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Abstract: Based on orbital angular momentum (OAM) properties of Laguerre Gaussian beams
LG(p, `), a robust optical encoding model for efficient data transmission applications is designed.
This paper presents an optical encoding model based on intensity profile generated by a coherent
superposition of two OAM-carrying Laguerre-Gaussian modes and Machine-learning detection
method. In the encoding process, the intensity profile for data encoding is generated based on
selection of p and ` indices, while the decoding process is performed using support vector machine
(SVM) algorithm. Two different decoding models based on SVM algorithm are tested to verify the
robustness of optical encoding model, finding a BER = 10−9 for 10.2 dB of signal-to-noise ratio in one
of the SVM models.
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1. Introduction

Optical beams with orbital angular momentum (OAM) have aroused a growing interest from
researchers around the world due to their wavefront helical shape properties that provide a new degree
of freedom for exploration of new applications in particle manipulation [1,2], image processing [3,4]
and optical communications [5,6]. In this context, optical communications systems have found a
possibility of exploring vortex beams properties in multiplexing [7,8] and data encoding [9,10] pathway.
Concerning data encoding, OAM states to encode different data symbols is evidenced by Fang et
al.[11], where OAM holography is performed by OAM selectivity in spatial-frequency domain without
a theoretical helical mode index limit. In the area of holographic encryption, Xiao et al. [12] propose a
two-coding information metasurfaces to achieve OAM-encrypted holography. OAM encoding has also
been explored in multicasting links, for instance, Shiyao Fu et al. [13] encode digital signals through
the OAM free space one-to-many multicasting link. Within the same research line, data coding has
also been explored experimentally as demonstrated by Willner et al. in [14], where data encoding
at 20 Gb/s, using four possible OAM modes, is performed. Optical encoding and multiplexing
techniques in OAM channels for highly dispersive media have also been implemented [10], where a
novel scattering-matrix-assisted retrieval technique was proposed to demultiplex OAM channels from
highly scattered optical fields.

There is a lot of evidence of OAM applications, for instance, in data encoding field in free space
and fiber-based transmission channels [15,16], polarization-based [17,18] and intensity and vortices in
phase based [19]. However, implementation of an OAM-based encoding system requires overcoming
several challenges from the point of view of information medium propagation and system detection
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implementation. Due to the nature of information propagation, some effects can be induced in the
medium such as absorption, scattering and turbulence, spatial distortion (amplitude and phase), modal
coupling, and crosstalk. Some of these effects, as in the case of turbulence and modal crosstalk, have
been potentially suppressed in coding and multiplexing systems, through mitigation methods [20],
but for the most part, these effects constitute a great challenge [10,21]. Such challenges have captured
attention of scientific community to focus their studies on designing more robust and flexible optical
encoders and encryptors, based on coding techniques that minimize noise and information distortion,
while correctly maximizing the amount of data coded. In this way, the efforts to improve optical
encoding systems are reflected in image recognition methods for encoded data, as in the case of [22],
where an index modulation is implemented for OAM states with an Uniform scheme Circular Array
(OAM-UCA) to build low-intensity parity coding to improve error performance and transmit additional
bits of information. Incoherent detection methods have also been implemented for data decoding [23],
where an image information transfer method based on petal-like beam lattices for coding is used. In
this case, decoding system works directly with the identification of the intensity patterns captured.
Another example of image-based is presented in [19] that employs the amplitude and the phase
of an optical field into a phase-only hologram to control spatial transverse modes for data-symbol
mapping. A similar study can be found in [24] that uses OAM array for free-space communication link
encoding/decoding with 625 states. A proposal for OAM light encoding in magnets has also been
developed in[25], where the possible sub-wavelength magnetic phenomena induced by a vortex beam
and their applications in the generation of topological defects in chiral magnets is discussed. Although
the aforementioned studies show the feasibility of encoding systems based on OAM modes, OAM
does not increase the amount of information, nor does it exceed the multiple-input multiple-output
(MIMO) transmission of current standards in optical communications[6,26]. In fact, the number of
spatial modes available for data encoding is limited by space-bandwidth product of a given optical
system [26,27]. A solution to this problem is to use all spatial degrees of freedom offered by OAM
modes. A commonly used OAM beam for this purpose is a Laguerre-Gaussian (LG) beam [6,16], which
provides eigen-modes dependent on both radial (p) and azimuthal (`) indices; being able to use the
superposition of modes to increase the number of encoding data in a limited system. On the other hand,
a decoding system (which is generally based on image detection and classification) can present strong
signal distortion (both in the intensity profile and in the phase distribution) due to optical alignment,
turbulence and scattering [28]. Recently, convolutional neural network (CNN) and Machine-learning
techniques have been implemented in optical coding systems, as an alternative solution for image
detection and classification [29–31]. High-resolution recognition techniques based on deep learning to
encode data in spatial modes have already been implemented [32]. The deep learning-based approach
has also been used to recover the sparse data from multiplexed OAM channels independent of phase
information [33]. Although these studies demonstrate the feasibility of encoding systems based on
OAM modes as well as various methods implemented for data decoding, there is still a gap concerning
image detection and classification methods in decoding, due to degradation effects that the medium
induces in the transmitted signal, which brings the motivation to this research work.

Motivated by previous statements, this paper proposes a comprehensive optical
encoding-decoding system based on the intensity profile generated by a coherent superposition
of two OAM-carrying Laguerre-gaussian (LG) modes and Machine-learning detection method. In
the encoding process, intensity profile for data encoding is generated based on the selection of p
and ` indices of LG beams, while the decoding process is performed using support vector machine
(SVM). Different from other existing encoding systems that require the additional extraction of phase
information, this paper proposes novel optical encoder based on the number of spatial modes carrying
data symbols increased in a limited optical system. Moreover, the proposed optical encoding model
opens a pathway to a stable image detection and classification system based on Machine-Learning that
only uses the intensity profile for target modes. As a result, the main contributions of this paper are:
(1) a comprehensive design of a coherent optical encoding system based on the superposition of LG
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modes carrying OAM that is independent of phase information, and; (2) a robust decoding system
based on intensity profile recognition using the Machine-learning SVM method. Section II presents the
concept and operating principle of the optical encoder. In section III, the SVM-based decoding method
for image recognition and classification is explained in detail. In section IV, a case study for a 4-bit
coding system with different types of noise is considered to validate the robustness of the proposed
encoder. Finally, Section V and VI exhibit the results and conclusion, respectively.

2. Concept and principle of optical encoding model

The schematic setup of the conceptual art of this proposed optical encoding model is illustrated
in Figure 1. At Transmitter side, an optical system based on a Mach-Zehender interferometer is used
to generate a coherent combination of two Laguerre-Gaussian (LG) beams carrying orbital angular
momentum (OAM). A laser source (LS) provides a coherent fundamental Laguerre-Gaussian (LG00)
beam in free space that is launched to a polarization beam splitter (PBS) to control relative power
between reference and selector arm. Both arms will go through an OAM generator to convert a
fundamental LG(p = 0, ` = 0) mode to a higher-order LG(p, `) mode carrying OAM. The reference
arm is converted to a LG(p, ` = 1) mode (via OAM Generator 1 in Figure 1), while selector arm is
converted to a LG(p, `) mode carrying OAM (via OAM Generator 2 in Figure 1). Since the topological
charge ` and the radial index p at the LG(p, `) selector beam can be properly selected to generate the
intensity pattern for optical encoder, this mode index will be the code-key numbers associated with
the data-symbol. The reference and selector arms are combined through a beam splitter (BS1) and
the intensity profile of this superposition will be the pattern corresponding to an unique data symbol
associated with (p, `) combination. After encoding, the transmitted output beam is transferred to a
communication channel, in which different noise sources will be added in order to affect the signal.
At Receiver side, the received beam is decoded by Machine Learning process using a support vector
machine (SVM)-based method for image recognition and classification.

LS

OAM Generator 2

PBS OAM Generator 1

M1 M2

BS1
Communication 
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PD 

CCD
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LG(0,0) →LG(p,ℓ)
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Figure 1. Concept and proposed setup of optical encoding model. LS: laser source; PBS: polarization
beam splitter, M1,2: mirror; BS1,2: beam splitter; PD: photodetector.

For generation stage of the intensity pattern that will be used in the transmitter side, the
mathematical formulation of the Laguerre-Gaussian beams [34,35] has been used, which are
characterized by two indices (p, `) corresponding to radial and azimuthal distribution respectively.
The optical field of a LG(p, `) mode can be represented by:
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where w(z) is the beam width, zR is the Rayleigh range and Φ(z) is the Gouy phase. L|`|p are
the generalized Laguerre polynomials and (r, θ, z) represents the cylindrical coordinate. Then, the
superposition of two LG modes carrying OAM [36] can be expressed as:

u(r, θ, z) = LGp′ ,`′(r, θ, z) + LGp,`(r, θ, z) (2)

The first term in Eq. 2 describes the reference field, while the second term represents the optical
field that acts as a selector. As mentioned, for the optical encoder presented in this work, the LG(p, ` =
1) mode will be used as the LGp′ ,`′(r, θ, z) reference beam, while the selector beam LGp,`(r, θ, z) will be
a previously selected LGp,` mode. The same radial index p has been chosen for both reference and
selector beam in order to simplify the design of the encoder. Intensity profile of u(r, θ, z) is associated
with a data-bit sequence according to the (p, `) parameters used in the selector beam generation. Since
OAM beams have twisted helical phase fronts while propagating, often characterized by the azimuthal
index ` (also named topological charge) [10], the intensity profile will be most affected in rotations
along the propagation axis, without significant changes in the intensity pattern. Additionally, the
property of orthogonality between LG modes allows the resulting intensity pattern to be unique for
each data symbol [37].

3. SVM- based decoding method for image recognition and classification

The proposed optical encoding model takes as input a 4-bit code defined by the variable X. In
addition, a signal noise ratio (SNR) is used to emulate the noise in the communication channel that is
given in decibels. The encoding starts with the definition of the variables `1, `2 and p to stablish the
intensity profile, which is executed by the function selectCode. Then, two different intensity profiles are
generated using the mathematical formulation given in Eq. 1 and Eq. 2 and declared in f unctionLG.
This is followed by the representation of the intensity profile in terms of cartesian coordinates x, y,
and the intensity of the resulting beam profile declared in variable I. Next, with a view to emulate a
real communication, signal noise is added to the transmitted intensity profile stated in the function
addNoise. Later, the extractHOGFeaturesFromIntensity function is used to extract useful patterns
for information recognition through Histogram of Oriented Gradients (HOG) detection [13]. Finally,
the function predict, which is based on a linear regression model, is used as a 4-bit classifier through
multiclass error-correcting output codes (ECOC) model using support vector machine (SVM) binary
learners. For more details about the followed process, the Algorithm 1 is presented. As the process
involve training procedures, the decoding processing at the receiver side of the encoder is based on
SVM. More details on this SVM algorithm can be found in supplementary material.
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Algorithm 1 Pseudocode for decoding processing using SVM–ECOC model

1: Input X, SNR
2: Transmission side:
3: [`1, `2, p]=selectCode(X) . Give `1, `2, and p values according to Code Table
4: [x1, y1, z1] = f unctionLG(`1, θo = 0, λ, z = 0, p) . Generate 1st Intensity Profile accord. Eq.1
5: [x2, y2, z2] = f unctionLG(`2, θo = 0, λ, z = 0, p) . Generate 2nd Intensity Profile accord. Eq.1
6: x ← x1
7: y← y1 . Generate Value for Cartesian coordinates
8: I ← z1 + z2 . Superposition of Intensity Profile accord. Eq.2
9: Communication Channel:

10: n = addNoise(I, SNR) . Add Noise to the intensity in order to simulate real communication signal
11: Receiver Side:
12: TestFeatures = extractHOGFeaturesFromIntensity(n) . Extract HOG features for the Intensity

profile with noise
13: Y = predict(classi f ier, testFeatures) . Use model from SVM-ECOC Multiclass Training
14: Output Y

4. Case Study

As mentioned in the operating principle of the proposed optical encoding model, each data
symbol is mapped to a corresponding u(r, θ) profile, according to the selected modal indices ` and p
in the selector beam. Since the reference beam is restricted to LG(p′, `′ = 1) mode, the alphabet for
possible data symbols within a discrete-time window can be calculated as log2N with N = n`np, where
n`,p represents the number of ` and p indices used in the selector arm and N represents the different
data symbols that can be encoded as N -ary numbers: 0, 1, . . . (N − 1) [13]. For validation purposes,
a data-symbol code based on a 4-bit data symbol (N = 16) is designed, which is associated with
the result intensity profile according to the selection of the (p, `) combination, as shown in Figure 2.
This table shows all possible combinations of data symbols, the normalized intensity profiles of the
reference, selector, and the transmitted beam for data mapping.
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Figure 2. Data symbol set based on 4-bit data-symbol for the case study presented.
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5. Results

The performance of proposed optical encoding model is measured in terms of signal degradation
due to addition of noise and Bit Error Rate (BER) presented by the system. It is known that accuracy
and precision of an optical encoder depends on detection method and robustness of SVM training
algorithm used [38,39]. In this context, to validate the influence of noise on transmission and therefore
measure the degree of degradation and signal detection, a combination of RIN and AWGN noises has
been used as channel noise for all detection and classification cases. The value of α for RIN has been
established by a factor of 0.5 the uniform random distribution, while for AWGN the mean µ = 0 and
signal-noise ratio (SNR) levels have been established at 36 dB (low), 30 dB (medium) and 24 dB (high)
that are typical noise levels in optical communication systems [40,41].

To understand how the combination of these noises affects the transmitted signal, three different
data-symbols are presented in Figure 3; 0011 (Figure 3 a.i), 0110 (Figure 3 b.i) and 1011 (Figure 3 c.i)
with their corresponding 2D linear transformations of 200x200 pixels (computational burden), Figure 3
a.ii, b.ii and c.ii. With a view to show the impact of the noises in the transmitted signal, the horizontal
position arrangement for pixel 50 of the vertical position (x,50) has been chosen for display purposes,
which is presented as a yellow dotted line in the Figure 3 a.ii, b.ii and c.ii. As a result, the normalized
intensity curve for such array is presented in Figure 3 a.iii, b.iii and c.iii.
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Figure 3. Different data-symbols and their corresponding normalized intensity curves. (a.i)
data-symbol 0011, (b.i) data-symbol 0110, (c.i) data-symbol 1011; (a,b,c.ii) Linear transformation
of (a,b,c.i); (a,b,c.iii) Normalized intensity curve corresponding to a pixel array of 2D image (dotted
yellow line) with different channel noise levels.
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The normalized intensity curves show the original transmitted signal in black curve, the received
signal with the same α for each case (α = 0.5 for RIN) and with low level channel noise in blue curve,
medium level in red curve and high level in green curve. The results of figure 3 reveal that, despite
observing distortion in the signal due to addition of noise, for levels greater than 24 dB of SNR, the
SVM – ECOC model allows each image to be correctly classified and recognized, with a percentage of
100 % recovery for each data-symbol. For this reason, a computed BER measurement for values less
than 24 dB of SNR is necessary to validate the robustness of the optical encoding model at much more
critical noise levels.

An end-to-end performance measure for data transmission is BER, which quantifies the reliability
of entire coding system from “input bits” to “output bits” including the behaviour of all components
and elements between transmitted signal and received signal in addition to considering the path of
signal in the middle [42,43]. BER is mathematically defined as the relation between the number
of bit-errors and total number of bits [44], which expresses the probability of a bit error. The
machine-learning model for prediction, recognition, and classification of images on the receiver
side of the proposed optical encoder is based on the SVM–ECOC Multicast algorithm, which can be
modelled with binary combinations of each class (one-vs-one) or with binary combinations of one
to multiple classes (one-vs-all) [45,46], so the BER measurement for each machine-learning model
becomes a reliable metric of confidence level at receiving point. To calculate the BER as a function of
SNR at receiver end using the SVM-ECOC model, the training model (one-vs-one or one-vs-all) is first
created based on the data set of 4-bit symbols (see Figure 2). Then, the algorithm is trained with 750
images at different SNR levels (from 12 dB to 36 dB in step of 6 dB) in the received signal, to test the
functionality of the model at these noise levels. Once the functionality of the SVM model has been
verified through the previous training, the images are processed with the model. For image processing,
a database consisting of 10000 images for each 4-bit data symbol combination (between 0000 and 1111)
was used, resulting in a total of 160000 processed images. The HOG features are extracted from each of
these images, to predict the combination of bits corresponding to each image, using the model. Finally,
after each prediction, the acquired combination is compared with the original combination and then
the BER is calculated. Figure 4 shows the computed BER points as a function of Signal-to-Noise Radio
(SNR) from 0 to 14 dB in step of 1 dB for the two proposed SVM-ECOC models: multicast one-vs-one
algorithm (model 1) in red curve and Multicast one-vs-all algorithm (model 2) in blue curve.

Since the standard maximum BER for most optical systems is 10−9 [47], and for applications in
optical communications the maximum BER range is in the range 10−9 to 10−12) [48], the adjustment
curve for each model has also shown in Figure 4 in order to predict noise levels for these values. BER
curve for model 1 reaches BER = 10−9 for 12.8 dB of SNR (see green line in Figure 4), and BER = 10−12

for 13.4 dB of SNR. For the case of model 2 (blue curve in Figure 4) BER = 10−9 for 10.2 dB of SNR
(see green line in Figure 4), while for a BER = 10−12 for 10.9 dB of SNR. Additionally, for comparison
purposes, BER estimation curve assuming a probability of error with Gaussian random variable [49]
is also shown in black curve. It is observed that, both SVM–ECOC models has a better performance
compared to the simplified Gaussian BER model in terms of noise levels, highlighting that, model 2
has a better probability of error compared to model 1, with a difference of 2.65 dB of noise level for
BER = 10−9. Note that, since the channel noises used in the simulation are AWGN and RIN, the bit
errors generated in this case study are directly due to signal degradation by these types of noise. This
fact is observed in the results of Figure 4 for each model, indicating that, for an SNR level greater than
9 dB, the bit error probability is below 10 % for model 1 and below 0.0001 % for model 2.
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Figure 4. Computed BER for each SVM-ECOC model as a function of SNR for critical noise levels
(from 0 to 14 dB).

6. Conclusion

A comprehensive design of an optical encoding model based on the coherent superposition of
two LG beams with OAM is proposed for the generation of coding system independent of phase
information. The proposed approach employs SVM-ECOC algorithm machine learning that enables
image prediction, recognition and classification. To verify the robustness of proposed optical encoding
model, a data-symbol code based on a 4-bit data symbol is designed, which is associated with the
intensity profile according to the (p, `) combination. A channel noise made up of the RIN and AWGN
is added to the images generated in encoding stage to emulate a real environment. In order to identify
each data-symbol, two different algorithms based on SVM-ECOC model are used. The efficacy of the
proposed approach is validated through BER measurements. The results reveal that the proposed
algorithms are able to recognize the data-symbol set with a degree of confidence greater than 90 % for
noise levels up to 9 dB in both models. Even though both models present high efficiency, the Multicast
one-vs-all model (model 2) presents the best BER curve between two models studied, with a BER
= 10−9 for 10.2 dB of SNR.

For future research, is relevant to mention that the number of circular fringes in the intensity
profile of an LG mode are directly related to the index p, while the spatial distribution of these fringes
is related to the index `, therefore, the number of bits can be extended to more than 4-bits for the case
were ` ≥ 5. This fact opens new opportunities for the development of advanced encoding systems.
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Appendix A. Support Vector Machine Algorithm

As the process involve training procedures, the decoding processing at the receiver side of the
encoder is based on Support Vector Machine (SVM). The SVM is a machine learning algorithm that
employs the concept of the kernel function to map the data in a different dimensional space, such
that the information is grouped according to similar attributes. The algorithm takes as input the raw
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data, which is classified depending on the kernel function. Then, the data is saved and compared with
the original figure to identify similar patterns that are used for image identification. This process is
repeated until the maximum number of iterations n is reached, as shown in Figure A1(a). As a result, a
simplification of complex nonlinear decision boundaries is obtained to derive in a linear dimensional
space [50]. Mathematically, the characterization is driven by the kernel that can take the form as
presented in Table A1. For a better understanding, a flowchart of SVM is presented in Figure A1(b).
The kernel used in SVM algorithm for in the proposed optical encoding model is the basis function
(Gaussian).

Construct initial SV M  with all
var iables

Determine ten- fold cross- validation
performance

Select the input var iable to be
considered for  elimination based on

BE R

Construct the suceeding SV M

Determine ten- fold cross- validation
performance of the succeeding SV M

Is per formance of
preceeding SV M  better

than that of the succeeding
SV M ?

Do not eliminate the selected input
var iable

E liminate the selected input
var iable

Are all var iables
considered for  elimination

based on BE R ?

Are all var iables
considered for  elimination

based on BE R ?

Report the SV M  classifier

Yes

No

No

Yes

Yes

No

Dataset 

Train 

Classi�er 

w1 

Classi�er 

Train 

w2 

...

...
Test Test 

Classi�er 

Train 

wn 

Test 

Ensemble Prediction
Similar pattern 
Di�erent patter 

(a)

(b)

Figure A1. (a) Flow diagram of SVM algorithm. The ensemble classifiers consist of a set of weak
classifiers. The weights (wn) of the incorrectly predicted points are increased in the next classifier. The
final decision is based on the weighted average of the individual predictions. (b) Flowchart of the
application of the Support Vector Machine (SVM) algorithm in the decoding processing.
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Table A1. Brief description of the kernels that are used in the different types of SVM algorithms

Type of SVM Kernel Description

Base
function
(Gaussian)

K (x1, x2) = e−
‖x1−x2‖2

2σ2 Learning of one
class, where σ
represents the
width of the kernel

Linear K (x1, x2) = xT
1 x2 Learning of two

classes

Polynomial K (x1, x2) =
(

xT
1 x2 + 1

)ρ
ρ is the polynomial
degree

Sigmoid K (x1, x2) =
tanh

(
β0xT

1 x2 + β1
) The kernel is

determined by
specific β0 and β1
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