbation

MSC: 35C10; 35C20

1. Introduction

In this paper, we examine a family of singularly perturbed nonlinear partial differential equations
modeled as

Q(∂z)u(t, z, ǫ) = (ǫt)dD (t∂t)
δD RD(∂z)u(t, z, ǫ) + P(t, z, ǫ, t∂t, ∂z)u(t, z, ǫ) + f (t, z, ǫ)

+ H(log(ǫt), z, ǫ, {Pj(∂z)u(t, z, ǫ)}j∈J1 , {Qj(∂z)γ
∗
ǫ u(t, z, ǫ)}j∈J2) (1)

for vanishing initial data u(0, z, ǫ) ≡ 0. The constants dD, δD ≥ 1 are natural numbers and
Q(X),RD(X),Pj(X) for j ∈ J1, Qj(X) for j ∈ J2, where J1, J2 are two finite subsets of the positive integers
N∗, stand for polynomials with complex coefficients. The linear differential operator P(t, z, ǫ, t∂t, ∂z)

depends analytically in a perturbation parameter ǫ on a disc Dǫ0 with radius ǫ0 > 0 centered at 0 and
relies polynomially in the complex time t and holomorphically with respect to the space variable z

on a horizontal strip framed as Hβ = {z ∈ C/|Im(z)| < β} in C, for some given width 2β > 0. The
forcing term f (t, z, ǫ) is a map of logarithmic type represented as a sum

f (t, z, ǫ) = f1(t, z, ǫ) + f2(t, z, ǫ) log(ǫt)

were f j(t, z, ǫ), j = 1, 2, are polynomials in t, with holomorphic coefficients in z on Hβ and in ǫ on Dǫ0 .
The map H(v0, z, ǫ, {vj}j∈J1 , {wj}j∈J2) is a specific polynomial of degree at most 2 in its arguments v0,
{vj}j∈J1 and {wj}j∈J2 , which relies holomorphically in z on Hβ and in ǫ on Dǫ0 . The precise shape of H

is framed in (14).
The nonlinear term H of (1) involves not only powers of Pj(∂z)u(t, z, ǫ), j ∈ J1, but also powers

of derivatives of γ∗
ǫ u(t, z, ǫ) where γ∗

ǫ is a nonlocal operator acting on u(t, z, ǫ) which represents
the so-called monodromy operator around 0 relatively to ǫ. In the literature, the concept of formal
monodromy around a point a in C appears in the construction of formal fundamental solutions to
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linear systems of differential equations with so-called irregular singularity at the given point a, known
as the Levelt-Turrittin theorem, see [1]. It asserts that a differential system of the form

xrY′(x) = A(x)Y(x) (2)

for analytic coefficients matrix A(x) ∈ Mn(C){x} near 0 with n ≥ 1, for an integer r ≥ 2, with an
irregular singularity at 0, possesses a formal fundamental solution with the shape

Ŷ(x) = P̂(x1/e)xC exp
(

ϕ(x1/e)
)

for some well chosen integer e ≥ 1, where P̂(y) ∈ GLn(C[[y]][1/y]) is a formal meromorphic
invertible matrix, ϕ(x1/e) is a diagonal matrix whose coefficient are polynomials in x−1/e with complex
coefficients and C ∈ Mn(C) is related to the so-called formal monodromy matrix M ∈ GLn(C) by the
formula M = exp(2πiC). It is worth remarking that this formal monodromy matrix extends in the
formal settings the so-called monodromy matrix that appear in the representation of fundamental matrix
solutions to systems (2) with regular singularity of the form

Y(x) = H(x)xE

where H is an invertible matrix with meromorphic coefficients near 0, for a matrix E giving rise to the
monodromy matrix N ∈ GLn(C) by means of N = exp(2πiE). The matrix N is obtained as analytic
continuation of the fundamental matrix solution Y(x) along a simple loop γ going counterclockwise
around the origin 0 with base point x by means of the identity

γ∗Y(x) = Y(x)N

where γ∗Y denotes the analytic continuation along γ, see [2]. In the same manner as the analytic
continuation operator γ∗ acting on analytic functions, a formal monodromy operator γ∗ acting on
various spaces and rings (such as the so-called Picard-Vessiot rings) through the formulas γ∗(zλ) =

e2iπλzλ for complex numbers λ ∈ C and γ∗(l) = l + 2iπ where l is the symbol for the Log function,
has been introduced and studied from an abstract and algebraic point of view in the textbook [1].

In our context, the action of the formal monodromy γ∗
ǫ on u(t, z, ǫ) can be reformulated as a shift

mapping on angles θ 7→ θ + 2π in polar coordinates by means of the change of functions

u(t, z, ǫ) = v(t, z, r, θ)

for ǫ = re
√
−1θ , with radius r > 0 and angle θ ∈ R, through the formula

γ∗
ǫ u(t, z, ǫ) = v(t, z, r, θ + 2π).

In this way, the main equation (1) can be recast as some nonlinear mixed type partial difference-differential

equation for the map v(t, z, r, θ). In the framework of nonlinear difference equations in the complex
domain with the shape

y(z + 1) = F(z, y(z))

for Cn−valued analytic maps F in a neighborhood of (∞, y0) for some y0 ∈ Cn, we notice that
important results concerning asymptotic features of their solutions have been obtained by several
authors, see [3–5]. In comparison with these results, we do not reach asymptotic expansions as θ goes
to infinity in the equation fulfilled by v but we rather plan to get exact asymptotics as the real singular
perturbation parameter r > 0 approaches the origin.

We highlight our premise that the main equation (1) counts in powers of the basic differential
operator t∂t which is labelled of Fuchsian type. We refer to [6] for many sharp results about Fuchsian
ordinary and partial differential equations. However, under the sufficient conditions required on
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(1) listed in Subsection 2.3 it pans out that (1) will be reduced throughout the work to a coupling
of two partial differential equations, stated in (47) and (48), that comprise only powers of the basic
differential operator uk1+1

1 ∂u1 , for a well chosen integer k1 ≥ 1, of irregular type in a complex variable
u1. The definition of irregular type differential operators is given in the classical textbook [7] in the
ordinary differential equations settings displayed in (2) and in the work [8] in the framework of partial
differential equations.

In the present contribution, we aim to cook up a set of holomorphic solutions to (1) and to describe
their asymptotic expansions as ǫ tends to 0 (stated in Theorem 1 of Subsection 8.2). These solutions are
shaped as logarithmic type maps that involve Fourier/Laplace transforms. Namely, under the list of
requirements which mould (1) and detailed in Subsection 2.3, one can outline

• A set of properly selected bounded open sectors {Ep}p∈I1 for some finite set I1 ⊂ N and T
centered at 0.

• A family of holomorphic functions up(t, z, ǫ), p ∈ I1, which conform (1) on the domain T × Hβ ×
Ep. Each solution up, p ∈ I1, is expressed as a sum

up(t, z, ǫ) = u1,p(t, z, ǫ) + u2,p(t, z, ǫ) log(ǫt)

where each component uj,p(t, z, ǫ), j = 1, 2, is represented as a Fourier/Laplace transform

uj,p(t, z, ǫ) =
k1

(2π)1/2

∫

Ldp

∫ +∞

−∞
ωj,dp

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

where the commonly named Borel/Fourier map ωj,dp
(τ, m, ǫ) stands for a function

– which is analytic near τ = 0
– with (at most) of exponential growth of some order k1 ≥ 1 on an infinite sector containing

the halfline Ldp
= [0,+∞)e

√
−1dp with respect to τ for suitable direction dp ∈ R

– continuous and subjected to exponential decay with respect to m on R

– with analytic dependence in ǫ on the punctured disc Dǫ0 \ {0}.

Furthermore, owing to their Laplace integral structure, the components {uj,p}p∈I1 own asymptotic
expansions of Gevrey type in the parameter ǫ. Indeed, for given j = 1, 2, all the partial functions
ǫ 7→ uj,p(t, z, ǫ), p ∈ I1, share a common asymptotic formal power series expansion

Ĝj(ǫ) = ∑
n≥0

Gn,j(t, z)
ǫn

n!

on Ep, with bounded holomorphic coefficients Gn,j on T × Hβ. These asymptotic expansions turn out
to be of Gevrey order 1/k1 on every sectors Ep, meaning that constants Kp,j, Mp,j > 0 can be singled
out for which the error bounds

|uj,p(t, z, ǫ)−
N

∑
n=0

Gn,j(t, z)
ǫn

n!
| ≤ Kp,j(Mp,j)

N+1Γ(1 +
N + 1

k1
)|ǫ|N+1

hold for all integers N ≥ 0, all ǫ ∈ Ep, uniformly in t ∈ T and z ∈ Hβ. At last, we verify that the
formal logarithmic type expression

Ĝ(ǫ) = Ĝ1(ǫ) + Ĝ2(ǫ) log(ǫt)

itself obeys the main equation (1).
Throughout the proof of our main result, we show that the components uj,p(t, z, ǫ), j = 1, 2 of

the built up solutions up, p ∈ I1, to (1) turn out to be embedded in a larger family of maps uj,p(t, z, ǫ),
j = 1, 2, for all integers 0 ≤ p ≤ ς − 1 for some integer ς ≥ 2. These maps are bounded holomorphic
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on products T × Hβ × Ep where E = {Ep}0≤p≤ς−1 stands for a set of bounded sectors, entailing Ep

for p ∈ I1, which represents a good covering in C∗ (see Definition 7). Each map uj,p(t, z, ǫ), j = 1, 2, is
modeled as a rescaled version of a bounded holomorphic map (u1, z) 7→ Uj,dp

(u1, z, ǫ) through

uj,p(t, z, ǫ) = Uj,dp
(ǫt, z, ǫ)

on domains U1,dp
× Hβ for any fixed ǫ ∈ Dǫ0 \ {0}, where U1,dp

are bounded sectors bisected by the
direction dp, depicted in Definition 8 of the work. The set of maps {U2,dp

}0≤p≤ς−1 is shown to solve a
specific nonlinear partial differential equation with coefficients that are polynomial in u1, holomorphic
with respect to ǫ on Dǫ0 and relatively to z on Hβ displayed in (36). The set of maps {U1,dp

}0≤p≤ς−1

conforms a particular nonlinear partial differential equation stated in (37) whose coefficients and
forcing term bring in not only polynomials in u1 and holomorphic dependence relatively to ǫ on Dǫ0

and to z on Hβ but also polynomial reliance on the maps {U2,dp
}0≤p≤ς−1 and their derivatives with

respect to u1 and z. In this sense, the maps {Uj,dp
}0≤p≤ς−1, j = 1, 2, solve a coupling of nonlinear partial

differential equations. The asymptotic property for the components uj,p(t, z, ǫ), j = 1, 2, of up(t, z, ǫ)

stems from sharp exponential bound estimates for the differences of neighboring maps uj,p+1 − uj,p

reached in Proposition 10, for which a classical statement for the existence of asymptotic expansions of
Gevrey type can be applied, see Subsection 8.1.

In this work, as mentioned above, we restrict ourselves to quadratic nonlinearities. Besides, they
are chosen in a way to respect the natural triangular structure of the systems of partial differential
equations satisfied by the components uj,p(t, z, ǫ), j = 1, 2 stated in (193), (194), which stems from the
linear part of (1). It means that its resolution is reduced to the study of a coupling of two equations
which comprise one single equation satisfied by u2,p(t, z, ǫ) and a second equation for u1,p(t, z, ǫ) with
coefficients and forcing term that involve u2,p(t, z, ǫ). The treatement of a more general case with non
triangular structure is postponed to a futur paper.

The approach developped in this work can be extended to the construction of both formal and
genuine holomorphic solutions to comparable problems as (1) with higher order logarithmic terms

u(t, z, ǫ) =
n

∑
j=0

uj(t, z, ǫ)(log(ǫt))j

for n ≥ 2, for suitable nonlinear terms and forcing terms chosen properly in a similar way as the ones
in the present work. We focus on the complete description for the case n = 1 for the sake of simplicity
in order to give the readers a clear idea of the main purpose of the study and avoiding cumbersome
notations and computations.

Logarithmic type solutions have been extensively studied in the framework of nonlinear partial
differential equations with so-called Fuchsian type and described in the Chapter 8 of the textbook by R.
Gérard and H. Tahara [6]. Namely, these authors consider nonlinear partial differential equations with
the shape

(t∂t)
mu(t, x) = F(t, x, {(t∂t)

j∂α
xu(t, x)}(j,α)∈Im

) (3)

where Im = {(j, α) ∈ N× Nn/j + |α| ≤ m, j < m} for some integers m, n ≥ 1, for analytic maps
F(t, x, Z) near the origin in C×Cn ×Ccard(Im). Under conditions of non resonance of the characteristic
exponents at x = 0 combined with some Poincaré condition on the characteristic polynomial associated
to (3), they have described the holomorphic solutions to (3) with at most polynomial growth in t on
bounded sectors centered at 0, for x near the origin in Cn as the maps written in the form of a
convergent logarithmic type expression

u(t, x) = u0(t, x) + ∑
(i,j,k)∈Jm

ϕi,j,k(x)ti+∑
µ
l=1 jl ρl(x)(log(t))k

for Jm = {(i, j, k) ∈ N×Nµ ×N/i + 2m|j| ≥ k + 2m, |j| ≥ 1} where
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− u0 stands for convergent power series near the origin
− ρl(x), 1 ≤ l ≤ µ are the characteristic exponents with positive real parts at x = 0
− ϕi,j,k(x) are holomorphic coefficients near x = 0.

In the case of so-called equations of irregular type or non Fuchsian type, in which our present
work falls, less results are known and represents a favourable breeding ground for upcoming research.
Nonetheless, in that trend, we mention the remarkable recent general result [9] obtained by H. Tahara.
This work extends a paper by H. Yamazawa which treats linear partial differential equations, see [10].
Therein, the author examines nonlinear partial differential equations

F(t, x, {(t∂t)
j∂α

xu(t, x)}(j,α)∈Lm
) = 0 (4)

with Lm = {(j, α) ∈ N×NK/j + |α| ≤ m}, for some integers m, K ≥ 1, which possess a formal series
(which is divergent in the generic situation)

û(t, x) = ∑
n≥1

un(t, x)

solution where each term un, n ≥ 1, is analytic with respect to t on some appropriate bounded sector
S centered at 0 in C and holomorphic near 0 relatively to x on some disc DR in CK. In general, these
expressions un might involve combinations of functions of the form tλ(x) for holomorphic maps λ,
powers of t and log(t) and analytic functions with respect to x on DR. The author introduced a
so-called Newton polygon associated to the equation (4) along the formal solution û(t, x). In the case
this Newton polygon possesses p ≥ 1 slopes and under some additional technical requirements, the
author builds up a new formal solution

ŵ(t, x) = ∑
n≥1

wn(t, x)

to (4) which is subjected to the next two features

• The formal series û and ŵ are asymptotically equivalent in the sense that for any A > 0, there
exists N0 ≥ 1, such that

sup
x∈DR

|(t∂t)
j∂α

x(ûN − ŵN)| ≤ C|t|A

for all t ∈ S, j + |α| ≤ m, some constant C > 0, any N ≥ N0, where ûN and ŵN denote the partial
sums of the N first terms of û and ŵ.

• The formal series ŵ is multisummable on S with respect to t, uniformly in x on DR, in a sense
that enhances the classical multisummability process described in [7] and gives rise to a genuine
holomorphic solution w(t, x) of (4) on S × DR crafted as iterated analytic acceleration operators
and Laplace integral of some Borel transform of ŵ.

Thereupon, it turns out that w(t, x) admits û(t, x) as an asymptotic expansion as t tends to 0 on S

in the sense that for any A > 0, there exists N0 ≥ 1 such that

sup
x∈DR

|w(t, x)− ûN(t, x)| ≤ C|t|A

for all t ∈ S, some constant C > 0, any N ≥ N0.
At last, in the linear setting, some general results reaching beyond the structure of logarithmic

type solutions have been achieved. Namely, for Cauchy problems

a(x, D)u = v , Dh
x0

u|x0=0 = 0 , 0 ≤ h < m

involving linear differential operators a(x, D) of order m ≥ 1 with holomorphic coefficients in x =

(xj)0≤j≤n in Cn+1, existence and uniqueness results for so-called ramified solutions around certain
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characteristic hypersurfaces K in Cn+1, provided that v is ramified around K, have been obtained by
several authors, see [11], [12], [13].

2. Layout of the main equation

2.1. Laplace transforms and Fourier inverse maps

In this brief subsection, we include some preliminary material about Laplace transforms and
Fourier inverse maps that will be used in the ongoing sections.

Let k ≥ 1 be an integer. We remind the reader the definition of the Laplace transform of order k as
stated in [14].

Definition 1. We set Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ} as some unbounded sector with bisecting direction

d ∈ R and aperture 2δ > 0 and Dρ as a disc centered at 0 with radius ρ > 0. A holomorphic function

w : Sd,δ ∪ Dρ → C is considered that vanishes at 0 and suffers the bounds : there exist C > 0 and K > 0 such

that

|w(τ)| ≤ C|τ| exp(K|τ|k) (5)

for all τ ∈ Sd,δ. The Laplace transform of w of order k in the direction d is set up as the integral transform

Ld
k(w)(T) = k

∫

Lγ

w(u) exp(−(
u

T
)k)

du

u

along a half-line Lγ = [0,+∞)e
√
−1γ ⊂ Sd,δ ∪ {0}, where γ hinges on T and is chosen in a way that

cos(k(γ − arg(T))) ≥ δ1, for some fixed real number δ1 > 0. The function Ld
k(w)(T) is well defined,

holomorphic and bounded on any sector

Sd,θ,R1/k = {T ∈ C
∗ : |T| < R1/k , |d − arg(T)| < θ/2},

provided that 0 < θ <
π
k + 2δ and 0 < R < δ1/K.

From the above very definition the next practical feature is deduced : if w(τ) = ∑n≥1 wnτn represents

an entire function w.r.t τ ∈ C with the bounds (5), its Laplace transform Ld
k(w)(T) does not depend on the

direction d in R and represents a bounded holomorphic function on DR1/k whose Taylor expansion is represented

by the convergent series X(T) = ∑n≥1 wnΓ( n
k )T

n on DR1/k , where Γ(x) stands for the Gamma function.

The next Banach spaces have been introduced in [15] and used in several works by the author.

Definition 2. Let β, µ ∈ R. We set E(β,µ) as the vector space of continuous functions h : R → C such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) endowed with the norm ||.||(β,µ) becomes a Banach space.

Finally, we restate the definition of the inverse Fourier transform acting on the latter Banach
spaces and some of its handy formulas relative to derivation and convolution product as detailed
in [14].

Definition 3. Take f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is shaped as the integral

map

F−1( f )(x) =
1

(2π)1/2

∫ +∞

−∞
f (m) exp(

√
−1xm)dm
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for all x ∈ R. The function F−1( f ) extends to an analytic bounded function on the strips

Hβ′ = {z ∈ C/|Im(z)| < β′}. (6)

for all given 0 < β′
< β.

a) The function m 7→ φ(m) =
√
−1m f (m) belongs to the space E(β,µ−1) and the next identity

∂zF−1( f )(z) = F−1(φ)(z)

occurs on Hβ.

b) Let g ∈ E(β,µ) and set

ψ(m) =
1

(2π)1/2

∫ +∞

−∞
f (m − m1)g(m1)dm1

as the convolution product of f and g. Then, ψ belongs to E(β,µ) and moreover the product formula

F−1( f )(z)F−1(g)(z) = F−1(ψ)(z)

holds for all z ∈ Hβ.

2.2. Formal monodromy around the origin

In this subsection, we define the notion of formal monodromy operator around the origin acting
on different classes of objects. Following the description of abstract formal monodromy operator as
stated in Subsection 3.2 of [1], we first provide a definition of formal monodromy acting on logarithmic
type expressions involving formal power series with coefficients in Banach spaces.

Definition 4. Let T be a bounded open sector centered at 0 in C∗ and let

Hβ′ = {z ∈ C/|Im(z)| < β′} (7)

be a strip with width 2β′
> 0. We denote Ob(T × Hβ′) the Banach space of bounded holomorphic functions on

T × Hβ′ equipped with the sup norm and we set as Ob(T × Hβ′)[[ǫ]] the vector space of all formal series

â(t, z, ǫ) = ∑
n≥0

an(t, z)ǫn

with coefficients belonging to Ob(T × Hβ′). Let û1(t, z, ǫ), û2(t, z, ǫ) be two elements of Ob(T × Hβ′)[[ǫ]],

we set the formal logarithmic type expression

û(t, z, ǫ) = û1(t, z, ǫ) + û2(t, z, ǫ) log(ǫt) (8)

where log(x) stands for the principal value of the logarithm of a complex number x ∈ C∗.

We define the formal monodromy operator around 0 relatively to ǫ, denoted γ∗
ǫ as acting on û by means of

γ∗
ǫ û(t, z, ǫ) = û1(t, z, ǫ) + 2π

√
−1û2(t, z, ǫ) + û2(t, z, ǫ) log(ǫt) (9)

The next definition of formal monodromy extends the concept of monodromy operator around 0
acting on analytic functions on a punctured neighborhood of 0 as analytic continuation along a simple
loop aroung the origin as described in [2], Section 16.
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Definition 5. Let T , E be bounded open sectors centered at 0 in C and Hβ′ be a strip defined by (7). We set

Ob(T × Hβ′ × E) as the Banach space of bounded holomorphic functions on T × Hβ′ × E endowed with the

sup norm. Let u1(t, z, ǫ), u2(t, z, ǫ) be two elements of Ob(T × Hβ′ × E). We set

u(t, z, ǫ) = u1(t, z, ǫ) + u2(t, z, ǫ) log(ǫt) (10)

that represents a holomorphic function for all (t, z, ǫ) ∈ T × Hβ′ × E with ǫt /∈ (−∞, 0]. The formal

monodromy operator around 0 relatively to ǫ denoted γ∗
ǫ acts on u through the formula

γ∗
ǫ u(t, z, ǫ) = u1(t, z, ǫ) + 2π

√
−1u2(t, z, ǫ) + u2(t, z, ǫ) log(ǫt) (11)

Notice that if u1 and u2 are holomorphic on a full punctured disc centered at 0 relatively to ǫ, the formal

monodromy γ∗
ǫ given above coincides with the analytic continuation along a simple loop skirting counterclockwise

the origin 0 with base point ǫ.

We observe that each components û1,û2 of (8) (resp. u1,u2 of (10)) can be expressed by means of û

and γ∗
ǫ û (resp. u and γ∗

ǫ u) through the formulas

{

û2(t, z, ǫ) = 1
2
√
−1π

(γ∗
ǫ − id)û(t, z, ǫ)

û1(t, z, ǫ) = û(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)û(t, z, ǫ)

]

log(ǫt)
(12)

and
{

u2(t, z, ǫ) = 1
2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

u1(t, z, ǫ) = u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
(13)

where id represents the identity operator acting on Ob(T × Hβ′)[[ǫ]] in (12) and on Ob(T × Hβ′ × E)
in (13).

2.3. Outline of the main problem

The principal problem under study in this work is shaped as follows

Q(∂z)u(t, z, ǫ) = (ǫt)dD (t∂t)
δD RD(∂z)u(t, z, ǫ) +

D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)u(t, z, ǫ)

+ f (t, z, ǫ) + c1(z, ǫ)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)

+ b1(z, ǫ)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

+ b2(z, ǫ)
1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

+ cQ1Q2 Q1(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× Q2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× log(ǫt)

+ cP1P2 P1(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

× P2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

+ cP3P4 P3(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

× P4(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

+ cP5P6 P5(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× P6(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

(14)
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for vanishing initial data u(0, z, ǫ) ≡ 0. On the way in reaching our main result Theorem 1, we need to
impose a list of constraints on the building blocks of (14). Namely,

• The numbers D ≥ 2, dD, δD ≥ 1 and ∆l , dl , δl ≥ 1, 1 ≤ l ≤ D − 1 are integers that are subjected to
the next restrictions
1. We assume the existence of an integer k1 ≥ 1 with

dD = δDk1. (15)

2. The inequalities
dl > δlk1 (16)

hold for all 1 ≤ l ≤ D − 1.
3. The bounds

k1δD − 1 ≥ k1δl (17)

are asked for all 1 ≤ l ≤ D − 1.
4. The lower estimates

∆l ≥ 1 + δlk1 (18)

are mandatory for all 1 ≤ l ≤ D − 1.
• The constants cQ1Q2 , cPjPj+1 , j = 1, 3, 5 are non vanishing complex numbers that are chosen close

enough to 0 (the precise constraints that these numbers are asked to obey are stated later on in the
work, see Section 5 and Section 6).

• The maps Q(X), Rl(X), l = 1, . . . , D and Q1(X), Q2(X) along with Pj(X), 1 ≤ j ≤ 6 are
polynomials with complex coefficients. We require that

deg(Rl) ≤ deg(RD) (19)

for 1 ≤ l ≤ D − 1 and

deg(RD) ≥ deg(Q1) , deg(RD) ≥ deg(Q2) , deg(RD) ≥ deg(Pj) (20)

for 1 ≤ j ≤ 6. Furthermore, we require the existence of an unbounded sectorial annulus

SQ,RD
= {z ∈ C

∗/rQ,RD
< |z| , |arg(z)− dQ,RD

| ≤ ηQ,RD
} (21)

with bisecting direction dQ,RD
∈ R, aperture ηQ,RD

> 0 and inner radius rQ,RD
> 0 (prescribed

later in the work), for which the next inclusion

{ Q(
√
−1m)

RD(
√
−1m)

/m ∈ R} ⊂ SQ,RD
(22)

occurs.

The forcing term f (t, z, ǫ) is built up in the next manner. It is written as a sum

f (t, z, ǫ) = f1(t, z, ǫ) + f2(t, z, ǫ) log(ǫt) (23)

where the components f1, f2 are set up as follows. Let J1, J2 ⊂ N∗ be finite subsets of the positive
integers. For l = 1, 2 and jl ∈ Jl , we denote m 7→ Fl,jl (m, ǫ) maps that

• appertain to the Banach space E(β,µ) for some β > 0 and

µ > deg(Rl) + 1 , µ > max(deg(Q1) + 1, deg(Q2) + 1),

µ > max(deg(Pj) + 1, deg(Pj+1) + 1) (24)
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for all 1 ≤ l ≤ D − 1, j = 1, 3, 5
• rely analytically on ǫ on some disc Dǫ0 with radius ǫ0 > 0 for which constants F l,jl ,ǫ0

> 0 exist
such that

sup
ǫ∈Dǫ0

||Fl,jl (m, ǫ)||(β,µ) ≤ F l,jl ,ǫ0
. (25)

For l = 1, 2, let us introduce the polynomials in the variable τ with coefficients in E(β,µ),

Fl(τ, m, ǫ) = ∑
jl∈Jl

Fl,jl (m, ǫ)τ jl

and set the integral representations

Fl(T, z, ǫ) =
k1

(2π)1/2

∫

Ld1

∫ +∞

−∞
Fl(τ, m, ǫ) exp

(

− (
τ

T
)k1

)

e
√
−1zm dτ

τ
dm

where Ld1
= [0,+∞)e

√
−1d1 is a halfline in direction d1 ∈ R that relies on T under the constraint

cos(k1(d1 − arg(T))) > 0. According to Definition 1, we observe that F1 and F2 are polynomials in T

and can be expanded in the form

Fl(T, z, ǫ) = ∑
jl∈Jl

Fl,jl (z, ǫ)Γ(
jl
k1
)T jl

for coefficients given by the inverse Fourier integral expressions

Fl,jl (z, ǫ) =
1

(2π)1/2

∫ +∞

−∞
Fl,jl (m, ǫ)e

√
−1zmdm

that are, according to Definition 3, bounded holomorphic on the product Hβ′ × Dǫ0 , for any given
0 < β′

< β, where Hβ′ is the horizontal strip given by (7), for l = 1, 2. Eventually, we set the
components

fl(t, z, ǫ) = Fl(ǫt, z, ǫ) (26)

of (23) as a time rescaled version of Fl , for l = 1, 2, that represent bounded holomorphic functions on
C× Hβ′ × Dǫ0 .

The coefficients al(z, ǫ), 1 ≤ l ≤ D − 1, c1(z, ǫ) and bj(z, ǫ), j = 1, 2 are manufactured as follows.
Let m 7→ Al(m, ǫ), 1 ≤ l ≤ D − 1, m 7→ C1(m, ǫ) and m 7→ Bj(m, ǫ), j = 1, 2, be maps that

• belong to the Banach space E(β,µ), for the real numbers β > 0 and µ > 1 given above
• that depend analytically in ǫ on Dǫ0 and for which positive constants Al,ǫ0

, 1 ≤ l ≤ D − 1, C1,ǫ0 ,
Bj,ǫ0 , j = 1, 2 can be singled out with

sup
ǫ∈Dǫ0

||Al(m, ǫ)||(β,µ) ≤ Al,ǫ0
, sup

ǫ∈Dǫ0

||C1(m, ǫ)||(β,µ) ≤ C1,ǫ0 ,

sup
ǫ∈Dǫ0

||Bj(m, ǫ)||(β,µ) ≤ Bj,ǫ0 . (27)

We set

al(z, ǫ) =
1

(2π)1/2

∫ +∞

−∞
Al(m, ǫ)e

√
−1zmdm , c1(z, ǫ) =

1
(2π)1/2

∫ +∞

−∞
C1(m, ǫ)e

√
−1zmdm,

bj(z, ǫ) =
1

(2π)1/2

∫ +∞

−∞
Bj(m, ǫ)e

√
−1zmdm
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for 1 ≤ l ≤ D − 1, j = 1, 2. Owing to Definition 3, the maps al , 1 ≤ l ≤ D − 1, c1 and bj, j = 1, 2
represent bounded holomorphic maps on the product Hβ′ × Dǫ0 , for any prescribed 0 < β′

< β.

3. Couplings of related initial value problems

3.1. A coupling of associated partial differential equations

We seek for solutions u(t, z, ǫ) to our main equation (14) in the form

u(t, z, ǫ) = U(ǫt, log(ǫt), z, ǫ) (28)

for some expression U(u1, u2, z, ǫ) in the four independent variables u1, u2, z, ǫ. We furthermore assume
that U is an affine map relatively to u2 meaning that U is polynomial of degree at most one in u2.

We first disclose an equation fulfilled by U(u1, u2, z, ǫ) provided that u(t, z, ǫ) solves (14) given by
(33). According to the usual chain rule applied at a formal level at this stage of the work, we first observe
that

t∂tu(t, z, ǫ) = t
[

∂t(ǫt)
]

(∂u1U)(ǫt, log(ǫt), z, ǫ) +
[

t∂t(log(ǫt))
]

(∂u2U)(ǫt, log(ǫt), z, ǫ)

=
[

(u1∂u1 + ∂u2)U
]

(ǫt, log(ǫt), z, ǫ). (29)

Besides, owing to the assumption that U is affine in u2, we can decompose U in the form

U(u1, u2, z, ǫ) = U1(u1, z, ǫ) + U2(u1, z, ǫ)u2 (30)

for some expressions Uj(u1, z, ǫ), j = 1, 2. If one sets

uj(t, z, ǫ) = Uj(ǫt, z, ǫ) (31)

for j = 1, 2, through (28), one arrives at the next expansion of u,

u(t, z, ǫ) = u1(t, z, ǫ) + u2(t, z, ǫ) log(ǫt). (32)

As a result, in view of the formulas (12), (13) together with the identity (29) and the definitions (26),
(31), we check that u(t, z, ǫ) formally solves the equation (14) if the expression U(u1, u2, z, ǫ) is subjected
to the next equation

Q(∂z)U(u1, u2, z, ǫ) = udD
1 (u1∂u1 + ∂u2)

δD RD(∂z)U(u1, u2, z, ǫ)

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)(u1∂u1 + ∂u2)

δl Rl(∂z)U(u1, u2, z, ǫ) + F1(u1, z, ǫ) + F2(u1, z, ǫ)u2

+ c1(z, ǫ)U2(u1, z, ǫ)u2 + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

u2

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

. (33)

In the next step, we derive some coupling of partial differential equations that the components U1 and
U2 are asked to fulfill and displayed in (36), (37).
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Owing to the fact that the operators u1∂u1 and ∂u2 commute to each other, the binomial formula
helps us to rewrite (33) in the form

Q(∂z)U(u1, u2, z, ǫ) = udD
1

[

∑
p1+p2=δD

δD!
p1!p2!

(u1∂u1)
p1 ∂

p2
u2 RD(∂z)U(u1, u2, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)×

[

∑
p1+p2=δl

δl !
p1!p2!

(u1∂u1)
p1 ∂

p2
u2 Rl(∂z)U(u1, u2, z, ǫ)

]

+ F1(u1, z, ǫ) + F2(u1, z, ǫ)u2 + c1(z, ǫ)U2(u1, z, ǫ)u2 + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

u2

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

. (34)

Besides, from the decomposition (30), we observe that

∂u2U(u1, u2, z, ǫ) = U2(u1, z, ǫ) , ∂
p2
u2U(u1, u2, z, ǫ) ≡ 0

whenever p2 ≥ 2. We reach the next equation

Q(∂z)
[

U1(u1, z, ǫ) + U2(u1, z, ǫ)u2
]

= udD
1

[

(u1∂u1)
δD RD(∂z)

(

U1(u1, z, ǫ) + U2(u1, z, ǫ)u2
)

+ δD(u1∂u1)
δD−1RD(∂z)U2(u1, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)

[

(u1∂u1)
δl Rl(∂z)

(

U1(u1, z, ǫ)

+ U2(u1, z, ǫ)u2
)

+ δl(u1∂u1)
δl−1Rl(∂z)U2(u1, z, ǫ)

]

+ F1(u1, z, ǫ) + F2(u1, z, ǫ)u2

+ c1(z, ǫ)U2(u1, z, ǫ)u2 + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

u2

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

. (35)

Finally, by dint of identification of the powers of u2 in the above equality, it turns out that this last
equation (35) holds if the expressions U1 and U2 are asked to satisfy the next coupling of two partial

differential equations

Q(∂z)U2(u1, z, ǫ) = udD
1

[

(u1∂u1)
δD RD(∂z)U2(u1, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)(u1∂u1)

δl Rl(∂z)U2(u1, z, ǫ) + F2(u1, z, ǫ) + c1(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

(36)

and
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Q(∂z)U1(u1, z, ǫ) = udD
1

[

(u1∂u1)
δD RD(∂z)U1(u1, z, ǫ)

+ δD(u1∂u1)
δD−1RD(∂z)U2(u1, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)

[

(u1∂u1)
δl Rl(∂z)U1(u1, z, ǫ)

+ δl(u1∂u1)
δl−1Rl(∂z)U2(u1, z, ǫ)

]

+ F1(u1, z, ǫ) + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

(37)

3.2. A coupling of auxiliary convolution equations

We search for solutions to the coupling of partial differential equations (36), (37) in the form of a
Laplace transform of some order k1 ≥ 1 and inverse Fourier integral

Uj,d1
(u1, z, ǫ) =

k1

(2π)1/2

∫

Ld1

∫ +∞

−∞
ωj,d1

(τ, m, ǫ) exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm (38)

for j = 1, 2, where Ld1
= [0,+∞)e

√
−1d1 stands for a halfline in suitable directions d1 ∈ R which

depend on τ in a way that cos(k1(d1 − arg(u1))) remains strictly positive.
Here, we assume that for all ǫ ∈ Dǫ0 \ {0}, the so-called Borel-Fourier maps (τ, m) 7→ ωj,d1

(τ, m, ǫ),

j = 1, 2, belong to the Banach space Fd1
(ν,β,µ,k1,ρ,ǫ) for well chosen constants ν, ρ > 0 and for the prescribed

constants β, µ in Subsection 2.3 that is described in the upcoming definition

Definition 6. Let ǫ0, ν, β, µ, ρ > 0 be positive real numbers and k1 ≥ 1 be an integer. Let ǫ ∈ Dǫ0 \ {0}. We

set as Sd1
an unbounded sector centered at 0 with bisecting direction d1 ∈ R. We denote Fd1

(ν,β,µ,k1,ρ,ǫ) the vector

space of all continuous maps (τ, m) 7→ h(τ, m) on (Sd1
∪ Dρ)×R, holomorphic w.r.t τ on Sd1

∪ Dρ, such that

the norm

||h(τ, m)||(ν,β,µ,k1,ρ,ǫ) = sup
τ∈Sd1

∪Dρ ,m∈R
(1 + |m|)µeβ|m| |ǫ|

|τ| (1 + |τ
ǫ
|2k1) exp

(

− ν|τ
ǫ
|k1

)

|h(τ, m)|

is finite. The vector space Fd1
(ν,β,µ,k1,ρ,ǫ) equipped with the norm ||.||(ν,β,µ,k1,ρ,ǫ) turns out to be a Banach space.

The main purpose of this subsection is to determine coupling convolution equations for the
Borel-Fourier maps ωj,d1

outlined in (49) and (50), (51). We depart from some features of the Laplace
transforms under the action of multiplication by a monomial and differential operators that were
already stated and proved in our foregoing work [16], Lemma 2.

Lemma 1. The next identities hold.

1. The action of the differential operator uk1+1
1 ∂u1 on the integral representations Uj,d1

is given by

uk1+1
1 ∂u1Uj,d1

(u1, z, ǫ)

=
k1

(2π)1/2

∫

Ld1

∫ +∞

−∞

[

k1τk1 ωj,d1
(τ, m, ǫ)

]

exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm. (39)

2. Let m′ ≥ 1 be an integer. The multiplication by um′
1 acting on Uj,d1

is expressed through

um′
1 Uj,d1

(u1, z, ǫ) =
k1

(2π)1/2

∫

Ld1

∫ +∞

−∞

[ τk1

Γ(m′
k1
)

∫ τk1

0
(τk1 − s)

m′
k1

−1
ωj,d1

(s1/k1 , m, ǫ)
ds

s

]

× exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm. (40)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2023                   doi:10.20944/preprints202301.0582.v1

https://doi.org/10.20944/preprints202301.0582.v1


14 of 60

3. Let m 7→ A(m) be a map that belongs to E(β,µ). We set

a(z) =
1

(2π)1/2

∫ +∞

−∞
A(m)e

√
−1zmdm.

The action of multiplication by a(z) on Uj,d1
is expressed by means of

a(z)Uj,d1
(u1, z, ǫ) =

k1

(2π)1/2

∫

Ld1

∫ +∞

−∞

[ 1
(2π)1/2

∫ +∞

−∞
A(m − m1)ωj,d1

(τ, m1, ǫ)dm1

]

× exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm. (41)

4. Let Hk(X) ∈ C[X], k = 1, 2, be polynomials. The action of the differential operators Hk(∂z) combined with

the product of the resulting functions Hk(∂z)Uj,d1
for k = 1, 2, j = 1, 2 maps Uj,d1

into a Fourier-Laplace

transform,

[

H1(∂z)Ul,d1
(u1, z, ǫ)

]

×
[

H2(∂z)Up,d1
(u1, z, ǫ)

]

=
k1

(2π)1/2

∫

Ld1

∫ +∞

−∞

[ 1
(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
H1(

√
−1(m − m1))ωl,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× H2(
√
−1m1)ωp,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1

]

× exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm. (42)

for given 1 ≤ l, p ≤ 2.

The next useful lemma already stated in the previous work by A. Lastra and the author [17] will
show up in the process.

Lemma 2. For all integers p1 ≥ 1, positive integers aq,p1 ≥ 1, for 1 ≤ q ≤ p1 can be singled out such that

(u1∂u1)
p1 =

p1

∑
q=1

aq,p1 u
q
1∂

q
u1

with a1,p1 = ap1,p1 = 1.

With the help of this lemma, the equations (36) and (37) can be remodeled in the form

Q(∂z)U2(u1, z, ǫ) = udD
1

[

(

δD

∑
q=1

aq,δD
u

q
1∂

q
u1

)

RD(∂z)U2(u1, z, ǫ)
]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)

(

δl

∑
q=1

aq,δl
u

q
1∂

q
u1

)

Rl(∂z)U2(u1, z, ǫ) + F2(u1, z, ǫ) + c1(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

(43)
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and

Q(∂z)U1(u1, z, ǫ) = udD
1

[

(

δD

∑
q=1

aq,δD
u

q
1∂

q
u1

)

RD(∂z)U1(u1, z, ǫ)

+ δD

(

δD−1

∑
q=1

aq,δD−1u
q
1∂

q
u1

)

RD(∂z)U2(u1, z, ǫ)
]

+
D−1

∑
l=1

ǫ∆l−dl u
dl
1 al(z, ǫ)

[

(

δl

∑
q=1

aq,δl
u

q
1∂

q
u1

)

Rl(∂z)U1(u1, z, ǫ)

+ δl

(

δl−1

∑
q=1

aq,δl−1u
q
1∂

q
u1

)

Rl(∂z)U2(u1, z, ǫ)
]

+ F1(u1, z, ǫ) + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

(44)

The upcoming identity will also be called into play for the derivation of the coupling convolution
equations. This technical formula was introduced in the work [18].

Lemma 3. Let k1, δ ≥ 1 be integers. Real numbers Aδ,p, for 1 ≤ p ≤ δ − 1 can be found such that

u
δ(k1+1)
1 ∂δ

u1
= (uk1+1

1 ∂u1)
δ + ∑

1≤p≤δ−1
Aδ,pu

k1(δ−p)
1 (uk1+1

1 ∂u1)
p

holds, where we assume by convention that the sum ∑1≤p≤δ−1[..] vanishes for δ = 1.

Owing to the assumption (15), the splitting

dD + q = q(k1 + 1) + dD,q (45)

holds for suitable integers dD,q ≥ 1, provided that 1 ≤ q ≤ δD − 1. Furthermore, under the constraint
(16), the decomposition

dl + q = q(k1 + 1) + dl,q (46)

occurs for well chosen integers dl,q ≥ 1, as long as 1 ≤ l ≤ D − 1 and 1 ≤ q ≤ δl .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2023                   doi:10.20944/preprints202301.0582.v1

https://doi.org/10.20944/preprints202301.0582.v1


16 of 60

Ultimately, by means of the above two relations (45) and (46), the lemma 3 can be applied in
order to rewrite both equations (43), (44) only with the help of the basic irregular differential operator
uk1+1

1 ∂u1 . Namely,

Q(∂z)U2(u1, z, ǫ)

=
(

δD−1

∑
q=1

aq,δD
u

dD,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

RD(∂z)U2(u1, z, ǫ)
)

+
[

(uk1+1
1 ∂u1)

δD + ∑
1≤p≤δD−1

AδD ,pu
k1(δD−p)
1 (uk1+1

1 ∂u1)
p
]

RD(∂z)U2(u1, z, ǫ)

+
( D−1

∑
l=1

ǫ∆l−dl al(z, ǫ)

×
[

δl

∑
q=1

aq,δl
u

dl,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

Rl(∂z)U2(u1, z, ǫ)
])

+ F2(u1, z, ǫ) + c1(z, ǫ)U2(u1, z, ǫ)

+ cQ1Q2

[

Q1(∂z)U2(u1, z, ǫ)
]

×
[

Q2(∂z)U2(u1, z, ǫ)
]

(47)

together with

Q(∂z)U1(u1, z, ǫ)

=
( δD−1

∑
q=1

aq,δD
u

dD,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

RD(∂z)U1(u1, z, ǫ)
)

+
[

(uk1+1
1 ∂u1)

δD + ∑
1≤p≤δD−1

AδD ,pu
k1(δD−p)
1 (uk1+1

1 ∂u1)
p
]

RD(∂z)U1(u1, z, ǫ)

+ δD

δD−1

∑
q=1

aq,δD−1u
dD,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

RD(∂z)U2(u1, z, ǫ)

+
( D−1

∑
l=1

ǫ∆l−dl al(z, ǫ)

×
[

δl

∑
q=1

aq,δl
u

dl,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

Rl(∂z)U1(u1, z, ǫ)

+ δl

δl−1

∑
q=1

aq,δl−1u
dl,q
1

[

(uk1+1
1 ∂u1)

q + ∑
1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)
p
]

Rl(∂z)U2(u1, z, ǫ)
])

+ F1(u1, z, ǫ) + b1(z, ǫ)U1(u1, z, ǫ) + b2(z, ǫ)U2(u1, z, ǫ)

+ cP1P2

[

P1(∂z)U1(u1, z, ǫ)
]

×
[

P2(∂z)U2(u1, z, ǫ)
]

+ cP3P4

[

P3(∂z)U1(u1, z, ǫ)
]

×
[

P4(∂z)U1(u1, z, ǫ)
]

+ cP5P6

[

P5(∂z)U2(u1, z, ǫ)
]

×
[

P6(∂z)U2(u1, z, ǫ)
]

(48)

On the ground of the identities disclosed in Lemma 1, this hindmost coupling of equations (47) and
(48) allows us to reach the next statement.
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The maps Uj,d1
(u1, z, ǫ), j = 1, 2, displayed in (38) solve the closing coupling (47) and (48) if the

Borel maps ωj,d1
(τ, m, ǫ), j = 1, 2, fulfill the next coupling of convolution equations

Q(
√
−1m)ω2,d1

(τ, m, ǫ)

=
( δD−1

∑
q=1

aq,δD

[ τk1

Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1(
k1(s

1/k1)k1
)q

ω2,d1
(s1/k1 , m, ǫ)

ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1(

k1(s
1/k1)k1

)p
ω2,d1

(s1/k1 , m, ǫ)
ds

s

]

× RD(
√
−1m)

)

+
[

(k1τk1)δD ω2,d1
(τ, m, ǫ)

+ ∑
1≤p≤δD−1

AδD ,p
τk1

Γ( k1(δD−p)
k1

)

∫ τk1

0
(τk1 − s)

k1(δD−p)
k1

−1(
k1(s

1/k1)k1
)p

ω2,d1
(s1/k1 , m, ǫ)

ds

s

]

× RD(
√
−1m)

+
D−1

∑
l=1

ǫ∆l−dl

[
δl

∑
q=1

aq,δl

[ τk1

Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)q

× Rl(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1 + ∑

1≤p≤q−1
Aq,p

τk1

Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)p
Rl(

√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1

]

]

+F2(τ, m, ǫ) +
1

(2π)1/2

∫ +∞

−∞
C1(m − m1, ǫ)ω2,d1

(τ, m1, ǫ)dm1

+ cQ1Q2

1
(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω2,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× Q2(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1 (49)
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along with

Q(
√
−1m)ω1,d1

(τ, m, ǫ)

=
( δD−1

∑
q=1

aq,δD

[ τk1

Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1(
k1(s

1/k1)k1
)q

ω1,d1
(s1/k1 , m, ǫ)

ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1(

k1(s
1/k1)k1

)p
ω1,d1

(s1/k1 , m, ǫ)
ds

s

]

× RD(
√
−1m)

)

+
[

(k1τk1)δD RD(
√
−1m)ω1,d1

(τ, m, ǫ)

+ ∑
1≤p≤δD−1

AδD ,p
τk1

Γ( k1(δD−p)
k1

)

∫ τk1

0
(τk1 − s)

k1(δD−p)
k1

−1(
k1(s

1/k1)k1
)p

ω1,d1
(s1/k1 , m, ǫ)

ds

s

× RD(
√
−1m)

]

+
(

δD

δD−1

∑
q=1

aq,δD−1

[ τk1

Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
(k1(s

1/k1)k1)qω2,d1
(s1/k1 , m, ǫ)

ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1(

k1(s
1/k1)k1

)p
ω2,d1

(s1/k1 , m, ǫ)
ds

s

]

× RD(
√
−1m)

)

+
D−1

∑
l=1

ǫ∆l−dl

[(
δl

∑
q=1

aq,δl

[ τk1

Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)q

× Rl(
√
−1m1)ω1,d1

(s1/k1 , m1, ǫ)
ds

s
dm1 + ∑

1≤p≤q−1
Aq,p

τk1

Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)p
Rl(

√
−1m1)ω1,d1

(s1/k1 , m1, ǫ)
ds

s
dm1

]

)

+
(

δl

δl−1

∑
q=1

aq,δl−1
[ τk1

Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)q
Rl(

√
−1m1)

× ω2,d1
(s1/k1 , m1, ǫ)

ds

s
dm1 + ∑

1≤p≤q−1
Aq,p

τk1

Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)

(

k1(s
1/k1)k1

)p
Rl(

√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1

]

)]

+A(τ, m, ǫ) (50)
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where

A(τ, m, ǫ) := F1(τ, m, ǫ) +
1

(2π)1/2

∫ +∞

−∞
B1(m − m1, ǫ)ω1,d1

(τ, m1, ǫ)dm1

+
1

(2π)1/2

∫ +∞

−∞
B2(m − m1, ǫ)ω2,d1

(τ, m1, ǫ)dm1

+ cP1P2

1
(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P1(

√
−1(m − m1))ω1,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× P2(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1

+ cP3P4

1
(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P3(

√
−1(m − m1))ω1,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× P4(
√
−1m1)ω1,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1

+ cP5P6

1
(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P5(

√
−1(m − m1))ω2,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× P6(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1 (51)

4. Linear and bilinear convolution operators acting on Banach spaces

In this section, we examine continuity properties of several linear and bilinear convolutions
operators that are applied on the Banach spaces given in Definition 6 and that unfold in the above
coupled equations (49) and (50), (51).

Proposition 1. Let γ1 ≥ 0, γ3 ≥ −1 be integers and set γ2 ∈ R. Let Sd1
be an unbounded sector centered at

0 with bisecting direction d1 ∈ R and fix ρ > 0 as some positive real number. Let aγ1(τ, m) be a continuous

map on the closure ( ¯Sd1
∪ D̄ρ)×R subjected to the upper bounds

|aγ1(τ, m)| ≤ Mγ1

(1 + |τ|)γ1
(52)

provided that τ ∈ Sd1
∪ Dρ, all m ∈ R, for some constant Mγ1 > 0. We take for granted that

γ1 ≥ k1(γ3 + 1) , γ2 > −1 , γ2 + γ3 +
1
k1

+ 1 ≥ 0. (53)

Then, we can single out a constant C1 > 0 (relying on γj, j = 1, 2, 3, k1 and ν) for which

||aγ1(τ, m)τk1

∫ τk1

0
(τk1 − s)γ2 sγ3 f (s1/k1 , m)ds||(ν,β,µ,k1,ρ,ǫ)

≤ C1Mγ1 |ǫ|k1(γ2+1)|| f (τ, m)||(ν,β,µ,k1,ρ,ǫ) (54)

holds as long as f belongs to the Banach space F
d1
(ν,β,µ,k1,ρ,ǫ).

Proof. Let f ∈ Fd1
(ν,β,µ,k1,ρ,ǫ). By definition, the bounds

| f (τ, m)| ≤ || f ||(ν,β,µ,k1,ρ,ǫ)|
τ

ǫ
| 1
1 + |τ/ǫ|2k1

exp
(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m| (55)
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ensue provided that τ ∈ Sd1
∪ Dρ and m ∈ R. According to the assumption (52), the latter bounds

warrant the next estimates

B(τ, m) :=
∣

∣aγ1(τ, m)τk1

∫ τk1

0
(τk1 − s)γ2 sγ3 f (s1/k1 , m)ds

∣

∣

≤
Mγ1 || f ||(ν,β,µ,k1,ρ,ǫ)

(1 + |τ|)γ1
|τ|k1

∫ |τ|k1

0
(|τ|k1 − h)γ2 hγ3

h1/k1

|ǫ|
1

1 + h2

|ǫ|2k1

exp
(

ν
h

|ǫ|k1

)

dh

× (1 + |m|)−µe−β|m| (56)

for all τ ∈ Sd1
∪ Dρ, all m ∈ R.

We further perform the change of variable g = h/|ǫ|k1 in the above integral and get

B(τ, m) ≤
Mγ1 || f ||(ν,β,µ,k1,ρ,ǫ)

(1 + |τ|)γ1
|τ|k1

∫

|τ|k1

|ǫ|k1

0

( |τ|k1

|ǫ|k1
− g

)γ2 g
γ3+

1
k1

1
1 + g2 eνgdg

× |ǫ|k1(γ2+γ3+1)(1 + |m|)−µe−β|m| (57)

as long as τ ∈ Sd1
∪ Dρ and m ∈ R.

We introduce the function

G(x) =
∫ x

0
(x − g)γ2 g

γ3+
1

k1
1

1 + g2 eνgdg

for all x ≥ 0. In the next lemma, we uncover upper bounds for G for large values of x.

Lemma 4. The function G(x) is well defined and continuous for all x ≥ 0. Furthermore, there exists a constant

KG > 0 for which

G(x) ≤ KG
x

γ3+
1

k1

1 + x2 eνx (58)

for all x ≥ 1.

Proof. We first explain why G(x) is well defined and continuous for x ≥ 0. Indeed, by means of the
change of variable g = xg1 for 0 ≤ g1 ≤ 1, we can recast G(x) in the form

G(x) = x
γ2+γ3+

1
k1
+1

∫ 1

0
(1 − g1)

γ2 g
γ3+

1
k1

1
1

1 + (xg1)2 eνxg1 dg1

which is a finite quantity for all x ≥ 0 and represents a continuous map w.r.t x, according to the last
inequality of (53).

In order to reach bounds for large x ≥ 1, we apply a strategy stemming from Proposition 1 in our
joint work [19]. Namely, we split G(x) into two pieces,

G(x) = G1(x) + G2(x) (59)

where

G1(x) =
∫ x/2

0
(x − g)γ2 g

γ3+
1

k1
1

1 + g2 eνgdg

and
G2(x) =

∫ x

x/2
(x − g)γ2 g

γ3+
1

k1
1

1 + g2 eνgdg

We first focus on bounds for G1(x). Two cases arise.
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• Assume that −1 < γ2 ≤ 0. In that situation, we observe that (x − g)γ2 ≤ (x/2)γ2 provided that
0 ≤ g ≤ x/2, for x ≥ 0. Therefore, bearing in mind the constraints (53),

G1(x) ≤ (
x

2
)γ2 eνx/2

∫ x/2

0
g

γ3+
1

k1 dg =
1

γ3 +
1
k1
+ 1

(x/2)
γ2+γ3+

1
k1
+1

eνx/2 (60)

for all x ≥ 0.
• Suppose that γ2 > 0. We check that (x − g)γ2 ≤ xγ2 for any 0 ≤ g ≤ x/2. Hence, paying regard

to (53),

G1(x) ≤ xγ2 eνx/2
∫ x/2

0
g

γ3+
1

k1 dg = (1/2)
γ3+

1
k1
+1 1

γ3 +
1
k1
+ 1

x
γ2+γ3+

1
k1
+1

eνx/2 (61)

whenever x ≥ 0.

In a second step, we provide upper estimates for G2(x). We notice that 1 + g2 ≥ 1 + (x/2)2, for
x/2 ≤ g ≤ x. Hence,

G2(x) ≤ 1
1 + (x/2)2

∫ x

x/2
(x − g)γ2 g

γ3+
1

k1 eνgdg ≤ G̃2(x)

1 + (x/2)2 (62)

where
G̃2(x) =

∫ x

0
(x − g)γ2 g

γ3+
1

k1 eνgdg

for all x ≥ 0. From the sharp bounds established in Proposition 1 of [16], we can pinpoint a constant
K1 > 0 (depending on γ2, γ3, k1, ν) with

Ǧ2(x) ≤ K1x
γ3+

1
k1 eνx

for all x ≥ 1, under the conditions (53). As a result, we get that

G2(x) ≤ K1
x

γ3+
1

k1

1 + (x/2)2 eνx (63)

provided that x ≥ 1.
At last, gathering the bounds (60), (61) and (63), we deduce the awaited bounds (58) from the

splitting (59).

We turn to the bounds for the map B(τ, m). We identify two alternatives.

• Assume that τ ∈ Sd1
∪ Dρ is chosen such that

|τ|k1

|ǫ|k1
> 1. (64)

Owing to Lemma 4 and the first constraint of (53), we get from the upper bounds (57) some
constant C1.1 > 0 with

B(τ, m) ≤
Mγ1 || f ||(ν,β,µ,k1,ρ,ǫ)

(1 + |τ|)γ1
|τ|k1 |ǫ|k1(γ2+γ3+1)KG

(

|τ/ǫ|k1
)γ3+

1
k1

1 + |τ/ǫ|2k1
exp

(

ν|τ
ǫ
|k1

)

× (1 + |m|)−µe−β|m| ≤ C1.1Mγ1 |ǫ|k1(γ2+1)|| f ||(ν,β,µ,k1,ρ,ǫ)
|τ/ǫ|

1 + |τ/ǫ|2k1
exp

(

ν|τ
ǫ
|k1

)

× (1 + |m|)−µe−β|m| (65)
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for all τ ∈ Sd1
∪ Dρ chosen under (64).

• Suppose that τ ∈ Sd1
∪ Dρ fufills

0 ≤ |τ|k1

|ǫ|k1
≤ 1. (66)

Based on (57), we arrive at some constant C1.2 > 0 such that

B(τ, m) ≤
Mγ1 || f ||(ν,β,µ,k1,ρ,ǫ)

(1 + |τ|)γ1
|τ|k1

∫

|τ|k1

|ǫ|k1

0

( |τ|k1

|ǫ|k1
− g

)γ2 g
γ3+

1
k1

1
1 + g2 dg

× exp
(

ν|τ
ǫ
|k1

)

|ǫ|k1(γ2+γ3+1)(1 + |m|)−µe−β|m|

≤ || f ||(ν,β,µ,k1,ρ,ǫ)
|τ/ǫ|

1 + |τ/ǫ|2k1
exp

(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m|

×
[

C1.2|τ|k1−1|ǫ|k1(γ2+1)|ǫ|1+k1γ3 Mγ1(1 + |τ/ǫ|2k1)
]

≤
[

C1.2Mγ1 ǫ
k1(γ3+1)
0 2

]

|ǫ|k1(γ2+1)|| f ||(ν,β,µ,k1,ρ,ǫ)
|τ/ǫ|

1 + |τ/ǫ|2k1
exp

(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m|

(67)

whenever τ ∈ Sd1
∪ Dρ is restricted to (66).

Eventually, the combination of the above bounds (65) and (67) yields the expected result (54).

Proposition 2. Let Q(X), R(X) ∈ C[X] be polynomials and µ > 0 be a real number subjected to the

constraints

deg(R) ≥ deg(Q) , R(
√
−1m) 6= 0 , µ > deg(Q) + 1 (68)

for all m ∈ R. Then, a constant C2 > 0 (depending on Q,R and µ) can be selected such that

|| 1
R(

√
−1m)

∫ +∞

−∞
f (m − m1)Q(

√
−1m1)g(τ, m1)dm1||(ν,β,µ,k1,ρ,ǫ)

≤ C2|| f (m)||(β,µ)||g(τ, m)||(ν,β,µ,k1,ρ,ǫ) (69)

holds provided that f ∈ E(β,µ) and g ∈ Fd1
(ν,β,µ,k1,ρ,ǫ).

Proof. The proof mirrors the one of Proposition 2 in our recent work [20]. Indeed, let us choose g in
F

d1
(ν,β,µ,k1,ρ,ǫ). The very definition of the norms displayed in Definitions 2 and 6 allows the bounds

|g(τ, m1)| ≤ ||g||(ν,β,µ,k1,ρ,ǫ)
∣

∣

τ

ǫ

∣

∣

1
1 + |τ/ǫ|2k1

exp
(

ν
∣

∣

τ

ǫ

∣

∣

k1
)

(1 + |m1|)−µe−β|m1| (70)

provided that τ1 ∈ Sd1
∪ Dρ and m1 ∈ R together with

| f (m)| ≤ || f (m)||(β,µ)(1 + |m|)−µe−β|m| (71)

for all m ∈ R. These two bounds (70) and (71) yield the next estimates

|C(τ, m)| :=
∣

∣

1
R(

√
−1m)

∫ +∞

−∞
f (m − m1)Q(

√
−1m1)g(τ, m1)dm1

∣

∣

≤ || f (m)||(β,µ)||g(τ, m)||(ν,β,µ,k1,ρ,ǫ)
∣

∣

τ

ǫ

∣

∣

1
1 + |τ/ǫ|2k1

exp
(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m|C2.1 (72)
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where

C2.1 = (1 + |m|)µeβ|m| 1
|R(

√
−1m)|

∫ +∞

−∞

e−β|m−m1|

(1 + |m − m1|)µ

|Q(
√
−1m1)|

(1 + |m1|)µ e−β|m1|dm1.

According to the triangular inequality, we observe that

|m| ≤ |m − m1|+ |m1| (73)

for all real numbers m, m1 ∈ R and by construction of the polynomials R, Q asked to fulfill (68), two
constants Q,R > 0 can be pinpointed such that

|Q(
√
−1m1)| ≤ Q(1 + |m1|)deg(Q) , |R(

√
−1m)| ≥ R(1 + |m|)deg(R)

whenever m, m1 ∈ R. Thereby, the next upper bounds

C2.1 ≤ Q

R
sup
m∈R

(1 + |m|)µ−deg(R)
∫ +∞

−∞

1
(1 + |m − m1|)µ(1 + |m1|)µ−deg(Q)

dm1 (74)

are reached whose right handside is a finite quantity under the restrictions (68), owing to Lemma 2.2
from [15] or Lemma 4 of [21].

Eventually, gathering (72) and (74) yields the foretold bounds (69).

Proposition 3. Let k1 ≥ 1 be an integer. Let Q1(X), Q2(X) and R(X) be polynomials with complex coefficients

such that

deg(R) ≥ deg(Q1) , deg(R) ≥ deg(Q2) , R(
√
−1m) 6= 0 (75)

for all m ∈ R. We require the positive real number µ > 0 to satisfy

µ > max(deg(Q1) + 1, deg(Q2) + 1). (76)

Let m 7→ b(m) be a continuous function on R such that

|b(m)| ≤ 1
|R(

√
−1m)|

(77)

for all m ∈ R. Then, one can find a constant C3 > 0 (relying on Q1,Q2,R,µ,k1 and ν) such that

||b(m)τk1

∫ τk1

0

∫ +∞

−∞
Q1(

√
−1(m − m1)) f ((τk1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)g(s1/k1 , m1)

1
(τk1 − s)s

dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3|| f (τ, m)||(ν,β,µ,k1,ρ,ǫ)||g(τ, m)||(ν,β,µ,k1,ρ,ǫ) (78)

for all f , g ∈ Fd1
(ν,β,µ,k1,ρ,ǫ).

Proof. Take f , g in the space Fd1
(ν,β,µ,k1,ρ,ǫ). According to the definition of the norm, the next two bounds

| f (τ, m)| ≤ || f ||(ν,β,µ,k1,ρ,ǫ)|
τ

ǫ
| 1
1 + |τ/ǫ|2k1

exp
(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m| (79)

and
|g(τ, m)| ≤ ||g||(ν,β,µ,k1,ρ,ǫ)|

τ

ǫ
| 1
1 + |τ/ǫ|2k1

exp
(

ν|τ
ǫ
|k1

)

(1 + |m|)−µe−β|m| (80)
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hold provided that τ ∈ Sd1
∪ Dρ and m ∈ R. These bounds together with the assumption (77) prompt

D(τ, m) :=
∣

∣b(m)τk1

∫ τk1

0

∫ +∞

−∞
Q1(

√
−1(m − m1)) f ((τk1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)g(s1/k1 , m1)

1
(τk1 − s)s

dsdm1
∣

∣

≤ 1
|R(

√
−1m)|

∫ +∞

−∞
|Q1(

√
−1(m − m1))||Q2(

√
−1m1)|(1 + |m − m1|)−µe−β|m−m1|

× (1 + |m1|)−µe−β|m1|dm1|| f ||(ν,β,µ,k1,ρ,ǫ)||g||(ν,β,µ,k1,ρ,ǫ)

× |τ|k1

∫ |τ|k1

0

(|τ|k1 − h)1/k1

|ǫ|
1

1 + (|τ|k1−h)2

|ǫ|2k1

h1/k1

|ǫ|
1

1 + h2

|ǫ|2k1

1
(|τ|k1 − h)h

dh × exp
(

ν|τ
ǫ
|k1

)

(81)

for all τ ∈ Sd1
∪ Dρ and m ∈ R.

By construction, we check that some positive constants Q1,Q2 and R can be picked out in a way
that

|Q1(
√
−1(m − m1))| ≤ Q1(1 + |m − m1|)deg(Q1) , |Q2(

√
−1m1)| ≤ Q2(1 + |m1|)deg(Q2),

|R(
√
−1m)| ≥ R(1 + |m|)deg(R) (82)

for all m, m1 ∈ R. As a result and keeping in mind the inequality (73), we deduce the next bounds for
the first piece of the right handside of (81), namely

1
|R(

√
−1m)|

∫ +∞

−∞
|Q1(

√
−1(m − m1))||Q2(

√
−1m1)|(1 + |m − m1|)−µe−β|m−m1|

× (1 + |m1|)−µe−β|m1|dm1 ≤ Q1Q2

R
D(1 + |m|)−µe−β|m| (83)

where

D := sup
m∈R

(1 + |m|)µ−deg(R)
∫ +∞

−∞

1
(1 + |m − m1|)µ−deg(Q1)(1 + |m1|)µ−deg(Q2)

dm1

is a finite quantity under the conditions (75), (76), as explained in Lemma 2.2 from [15] or Lemma 4 of
[21]. Besides, according to Lemma 3 of our recent work [22], there exists a constant Kk1

(relying on k1)
such that

|τ|k1

∫ |τ|k1

0

(|τ|k1 − h)1/k1 /|ǫ|
1 + (|τ|k1−h)2

|ǫ|2k1

h1/k1 /|ǫ|
1 + h2

|ǫ|2k1

1
(|τ|k1 − h)h

dh ≤ Kk1

|τ/ǫ|
1 + |τ/ǫ|2k1

(84)

for all τ ∈ Sd1
∪ Dρ, all ǫ ∈ Dǫ0 \ {0}.

Counting up the above two bounds (83), (84), it results from (81) that

D(τ, m) ≤ Q1Q2

R
DKk1

|| f ||(ν,β,µ,k1,ρ,ǫ)||g||(ν,β,µ,k1,ρ,ǫ)
|τ/ǫ|

1 + |τ/ǫ|2k1
(1 + |m|)−µe−β|m|

× exp
(

ν|τ
ǫ
|k1

)

(85)

whenever τ ∈ Sd1
∪ Dρ and m ∈ R. The estimates (78) follow.

5. Solving the first convolution equation (49)

In this section we uniquely solve the auxiliary convolution equation (49) stated in Subsection 3.2
within the Banach spaces displayed in Definition 6. Our approach consists in rearranging (49) into a
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fixed point equation (disclosed later on in (129)). In a first stage, we ask to perform a division by the
next parameter depending polynomial

Pm(τ) = Q(
√
−1m)− RD(

√
−1m)kδD

1 τk1δD (86)

provided that τ ∈ Sd1
∪ Dρ. Decisive lower bounds concerning Pm are displayed in the next lemma.

Lemma 5. For a convenient choice of the inner radius rQ,RD
> 0 and aperture ηQ,RD

> 0 of the sector SQ,RD

(introduced in (21)), unbounded sectors Sd1
centered at 0 with bisecting direction d1 ∈ R and a small radius

ρ > 0 can be distinguished in a way that the next lower estimates

|Pm(τ)| ≥ CP(rQ,RD
)

1
k1δD |RD(

√
−1m)|(1 + |τ|)k1δD−1 (87)

hold for some well chosen constant CP > 0, provided that τ ∈ Sd1
∪ Dρ, for all m ∈ R.

Proof. Owing to the fact that the complex roots ql(m), 0 ≤ l ≤ k1δD − 1 of τ 7→ Pm(τ) can be
explicitely computed, we factorize the polynomial as follows

Pm(τ) = −RD(
√
−1m)kδD

1 Π
k1δD−1
l=0 (τ − ql(m)) (88)

with

ql(m) =
( |Q(

√
−1m)|

|RD(
√
−1m)|kδD

1

)

1
k1δD exp

(√
−1(arg

( Q(
√
−1m)

RD(
√
−1m)kδD

1

) 1
k1δD

+
2πl

k1δD
)
)

for all 0 ≤ l ≤ k1δD − 1, for any τ ∈ C and m ∈ R.
We pinpoint an unbounded sector Sd1

centered at 0, a small disc Dρ and we position the sector
SQ,RD

given in (21) in a way that the next two properties hold:
1) A constant M1 > 0 can be found such that

|τ − ql(m)| ≥ M1(1 + |τ|) (89)

for all 0 ≤ l ≤ k1δD − 1, all m ∈ R, whenever τ ∈ Sd1
∪ Dρ.

2) There exists a constant M2 > 0 with

|τ − ql0(m)| ≥ M2|ql0(m)| (90)

for some 0 ≤ l0 ≤ δDk1 − 1, all m ∈ R, all τ ∈ Sd1
∪ Dρ.

We now explain how the above two bounds can be established.

• We deem the first inequality (89) in observing that under the hypothesis (22), the roots ql(m)

are bounded from below and obey |ql(m)| ≥ 2ρ for all m ∈ R, all 0 ≤ l ≤ δDk1 − 1 for a
suitable choice of the radii rQ,RD

, ρ > 0. Furthermore, for all m ∈ R, all 0 ≤ l ≤ δDk1 − 1, these
roots are penned inside an union Q of unbounded sectors centered at 0 that do not cover a full
neighborhood of 0 in C∗ whenever the aperture ηQ,RD

> 0 of SQ,RD
is taken small enough. Hence,

a sector Sd1
may be chosen such that

Sd1
∩Q = ∅.

Such a sector satisfies in particular that for all 0 ≤ l ≤ δDk1 − 1, the quotients ql(m)/τ lay outside
some small disc centered at 1 in C for all τ ∈ Sd1

, all m ∈ R. Eventually, (89) follows.
• The sector Sd1

and disc Dρ are selected as above. The second lower bound (90) ensues from the
fact that for any fixed 0 ≤ l0 ≤ δDk1 − 1, the quotient τ/ql0(m) stays apart a small disc centered
at 1 in C for all τ ∈ Sd1

∪ Dρ, all m ∈ R.
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Departing from the factorization (88) and paying regard to the two lower bounds (89), (90) reached
overhead, we arrive at

|Pm(τ)| ≥ M
k1δD−1
1 M2|RD(

√
−1m)|kδD

1

( |Q(
√
−1m)|

|RD(
√
−1m)|kδD

1

)

1
k1δD (1 + |τ|)k1δD−1

≥ CP(rQ,RD
)

1
k1δD |RD(

√
−1m)|(1 + |τ|)k1δD−1 (91)

as long as τ ∈ Sd1
∪ Dρ, for all m ∈ R.

We introduce the next nonlinear map

Hǫ(ω(τ, m)) :=
( δD−1

∑
q=1

aq,δD

[ τk1

Pm(τ)Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
k

q
1sqω(s1/k1 , m)

ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Pm(τ)Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

k
p
1 spω(s1/k1 , m)

ds

s

]

× RD(
√
−1m)

)

+
[

∑
1≤p≤δD−1

AδD ,p
τk1

Pm(τ)Γ(δD − p)

∫ τk1

0
(τk1 − s)δD−p−1k

p
1 spω(s1/k1 , m)

ds

s

]

× RD(
√
−1m)

+
D−1

∑
l=1

ǫ∆l−dl

[
δl

∑
q=1

aq,δl

[ τk1

Pm(τ)Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

q
1sq

× Rl(
√
−1m1)ω(s1/k1 , m1)

ds

s
dm1

+ ∑
1≤p≤q−1

Aq,p
τk1

Pm(τ)Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

p
1 spRl(

√
−1m1)ω(s1/k1 , m1)

ds

s
dm1

]

]

+
F2(τ, m, ǫ)

Pm(τ)
+

1
(2π)1/2Pm(τ)

∫ +∞

−∞
C1(m − m1, ǫ)ω(τ, m1)dm1

+ cQ1Q2

1
(2π)1/2Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)ω(s1/k1 , m1)

1
(τk1 − s)s

dsdm1 (92)

In the next proposition, we establish that Hǫ represents a shrinking map on some suitable ball of the
Banach space mentioned in Definition 6.

Proposition 4. Let us select a well chosen inner radius rQ,RD
> 0 and aperture ηQ,RD

> 0 of the sector SQ,RD

jointly with an unbounded sector Sd1
and radius ρ > 0 that heed the requirements of Lemma 5 and obey the

additional condition

− 1 /∈ Sd1
∪ Dρ. (93)

Then, one can single out a radius ǫ0 > 0 small enough, constants C1,ǫ0 > 0 and cQ1,Q2 ∈ C∗ close enough to 0

and a fitting radius ̟2 > 0 in a way that for all ǫ ∈ Dǫ0 \ {0}, the map Hǫ enjoys the next two features
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• The inclusion

Hǫ(B̟̄2) ⊂ B̟̄2 (94)

holds, where we denote B̟̄2 the closed ball of radius ̟2 > 0 centered at 0 in the space F
d1
(ν,β,µ,k1,ρ,ǫ).

• The 1/2−Lipschitz condition

||Hǫ(ω1)−Hǫ(ω2)||(ν,β,µ,k1,ρ,ǫ) ≤
1
2
||ω1 − ω2||(ν,β,µ,k1,ρ,ǫ) (95)

occurs for all ω1, ω2 ∈ Fd1
(ν,β,µ,k1,ρ,ǫ).

Proof. We take aim at the first item stating the inclusion (94). We prescribe some real number ̟2 > 0
and take ω(τ, m) in Fd1

(ν,β,µ,k1,ρ,ǫ), for given ǫ ∈ Dǫ0 \ {0}, such that

||ω||(ν,β,µ,k1,ρ,ǫ) ≤ ̟2.

We provide explicit bounds for each term of the map Hǫ applied to ω.
According to Proposition 1 and Lemma 5, we observe that

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
sqRD(

√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (96)

for 1 ≤ q ≤ δD − 1 along with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

spRD(
√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (97)

for 1 ≤ p ≤ q − 1 with 1 ≤ q ≤ δD − 1 and

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)δD−p−1spRD(

√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (98)

as long as 1 ≤ p ≤ δD − 1. In order to handle the next piece, under the constraint (93), we can recast

E1(τ, m, ǫ) :=
τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
∫ +∞

−∞
Al(m − m1, ǫ)sq

× Rl(
√
−1m1)ω(s1/k1 , m1)

ds

s
dm1 =

RD(
√
−1m)(1 + τ)k1δD−1

Pm(τ)

× 1
RD(

√
−1m)

∫ +∞

−∞
Al(m − m1, ǫ)Rl(

√
−1m1)

×
[ τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
sqω(s1/k1 , m1)

ds

s

]

dm1. (99)

for all τ ∈ Sd1
∪ Dρ, m ∈ R with 1 ≤ l ≤ D − 1 and 1 ≤ q ≤ δl . Based on Lemma 5, we check that
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∣

∣

∣

RD(
√
−1m)(1 + τ)k1δD−1

Pm(τ)

∣

∣

∣
≤ 1

CP(rQ,RD
)

1
k1δD

(100)

provided that τ ∈ Sd1
∪ Dρ, m ∈ R. Owing to the assumptions (19) and (??), the proposition 2 together

with (100) yield

||E1(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤
1

CP(rQ,RD
)

1
k1δD

C2||Al(m, ǫ)||(β,µ)

× || τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
sqω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ). (101)

Besides, a constant Mk1,δD
> 0 can be pick up such that

∣

∣

∣

1
(1 + τ)k1δD−1

∣

∣

∣
≤ Mk1,δD

(1 + |τ|)k1δD−1 (102)

for all τ ∈ Sd1
∪ Dρ, assuming the condition (93). The condition (17) together with (102) enable us to

apply Proposition 1 and prompt

|| τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
sqω(s1/k1 , m1)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1Mk1,δD
|ǫ|dl,q ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (103)

Eventually, bearing in mind (27), we deduce from (101) complemented by (103) that

||E1(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤
1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (104)

The ensuing block is remodeled as

E2(τ, m, ǫ) :=
τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

×
∫ +∞

−∞
Al(m − m1, ǫ)spRl(

√
−1m1)ω(s1/k1 , m1)

ds

s
dm1 =

RD(
√
−1m)(1 + τ)k1δD−1

Pm(τ)

× 1
RD(

√
−1m)

∫ +∞

−∞
Al(m − m1, ǫ)Rl(

√
−1m1)

×
[ τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

spω(s1/k1 , m1)
ds

s

]

dm1. (105)

for all τ ∈ Sd1
∪ Dρ, m ∈ R with 1 ≤ l ≤ D − 1, 1 ≤ q ≤ δl and 1 ≤ p ≤ q − 1, under (93).

The assumptions (19), (??) and the upper bounds (100) warrant the application of Proposition 2
which triggers

||E2(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤
1

CP(rQ,RD
)

1
k1δD

C2||Al(m, ǫ)||(β,µ)

× || τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

spω(s1/k1 , m)
ds

s
||(ν,β,µ,k1,ρ,ǫ). (106)

The condition (17) coupled with (102) grant the use of Proposition 1 and beget
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|| τk1

(1 + τ)k1δD−1

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

spω(s1/k1 , m1)
ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1Mk1,δD
|ǫ|dl,q+k1(q−p)||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (107)

At last, not forgetting (27), we deduce from the joint bounds (106), (107) that

||E2(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (108)

We control now the piece F2(τ, m, ǫ)/Pm(τ). In accordance with Lemma 5, we notice that

∣

∣

∣

1
Pm(τ)

∣

∣

∣
≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
(109)

provided that τ ∈ Sd1
∪ Dρ and m ∈ R, whose right handside is a finite quantity since RD(

√
−1m) 6= 0

holds from (22) for all m ∈ R. Besides, owing to the definition of F2 given in Subsection 2.3 and the
bounds (25), we deduce

|F2(τ, m, ǫ)| ≤ ∑
j2∈J2

F2,j2,ǫ0(1 + |m|)−µe−β|m||τ|j2 (110)

for all τ ∈ C, m ∈ R. The combination of the bounds (109) and (110) grants

||F2(τ, m, ǫ)/Pm(τ)||(ν,β,µ,k1,ρ,ǫ) ≤
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣

× sup
τ∈Sd1

∪Dρ ,m∈R
(1 + |m|)µeβ|m|| ǫ

τ
|(1 + |τ

ǫ
|2k1) exp

(

− ν|τ
ǫ
|k1

)

×
(

∑
j2∈J2

F2,j2,ǫ0(1 + |m|)−µe−β|m||τ|j2
)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
sup

τ∈Sd1
∪Dρ

exp
(

− ν|τ
ǫ
|k1

)

(1 + |τ
ǫ
|2k1)

×
(

∑
j2∈J2

F2,j2,ǫ0 |ǫ|j2 |
τ

ǫ
|j2−1

)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
ǫ0 × sup

x≥0
e−νxk1 (1 + x2k1) ∑

j2∈J2

F2,j2,ǫ0 ǫ
j2−1
0 xj2−1 (111)

which represents a finite quantity bearing in mind that J2 ⊂ N∗ contains only positive integers.
We address the ensuing linear part of Hǫ. Paying regard to (109) and the bounds (27), Proposition

2 prompts

|| 1
Pm(τ)

∫ +∞

−∞
C1(m − m1, ǫ)ω(τ, m1)dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2||C1(m, ǫ)||(β,µ)||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2C1,ǫ0 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (112)
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At last, we manage the nonlinear tail piece of Hǫ. We first factorize

1
Pm(τ)

=
1

RD(
√
−1m)

G(τ, m) (113)

where

|G(τ, m)| ≤ 1

CP(rQ,RD
)

1
k1δD

(114)

for all τ ∈ Sd1
∪ Dρ and m ∈ R, according to (87). This latter decomposition together with the

assumption (20) enable the application of Proposition 3 which yields

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)ω(s1/k1 , m1)

1
(τk1 − s)s

dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω(τ, m)||2(ν,β,µ,k1,ρ,ǫ) (115)

We select ǫ0 > 0, C1,ǫ0 > 0 and cQ1,Q2 ∈ C∗ close enough to 0 and take suitably ̟2 > 0 in a proper way
that the next inequality

( δD−1

∑
q=1

|aq,δD
|
[ 1

Γ(
dD,q
k1

)
k

q
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−q)k1
0 ̟2

+ ∑
1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)

k
p
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0 ̟2

])

+
[

∑
1≤p≤δD−1

|AδD ,p|
k

p
1

Γ(δD − p)

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0 ̟2

]

+
D−1

∑
l=1

ǫ
∆l−dl
0

[
δl

∑
q=1

|aq,δl
|
[ k

q
1

Γ(
dl,q
k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q
0 ̟2

+ ∑
1≤p≤q−1

|Aq,p|
k

p
1

Γ(
dl,q+k1(q−p)

k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q+k1(q−p)

0 ̟2
]

]

+
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
ǫ0 × sup

x≥0
e−νxk1 (1 + x2k1) ∑

j2∈J2

F2,j2,ǫ0 ǫ
j2−1
0 xj2−1

+
1

(2π)1/2
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2C1,ǫ0 ̟2

+ |cQ1,Q2 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

̟2
2 ≤ ̟2 (116)

holds. Observe that the first six blocks of the left handside of (116) can be made small since they
contain positive powers of ǫ0, owing in particular to the constraint (18) imposed on (14) and its last
two terms can be dwindled provided that the positive constants C1,ǫ0 and cQ1,Q2 are chosen nearby the
origin.

Eventually, the collection of all the bounds overhead (96), (97), (98), (104), (108), (111), (112), (115)
restricted by (116) gives rise to the inclusion (94).
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We mind the second item addressing the 1/2−Lipschitz feature. Take ω1, ω2 inside the ball
B̟̄2 of the space Fd1

(ν,β,µ,k1,ρ,ǫ) whose radius ̟2 has been prescribed in the first item discussed above.

We display norm estimates for each block of the difference Hǫ(ω1)−Hǫ(ω2). Based on the bounds
reached formerly in the proof of the first item, we check the next list of six estimates. Namely,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
sqRD(

√
−1m)

(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (117)

for 1 ≤ q ≤ δD − 1 along with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

spRD(
√
−1m)

×
(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (118)

for 1 ≤ p ≤ q − 1 with 1 ≤ q ≤ δD − 1 and

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)δD−p−1spRD(

√
−1m)

(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (119)

as long as 1 ≤ p ≤ δD − 1. Furthermore,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
∫ +∞

−∞
Al(m − m1, ǫ)sqRl(

√
−1m1)

×
(

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
)ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (120)

holds for 1 ≤ l ≤ D − 1 and 1 ≤ q ≤ δl together with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

∫ +∞

−∞
Al(m − m1, ǫ)spRl(

√
−1m1)

×
(

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
)ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (121)
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for 1 ≤ l ≤ D − 1, 1 ≤ q ≤ δl and 1 ≤ p ≤ q − 1 in a row with

|| 1
Pm(τ)

∫ +∞

−∞
C1(m − m1, ǫ)

(

ω1(τ, m1)− ω2(τ, m1)
)

dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2C1,ǫ0 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (122)

Upper estimates for the rear part of Hǫ(ω1)−Hǫ(ω2) ask some groundwork. Indeed, according to
the classical identity ab − cd = (a − c)b + c(b − d), we reshape

∆(τ, m) :=
1

Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω1((τ

k1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)ω1(s

1/k1 , m1)
1

(τk1 − s)s
dsdm1

− 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω2((τ

k1 − s)1/k1 , m − m1)

× Q2(
√
−1m1)ω2(s

1/k1 , m1)
1

(τk1 − s)s
dsdm1

=
1

Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0

[

Q1(
√
−1(m − m1))

[

ω1((τ
k1 − s)1/k1 , m − m1)− ω2((τ

k1 − s)1/k1 , m − m1)
]

× Q2(
√
−1m)ω1(s

1/k1 , m1) + Q1(
√
−1(m − m1))ω2((τ

k1 − s)1/k1 , m − m1)Q2(
√
−1m1)

×
[

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
]

] 1
(τk1 − s)s

dsdm1. (123)

Keeping in mind the factorization (113) with (114), the proposition 3 sparks of a constant C3 > 0 with

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))

×
[

ω1((τ
k1 − s)1/k1 , m − m1)− ω2((τ

k1 − s)1/k1 , m − m1)
]

× Q2(
√
−1m)ω1(s

1/k1 , m1)
1

(τk1 − s)s
dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C3||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)||ω1(τ, m)||(ν,β,µ,k1,ρ,ǫ) (124)

and

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
Q1(

√
−1(m − m1))ω2((τ

k1 − s)1/k1 , m − m1)Q2(
√
−1m1)

×
[

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
]

] 1
(τk1 − s)s

dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C3||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)||ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (125)
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The remodeling (123) of ∆(τ, m) together with (124), (125) lead to

||∆(τ, m)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C3
(

||ω1(τ, m)||(ν,β,µ,k1,ρ,ǫ) + ||ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)
)

× ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C32̟2||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (126)

We enclose the constants ǫ0 > 0, C1,ǫ0 > 0 and cQ1,Q2 ∈ C∗ in the vicinity of the origin allowing the
next inequality

( δD−1

∑
q=1

|aq,δD
|
[ 1

Γ(
dD,q
k1

)
k

q
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−q)k1
0

+ ∑
1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)

k
p
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0

])

+
[

∑
1≤p≤δD−1

|AδD ,p|
k

p
1

Γ(δD − p)

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0

]

+
D−1

∑
l=1

ǫ
∆l−dl
0

[
δl

∑
q=1

|aq,δl
|
[ k

q
1

Γ(
dl,q
k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q
0

+ ∑
1≤p≤q−1

|Aq,p|
k

p
1

Γ(
dl,q+k1(q−p)

k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q+k1(q−p)

0

]

]

+
1

(2π)1/2
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2C1,ǫ0

+ |cQ1,Q2 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

2̟2 ≤ 1/2. (127)

The merging of the above bounds (117), (118), (119), (120), (121), (122), (126) subjected to (127) triggers
the 1/2−Lipschitz attribute of Hǫ. Notice that the foremost five blocks of the left handside of (127) can
be taken small scaled since they contain positive powers of ǫ0 due to the constraint (18) imposed on
(14) and its two tail terms can be downsized provided that the positive constants C1,ǫ0 and cQ1,Q2 are
chosen close to the origin.

In the closing part of the proof, we fix the radius ̟2 > 0 and select the quantities ǫ0 > 0, C1,ǫ0 > 0
together with cQ1,Q2 ∈ C∗ close enough to 0 that conform both (116) and (127). For these values,
the map Hǫ is endowed with both inclusion and shrinking properties (94), (95) for all ǫ ∈ Dǫ0 \ {0}.
Proposition 4 follows.

The forthcoming proposition displays a solution to the first convolution equation (49) shaped in
the Banach spaces described in Definition 6.
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Proposition 5. Let us choose an appropriate inner radius rQ,RD
> 0 and aperture ηQ,RD

> 0 of the sector

SQ,RD
together with an unbounded sector Sd1

and radius ρ > 0 that conform the requirements of Lemma 5.

Then, a radius ǫ0 > 0 and constants C1,ǫ0 > 0, cQ1,Q2 ∈ C∗ can be pinpointed sufficiently close to 0 together

with a proper radius ̟2 > 0 in a manner that for all ǫ ∈ Dǫ0 \ {0}, a unique solution ω2,d1
(τ, m, ǫ) to (49)

exists such that

• the map (τ, m) 7→ ω2,d1
(τ, m, ǫ) appertains to Fd1

(ν,β,µ,k1,ρ,ǫ) under the constraint

sup
ǫ∈Dǫ0\{0}

||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤ ̟2 (128)

• the partial map ǫ 7→ ω2,d1
(τ, m, ǫ) stands for an analytic map from Dǫ0 \ {0} into C, for any prescribed

τ ∈ Sd1
∪ Dρ and m ∈ R.

Proof. We take the constants ǫ0 > 0, C1,ǫ0 > 0, cQ1,Q2 ∈ C∗ together with ̟2 > 0 reached in

Proposition 4. We observe that the closed ball B̟̄2 ⊂ Fd1
(ν,β,µ,k1,ρ,ǫ) represents a complete metric space for

the distance d(x, y) = ||x − y||(ν,β,µ,k1,ρ,ǫ). The proposition 4 claims that Hǫ induces a contractive map
from (B̟̄2 , d) into itself. It follows from the classical Banach fixed point theorem that Hǫ possesses a
unique fixed point ω2,d1

(τ, m, ǫ) inside the ball B̟̄2 , for all ǫ ∈ Dǫ0 \ {0}, meaning that

Hǫ(ω2,d1
(τ, m, ǫ)) = ω2,d1

(τ, m, ǫ) (129)

holds. Furthermore, the map ω2,d1
(τ, m, ǫ) relies analytically on ǫ since Hǫ does on the domain

Dǫ0 \ {0}. On the other hand, we check that the convolution equation (49) can be rearranged as the
equation (129) by shifting the term

(k1τk1)δD RD(
√
−1m)ω2,d1

(τ, m, ǫ)

from the right to the left handside of (49) and dividing by the resulting equation by the map Pm(τ)

given by (86). As a result, the unique fixed point ω2,d1
(τ, m, ǫ) of Hǫ enclosed in B̟̄2 precisely solves

(49). The result follows.

6. Building up a solution to the second convolution equation (50) with (51)

In this section, we cook up a unique solution to the auxiliary convolution equation reached in (50)
with (51) inside the Banach spaces described in Definition 6.

The roadmap follows the one of the previous section and consists in recasting (50) with (51) into a
fixed point equation for a certain nonlinear map Gǫ, stated in Proposition 7.
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The map Gǫ is set up as follows. We mind the map ω2,d1
(τ, m, ǫ) stemming from Proposition 5

and the polynomial Pm(τ) displayed in (86). Let

Gǫ(ω(τ, m)) :=
( δD−1

∑
q=1

aq,δD

[ τk1

Pm(τ)Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
k

q
1sqω(s1/k1 , m)

ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Pm(τ)Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

k
p
1 spω(s1/k1 , m)

ds

s

]

× RD(
√
−1m)

)

+
[

∑
1≤p≤δD−1

AδD ,p
τk1

Pm(τ)Γ(δD − p)

∫ τk1

0
(τk1 − s)δD−p−1k

p
1 spω(s1/k1 , m)

ds

s

× RD(
√
−1m)

]

+
(

δD

δD−1

∑
q=1

aq,δD−1

[ τk1

Pm(τ)Γ(
dD,q
k1

)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
k

q
1sqω2,d1

(s1/k1 , m, ǫ)
ds

s

+ ∑
1≤p≤q−1

Aq,p
τk1

Pm(τ)Γ(
dD,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

k
p
1 spω2,d1

(s1/k1 , m, ǫ)
ds

s

]

× RD(
√
−1m)

)

+
D−1

∑
l=1

ǫ∆l−dl

[(
δl

∑
q=1

aq,δl

[ τk1

Pm(τ)Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

q
1sq

× Rl(
√
−1m1)ω(s1/k1 , m1)

ds

s
dm1 + ∑

1≤p≤q−1
Aq,p

τk1

Pm(τ)Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

p
1 spRl(

√
−1m1)ω(s1/k1 , m1)

ds

s
dm1

]

)

+
(

δl

δl−1

∑
q=1

aq,δl−1
[ τk1

Pm(τ)Γ(
dl,q
k1
)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

q
1sqRl(

√
−1m1)

× ω2,d1
(s1/k1 , m1, ǫ)

ds

s
dm1 + ∑

1≤p≤q−1
Aq,p

τk1

Pm(τ)Γ(
dl,q+k1(q−p)

k1
)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

× 1
(2π)1/2

∫ +∞

−∞
Al(m − m1, ǫ)k

p
1 spRl(

√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1

]

)]

+AGǫ
(τ, m, ǫ) (130)
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where

AGǫ
(τ, m, ǫ) :=

F1(τ, m, ǫ)

Pm(τ)
+

1
Pm(τ)(2π)1/2

∫ +∞

−∞
B1(m − m1, ǫ)ω(τ, m1)dm1

+
1

Pm(τ)(2π)1/2

∫ +∞

−∞
B2(m − m1, ǫ)ω2,d1

(τ, m1, ǫ)dm1

+ cP1P2

1
Pm(τ)(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P1(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× P2(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1

+ cP3P4

1
Pm(τ)(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P3(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× P4(
√
−1m1)ω(s1/k1 , m1)

1
(τk1 − s)s

dsdm1

+ cP5P6

1
Pm(τ)(2π)1/2

∫ +∞

−∞
τk1

∫ τk1

0
P5(

√
−1(m − m1))ω2,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× P6(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1 (131)

In the next proposition we discuss the 1/2−Lipschitz feature of Gǫ on some well chosen ball in
the Banach spaces depicted in Definition 6.

Proposition 6. Let a timely inner radius rQ,RD
> 0 and aperture ηQ,RD

> 0 of the sector SQ,RD
in a row with

an unbounded sector Sd1
and radius ρ > 0 chosen to fulfill the specifications of Lemma 5. We also take for

granted the additional condition (93) required for the sector Sd1
and the disc Dρ.

Then, one can target a small radius ǫ0 > 0 along with constants Bj,ǫ0 > 0, cPk ,Pk+1 ∈ C∗, for j = 1, 2 and

k = 1, 3, 5 proximate to 0, coupled to a fitted radius ̟1 > 0 in a way that for all ǫ ∈ Dǫ0 \ {0}, the map Gǫ

boasts the next two properties

• Gǫ maps B̟̄1 into itself, where B̟̄1 stands for the closed ball of radius ̟1 centered at 0 in the space

F
d1
(ν,β,µ,k1,ρ,ǫ).

• The norm downsizing condition

||Gǫ(ω1)− Gǫ(ω2)||(ν,β,µ,k1,ρ,ǫ) ≤
1
2
||ω1 − ω2||(ν,β,µ,k1,ρ,ǫ) (132)

holds whenever ω1, ω2 ∈ Fd1
(ν,β,µ,k1,ρ,ǫ).

Proof. We heed the first item asserting the inclusion. We fix some real number ̟1 > 0 and pick up an
element ω(τ, m) in Fd1

(ν,β,µ,k1,ρ,ǫ), for ǫ ∈ Dǫ0 \ {0}, with

||ω||(ν,β,µ,k1,ρ,ǫ) ≤ ̟1.

Concrete bounds are presented for each piece of the map Gǫ applied to ω.
The estimates for the first three blocks of Gǫ are merely the same as the ones obtained in (96), (97)

and (98). Namely, owing to Proposition 1 and Lemma 5, we observe that

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
sqRD(

√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (133)
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for 1 ≤ q ≤ δD − 1 along with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

spRD(
√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (134)

for 1 ≤ p ≤ q − 1 with 1 ≤ q ≤ δD − 1 and

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)δD−p−1spRD(

√
−1m)ω(s1/k1 , m)

ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (135)

as long as 1 ≤ p ≤ δD − 1.
The next two pieces of Gǫ follow from Proposition 1 and Lemma 5 together with the estimates

(128) reached in Proposition 5. Indeed, we arrive at

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
sqRD(

√
−1m)ω2,d1

(s1/k1 , m, ǫ)
ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ̟2 (136)

for 1 ≤ q ≤ δD − 1 in a row with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

spRD(
√
−1m)ω2,d1

(s1/k1 , m, ǫ)
ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ̟2 (137)

for 1 ≤ p ≤ q − 1 with 1 ≤ q ≤ δD − 1.
The estimates for the following two components of Gǫ simply recast the ones obtained in (104)

and (108). Indeed,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
∫ +∞

−∞
Al(m − m1, ǫ)sq

× Rl(
√
−1m1)ω(s1/k1 , m1)

ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (138)
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for 1 ≤ q ≤ δl and 1 ≤ l ≤ D − 1 in parallel with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

×
∫ +∞

−∞
Al(m − m1, ǫ)spRl(

√
−1m1)ω(s1/k1 , m1)

ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ) (139)

for 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δl with 1 ≤ l ≤ D − 1. Furthermore, the two ensuing constituents of Gǫ

mirror the one reached in (104) and (108) and draw on the estimates (128) from Proposition 5. Namely,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
∫ +∞

−∞
Al(m − m1, ǫ)sq

× Rl(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ̟2 (140)

for 1 ≤ q ≤ δl − 1 and 1 ≤ l ≤ D − 1 in tandem with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

×
∫ +∞

−∞
Al(m − m1, ǫ)spRl(

√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)̟2 (141)

provided that 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δl − 1 with 1 ≤ l ≤ D − 1.
The next element of Gǫ we pay regard is F1(τ, m, ǫ)/Pm(τ) and is displayed in (131). Its bounds

are obtained in a similar way as the ones reached in (111). Indeed,

||F1(τ, m, ǫ)

Pm(τ)
||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
ǫ0 × sup

x≥0
e−νxk1 (1 + x2k1) ∑

j1∈J1

F1,j1,ǫ0 ǫ
j1−1
0 xj1−1 (142)

which can be subsided close to 0 provided that ǫ0 > 0 is tiny enough since 0 /∈ J1.
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We handle the second and third pieces of AGǫ
(τ, m, ǫ). Paying heed to (109) and the bounds (27),

Proposition 2 kindles

|| 1
Pm(τ)

∫ +∞

−∞
B1(m − m1, ǫ)ω(τ, m1)dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2||B1(m, ǫ)||(β,µ)||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B1,ǫ0 ||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ). (143)

and bearing in mind the estimates (128) from Proposition 5,

|| 1
Pm(τ)

∫ +∞

−∞
B2(m − m1, ǫ)ω2,d1

(τ, m1, ǫ)dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2||B2(m, ǫ)||(β,µ)||ω2,d1

(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B2,ǫ0 ̟2. (144)

ensues.
Thanks to the factorization (113) with (114) and the bounds (128) from Proposition 5, we can apply

Proposition 3 in order to address the last three terms of AGǫ
(τ, m, ǫ). Namely,

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P1(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× P2(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ)||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω(τ, m)||(ν,β,µ,k1,ρ,ǫ)̟2 (145)

together with

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P3(

√
−1(m − m1))ω((τk1 − s)1/k1 , m − m1)

× P4(
√
−1m1)ω(s1/k1 , m1)

1
(τk1 − s)s

dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω(τ, m)||2(ν,β,µ,k1,ρ,ǫ) (146)
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as well as

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P5(

√
−1(m − m1))ω2,d1

((τk1 − s)1/k1 , m − m1, ǫ)

× P6(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω2,d1
(τ, m, ǫ)||2(ν,β,µ,k1,ρ,ǫ) ≤

C3

CP(rQ,RD
)

1
k1δD

̟2
2. (147)

We pin down the constants ǫ0 > 0 and Bj,ǫ0 > 0, cPk ,Pk+1 ∈ C∗, for j = 1, 2 and k = 1, 3, 5 proximate to
0 together with a suitable radius ̟1 > 0 in a way that the next inequality

( δD−1

∑
q=1

|aq,δD
|
[ 1

Γ(
dD,q
k1

)
k

q
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−q)k1
0 ̟1

+ ∑
1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)

k
p
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0 ̟1

])

+ ∑
1≤p≤δD−1

|AδD ,p|
k

p
1

Γ(δD − p)

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0 ̟1

+
(

δD

δD−1

∑
q=1

|aq,δD−1|
[ 1

Γ(
dD,q
k1

)
k

q
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−q)k1
0 ̟2

+ ∑
1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)

k
p
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0 ̟2

])

+
D−1

∑
l=1

ǫ
∆l−dl
0

[
δl

∑
q=1

|aq,δl
|
[ k

q
1

Γ(
dl,q
k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q
0 ̟1

+ ∑
1≤p≤q−1

|Aq,p|
k

p
1

Γ(
dl,q+k1(q−p)

k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q+k1(q−p)

0 ̟1
]

+ δl

δl−1

∑
q=1

aq,δl−1
[ k

q
1

Γ(
dl,q
k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q
0 ̟2

+ ∑
1≤p≤q−1

|Aq,p|
k

p
1

Γ(
dl,q+k1(q−p)

k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q+k1(q−p)

0 ̟2
]

]

+AG ≤ ̟1 (148)
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holds where

AG =
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
ǫ0

× sup
x≥0

e−νxk1 (1 + x2k1) ∑
j1∈J1

F1,j1,ǫ0 ǫ
j1−1
0 xj1−1

+
1

(2π)1/2
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B1,ǫ0 ̟1

+
1

(2π)1/2
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B2,ǫ0 ̟2

+ |cP1,P2 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

̟1̟2 + |cP3,P4 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

̟2
1

+ |cP5,P6 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

̟2
2 (149)

We check that all the terms on the left handside of (148) except AG can be tapered off since they contain
positive powers of ǫ0 > 0 in particular due to the constraint (18). Besides, the constant AG can be lessen
provided that the constants ǫ0 and Bj,ǫ0 , cPk ,Pk+1 , for j = 1, 2 and k = 1, 3, 5 are taken in the vicinity of 0.

At last, stacking up all the above bounds (133), (134), (135), (136), (137), (138), (139), (140) (141),
(142), (143), (144), (145), (146), (147) under the contingency (148) yield that Gǫ maps B̟̄1 into itself.

In the second part of the proof, we address the second item of Proposition 6. Let ω1, ω2 be
elements of the ball B̟̄1 of the space Fd1

(ν,β,µ,k1,ρ,ǫ) with radius ̟1 > 0 chosen as in the first part of the
proof.

We provide norm estimates for each part of the difference Gǫ(ω1) − Gǫ(ω2). The bounds for
the foremost five blocks of the difference are barely the ones found in (117), (118), (119), (120), (121).
Namely,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q
k1

−1
sqRD(

√
−1m)

(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−q)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (150)

for 1 ≤ q ≤ δD − 1 along with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dD,q+k1(q−p)

k1
−1

spRD(
√
−1m)

×
(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (151)

for 1 ≤ p ≤ q − 1 with 1 ≤ q ≤ δD − 1 and

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)δD−p−1spRD(

√
−1m)

(

ω1(s
1/k1 , m)− ω2(s

1/k1 , m)
)ds

s
||(ν,β,µ,k1,ρ,ǫ)

≤ C1

CP(rQ,RD
)

1
k1δD

|ǫ|(δD−p)k1 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ) (152)
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as long as 1 ≤ p ≤ δD − 1. Furthermore,

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q
k1

−1
∫ +∞

−∞
Al(m − m1, ǫ)sqRl(

√
−1m1)

×
(

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
)ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (153)

holds for 1 ≤ l ≤ D − 1 and 1 ≤ q ≤ δl together with

|| τk1

Pm(τ)

∫ τk1

0
(τk1 − s)

dl,q+k1(q−p)

k1
−1

∫ +∞

−∞
Al(m − m1, ǫ)spRl(

√
−1m1)

×
(

ω1(s
1/k1 , m1)− ω2(s

1/k1 , m1)
)ds

s
dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

|ǫ|dl,q+k1(q−p)||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (154)

for 1 ≤ l ≤ D− 1, 1 ≤ q ≤ δl and 1 ≤ p ≤ q− 1. Besides, bounds for the sixth piece of Gǫ(ω1)−Gǫ(ω2)

result from (143) and are written

|| 1
Pm(τ)

∫ +∞

−∞
B1(m − m1, ǫ)

(

ω1(τ, m1)− ω2(τ, m1)
)

dm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B1,ǫ0 ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (155)

The treatment of the seventh piece of Gǫ(ω1)− Gǫ(ω2) springs from (145). Indeed,

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P1(

√
−1(m − m1))

×
(

ω1((τ
k1 − s)1/k1 , m − m1)− ω2((τ

k1 − s)1/k1 , m − m1)
)

× P2(
√
−1m1)ω2,d1

(s1/k1 , m1, ǫ)
1

(τk1 − s)s
dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)||ω2,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ)

≤ C3

CP(rQ,RD
)

1
k1δD

||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)̟2 (156)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2023                   doi:10.20944/preprints202301.0582.v1

https://doi.org/10.20944/preprints202301.0582.v1


43 of 60

The hindmost term of the difference Gǫ(ω1)− Gǫ(ω2) can be processed in a similar way as for the
difference (123) given by (126). Namely,

|| 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P3(

√
−1(m − m1))ω1((τ

k1 − s)1/k1 , m − m1)

× P4(
√
−1m1)ω1(s

1/k1 , m1)
1

(τk1 − s)s
dsdm1

− 1
Pm(τ)

∫ +∞

−∞
τk1

∫ τk1

0
P3(

√
−1(m − m1))ω2((τ

k1 − s)1/k1 , m − m1)

× P4(
√
−1m1)ω2(s

1/k1 , m1)
1

(τk1 − s)s
dsdm1||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C3
(

||ω1(τ, m)||(ν,β,µ,k1,ρ,ǫ) + ||ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)
)

× ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ)

≤ 1

CP(rQ,RD
)

1
k1δD

C32̟1||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k1,ρ,ǫ). (157)

We skirt the constants ǫ0 > 0, B1,ǫ0 > 0 and cP1P2 ∈ C∗, cP3P4 ∈ C∗ nearby the origin in a manner that
the next inequality

( δD−1

∑
q=1

|aq,δD
|
[ 1

Γ(
dD,q
k1

)
k

q
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−q)k1
0

+ ∑
1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)

k
p
1

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0

])

+ ∑
1≤p≤δD−1

|AδD ,p|
k

p
1

Γ(δD − p)

C1

CP(rQ,RD
)

1
k1δD

ǫ
(δD−p)k1
0

+
D−1

∑
l=1

ǫ
∆l−dl
0

[
δl

∑
q=1

|aq,δl
|
[ k

q
1

Γ(
dl,q
k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q
0

+ ∑
1≤p≤q−1

|Aq,p|
k

p
1

Γ(
dl,q+k1(q−p)

k1
)

1
(2π)1/2

1

CP(rQ,RD
)

1
k1δD

C2 Al,ǫ0
C1Mk1,δD

ǫ
dl,q+k1(q−p)

0

]

]

+ SG ≤ 1
2

(158)

holds where

SG =
1

(2π)1/2
1

CP(rQ,RD
)

1
k1δD

max
m∈R

∣

∣

∣

1
RD(

√
−1m)

∣

∣

∣
C2B1,ǫ0

+ |cP1,P2 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

̟2 + |cP3,P4 |
1

(2π)1/2
C3

CP(rQ,RD
)

1
k1δD

2̟1.

(159)

We notice that all the terms appearing in the left handside of (158) excluding SG can be dwindled since
they involve positive powers of ǫ0 according to the constraints (18). Furthermore, the term SG can be
depleted whenever the constants B1,ǫ0 > 0 and cP1P2 ∈ C∗, cP3P4 ∈ C∗ are taken close to 0.
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In the end, the coupling of all the above bounds (150), (151), (152), (153), (154), (155), (156), (157)
under the condition (158) triggers the shrinking feature (132) for the map Gǫ.

In conclusion, we select the radius ̟1 > 0 and pinpoint the constants ǫ0 > 0, Bj,ǫ0 > 0, for j = 1, 2,
along with cPk ,Pk+1 ∈ C∗, for k = 1, 3, 5 nearby the origin, in a way they obey both (148) and (158).
These values taken for granted, the map Gǫ fulfills both inclusion and shrinking properties described
in the items of Proposition 6.

The oncoming proposition provides a solution to the second convolution equation (50) with (51)
crafted in the Banach spaces displayed in Definition 6.

Proposition 7. Consider an appropriate inner radius rQ,RD
> 0 and aperture ηQ,RD

> 0 of the sector SQ,RD

together with an unbounded sector Sd1
and radius ρ > 0 that respect the requirements of Lemma 5. Then, a

radius ǫ0 > 0 along with constants Bj,ǫ0 > 0, for j = 1, 2 and cPk ,Pk+1 ∈ C∗, for k = 1, 3, 5 can be pinned down

nearby 0 together with an appropriate radius ̟1 > 0 in a way that for all ǫ ∈ Dǫ0 \ {0}, a unique solution

ω1,d1
(τ, m, ǫ) to (50), (51) exists that is favoured with the next features

• the map (τ, m) 7→ ω1,d1
(τ, m, ǫ) belongs to Fd1

(ν,β,µ,k1,ρ,ǫ) under the restriction

sup
ǫ∈Dǫ0\{0}

||ω1,d1
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤ ̟1. (160)

• the partial map ǫ 7→ ω1,d1
(τ, m, ǫ) stands for an analytic map from Dǫ0 \ {0} into C, for any prescribed

τ ∈ Sd1
∪ Dρ and m ∈ R.

Proof. Let the constants ǫ0 > 0, Bj,ǫ0 > 0, for j = 1, 2 and cPk ,Pk+1 ∈ C∗, for k = 1, 3, 5 together with
̟1 > 0 be fixed as in Proposition 6. The proposition 6 asserts that Gǫ induces a contractive map from
the closed ball and complete space B̟̄1 into itself for the distance d(x, y) = ||x − y||(ν,β,µ,k1,ρ,ǫ) inherited

from the norm on the Banach space Fd1
(ν,β,µ,k1,ρ,ǫ).

The classical Banach fixed point theorem then claims that Gǫ boasts a unique fixed point
ω1,d1

(τ, m, ǫ) inside the ball B̟̄1 , for all ǫ ∈ Dǫ0 \ {0}. In other words,

Gǫ(ω1,d1
(τ, m, ǫ)) = ω1,d1

(τ, m, ǫ) (161)

holds. Furthermore, the map ω1,d1
(τ, m, ǫ) depends analytically on ǫ since Gǫ itself does on the domain

Dǫ0 \ {0}. On the other hand, we observe that the convolution equation (50) can be reorganized as the
equation (161) by moving the term

(k1τk1)δD RD(
√
−1m)ω1,d1

(τ, m, ǫ)

from the right to the left handside of (50) and dividing by the resulting equation by the map Pm(τ)

given by (86). As a result, the unique fixed point ω1,d1
(τ, m, ǫ) of Gǫ penned in B̟̄1 precisely solves

(50), (51). The result ensues.

7. Building up a finite set of holomorphic solutions to the coupling of partial differential
equations (36), (37)

7.1. Fourier-Laplace transforms solutions to the pairing (36), (37)

In this section, we exhibit genuine analytic solutions expressed by means of Fourier-Laplace
transforms to the coupling (36), (37) reached at the end of Subsection 3.1.
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Proposition 8. For all unbounded sectors Sd1
with bisecting direction d1 ∈ R and disc Dρ that obey the

demands of Lemma 5, we introduce the two partial maps

(u1, z) 7→ Uj,d1
(u1, z, ǫ) =

k1

(2π)1/2

∫

Ld1,u1

∫ +∞

−∞
ωj,d1

(τ, m, ǫ) exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm (162)

for j = 1, 2, for all ǫ ∈ Dǫ0 \ {0} where the Borel map ω2,d1
is manufactured in Proposition 5 and solves

(49), the Borel map ω1,d1
is crafted in Proposition 7 and fulfills (50), (51) and the radius ǫ0 > 0 is taken

in agreement with Proposition 5 and Proposition 7 and Ld1,u1
= [0,+∞)e

√
−1d1,u1 stands for a halfline in a

direction d1,u1 ∈ R suitably chosen and described below.

The maps Uj,d1
(u1, z, ǫ), j = 1, 2, are endowed with the next two properties.

• They define holomorphic functions that are bounded by a constant not relying on ǫ on a product U1,d1
× Hβ′

where U1,d1
represents a bounded open sector centered at 0 with bisecting direction d1, for any given

0 < β′
< β.

• The map U2,d1
(u1, z, ǫ) solves the equation (36) for prescribed initial data U2,d1

(0, z, ǫ) ≡ 0. The map

U1,d1
(u1, z, ǫ) is subjected to the equation (37) for vanishing data U1,d1

(0, z, ǫ) ≡ 0

The sector U1,d1
is submitted to the next technical constraints:

1. A positive real number ∆1 > 0 can be singled out with the next property: for all u1 ∈ U1,d1
, a direction

d1,u1 ∈ R (that might rely on u1) can be favoured with

e
√
−1d1,u1 ∈ Sd1

, cos(k1(d1,u1 − arg(u1))) > ∆1. (163)

2. The radius rU1,d1
> 0 of U1,d1

withstands the next upper bounds

0 < rU1,d1
< ∆

1/k1
1

|ǫ|
(ν + ∆̃1)1/k1

(164)

for some positive real number ∆̃1 > 0, where ∆1 > 0 is defined in the above item.

Proof. We discuss the first item of the proposition. We mind the maps ω2,d1
and ω1,d1

constructed in
Propositions 5 and 7 and we select a bounded sector U1,d1

that matches the above prerequisite (163)
and (164). We set u1 ∈ U1,d1

and take

τ = re
√
−1d1,u1 ∈ Ld1,u1

for given real number r ≥ 0 where d1,u1 is the direction chosen above. Then, then next two inequalities
for the Borel maps hold.

• A constant ̟2 > 0 can be found for which the next bounds

|ω2,d1
(τ, m, ǫ)|| exp

(

− (
τ

u1
)k1

)

||e
√
−1zm|| 1

τ
|

≤ ̟2(1 + |m|)−µe−β|m| 1
|ǫ| exp

(

ν(
r

|ǫ| )
k1
)

exp
(

− (
r

|u1|
)k1 cos(k1(d1,u1 − arg(u1)))

)

e−mIm(z)

≤ ̟2(1 + |m|)−µe−(β−β′)|m| 1
|ǫ| exp

(

ν(
r

|ǫ| )
k1
)

exp
(

− (
r

|u1|
)k1 ∆1

)

≤ ̟2(1 + |m|)−µe−(β−β′)|m| 1
|ǫ| exp

(

− (
∆̃1

|ǫ|k1
)rk1

)

(165)

hold for all r ≥ 0, all m ∈ R.
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• Similarly, a constant ̟1 > 0 can be singled out with the bounds

|ω1,d1
(τ, m, ǫ)|| exp

(

− (
τ

u1
)k1

)

||e
√
−1zm|| 1

τ
|

≤ ̟1(1 + |m|)−µe−(β−β′)|m| 1
|ǫ| exp

(

− (
∆̃1

|ǫ|k1
)rk1

)

(166)

provided that r ≥ 0 and m ∈ R.

As a result, we reach the next two upper bounds for the maps Uj,d1
, j = 1, 2. Namely,

|U2,d1
(u1, z, ǫ)| ≤ k1̟2

(2π)1/2

∫ +∞

0

1
|ǫ| exp

(

− (
∆̃1

|ǫ|k1
)rk1

)

dr
∫ +∞

−∞
e−(β−β′)|m|dm

≤ k1̟2

(2π)1/2

∫ +∞

0
exp(−∆̃1rk1

1 )dr1

∫ +∞

−∞
e−(β−β′)|m|dm (167)

by means of the change of variable r = |ǫ|r1 in the integral together with

|U1,d1
(u1, z, ǫ)| ≤ k1̟1

(2π)1/2

∫ +∞

0
exp(−∆̃1r

k1
1 )dr1

∫ +∞

−∞
e−(β−β′)|m|dm (168)

for all u1 ∈ U1,d1
, z ∈ Hβ′ and all ǫ ∈ Dǫ0 \ {0}. We observe that the right handside of both (167) and

(168) are unconstrained constants relatively to ǫ on Dǫ0 \ {0}. The first item ensues.
Concerning the second item, we remind from Proposition 5 (resp. Proposition 7) that the Borel

map ω2,d1
(τ, m, ǫ) (resp. ω1,d1

(τ, m, ǫ)) is shown to solve the associated convolution equation (49)
(resp. (50), (51) ). By tracking reversedly the computations made in Subsection 3.2, we deduce that for
all ǫ ∈ Dǫ0 \ {0}, the next properties hold.

• The holomorphic map U2,d1
(u1, z, ǫ) given by the expression (162) for j = 2 obeys the equation

(47), then fulfills (43) and finally solves (36) on the domain U1,d1
× Hβ′ , for prescribed initial data

U2,d1
(0, z, ǫ) ≡ 0.

• The holomorphic map U1,d1
(u1, z, ǫ) expressed in the form (162) for j = 1 conforms to the equation

(48), then satisfies (44) and finally is subjected (37) on the domain U1,d1
× Hβ′ , for vanishing initial

data U1,d1
(0, z, ǫ) ≡ 0.

The second item of Proposition 8 follows.

7.2. Construction of a finite family of genuine solutions to the coupling (36), (37) and sharp bounds for the
neighboring differences of related maps

We need to refer to the usual definition of a good covering in C∗ given in the textbook [23].

Definition 7. Let ς ≥ 2 be an integer. We consider a set E = {Ep}0≤p≤ς−1 of open bounded sectors Ep

centered at 0 endowed with the next three properties

1. The intersection of two neighboring sectors Ep and Ep+1 is not empty for any 0 ≤ p ≤ ς − 1, where the

convention Eς = E0 is chosen.
2. The intersection of any three sectors Ep, Eq and Er for distinct integers p, q, r ∈ {0, . . . , ς − 1} is empty.
3. The union of all the sectors Ep is subjected to

ς−1
⋃

p=0

Ep = U \ {0}

for some neighborhood U of 0 in C.
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Such a set E is designated as a good covering in C∗.

The next definition displays some domains in C which are crucially involved in the set up of
genuine solutions.

Definition 8. We consider two finite sets of bounded open sectors centered at 0,

U 1 = {U1,dp
}0≤p≤ς−1 , E = {Ep}0≤p≤ς−1

and a bounded sector T centered at 0, for which the next list of constraints is required.

1. For each 0 ≤ p ≤ ς − 1 and fixed ǫ ∈ Dǫ0 \ {0}, for some given radius ǫ0 > 0, the sector U1,dp
has

bisecting direction dp ∈ R and obeys the next three rules

• For each 0 ≤ p ≤ ς − 1, one can single out an unbounded sector Sdp
centered at 0 with bisecting

direction dp that is subjected to the requirements of Lemma 5 (namely for which the lower bounds

(89) and (90) hold).
• For each 0 ≤ p ≤ ς − 1, a positive real number ∆p > 0 can be selected in a way that for all

u1 ∈ U1,dp
, a direction dp,u1 (that might depend on u1) can be found with

e
√
−1dp,u1 ∈ Sdp

, cos(k1(dp,u1 − arg(u1))) > ∆p. (169)

• The radius rU1,dp
> 0 of U1,dp

is constrained to the next upper bounds

0 < rU1,dp
< ∆

1/k1
p

|ǫ|
(ν + ∆̃p)1/k1

(170)

for some positive real number ∆̃p > 0, where ∆p > 0 is determined in the above item.

2. The radius rT > 0 of the sector T satisfies the restriction

rT <

∆
1/k1
p

(ν + ∆̃p)1/k1

where ∆p, ∆̃p are specified in 1. for 0 ≤ p ≤ ς − 1. Besides, the sectors Ep share a common radius given

by ǫ0, for 0 ≤ p ≤ ς − 1.
3. For all 0 ≤ p ≤ ς − 1, the sectors Ep and T stick to the feature

ǫt ∈ U1,dp

provided that ǫ ∈ Ep and t ∈ T .
4. The set E stands for a good covering in C∗. Furthermore, the aperture of the sector T is taken nearby 0 in

a way that the set

I1 = {p ∈ {0, . . . , ς − 1}/ǫt /∈ (−∞, 0], for all ǫ ∈ Ep, all t ∈ T }

is not empty.

These sets U 1, E and the sector T form a so-called fitting collection of sectors.

In the next proposition, we shape a finite family of analytic solutions to the coupling of auxiliary
problems (36), (37).

Proposition 9. We consider a fitting collection of sectors U 1, E and T in the sense of Definition 8. The solutions

to (36), (37) are cooked up as follows.
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− The equation (36) possesses a finite set of holomorphic solutions (u1, z) 7→ U2,dp
(u1, z, ǫ), for 0 ≤ p ≤

ς − 1, on the domain U1,dp
× Hβ′ , for all ǫ ∈ Dǫ0 \ {0}, where ǫ0 is proximate to 0, for any 0 < β′

< β,

that fulfills the initial condition U2,dp
(0, z, ǫ) ≡ 0. These maps enjoy the next two qualities: for each

0 ≤ p ≤ ς − 1,

1. the map (u1, z) 7→ U2,dp
(u1, z, ǫ) is bounded by a constant unconstrained to ǫ in Dǫ0 \ {0}, on the

product U1,dp
× Hβ′ .

2. the map U2,dp
(u1, z, ǫ) is represented as Fourier inverse and Laplace transforms,

U2,dp
(u1, z, ǫ)

=
k1

(2π)1/2

∫

Ldp,u1

∫ +∞

−∞
ω2,dp

(τ, m, ǫ) exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm (171)

where the Borel maps (τ, m) 7→ ω2,dp
(τ, m, ǫ) appertain to the Banach space

F
dp

(ν,β,µ,k1,ρ,ǫ) and are subjected to

sup
ǫ∈Dǫ0\{0}

||ω2,dp
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤ ̟2 (172)

for suitable constants ̟2 > 0 and radius ρ > 0, for all ǫ ∈ Dǫ0 \ {0}.

− The equation (37) (where the expression U2(u1, z, ǫ) needs to be replaced by U2,dp
(u1, z, ǫ)) owns a finite

set of holomorphic solutions (u1, z) 7→ U1,dp
(u1, z, ǫ), for 0 ≤ p ≤ ς − 1, on the domain U1,dp

× Hβ′ , for

all ǫ ∈ Dǫ0 \ {0}, where ǫ0 is closed to 0, for any 0 < β′
< β, with the initial condition U1,dp

(0, z, ǫ) ≡ 0.

These maps are endowed with the next two features: for each 0 ≤ p ≤ ς − 1,

1. the map (u1, z) 7→ U1,dp
(u1, z, ǫ) is bounded on the product U1,dp

× Hβ′ by a constant not relying

to ǫ in Dǫ0 \ {0}.
2. the map U1,dp

(u1, z, ǫ) is expressed by means of a Fourier inverse and Laplace transforms,

U1,dp
(u1, z, ǫ)

=
k1

(2π)1/2

∫

Ldp,u1

∫ +∞

−∞
ω1,dp

(τ, m, ǫ) exp
(

− (
τ

u1
)k1

)

e
√
−1zm dτ

τ
dm (173)

where the Borel maps (τ, m) 7→ ω1,dp
(τ, m, ǫ) are crafted in the Banach space

F
dp

(ν,β,µ,k1,ρ,ǫ) with bounds

sup
ǫ∈Dǫ0\{0}

||ω1,dp
(τ, m, ǫ)||(ν,β,µ,k1,ρ,ǫ) ≤ ̟1 (174)

for appropriate constants ̟1 > 0 and radius ρ > 0, for all ǫ ∈ Dǫ0 \ {0}.

Proof. The proposition 9 is a downright consequence of Proposition 8 and of the very definition of
fitting collections of sectors depicted in Definition 8.

In the next proposition we examine a finite set of maps related to the analytic solutions of the
coupling (36), (37). In particular, we obtain a control on their consecutive differences which turns out
to be an essential information in the study of their parametric asymptotic expansions.

Proposition 10. Let us prescribe a fitting collection of sectors U 1, E and T in accordance with Definition 8.

For each 0 ≤ p ≤ ς − 1, we set up the maps

uj,p(t, z, ǫ) = Uj,dp
(ǫt, z, ǫ) (175)
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for j = 1, 2, where Uj,dp
are described in Proposition 9. The next attributes hold: for all 0 ≤ p ≤ ς − 1,

• the maps uj,p(t, z, ǫ), j = 1, 2, are bounded holomorphic on the product T × Hβ′ × Ep and satisfy

uj,p(0, z, ǫ) ≡ 0,
• one can exhibit constants Mp,j > 0 and Kp,j > 0 such that

|uj,p+1(t, z, ǫ)− uj,p(t, z, ǫ)| ≤ Mp,j exp
(

−
Kp,j

|ǫ|k1

)

(176)

for all t ∈ T , all ǫ ∈ Ep+1 ∩ Ep, all z ∈ Hβ′ , for j = 1, 2, where we adopt the convention uj,ς = uj,0.

Proof. The first item is a direct outcome of the properties of the maps Uj,dp
, j = 1, 2, stated in

Proposition 9 and from the characteristics 2. and 3. of the sectors Ep and T listed in Definition 8.
The second item follows from a path deformation argument. Indeed, let us take p ∈ {0, . . . , ς − 1}

and j ∈ {1, 2}. For any given m ∈ R and fixed ǫ ∈ Dǫ0 \ {0}, the partial maps τ 7→ ωj,dk
(τ, m, ǫ),

k = p, p + 1, represent analytic continuation on the sector Sdk
of a common analytic map we denote

τ 7→ ωj(τ, m, ǫ) on the disc Dρ.
For any prescribed ǫ ∈ Ep+1 ∩ Ep and t ∈ T , we deform the oriented path Ldp+1,ǫt

− Ldp,ǫt
into the

union of three oriented curves

− Two halflines

Ldp+1,ǫt ;ρ/2 = [ρ/2,+∞)e
√
−1dp+1,ǫt , −Ldp,ǫt ;ρ/2 = −[ρ/2,+∞)e

√
−1dp,ǫt .

− An arc of circle
Cp,p+1,ǫt;ρ/2 = {ρ

2
e
√
−1θ/θ ∈ (dp,ǫt, dp+1,ǫt)}

centered at 0 with radius ρ/2 that connects the above two halflines.

Then, the classical Cauchy’s theorem enables us to reshape the next difference into a sum of three
contributions

uj,p+1(t, z, ǫ)− uj,p(t, z, ǫ)

=
k1

(2π)1/2

∫

Ldp+1,ǫt ;ρ/2

∫ +∞

−∞
ωj,dp+1

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

− k1

(2π)1/2

∫

Ldp,ǫt ;ρ/2

∫ +∞

−∞
ωj,dp

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

+
k1

(2π)1/2

∫

Cp,p+1,ǫt;ρ/2

∫ +∞

−∞
ωj(τ, m, ǫ) exp

(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm. (177)

We provide upper bounds for the first piece of (177)

I1 =
∣

∣

∣

k1

(2π)1/2

∫

Ldp+1,ǫt ;ρ/2

∫ +∞

−∞
ωj,dp+1

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

∣

∣

∣
.
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Based on the bounds (165), (166) and (172), (174) together with the requirements asked in Definition 8,
we arrive at

I1 ≤
̟jk1

(2π)1/2

∫ +∞

−∞
e−(β−β′)|m|dm ×

∫ +∞

ρ/2

1
|ǫ| exp

(

−
∆̃p+1

|ǫ|k1
rk1

)

dr

≤
2̟jk1

(2π)1/2

∫ +∞

0
e−(β−β′)mdm ×

∫ +∞

ρ/2

1
|ǫ|

{ |ǫ|k1

∆̃p+1

1
k1rk1−1

}{ ∆̃p+1

|ǫ|k1
k1rk1−1 exp

(

−
∆̃p+1

|ǫ|k1
rk1

)

}

dr

≤
2̟jk1

(2π)1/2
1

β − β′
|ǫ|k1−1

∆̃p+1

1
k1(ρ/2)k1−1 exp

(

−
∆̃p+1

|ǫ|k1
(ρ/2)k1

)

(178)

provided that ǫ ∈ Ep+1 ∩ Ep, t ∈ T and z ∈ Hβ′ .
In the same vein, we can get upper bounds for the second piece

I2 =
∣

∣

∣

k1

(2π)1/2

∫

Ldp,ǫt ;ρ/2

∫ +∞

−∞
ωj,dp

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

∣

∣

∣

of (177). Namely,

|I2| ≤
2̟jk1

(2π)1/2
1

β − β′
|ǫ|k1−1

∆̃p

1
k1(ρ/2)k1−1 exp

(

− ∆̃p

|ǫ|k1
(ρ/2)k1

)

(179)

for all ǫ ∈ Ep+1 ∩ Ep, t ∈ T and z ∈ Hβ′ .
At last, we handle the integral along the arc of circle closing (177),

I3 =
∣

∣

∣

k1

(2π)1/2

∫

Cp,p+1,ǫt;ρ/2

∫ +∞

−∞
ωj(τ, m, ǫ) exp

(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm

∣

∣

∣
.

Owing to the bounds (172) and (174), we observe that

|ωj(τ, m, ǫ)| ≤ ̟j(1 + |m|)−µe−β|m| ρ/2
|ǫ| exp

(

ν
(ρ/2)k1

|ǫ|k1

)

(180)

as long as τ ∈ Cp,p+1,ǫt;ρ/2, m ∈ R and ǫ ∈ Ep+1 ∩ Ep. Besides, in view of the restrictions discussed in
Definition 8 1. it follows that

cos(k1(θ − arg(ǫt))) > ∆p,p+1 = min(∆p, ∆p+1) (181)

for all t ∈ T , ǫ ∈ Ep+1 ∩ Ep, granted that the angle θ belongs to (dp,ǫt, dp+1,ǫt) or (dp+1,ǫt, dp,ǫt). By
virtue of (180) and (181), we come up with some constant ∆̃p,p+1 > 0 with

I3 ≤
k1̟j

(2π)1/2

(

∫ +∞

−∞
e−(β−β′)|m|dm

)

×
∣

∣

∣

∫ dp+1,ǫt

dp,ǫt

1
|ǫ| exp

(

ν
(ρ/2)k1

|ǫ|k1

)

exp
(

− (ρ/2)k1

|ǫt|k1
∆p,p+1

)ρ

2
dθ

∣

∣

∣

≤
2k1̟j

(2π)1/2(β − β′)
|dp+1,ǫt − dp,ǫt|

1
|ǫ| exp

(

−
∆̃p,p+1

|ǫ|k1
(ρ/2)k1

)ρ

2
(182)
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contingent upon t ∈ T , ǫ ∈ Ep+1 ∩ Ep and z ∈ Hβ′ . Hence, we deduce that

I3 ≤
2k1̟j

(2π)1/2(β − β′)
|dp+1,ǫt − dp,ǫt|

ρ

2
1
|ǫ| exp

(

−
∆̃p,p+1

2|ǫ|k1
(ρ/2)k1

)

exp
(

−
∆̃p,p+1

2|ǫ|k1
(ρ/2)k1

)

≤
2k1̟j

(2π)1/2(β − β′)
|dp+1,ǫt − dp,ǫt|

ρ

2
Ck1,ρ,∆̃p,p+1

exp
(

−
∆̃p,p+1

2|ǫ|k1
(ρ/2)k1

)

(183)

holds, where

Ck1,ρ,∆̃p,p+1
= sup

x≥0
x exp

(

−
∆̃p,p+1

2
(ρ/2)k1 xk1

)

as long as ǫ ∈ Ep+1 ∩ Ep, t ∈ T and z ∈ Hβ′ .
In summary, the splitting (177) along with the bounds (178), (179) and (183) beget the awaited

estimates (176).

8. Main statement of the paper. Construction of a finite set of holomorphic solutions to the
leading problem (14). Description of their parametric asymptotic expansion

8.1. Parametric Gevrey asymptotic expansions of the associated maps (175)

We first call to mind a result known as the Ramis-Sibuya theorem, see Lemma XI-2-6 in [23].

Theorem (R.S.) Let {Ep}0≤p≤ς−1 be a good covering in C∗ be fixed as described in Definition 7. We denote

(F, ||.||F) a Banach space over C. For all 0 ≤ p ≤ ς − 1, we set Gp : Ep → F as holomorphic functions that

obey the next requirements

1. The maps Gp are bounded on Ep for all 0 ≤ p ≤ ς − 1.
2. The difference Θp(ǫ) = Gp+1(ǫ)−Gp(ǫ) defines a holomorphic map on the intersection Zp = Ep+1 ∩Ep

which is exponentially flat of order k1, for some integer k1 ≥ 1, meaning that one can select two constants

Cp, Ap > 0 for which

||Θp(ǫ)||F ≤ Cp exp(− Ap

|ǫ|k1
)

holds provided that ǫ ∈ Zp, for all 0 ≤ p ≤ ς − 1. By convention, we set Gς = G0 and Eς = E0.

Then, one can find a formal power series Ĝ(ǫ) = ∑n≥0 Gnǫn with coefficients Gn belonging to F, which

is the common Gevrey asymptotic expansion of order 1/k1 relatively to ǫ on Ep for all the maps Gp, for

0 ≤ p ≤ ς − 1. It means that two constants Kp, Mp > 0 can be singled out with the error bounds

||Gp(ǫ)−
N

∑
n=0

Gnǫn||F ≤ Kp MN+1
p Γ(1 +

N + 1
k1

)|ǫ|N+1 (184)

for all integers N ≥ 0, all ǫ ∈ Ep, all 0 ≤ p ≤ ς − 1.

In the next proposition we exhibit asymptotic expansions of Gevrey type for the two sets of related
maps introduced in Proposition 10, {uj,p(t, z, ǫ)}0≤p≤ς−1, j = 1, 2, relatively to the variable ǫ.

Proposition 11. We denote Fβ′ ,T the Banach space of bounded holomorphic functions on the product T × Hβ′

which are C−valued, equipped with the sup norm. Then, for j = 1, 2, a formal power series

Ĝj(ǫ) = ∑
n≥0

Gn,j(t, z)
ǫn

n!
(185)
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with coefficients Gn,j(t, z), n ≥ 0, in Fβ′ ,T can be shaped that obey the next error bounds. For all 0 ≤ p ≤ ς− 1,

two constants Kp,j > 0 and Mp,j > 0 can be chosen with

sup
t∈T

z∈Hβ′

|uj,p(t, z, ǫ)−
N

∑
n=0

Gn,j(t, z)
ǫn

n!
| ≤ Kp,j(Mp,j)

N+1Γ(1 +
N + 1

k1
)|ǫ|N+1 (186)

for all integers N ≥ 0, all ǫ ∈ Ep.

Proof. Let j = 1, 2. For all 0 ≤ p ≤ ς − 1, let us define the maps Gj,p : Ep → Fβ′ ,T by the expression
Gj,p(ǫ) := (t, z) 7→ uj,p(t, z, ǫ). For 0 ≤ p ≤ ς − 1, these functions share the next two features:

− The maps Gj,p are bounded holomorphic on the sector Ep, according to the first item of Proposition
10.

− The differences Θj,p(ǫ) := Gj,p+1(ǫ)− Gj,p(ǫ) are submitted to the bounds

||Θj,p(ǫ)||Fβ′ ,T ≤ Mp,j exp
(

−
Kp,j

|ǫ|k1

)

for the constants Mp,j > 0 and Kp,j > 0 obtained in Proposition 10, whenever ǫ ∈ Ep+1 ∩ Ep,
where the convention Gj,ς = Gj,0 and Eς = E0 is in use.

As a result, the requirements 1. and 2. of the Theorem (R.S.) are matched for the sets of maps
{Gj,p}0≤p≤ς−1, j = 1, 2. We deduce the existence of formal series Ĝj(ǫ), j = 1, 2, which are the Gevrey
asymptotic expansion of order 1/k1 relatively to ǫ on Ep shared by all the maps Gj,p for 0 ≤ p ≤ ς − 1.
This is tantamount to the statement of Proposition 11 and the awaited bounds (186).

8.2. Statement of the main result

The next statement stands for the pinnacle of our work.

Theorem 1. Let us prescribe a fitting collection of sectors U 1, E and T accordingly to Definition 8. We take for

granted that all the conditions (15), (16), (17), (18), (19), (20), (22), (23), (24), (25), (26) and (27) enumerated

in Subsection 2.3 are fulfilled.

Then, provided that the constants ǫ0 > 0 and C1,ǫ0 > 0, Bj,ǫ0 > 0, j = 1, 2, along with cQ1Q2 ∈ C∗ and

cPjPj+1 ∈ C∗, j = 1, 3, 5 are nonvanishing and taken proximate to 0, the main equation
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Q(∂z)u(t, z, ǫ) = (ǫt)dD (t∂t)
δD RD(∂z)u(t, z, ǫ) +

D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)u(t, z, ǫ)

+ f (t, z, ǫ) + c1(z, ǫ)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)

+ b1(z, ǫ)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

+ b2(z, ǫ)
1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

+ cQ1Q2 Q1(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× Q2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× log(ǫt)

+ cP1P2 P1(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

× P2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

+ cP3P4 P3(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

× P4(∂z)
[

u(t, z, ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

log(ǫt)
]

+ cP5P6 P5(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

× P6(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)u(t, z, ǫ)

]

(187)

with vanishing initial data

u(0, z, ǫ) ≡ 0 (188)

possesses a finite set of bounded holomorphic solutions (t, z, ǫ) 7→ up(t, z, ǫ), for all p ∈ I1, where I1 is the

subset of {0, . . . , ς − 1} introduced in the item 4. of Definition 8, on the domain T × Hβ′ × Ep. In the equation

(187), the formal monodromy operator around 0, γ∗
ǫ acts on the analytic map ǫ 7→ up(t, z, ǫ) through Definition

5 by use of (11). The next additional features hold.

• For each p ∈ I1, the solution up can be expressed by means of a Fourier/Laplace transform

up(t, z, ǫ) = u1,p(t, z, ǫ) + u2,p(t, z, ǫ) log(ǫt) (189)

where

uj,p(t, z, ǫ) =
k1

(2π)1/2

∫

Ldp,ǫt ;ρ/2

∫ +∞

−∞
ωj,dp

(τ, m, ǫ) exp
(

− (
τ

ǫt
)k1

)

e
√
−1zm dτ

τ
dm (190)

for Borel maps (τ, m) 7→ ωj,dp
(τ, m, ǫ), j = 1, 2, that belong to the Banach space F

dp

(ν,β,µ,k1,ρ,ǫ) under the

restrictions (172) and (174).
• The two components uj,p(t, z, ǫ), j = 1, 2, of up(t, z, ǫ) are endowed with Gevrey asymptotic expansions

Ĝj(ǫ) given by (185) of order 1/k1 relatively to ǫ on Ep displayed in (186).
• If one sets the formal expression

Ĝ(ǫ) = Ĝ1(ǫ) + Ĝ2(ǫ) log(ǫt), (191)
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then, Ĝ(ǫ) conforms to the next equation

Q(∂z)Ĝ(ǫ) = (ǫt)dD (t∂t)
δD RD(∂z)Ĝ(ǫ) +

D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)Ĝ(ǫ)

+ f (t, z, ǫ) + c1(z, ǫ)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

log(ǫt)

+ b1(z, ǫ)
[

Ĝ(ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

log(ǫt)
]

+ b2(z, ǫ)
1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

+ cQ1Q2 Q1(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

× Q2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

× log(ǫt)

+ cP1P2 P1(∂z)
[

Ĝ(ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

log(ǫt)
]

× P2(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

+ cP3P4 P3(∂z)
[

Ĝ(ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

log(ǫt)
]

× P4(∂z)
[

Ĝ(ǫ)−
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

log(ǫt)
]

+ cP5P6 P5(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

× P6(∂z)
[ 1

2
√
−1π

(γ∗
ǫ − id)Ĝ(ǫ)

]

(192)

where the formal monodromy operator around 0, γ∗
ǫ acts on the formal expression ǫ 7→ Ĝ(ǫ) by means of

the formula (9) from Definition 4.

Proof. For all p ∈ I1, where I1 is the set described in the item 4. of Definition 8, we define

up(t, z, ǫ) = u1,p(t, z, ǫ) + u2,p(t, z, ǫ) log(ǫt)

where the maps uj,p are introduced in (175) of Proposition 10.
As a result of the definition of I1 together with the first item of Proposition 10 and the classical

limit limx→0 xα log(x) = 0, for any natural number α ≥ 1, we check that the map up(t, z, ǫ) represents
a bounded holomorphic function on the product T × Hβ′ × Ep that vanishes at t = 0, meaning that
up(0, z, ǫ) ≡ 0 for all z ∈ Hβ′ and ǫ ∈ Ep.

According to Proposition 9, we know that for each ǫ ∈ Dǫ0 \ {0},

− the map (u1, z) 7→ U2,dp
(u1, z, ǫ) stands for a solution of the equation (36) on the domain U1,dp

×
Hβ′ ,

− the map (u1, z) 7→ U1,dp
(u1, z, ǫ) embodies a solution of (37) where the expression U2(u1, z, ǫ) is

asked to be replaced by U2,dp
(u1, z, ǫ) on the domain U1,dp

× Hβ′ .

Then, on the basis of the computations (35), (34) and (33) performed reversedly from Subsection 3.1, we
deduce that up(t, z, ǫ) solves the main equation (14), rephrased as (187), on the domain T × Hβ′ × Ep,
for all p ∈ I1.

The first item of Theorem 1 follows from the Fourier/Laplace representation of the maps
Uj,dp

(u1, z, ǫ), j = 1, 2, displayed in Proposition 9 that are used to define the components uj,p(t, z, ǫ) in
(175).

The second item of Theorem 1 merely restates the result obtained in Proposition 11.
We focus on the third item. We first need to disclose partial differential equations that the maps

uj,p(t, z, ǫ), j = 1, 2 turn out to fulfill. Indeed, the usual chain rule enables the next computation

t∂tuj,p(t, z, ǫ) = (u1∂u1Uj,dp
)(ǫt, z, ǫ)
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for all 0 ≤ p ≤ ς − 1, j = 1, 2, provided that t ∈ T , ǫ ∈ Ep and z ∈ Hβ′ . According to the statement
discussed in Proposition 9, that the partial map (u1, z) 7→ U2,dp

(u1, z, ǫ) matches the equation (36) on
the domain U1,dp

× Hβ′ , whenever ǫ ∈ Dǫ0 \ {0}, we observe that the map u2,p(t, z, ǫ) satisfies the next
equation

Q(∂z)u2,p(t, z, ǫ) = (ǫt)dD
[

(t∂t)
δD RD(∂z)u2,p(t, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)u2,p(t, z, ǫ) + F2(ǫt, z, ǫ) + c1(z, ǫ)u2,p(t, z, ǫ)

+ cQ1,Q2

[

Q1(∂z)u2,p(t, z, ǫ))
]

×
[

Q2(∂z)u2,p(t, z, ǫ)
]

(193)

as long as t ∈ T , z ∈ Hβ′ and ǫ ∈ Ep. On the other hand, since the partial map (u1, z) 7→ U1,dp
(u1, z, ǫ)

obeys the equation (37) on the domain U1,dp
× Hβ′ , for ǫ ∈ Dǫ0 \ {0}, it follows that the map u1,p(t, z, ǫ)

fulfills the next equation coupled to (193),

Q(∂z)u1,p(t, z, ǫ) = (ǫt)dD
[

(t∂t)
δD RD(∂z)u1,p(t, z, ǫ)

+ δD(t∂t)
δD−1RD(∂z)u2,p(t, z, ǫ)

]

+
D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)
[

(t∂t)
δl Rl(∂z)u1,p(t, z, ǫ)

+ δl(t∂t)
δl−1Rl(∂z)u2,p(t, z, ǫ)

]

+ F1(ǫt, z, ǫ) + b1(z, ǫ)u1,p(t, z, ǫ) + b2(z, ǫ)u2,p(t, z, ǫ)

+ cP1P2

[

P1(∂z)u1,p(t, z, ǫ)
]

×
[

P2(∂z)u2,p(t, z, ǫ)
]

+ cP3P4

[

P3(∂z)u1,p(t, z, ǫ)
]

×
[

P4(∂z)u1,p(t, z, ǫ)
]

+ cP5P6

[

P5(∂z)u2,p(t, z, ǫ)
]

×
[

P6(∂z)u2,p(t, z, ǫ)
]

(194)

provided that t ∈ T , z ∈ Hβ′ and ǫ ∈ Ep.
The next classical result (stated in Proposition 8 p. 66 from [7]) will be essential to deduce recursion

relations for the coefficients Gn,j(t, z), n ≥ 0 of Ĝj(ǫ) from the partial differential equations that govern
the components uj,p(t, z, ǫ), j = 1, 2.

Proposition 12. Let f : G → F be a holomorphic map from a bounded open sector G centered at 0 in C∗ into a

complex Banach space F equipped with a norm ||.||F. The next statements are equivalent

− There exists a formal power series f̂ (ǫ) = ∑n≥0 fnǫn/n! in F[[ǫ]] which is the asymptotic expansion of f

on G, meaning that for all closed sector S of G centered at 0, one can associate a sequence (c(N, S))N≥0 of

positive real numbers such that

|| f (ǫ)−
N−1

∑
n=0

fnǫn/n!||F ≤ c(N, S)|ǫ|N

for all ǫ ∈ S, all integers N ≥ 1.
− All n−th derivatives of f denoted f (n)(ǫ) are continuous at 0 and satisfy

lim
ǫ→0
ǫ∈G

|| f (n)(ǫ)− fn||F = 0

for all integers n ≥ 0.

We first derive some recursion relations for the coefficients Gm,2(t, z), m ≥ 0. To that aim we take
the derivative of order m ≥ 0 on the left and right handside of (193) relatively to ǫ for any integer
m ≥ 0. Indeed, owing to the Leibniz rule, we deduce
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Q(∂z)∂
m
ǫ u2,p(t, z, ǫ) = ∑

m1+m2=m

m!
m1!m2!

(∂m1
ǫ ǫdD )tdD (t∂t)

δD RD(∂z)
[

∂m2
ǫ u2,p(t, z, ǫ)

]

+
D−1

∑
l=1

∑
m1+m2+m3=m

m!
m1!m2!m3!

(∂m1
ǫ ǫ∆l )tdl ×

[

(∂m2
ǫ al(z, ǫ)

]

× (t∂t)
δl Rl(∂z)

[

∂m3
ǫ u2,p(t, z, ǫ)

]

+ ∂m
ǫ F2(ǫt, z, ǫ) + ∑

m1+m2=m

m!
m1!m2!

[

∂
m1
ǫ c1(z, ǫ)

]

×
[

∂m2
ǫ u2,p(t, z, ǫ)

]

+ cQ1,Q2 ∑
m1+m2=m

m!
m1!m2!

[

Q1(∂z)∂
m1
ǫ u2,p(t, z, ǫ)

]

×
[

Q2(∂z)∂
m2
ǫ u2,p(t, z, ǫ)

]

(195)

for all m ≥ 0, all t ∈ T , z ∈ Hβ′ and ǫ ∈ Ep. Owing to the asymptotic expansion (186) for j = 2, the
application of Proposition 12 yields the next limits

lim
ǫ→0

ǫ∈Ep

sup
t∈T

z∈Hβ′

|∂m
ǫ u2,p(t, z, ǫ)−Gm,2(t, z)| = 0 (196)

for all integers m ≥ 0 and any given 0 ≤ p ≤ ς − 1. We let ǫ tend to 0 on the sector Ep in the above
equality (195) and with the help of (196) combined with the observation that both maps u2,p(t, z, ǫ) and
Gm,2(t, z) are holomorphic with respect to (t, z) on the product T × Hβ′ , we reach the next relation for
the coefficients Gm,2(t, z), m ≥ 0,

Q(∂z)Gm,2(t, z) = ∑
m1+m2=m

m!
m1!m2!

(∂m1
ǫ ǫdD )(0)tdD (t∂t)

δD RD(∂z)Gm2,2(t, z)

+
D−1

∑
l=1

∑
m1+m2+m3=m

m!
m1!m2!m3!

(∂m1
ǫ ǫ∆l )(0)tdl ×

[

(∂m2
ǫ al)(z, 0)

]

× (t∂t)
δl Rl(∂z)Gm3,2(t, z)

+ ∂m
ǫ F2(ǫt, z, ǫ)|ǫ=0 + ∑

m1+m2=m

m!
m1!m2!

[

(∂m1
ǫ c1)(z, 0)

]

×Gm2,2(t, z)

+ cQ1,Q2 ∑
m1+m2=m

m!
m1!m2!

[

Q1(∂z)Gm1,2(t, z)
]

×
[

Q2(∂z)Gm2,2(t, z)
]

(197)

for all m ≥ 0, provided that t ∈ T , z ∈ Hβ′ .
This enables us to display some partial differential equation fulfilled by the formal expansion

Ĝ2(ǫ). Namely, we know that the maps ǫ 7→ ǫdD , ǫ 7→ ǫ∆l , ǫ 7→ al(z, ǫ) together with ǫ 7→ F2(ǫt, z, ǫ)

are analytic on the disc Dǫ0 . Their convergent Taylor series are expressed as

ǫdD = ∑
m≥0

(∂m
ǫ ǫdD )(0)

m!
ǫm , ǫ∆l = ∑

m≥0

(∂m
ǫ ǫ∆l )(0)

m!
ǫm , al(z, ǫ) = ∑

m≥0

(∂m
ǫ al)(z, 0)

m!
ǫm,

c1(z, ǫ) = ∑
m≥0

(∂m
ǫ c1)(z, 0)

m!
ǫm , F2(ǫt, z, ǫ) = ∑

m≥0

∂m
ǫ F2(ǫt, z, ǫ)|ǫ=0

m!
ǫm (198)

for all ǫ ∈ Dǫ0 . Then, departing from (185), we get the formal Taylor expansion of the next pieces that
involve Ĝ2(ǫ). Namely,

(ǫt)dD
[

(t∂t)
δD RD(∂z)Ĝ2(ǫ)

]

= tdD ∑
m≥0

[

∑
m1+m2=m

(∂m1
ǫ ǫdD )(0)

m1!
(t∂t)

δD RD(∂z)
Gm2,2(t, z)

m2!

]

ǫm (199)
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and

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)Ĝ2(ǫ)

= tdl ∑
m≥0

[

∑
m1+m2+m3=m

(∂m1
ǫ ǫ∆l )(0)

m1!
×

[ (∂m2
ǫ al)(z, 0)

m2!

]

× (t∂t)
δl Rl(∂z)

Gm3,2(t, z)

m3!

]

ǫm (200)

along with

c1(z, ǫ)Ĝ2(ǫ) = ∑
m≥0

[

∑
m1+m2=m

[ (∂m1
ǫ c1)(z, 0)

m1!

]

× Gm2,2(t, z)

m2!

]

ǫm (201)

and

[

Q1(∂z)Ĝ2(ǫ)
]

×
[

Q2(∂z)Ĝ2(ǫ)
]

= ∑
m≥0

[

∑
m1+m2=m

[Q1(∂z)Gm1,2(t, z)

m1!

]

×
[Q2(∂z)Gm2,2(t, z)

m2!

]

]

ǫm. (202)

As a result, the relation (197) and the above formal expansions prompt the next partial differential
equation satisfied by Ĝ2(ǫ),

Q(∂z)Ĝ2(ǫ) = (ǫt)dD
[

(t∂t)
δD RD(∂z)Ĝ2(ǫ)

]

+
D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)(t∂t)
δl Rl(∂z)Ĝ2(ǫ) + F2(ǫt, z, ǫ) + c1(z, ǫ)Ĝ2(ǫ)

+ cQ1,Q2

[

Q1(∂z)Ĝ2(ǫ)
]

×
[

Q2(∂z)Ĝ2(ǫ)
]

. (203)

In the next part of the proof, we exhibit recursion relations for the coefficients Gm,1(t, z), m ≥ 0. We
proceed by taking the m−th derivative of both handsides of (194) with respect to ǫ for any given
integer m ≥ 0. Indeed, the Leibniz rule yields

Q(∂z)∂
m
ǫ u1,p(t, z, ǫ) = ∑

m=m1+m2

m!
m1!m2!

[

∂
m1
ǫ ǫdD

]

tdD ×
[

(t∂t)
δD RD(∂z)

[

∂m2
ǫ u1,p(t, z, ǫ)

]

+ δD(t∂t)
δD−1RD(∂z)

[

∂m2
ǫ u2,p(t, z, ǫ)

]

]

+
D−1

∑
l=1

∑
m1+m2+m3=m

m!
m1!m2!m3!

×
[

∂
m1
ǫ ǫ∆l

]

tdl ×
[

(∂m2
ǫ al)(z, ǫ)

]

×
[

(t∂t)
δl Rl(∂z)

[

(∂m3
ǫ u1,p)(t, z, ǫ)

]

+ δl(t∂t)
δl−1Rl(∂z)

[

(∂m3
ǫ u2,p)(t, z, ǫ)

]

]

+ ∂m
ǫ (F1(ǫt, z, ǫ))

+ ∑
m=m1+m2

m!
m1!m2!

[

(∂m1
ǫ b1)(z, ǫ)

]

×
[

(∂m2
ǫ u1,p)(t, z, ǫ)

]

+ ∑
m=m1+m2

m!
m1!m2!

[

(∂m1
ǫ b2)(z, ǫ)

]

×
[

(∂m2
ǫ u2,p)(t, z, ǫ)

]

+ cP1P2 ∑
m=m1+m2

m!
m1!m2!

[

P1(∂z)(∂
m1
ǫ u1,p)(t, z, ǫ)

]

×
[

P2(∂z)(∂
m2
ǫ u2,p(t, z, ǫ)

]

+ cP3P4 ∑
m=m1+m2

m!
m1!m2!

[

P3(∂z)(∂
m1
ǫ u1,p)(t, z, ǫ)

]

×
[

P4(∂z)(∂
m2
ǫ u1,p(t, z, ǫ)

]

+ cP5P6 ∑
m=m1+m2

m!
m1!m2!

[

P5(∂z)(∂
m1
ǫ u2,p)(t, z, ǫ)

]

×
[

P6(∂z)(∂
m2
ǫ u2,p)(t, z, ǫ)

]

(204)
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for all m ≥ 0, all t ∈ T , z ∈ Hβ′ and ǫ ∈ Ep. Besides, the asymptotic expansion (186) for j = 1 warrants
the application of Proposition 12 in order to reach the limits

lim
ǫ→0

ǫ∈Ep

sup
t∈T

z∈Hβ′

|∂m
ǫ u1,p(t, z, ǫ)−Gm,1(t, z)| = 0 (205)

for all integers m ≥ 0 and any prescribed 0 ≤ p ≤ ς − 1. We allow the parameter ǫ to get close to 0
in the relation (204). Based on the above limits (205) combined with (196) and the fact that the maps
uj,p(t, z, ǫ) and Gm,j(t, z), j = 1, 2 rely holomorphically in the variable (t, z) on the product T × Hβ′ ,
we obtain the next relation for the coefficients Gm,1(t, z), m ≥ 0,

Q(∂z)Gm,1(t, z) = ∑
m=m1+m2

m!
m1!m2!

[

(∂m1
ǫ ǫdD )(0)

]

tdD ×
[

(t∂t)
δD RD(∂z)Gm2,1(t, z)

+ δD(t∂t)
δD−1RD(∂z)Gm2,2(t, z)

]

+
D−1

∑
l=1

∑
m1+m2+m3=m

m!
m1!m2!m3!

×
[

(∂m1
ǫ ǫ∆l )(0)

]

tdl ×
[

(∂m2
ǫ al)(z, 0)

]

×
[

(t∂t)
δl Rl(∂z)Gm3,1(t, z)

+ δl(t∂t)
δl−1Rl(∂z)Gm3,2(t, z)

]

+ ∂m
ǫ (F1(ǫt, z, ǫ))|ǫ=0

+ ∑
m=m1+m2

m!
m1!m2!

[

(∂m1
ǫ b1)(z, 0)

]

×Gm2,1(t, z)

+ ∑
m=m1+m2

m!
m1!m2!

[

(∂m1
ǫ b2)(z, 0)

]

×Gm2,2(t, z)

+ cP1P2 ∑
m=m1+m2

m!
m1!m2!

[

P1(∂z)Gm1,1(t, z)
]

×
[

P2(∂z)Gm2,2(t, z)
]

+ cP3P4 ∑
m=m1+m2

m!
m1!m2!

[

P3(∂z)Gm1,1(t, z)
]

×
[

P4(∂z)Gm2,1(t, z)
]

+ cP5P6 ∑
m=m1+m2

m!
m1!m2!

[

P5(∂z)Gm1,2(t, z)
]

×
[

P6(∂z)Gm2,2(t, z)
]

(206)

for all m ≥ 0, whenever t ∈ T and z ∈ Hβ′ .
This latter recusion relation leads to some partial differential equation governing the formal

expression Ĝ1(ǫ) given by (185). In the process, we use the convergent Taylor expansions (198)
together with

F1(ǫt, z, ǫ) = ∑
m≥0

∂m
ǫ F1(ǫt, z, ǫ)|ǫ=0

m!
ǫm , bj(z, ǫ) = ∑

m≥0

(∂m
ǫ bj)(z, 0)

m!
ǫm (207)

for j = 1, 2 which are valid for all ǫ ∈ Dǫ0 and from which the next list of computations are deduced

(ǫt)dD
[

(t∂t)
δD RD(∂z)Ĝ1(ǫ) + δD(t∂t)

δD−1RD(∂z)Ĝ2(ǫ)
]

= tdD ∑
m≥0

[

∑
m=m1+m2

(∂m1
ǫ ǫdD )(0)

m1!

[

(t∂t)
δD RD(∂z)

Gm2,1(t, z)

m2!

+ δD(t∂t)
δD−1RD(∂z)

Gm2,2(t, z)

m2!

]

]

ǫm (208)
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and

ǫ∆l tdl al(z, ǫ)
[

(t∂t)
δl Rl(∂z)Ĝ1(ǫ) + δl(t∂t)

δl−1Rl(∂z)Ĝ2(ǫ)
]

= tdl ∑
m≥0

[

∑
m1+m2+m3=m

(∂m1
ǫ ǫ∆l )(0)

m1!
× (∂m2

ǫ al)(z, 0)
m2!

×
[

(t∂t)
δl Rl(∂z)

Gm3,1(t, z)

m3!

+ δl(t∂t)
δl−1Rl(∂z)

Gm3,2(t, z)

m3!

]

]

ǫm (209)

along with

bj(z, ǫ)Ĝj(ǫ) = ∑
m≥0

[

∑
m=m1+m2

(∂m1
ǫ bj)(z, 0)

m1!
×

Gm2,j(t, z)

m2!

]

ǫm (210)

for j = 1, 2. Futhermore, the next identities hold

[

P1(∂z)Ĝ1(ǫ)
]

×
[

P2(∂z)Ĝ2(ǫ)
]

= ∑
m≥0

[

∑
m=m1+m2

[

P1(∂z)
Gm1,1(t, z)

m1!

]

×
[

P2(∂z)
Gm2,2(t, z)

m2!

]

]

ǫm (211)

with

[

P3(∂z)Ĝ1(ǫ)
]

×
[

P4(∂z)Ĝ1(ǫ)
]

= ∑
m≥0

[

∑
m=m1+m2

[

P3(∂z)
Gm1,1(t, z)

m1!

]

×
[

P4(∂z)
Gm2,1(t, z)

m2!

]

]

ǫm (212)

and

[

P5(∂z)Ĝ2(ǫ)
]

×
[

P6(∂z)Ĝ2(ǫ)
]

= ∑
m≥0

[

∑
m=m1+m2

[

P5(∂z)
Gm1,2(t, z)

m1!

]

×
[

P6(∂z)
Gm2,2(t, z)

m2!

]

]

ǫm (213)

As a consequence of the above computations, the relation (206) triggers the next partial differential
equation fulfilled by Ĝ1(ǫ) and coupled with (203),

Q(∂z)Ĝ1(ǫ) = (ǫt)dD
[

(t∂t)
δD RD(∂z)Ĝ1(ǫ)

+ δD(t∂t)
δD−1RD(∂z)Ĝ2(ǫ)

]

+
D−1

∑
l=1

ǫ∆l tdl al(z, ǫ)
[

(t∂t)
δl Rl(∂z)Ĝ1(ǫ)

+ δl(t∂t)
δl−1Rl(∂z)Ĝ2(ǫ)

]

+ F1(ǫt, z, ǫ) + b1(z, ǫ)Ĝ1(ǫ) + b2(z, ǫ)Ĝ2(ǫ)

+ cP1P2

[

P1(∂z)Ĝ1(ǫ)
]

×
[

P2(∂z)Ĝ2(ǫ)
]

+ cP3P4

[

P3(∂z)Ĝ1(ǫ)
]

×
[

P4(∂z)Ĝ1(ǫ)
]

+ cP5P6

[

P5(∂z)Ĝ2(ǫ)
]

×
[

P6(∂z)Ĝ2(ǫ)
]

. (214)

In conclusion, we have checked by means of (203) that the power series Ĝ2(ǫ) formally solves the
same partial differential equations as the function u2,p(t, z, ǫ) stated in (193). In addition, through
(214) and (194) we observe that the formal power series Ĝ1(ǫ) and the map u1,p(t, z, ǫ) obey identical
coupled partial differential equations. Then, drew on the computations (35), (34) and (33) performed
reversedly from Subsection 3.1, we deduce that the formal expression Ĝ(ǫ) stated in (191) conforms
the same equation as the analytic map up(t, z, ǫ) given in (187) and recast as (192) where the formal
monodromy operator around 0 given by γ∗

ǫ acts on the formal expression Ĝ(ǫ) by dint of the formula
(9) in Definition 4. This completes the proof of the third item of Theorem 1.
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