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Abstract: The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of 
tissues and organs integrity. Initially thought to be a by-stander in many cellular processes, the extracellular 
matrix has been shown to have diverse components that regulate and activate many cellular processes and 
ultimately influence cell phenotype. Importantly, the ECM composition, architecture, and stiffness/elasticity 
influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM is 
constantly undergoing degradation and remodeling processes via the action of matrix proteases that maintain 
tissue homeostasis. In many pathological conditions including fibrosis and cancer, the ECM synthesis, 
remodeling, and degradation is dysregulated causing its integrity to be altered. Both physical and chemical 
cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular 
proliferation and differentiation and in various disease progression such as cancers. Advances in ‘omics’ 
technologies have seen an increase in studies focussing on bi-directional cell-matrix interactions and here we 
highlight emerging knowledge on the role played by the ECM during normal development and in pathological 
conditions. This review summarizes current ECM-targeted-therapies that can modify tumor ECM to overcome 
drug resistance and better cancer treatment.   

Keywords: extracellular matrix; tissues; organs; development; tumor progression; collagens; 
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Introduction 

Tissues and organs in the human body are composed of cells, biomolecules as well as the 
extracellular matrix [1]. The extracellular matrix (ECM) is key in many developmental stages from 
embryogenesis to adult development, tissue repair as well as the maintenance of tissue and organ 
homeostasis [1,2].  Once synthesized in the cytoplasm, ECM components are secreted into the 
extracellular space where they are then modified further into final molecules [1,2]. The main 
recognized function of the ECM is provision of physical support for cells within tissues and organs 
as well as availing biomolecules such as growth factors and cytokines to cells. Recent reports indicate 
that the ECM is involved in activation of several mechano-sensitive signaling cascades and therefore 
impact several cellular processes [3–7]. The two forms of the ECM are the interstitial ECM and the 
basement membrane. This review mainly focusses on the interstitial matrix.  

The ECM is made up of several components that bond to form a complex network of different 
size molecules in a 3-D unit. These ECM molecules are of different sizes, shapes, and spatial 
organisation. Most tissues and organs have a specific type of ECM produced because of differential 
expression of ECM genes as well as post-transcriptional splicing and -translational modifications [8–
11]. The ECM is in most cases in a state of flux, changing over time because of tissue development 
and disease [12–14]. Recent reports indicate the ECM play major roles in disease progression and 
development of chemoresistance [15–18]. Whilst cells synthesize the ECM, the ECM has been referred 
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to as the ‘theatre’ within which cells interact with each other and biomolecules to effectively 
determine how cells behave [17,19,20]. Thus, cellular functions and phenotypes rely not just on gene 
expression but also on cues from the ECM.  

ECM remodeling under normal physiological conditions is a tightly controlled complex process, 
with many proteins playing different roles to maintain homeostasis. The ECM also undergoes 
remodeling during tumorigenesis, with several reports indicating that it can promote tumorigenesis 
as well as being anti-tumorigenic [21–24]. In the early stages of tumor formation, stromal cells 
synthesize large amounts of ECM proteins in a bid to protect normal tissue from tumor cells [17,25–
27]. This results in stiffening of the tissue around the newly formed tumor. The stiffening of the ECM 
is due to enhanced collagen as well as hyaluronic acid deposition [28–31]. Chronic insult to tissue 
results in enhanced synthesis of ECM proteins leading to a ‘fibrotic’ condition. Reports indicate that 
enhanced ECM deposition is positively correlated with tumor initiation and growth [32–35]. 
Circulating tumor cells have been shown to hone and colonize tissues and organs displaying 
increased ECM synthesis [36–39]. Both ECM proteins and the biomolecules found within it have been 
identified as valuable markers for diagnostic analysis of tumors [40–42]. This review discusses ECM 
composition, function and remodeling processes and present evidence of several ECM components 
suggested as novel therapeutic targets and currently being investigated or undergoing validation 
[43–47].  

The Extracellular Matrix Macromolecules 

The macromolecules found within tissues as well as organs that surround cells and provide 
tensile strength and other cues is what is termed the extracellular matrix. Various ‘omics’ studies 
have comprehensively identified ECM components, referred to as the ‘matrisome’ and above 200 
genes have been assigned in humans [48,49]. The macromolecules form a fibrillar network that 
interact with cells and biomolecules to influence cell behaviour in tissues and organs. The exact 
number of extracellular matrix macromolecules in the human body is unknown. Two major classes 
of the ECMs are known, tissue-specific ECM and interstitial ECM. The type and composition of the 
ECM varies depending on several factors including the tissue and organ of the body. There are 
several classes of the ECM macromolecules including fibrillar collagens, filament-forming collagens 
to glycoproteins. Other classes include elastic proteins as well as proteoglycans. Important classes 
include the collagens that constitute the connective tissue. Under normal physiological conditions, 
the ECM is highly organized into sheets that confer tensile strength to tissues and organs. However, 
the ECM composition may differ under conditions such as stress and diseases. The ECM also 
provides cues to cells via tethered biomolecules and ligands to effectively influence cell behaviour 
[50,51].  

Collagens 

The collagen family of proteins is the major component of the ECM and provides both 
mechanical strength and cues to cells and tissues. Reports indicate that collagens constitute around 
90% of the ECM in humans [41,49]. Thus, collagens influence many cellular processes in the body 
including proliferation, migration and adhesion [52]. Currently, about 28 proteins have been 
identified to belong to the collagen family [53]. Being the major proteins in the ECM, collagens 
undergo multiple changes and remodeling throughout an animal’s growth and development and in 
pathological conditions such as wound healing and cancers [54–57]. In addition, synthesis of 
collagens require modifications through addition of di-sulfide bonds and other post-translational 
changes (Figure 1) [58,59]. Other ECM molecules also play a role in collagen synthesis and deposition. 
For example, the glycoprotein fibronectin is known to play a part and influence the deposition and 
attachment of collagens in the extracellular space [60,61]. The overall structure and organization of 
the ECM is therefore a result of the interaction between its constituents including collagens, 
glycoproteins and other molecules [17,18,60,62–64].  Seven collagens have been grouped in the 
fibrillar class with type I collagen (or collagen type I) being a major component of this class. The other 
members include type II, type III, type V, type XI, type XXIV and type XXVII collagens [10,19,52,53]. 
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Most collagens that form part of the basement membrane are grouped in the network-forming 
collagen class and these include type IV, type VIII, type X, type XV and type XVIII collagens [53]. 
Type VI and type XXVI collagens form the filament-forming class. The triple helical structure of some 
fibril-linked collagens can be interrupted and these include type IX, type XII, type XIV, type XVI, type 
XIX, and type XXII collagens [53]. Other collagens family members are found within or bound to 
membranes and these include type XIII, type XVII, type XXII, type XXIII and type XXV collagens [53].  

 

Figure 1. Collagen structure. 

Many studies have shown a link between changes in deposition and amounts of collagens 
including type I collagen with impaired development and development of cancers [32,65,66]. 
Collagens found within the ECM in normal tissues can be highly uniform in orientation whilst in 
pathological conditions the orientation is varied [67,68]. Overall, the amounts of the different 
collagens in the ECM influence its properties from elasticity to availability of biomolecules such as 
growth factors and chemokines [69,70]. Collagens within the ECM also play other important roles 
within the body. For example, collagens are important within basement membranes where they 
contribute towards separation of different layers of tissues. Increased collagen deposition within 
basement membranes can lead to membrane hardening disrupting normal exchange of biomolecules 
and movement of cells [71–73]. In many pathological conditions such as cancer, basement membranes 
are thinner compared to normal tissues. This has been attributed to less deposition of collagens 
including type IV, type XV and type XIX collagens [74–76]. Indeed, several in vitro studies have also 
shown that collagen knockdown can enhance migration of cancer cells [17,77–79].  
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2023                   doi:10.20944/preprints202301.0555.v1



 4 

 

Other Extracellular Matrix macromolecules 

A combination of proteins and carbohydrates make up glycoproteins and proteoglycans, with 
about 30 genes encoding for these ECM components. The carbohydrates form repeating chains that 
are connected to a core made up of proteins. Proteoglycans are part of the glycoprotein family but 
different from other glycoproteins in terms of their synthesis and structure. This ultimately influence 
their function in the body. Whilst glycoproteins have short and branched carbohydrate chains 
covalently linked to a protein core, the carbohydrate chains in proteoglycans are long and 
unbranched glycosaminoglycan chains also attached to a protein core [80,81]. Glycoproteins side 
chains create enough buffer to allow the ECM to resist stress and forces applied onto the ECM [82,83]. 
In addition, glycoproteins are actively involved in regulating processes including proliferation and 
adhesion [83–85]. The glycosaminoglycan chains of proteoglycans also negatively charged allowing 
proteoglycans to impact on the organization of other ECM constituents [84,85]. The negative charge 
on proteoglycans also allow the ECM as a whole to sequester growth factors and other biomolecules 
[86–88]. Due to their size and structure, proteoglycans can also participate in the binding of ligands 
to receptors, allowing cells to respond to various changes in extracellular cues. Several signaling 
pathways including the AKT-MEK and PI3-Akt cascades are activated through the participation of 
proteoglycans in bonding to various receptors [89,90]. Most well-known glycoproteins include 
fibronectin, fibrinogen, vitronectin, laminin, thrombospondins, periostin and osteopontin. Among 
the well-known proteoglycans are decorin, aggrecan and perlecan.  

Laminin  

A glycoprotein consisting of α, β and γ chains that come together to form trimeric proteins, 
laminin or laminins is/are found within the basal lamina and contribute towards cell-specific 
functions including differentiation, adhesion, and migration [91,92]. Laminins as ECM glycoproteins 
play major roles in creating a link between the ECM and cells via binding to cellular receptors such 
as integrins. Thus, laminins are key to cellular migration and cancer cell invasive behavior. Currently, 
twelve mammalian chains (α, β and γ) have been identified and these can combine in different 
amounts to form about sixty known laminins [93,94]. The α chains (200 to 400 kDa) are bigger than 
the β and γ chains (120 to 200 kDa) with the trimer formed ranging from 400 to 800 kDa in size. 
Referred to as the ‘god molecule’ in some reports, the trimeric laminin has a ‘cross’ shape formed as 
a result of its α-helical coiled coil structure [95,96]. Laminins also bind to other ECM components 
including collagen type IV. In this case laminins acts as intermediary or ‘glue’ between various ECM 
molecules within the basement membrane. Laminin polymerization is thought to be the main 
initiator of basement membrane assembly, placing laminin polymerization at the ‘center’ of cell 
function and tissue structure.  

A well-known laminin molecule is Laminin-332 (LN-332), formed from β3, α3 and γ2 chains 
play key roles in cellular migration, adhesion and contributes towards tumor cell metastasis 
[91,92,97,98]. Laminin molecules are also implicated in maintaining stem cell self-renewal 
capabilities. For example, laminin-332 maintains CSCs self-renewal abilities and contribute towards 
drug resistance [98]. Several reports show that the presence of laminins is closely linked to 
significantly lower patients survival in cancers such as colorectal and pancreatic cancer [97,99]. 
Laminins bind to other ECM proteins and this promotes cell migration and adhesion as well as 
enhancing drug resistance [100,101]. For example, the binding of laminin 332 to integrin α3β1 
receptor increases resistance to gefitinib in hepatocellular carcinoma [102]. Various signaling 
cascades are also known to be activated through laminin-integrins interactions. For example, 
laminins interactions with integrins cause activation of the mTOR cell surviving signaling pathway 
[98,103].  

Fibronectin  

Structurally, fibronectin (FN) has several domains and is involved in the interactions between 
the ECM and cells. Fibronectin forms a fibrillar network and is key to cell differentiation, adhesion 
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and migration [104]. Fibronectin exists as a dimer of two molecules joined together via cysteine 
disulfide bonds. Assembly of fibronectin into the ECM occurs when it binds to α5β1 integrins via the 
RGD motif. Furthermore, the binding of fibronectin to integrins causes clustering of integrin 
molecules leading to increased levels of fibronectin molecules on cell surface. Fibronectin-focal 
adhesion interactions alters the conformation of fibronectin resulting in binding sites for other ECM 
molecules to be revealed. Fibronectin is therefore able to bind to collagens, laminins and other 
proteins, allowing cells to adhere to the ECM and migrate [104]. Whilst it is a single gene encoded 
protein, it has several isoforms resulting in proteins that form ECM fibrillar structures. Fibronectin 
binds to cell surface receptors and other ECM proteins such as collagens causing the alterations of 
the cells’ actin filaments and this allows cells to migrate. Various reports show that fibronectin is key 
in cellular processes such as wound healing as well as in tumor growth [105]. Importantly, the 
adhesion of tumor cells to ECM proteins including fibronectin enhances the tumorigenic capacity of 
cancer cells as well as drug resistance [106,107]. Various studies have also associated increased 
fibronectin expression to tumor progression in various cancers [108–110]. Furthermore, clinical data 
associated enhanced fibronectin expression in tumors versus normal tissues with lower patients’ 
survival [105,111,112]. FN-induced migration was shown to be mediated via αvβ6 and α9β1 integrins 
in various cancers [105,113,114]. The binding of cancer cells to ECM proteins including fibronectin 
can protect cells from drug-induced apoptosis compared to cells attached to plastic [106]. Fibronectin-
mediated reduction in apoptosis occurs via inducing the cyclooxygenase-2 (COX-2) as well as the 
activation of integrin α5β1 [115,116]. In addition, various signaling cascades are activated when 
fibronectin binds to other ECM proteins [117]. The binding of cells to fibronectin also protects cells 
against many drug-induced [98,117,118]. 

Periostin 

Periostin is an adhesion-linked protein expressed as an ECM protein and produced within the 
periosteum as well as the periodontal ligaments [119,120]. It is a cell adhesion and non-structural 
protein that function to maintain tissue homeostasis especially that of the tooth and bone tissues. It 
is mostly involved in many processes during development including cardiac development and 
healing but is expressed in low amounts in adult tissues [91,119,120]. Periostin mediate most of its 
effects via interacting with surface receptors such as integrins. The enhanced expression of periostin 
is associated with various pathological conditions including inflammatory disease, many types of 
cancer including colon, lung, breast and head and neck carcinomas [119,120]. Periostin is involved in 
regulating ECM-cell interactions via attachment to other ECM molecules including collagens, 
tenascin C and fibronectin [120]. Periostin can bind to various integrins such as αvβ3, αvβ5 and α6β4, 
and thus influence the activation of many signaling cascades [121]. Some of the signaling cascades 
are the Notch 1 and B-catenin signaling, that are important in cell differentiation and tissue 
specification. Various reports show that periostin is aberrantly expressed in pathological conditions 
such as arthritis, cancers, and fibrosis [120,121]. In various cancers, periostin has been shown to 
induces signaling cascades including PI3K-Akt through attaching to αvβ3 and αvβ5 integrins [122]. 
The presence of periostin enhances cancer cell proliferation and the process of EMT cancers such as 
gastric cancer [122,123]. Cancer cells showing resistance to various drugs including cisplatin and 5-
fluorouracil (5-FU) also show increased periostin expression [120]. Thus, evidence suggest that 
increased periostin levels correlated with drug resistance, tumor relapse and tumor angiogenesis 
[124]. Periostin activates the Akt phosphorylation in cancers including epithelial ovarian carcinoma 
and this results in resistance, especially to paclitaxel [125]. Recent data suggest that periostin can be 
used as a prognostic marker in various cancers including pancreatic, ovarian and esophageal cancers 
[126–128]. 

Hyaluronic acid 

Discovered almost a century ago by Karl Meyer and John Palmer whilst working on vitreous of 
bovine eyes, hyaluronic acid is a glycosaminoglycan made up of N-acetylglucosamine and glucuronic 
acid repeats and is a common component of the ECM [129,130]. Hyaluronic acid is a long high 
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molecular weight polymer with many hydroxyl moieties, allowing it to mix well in water [131,132]. 
Indeed, one of the main functions of hyaluronic acid is to retain water in various tissues [133,134]. 
Due to its size and the ability to form coils in water, hyaluronic acid can control the movement of 
biomolecules and ions within the ECM, allowing small molecules to pass whilst blocking the free 
movement or transport of larger biomolecules and substances [135]. Hyaluronic acid display various 
unique properties including being biodegradability and great viscoelasticity, and has been utilized 
in various application such as hydrogel formation and drug delivery systems [136,137].Various 
studies have shown that hyaluronic acid play crucial roles in cell migration and invasion through its 
interaction with receptors including CD44 and hyaluronan binding protein 4 [138–140].   

Extracellular Matrix Function 

The most important function of the ECM is providing an anchorage stage to cells as this is key 
to the maintenance of cell division and polarity. No longer is the ECM seen as only a scaffold 
necessary for cell structure, but it provides both biophysical and biochemical cues to cells. In addition, 
the ECM can regulate cellular attachment and migration [141]. Several pieces of evidence also show 
that the ECM can sequester growth factors and other biomolecules, and these are released at specific 
stages of development and disease progression to influence cell behaviour and phenotype 
[18,142,143]. During development sequestered factors can cause gradients in biomolecules 
concentrations and this is important during change in tissue form and structure [143,144]. 
Furthermore, secreted factors are involved in the activation of various signaling cascades and 
influence focal adhesion formations [145,146].  

The development of an organism from an embryo to an adult involves a lot of ECM changes, 
both in terms of quantity and type [147,148]. These changes must be controlled tightly at each stage 
of development to avoid over- and down-regulation which can have deleterious effects. ECM 
physical properties including topography, elasticity and rigidity influence cell proliferation and 
differentiation and ultimately influence tissue structure and integrity [7,62,63].  

An important function of the ECM is aiding cell migration. For cells to migrate, binding to the 
ECM via integrins and cadherins must occur first. Integrins allows cells to attach to various ECM 
molecules including collagens, fibronectin, and laminins. Integrins can then influence intracellular 
actin cytoskeleton via the focal adhesion proteins including talins and vinculins. The ECM alignment 
and topography have been shown to influence both the speed of cell migration and the direction of 
migration [149–151]. To influence cell migration in a specific direction, scientists have utilized specific 
ECM molecules as well as ECM gradients [148,152]. Studies have shown that cells tend to migrate 
from low ECM concentration areas to areas of high ECM concentration, but this is not always the case 
[149,153,154]. Migration of cells is characterized by repeated adhesion to the ECM as well as de-
adhesion from the ECM [155]. Therefore, the rate of cellular migration is dependent on various ECM 
properties including composition, alignment and elasticity [156–158]. Our earlier publication 
demonstrated that cells migrate slower on ECMs lacking collagens compared to those on collagen 
containing-ECMs [17]. ECM stiffness for example has been shown to influence cellular migration 
[159,160]. Investigations are under way to identify specific ECM components required for cell 
differentiation and migration during development as the ECM is constantly being remodeled. 
Importantly, for cells to migrate and invade surrounding tissues is the action of matrix 
metalloproteases and other proteases that can degrade the ECM [161–163].     

The development of organs and tissues in the body is dependent on the presence of ECM 
proteins. For example, for the process of branching to occur, ECM proteins such as collagens and 
laminins are required to provide the anchor on which the formation of tubes can take place whilst 
ECM molecules such as hyaluronic acid allow epithelial cells to continue to migrate at the end bud 
[164,165]. The ECM’s alignment and architecture help in controlling tissue formation and branching 
patterns [164,166]. When a bud continues to grow, the ECM at the end is degraded, allowing various 
biomolecules including growth factors, cytokines and chemokines to be released [161,167,168]. The 
released factors in turn influence the rate of branching and the direction of the bud [161,169]. The 
presence of the ECM at the end bud also means that various growth factors and signaling molecules 
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can be sequestered and released at specific times when needed [83,170]. Whilst ECM proteins are 
important during budding, specific ECM are required to stop the growth of the bud. For example, 
deposition of type I collagen leads to termination of growth of the bud [164]. In summary, the ECM 
plays major roles during tissue and organ formation as well as formation of tubular structures. 
Importantly, beside the provision of a scaffolding on which tissues and organs can form, the ECM act 
as a reservoir of various biomolecules needed by cells at specific times for differentiation and 
proliferation.  

Various studies have shown that the ECM cellular differentiation through release of tethered 
factors as well as its physical structure and composition [16,171–173]. To study the effect of ECM 
composition on cell fate, we cultured fibroblasts on a fibroblast-derived ECM (fd-ECM) and showed 
that these fibroblasts downregulate type I collagen synthesis compared to controls [62]. Via the use 
of function-blocking antibodies, our study demonstrated that blockage of type I collagen gene 
expression in the presence of the ECM is mediated via integrins including α2β1 [62]. In addition, the 
same study revealed that ECM-mediated reduction in collagen was activated through the Ras-
MEK/ERK signaling pathway [62]. Importantly, through deletion analysis of the COL1A2 promoter, 
our study showed the presence of a ECM-responsive element within the -375 and -107 region [62]. 
This study and other published reports demonstrate that the ECM composition play pivotal roles in 
determining cellular gene expression and function [174,175]. Using a different approach, we also 
investigated adipose-derived MSCs (ad-MSCs) fate when cultured on a cell-derived ECM (cd-ECM). 
The use of the cd ECM in this case was done so as to model the in vivo physiological 
microenvironment. Our data showed that ad-MSCs cultured on the ECM lost their multipotency and 
differentiated into the chondrogenic cellular lineage compared to controls [7]. Elaborate studies 
including loss of function studies showed that cells are able to sense the mechanical environment and 
activate the Notch1 and β-catenin signaling cascades needed for the ECM-mediated ad-MSCs 
chondrogenesis [7]. Thus, ad-MSCs must sense the mechanical environment of the ECM in order to 
undergo chondrogenesis, proving that the ECM has the capability to induce differentiation of cells.  

The process of maintaining tissue homeostasis require that the ECM be constantly altered as cells 
undergo proliferation and differentiation [176,177]. Once differentiated, cells must maintain their 
phenotypes whilst changes to tissues occur including formation of new blood vessels [178,179]. A bi-
directional interaction exists between cells and the ECM. In a classic study of the interaction between 
cells and the ECM, we demonstrated that cells can ‘feel’ the presence of ECM components and other 
ECM properties through integrins including α2β1 and adjust ECM proteins’ gene expression based 
on cues from the ECM [16,63]. Thus, a feedback process allows communication between the ECM 
and cells and is important to maintaining tissue homeostasis. Once this feedback mechanism is 
altered and unable to maintain ECM degradation and deposition in check, conditions such as cancer 
can develop. Other ECM properties including elasticity also influence cell behaviour. For example, 
Zhang and colleagues showed that the ECM elasticity impact on osteocyte gap junction elongation 
and also demonstrated the involvement of paxillin in signal transduction [180].  

Various techniques have been utilized to study the role of the ECM during development and in 
tumorigenesis. The most common technique involved ECM gene knockout, downregulation, and 
upregulation, leading to alteration of ECM composition [181,182]. Addition of enzymes that can 
degrade specific ECM proteins can also be used to alter ECM composition and reveal the role os 
specific proteins in various cellular processes [183–185]. Antibodies against ECM proteins and their 
respective receptors including integrins can be used to investigate the role of ECM proteins in 
development and maintenance of homeostasis. In our earlier publication, we showed that function‐
blocking antibodies to downregulate collagen gene expression can reveal that type I collagen interact 
with α2β1 integrin [57,62]. Other techniques that can be used to study ECM proteins’ role in 
development and tumorigenesis include the use of 3-dimensional culture, atomic force microscopy 
and utilizing ECM proteins crosslinking [7,186–188].  
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Extracellular Matrix Modifications 

The composition of the ECM in a specific location or tissue is influenced by several parameters 
such as the synthesis and degradation of its components. In addition, the biomolecules found within 
the ECM is location or tissue-specific and is influenced to a large extent by resident stromal cells such 
as fibroblasts and immune cells. Further changes in ECM composition and the biomolecules found 
within it are brought about by the action of enzymes including matrix metalloproteases and 
hydroxylases [189–191]. Studies in various cancers including breast and bladder cancers have shown 
that post-translational hydroxylation of collagens leads to increased crosslinking and is linked to low 
patients survival [192,193]. Crosslinking of the ECM components, sulfation as well as glycosylation 
are some of the further changes that occur to ECM components after synthesis [189–191]. These post-
translational changes impact ECM components interactions with other members of the ECM as well 
as with receptors on cell surfaces [7,62,63]. Whilst changes in ECM composition and sequestered 
biomolecules are necessary for tissue homeostasis, the state of lax is also necessary for development 
and growth. Altered synthesis and accumulation of any one component of the ECM can alter the 
existing delicate homeostasis and  lead to conditions including fibrosis and promotion of cancer 
growth [194–197]. The contribution of stromal cells and immune cells has been recognized as key to 
the maintenance of homeostasis and the development of several pathological conditions [17,18,198–
200].  

Reports indicate that when there is enhanced crosslinking of the ECM, a dense meshwork of 
ECM components is formed leading to fibrosis and other pathological conditions [33,178,201,202]. 
Importantly, accumulation of ECM proteins leads to stiffening which influence ECM-receptor 
interactions and cellular signaling [33,203,204]. Excessive crosslinked ECM proteins also lead to 
reduced ECM turnover, allowing some ECM proteins to prolong their presence within certain tissues. 
For example, ECM proteins known to promote wound healing via their participation in certain stages 
of the process may prolong their presence around the wound leading to aberrant process [205–207]. 
Various enzymes are known to take part in ECM crosslinking, and these include lysyl oxidases, 
transglutaminases [208,209]. The lysyl oxidase family of enzymes allow the deposition and 
accumulation of collagens and elastins in the ECM and this has significant implications for cell 
morphology and movement [210,211]. By influencing the deposition of collagens in the ECM, lysyl 
oxidases also affect cellular signaling and response to therapy [212]. Transglutaminases are enzymes 
involved in glutamine deamination during ECM proteins and glycoproteins synthesis [213–215]. 
Transglutaminases are also involved in transamidatig glutamine residues during ECM synthesis and 
the proper alignment of fibres during ECM synthesis. Alignment of fibres by transglutaminases leads 
to ECM stiffening and reduction of proteolytic degradation. A stiff ECM influence ECM-receptor 
interactions including integrin-mediated signaling [216]. Another form of spontaneous ECM 
crosslinking is glycation, a process including Amadori rearrangement and Schiff base adduct 
formation. This process does not involve enzymes.  

Glycosylation of ECM molecules have been linked to various processes of tumorigenesis. For 
example, enhanced glycosylation of fibronectin leads to increased EMT and high levels of invasive 
cell behaviour in prostate cancer cells and carcinomas, respectively [217–219]. Inhibition of integrins 
glycosylation including αvβ6 integrin leads to enhanced invasive behaviour of cells involved in 
metastasis [220,221]. Demonstrating the importance of fibronectin as a component of the ECM, the 
phosphorylation of fibronectin leads to increased mechanical forces needed for cell adhesion in 
various cancers [222–224]. Glycosaminoglycans can undergo sulphation in various cancers and this 
impact cell-matrix signaling [225–227].  

Proteolytic Degradation of the Extracellular Matrix  

Homeostasis involves the constant synthesis and degradation of ECM components over time 
[178,228]. Enhanced or reduced synthesis and degradation beyond what is normal can lead to several 
pathological states including fibrosis. Many enzymes are involved in both the synthesis and 
degradation of the ECM. Importantly, ECM degradation is controlled by zinc-containing 
endopeptidases including matrix metalloproteinases and a disintegrin and metalloproteinase 
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proteins with thrombospondin motifs (ADAMTSs) [229,230]. Excessive ECM degradation can lead to 
an abnormal ECM characterized by unbalanced ECM components or ECM components not 
crosslinked properly [231,232]. More degradation than ECM synthesis can result in removal of whole 
tissue components such as basement membranes and the vasculature, allowing cells to migrate in an 
uncontrolled manner [233–235]. Growth factors and cytokines previously bound to ECM proteins can 
increase locally due to excessive ECM degradation, leading to unregulated activation of signaling 
cascades [17,51,236]. For example, TGF-b and VEGF have been shown to be released from degraded 
ECM proteins through the action of MMPs, leading to activation of various signaling cascades and 
angiogenesis [18,237–239]. Inorganic ions including calcium ions can also be released from the 
degraded ECM leading to the activation of calcium-dependent MMPs [240,241].  

One major class of enzymes involved in ECM degradation is the matrix metalloproteinases 
(MMPs). As reviewed by Kesenbrock and colleagues, human MMPs are a total of 23 enzymes with a 
Zn-containing domain as well as four haemopexin-like domains [242]. Four MMP members namely 
MMP14, MMP15, MMP16 and MMP24 contain both a transmembrane and cytoplasmic domain. 
Through degrading the ECM, MMPs impact cellular process via the release of sequestered growth 
factors and cytokines [243]. Whilst most MMPs have a specific substrate leading to their being 
grouped as collagenases and gelatinases for example, many other MMPs cannot be grouped this way 
[199]. Due to their actions in the body, MMPs are highly regulated to ensure maintenance of 
homeostasis as well as allow growth and development. Unregulated expression and the eventual 
action of MMPs has been associated with many pathological conditions [244–246]. For example, 
MMP2 and MMP11 are associated with poor survival in ovarian cancer [247]. However, some MMPs 
including MMP8 have been associated with increased survival in oral squamous cell carcinoma 
patients [248]. The varied and sometimes opposing actions of MMPs in the body has derailed efforts 
to develop inhibitors for these enzymes.  

There are 21 a disintegrin and metalloproteinase proteins (ADAMs) and about 19 ADAMs with 
thrombospondin motifs (ADAMTSs) in humans that play a role in degrading the basement 
membrane of vascular system vessels [249,250]. Many ECM proteins and proteoglycans including 
collagens, fibronectin and vitronectin are degraded by ADAMs [250]. ADAMTSs are secreted 
enzymes and involved in degrading proteoglycans and collagens [161]. Several signaling cascades 
have been shown to be influenced by Adamalysins through removal of ligands from the cell surface 
[251–253].  

Cathepsins are a family of ECM degrading enzymes made up of 11 serine, cysteine and aspartic 
peptidases [254–256]. Cathepsins are mostly found in lysosomes and involved in degradation of 
proteins precursors such as pro-collagens within the cell [200,257,258]. Cathepsins have been 
implicated in altered homeostasis and many pathological conditions including scar formation and 
cancer development and metastasis [259–262]. On the contrary, cathepsin B has been shown to be 
important during tissue regeneration in wounded human epidermal keratinocytes [263].  

Originally referred to as procollagen C-proteinases, bone morphogenetic protein I and tolloid-
like proteinases are enzymes that play key roles in the maturation of procollagen molecules and have 
no known role in ECM degradation [264]. These enzymes are able to cleave the carboxy terminus of 
procollagens leading to maturation of the procollagen molecules into collagens [264,265]. These 
proteinases work in cahoots with growth factors in promoting ECM deposition during growth and 
development [266–268]. Bone Morphogenetic Protein I and Tolloid-like proteinases have been shown 
to be essential in skin wound healing but their upregulation is linked to corneal scarring [269,270].  

Hyaluronidases are involved in the degradation of hyaluronan in the body to maintain tissue 
homeostasis. Hyaluronan is rapidly degraded after synthesis compared to other ECM components, 
and this is essential for tissue homeostasis [271,272]. Accumulation of hyaluronan as well as its 
increased degradation is often associated with several pathological conditions including cancers 
[272]. Additional enzymes, CEMIP and transmembrane protein 2, are also referred to as 
hyaluronidases and the increased activity of hyaluronidases can lead to the formation of hyaluronan 
fragments that have been linked with increased formation of blood vessels [273,274]. Hyaluronan 
fragments, resulting from enhanced hyaluronan degradation have also been linked to increased 
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synthesis and release of chemokines and cytokines, leading to activation of various signaling cascades 
[275–277]. Reports indicate that hyaluronan fragments accumulate during injury and lead to 
increased inflammatory factors being synthesised by immune cells around a wound [278–280]. The 
persistent inflammation as a result of lack of removal of hyaluronan and its fragments can lead to 
promotion of tumorigenesis [281]. Dysregulated hyaluronan production disrupts normal ECM 
structure as well as formation of blood vessels [282]. The main hyaluronan receptor is CD44 and is 
involved in the removal of hyaluronan and its fragments in case of injury.  

Heparin sulfate glycosaminoglycans (HSGs) are cleaved by heparinase from proteoglycans core 
proteins and eventually degraded into oligosaccharides [283]. HSGs are involved in ECM 
organization and activation of cell signaling via their binding to other ECM components as well as 
receptors. Heparanase has been associated with enhanced wound healing and angiogenesis in 
various animal models [284,285]. However, its overexpression has been linked to other pathological 
conditions including cancers [286,287]. Disruption of normal heparinase expression causes ECM-
heparan sulfate interactions to be altered leading to weak ECM structures. Cell movement can be 
increased under these conditions as ‘pores’ are present in the ECM and these allow cells to migrate 
easily.  

To maintain normal ECM structure and amount, ECM degrading enzymes are tightly regulated 
by the action of their respective inhibitors. Inhibitors of ECM degrading enzymes are secreted by 
various cells and they act in both autocrine and paracrine modes. Some of the well-known inhibitors 
of ECM-degrading enzymes are the tissue inhibitors of metalloproteinases and cystanins. One of the 
well-known endogenous inhibitors of MMPs is the tissue inhibitors of metalloproteinases (TIMPs) 
family. In mammals this family has four members namely TIMP1, TIMP2, TIMP3, and TIMP4 [288–
290]. TIMPs have recently been shown to inhibit the Adamalysins family of ECM proteinases, 
expanding their role in maintaining ECM homeostasis [290–292]. Disruption in TIMPs synthesis and 
secretion has been noted in many pathological conditions including cancers and aberrant wound 
healing [293,294].  

The action of cathepsins is inhibited by cystatins in a reversible manner. Cystatins have both 
intracellular and extracellular activities and therefore influence both ECM synthesis and remodeling 
of mature ECM. Cystatins are also known to show inhibitory activities against papain and legumains 
[295]. Serine and cysteine proteases involved in the degradation of various ECM proteins and 
proteoglycans can be irreversible inhibited by serpins [296]. Serpins play a significant role in 
maintaining tissue and vascular homeostasis as well as in fibrinolysis [297]. Serpins have also been 
shown to play key roles in thrombosis [298]. Serpins are a large family and therefore have many 
contrasting roles in the mammals. Several ECM molecules contain structures called cryptic domains 
that release fragments called ‘matricryptins’ when the molecules are cleaved [299,300]. These 
‘matricryptins’ fragments are important for cell adhesion and differentiation [161]. Due to their many 
functions, some ‘matricryptins’ may serve as enzyme inhibitors and abrogate proteolytic activities, 
thus influencing ECM synthesis and degradation [300]. One ‘matricryptin’ derived from the collagen 
XVIII molecule is Endostatin which has been shown to cripple the function of androgen receptor 
[301]. Included in the matricryptins derived from collagen are arresten, tumstatin and canstatin and 
these have been associated with many pathological conditions [302–304]. Several matricryptins have 
been shown to have anti-growth properties and can cause senescence in cells, but evidence also points 
to ‘matricryptins’ fragment from ECM molecules such as laminin 111 can promote cellular growth 
[305].  

Fibroblasts and Extracellular Matrix Remodeling 

The unregulated synthesis and deposition of extracellular matrix associated with many cancers 
results in fibrosis or the so-called ‘hardening’ associated with mostly advanced tumors (Figure 2) 
[33,306]. Whilst all stromal cells contribute towards the synthesis and deposition of the ECM, cancer 
associated fibroblasts are the main cells doing this job. In addition, recent reports indicate that cancer 
cells also synthesise and deposit ECM proteins and proteoglycans [17,18,87]. Similarities have been 
noted between the cancer associated fibroblasts and fibroblasts found during wound healing 
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[307,308]. Cancer associated fibroblasts display great heterogeneity and different cells have been 
suggested as sources of CAFs [309–311]. Both local and recruited cells are potential sources of CAFs. 
For example, local fibroblasts can easily be recruited to growing tumors where they undergo 
activation to CAFs. Mesenchymal stem cells from the bone marrow as well as adipose tissue have 
been shown to be transformed into CAFs [18,312]. Activation of local fibroblasts and transformation 
of other cells into CAFs is driven by growth factors and chemokines release by both cancer cells and 
stromal cells [18]. Such growth factors and chemokines can be released within the vicinity of the cells 
or can be transported via exosomes from distant environments [313,314].  

 
Figure 2. Extracellular matrix remodeling in tumors. 

Studies show that CAFs presence and increased synthesis and deposition of ECM is linked to 
recurrence of disease and decreased patients’ survival [315–318]. Research into which subset of CAFs 
drive tumorigenesis and recurrence of disease is needed as great heterogeneity is displayed by CAFs, 
with some subsets of CAFs known to be involved in inflammation whilst others are myofibroblasts-
like, for example [319,320]. Attempts have been made to characterize and classify CAFs, but the duly 
is out on the utility of such endeavours. Besides phenotypical differences displayed by CAFs, their 
precise location in the body and in tumors also determine the role they play in various processes. 
Thus, CAFs subsets release different growth factors and chemokines depending on their spatial 
location. Data is lacking on the changeability of the different CAFs subsets and the contribution of 
the different subsets to tumorigenesis and disease outcomes. Since CAFs, other stromal cells and 
cancer cells contribute towards the ECM and biomolecules found within tumors, it is currently 
difficult to assign a specific role of CAF-derived, stromal cell- and cancer-derived ECM molecules to 
disease progression and outcomes. Cancer cells within tumors for example have also been shown to 
synthesis unusual ECM proteins and proteoglycans that may play a role in fibrosis and disease 
progression [321–323].  

Hyperactivation of the sympathetic nervous system due to cellular stress has been shown to be 
associated with remodeling of the stroma [324–326]. Furthermore, cellular stress has been shown to 
promote the synthesis and release of ECM molecules such as collagens [327]. Increased ECM 
synthesis is linked to development of chemoresistance in various cancers [17,328,329]. In order for 
tumor cells to migrate and metastasise, there is need for space and secretion of factors involved in 
invasion. ECM deposition has been shown to be downregulated by tumor cells via the release of 
colony-stimulating factor 1 [330–332]. Reduced ECM synthesis leads to enhanced tumor cell invasion 
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and migration. The specific contribution of ECM molecules, from either tumor cells and stromal cells, 
to the progression of tumors is still a subject of intense research. In addition, the specific point when 
ECM molecules change from anti-tumorigenic to pro-tumorigenic and vice versa is not yet known. 
Another approach is to ‘normalize’ stromal cells involved in ECM synthesis, so that there is normal 
production of ECM [17,18].  

Extracellular Matrix Signaling  

Tumorigenesis leads to alterations of the ECM in terms of structure and composition, with such 
alterations being pro-tumorigenic [333–335]. Furthermore, such ECM alterations can also result in 
development of chemoresistance [336,337]. Cues from the ECM can be physical as well as sequestered 
biomolecules and these causes immediate as well as long term changes in gene expression 
[142,338,339]. The turnover of most ECM proteins and glycoproteins can be hours, days and weeks 
and thus their continued presence provides a continuous stimulus to cells, leading to activation of 
cellular cascades over a long time.  

Whilst stromal cells and tumor cells both can release growth factors and chemokines and thus 
influence signaling, the ECM can enhance or decrease the resulting signaling via release of 
sequestered growth factors and chemokines and sequestering synthesised factors, respectively 
[142,334–338]. In addition, the stiffness of the ECM can influence integrin-based signaling during 
normal development and in diseases [340,341]. Reports indicate that signaling cascades including the 
MEK-ERK and the JNK signaling cascades can be activated by ECM stiffening in various conditions 
[342–344]. Other signaling cascades also respond to ECM composition and stiffness, thus targeting 
these signaling cascades together with ECM composition and stiffness are plausible strategies to 
control tumorigenesis and metastasis.  

One of the major receptors for ECM-cell interactions is integrins. Integrins are heterodimers 
involved in transmitting extracellular cues into cellular signalling [16,345,346]. During development 
and in some pathological conditions, specific integrins are expressed and these influence specific 
cellular activities such as migration, proliferation and adhesion [347–349]. Importantly, the binding 
of various integrins including αvβ1, αvβ3 and α4β1 to ECM molecules has been linked with tumor 
cell invasion during tumorigenesis [350]. The precise expression of certain integrins may be linked to 
promotion of tumorigenesis, drug resistance and metastasis [351]. The enhanced expression of α5β1 
and its binding to ECM molecule fibronectin has been linked to reduced drug efficacy in models of 
cancers [352,353]. Overall, the involvement of integrins in development and in pathological 
conditions such as cancers depends on the type of integrin, ECM molecules and cell type [354–356]. 
The inter-conversion of integrins has also been associated with ‘cadherin switching’ during epithelial 
to mesenchymal transition [357,358]. The switching or converting of integrins from one heterodimer 
to another is thought to be linked to their binding to different ECM ligands as well as different cells 
[359].  

Several non-integrin receptors are known to bind to ECM components and these include 
heparan sulfate proteoglycans bound to the surface of cells, discoidin domain containing receptor 1 
as well as leukocyte-associated immunoglobin-like receptor 1 [360,361]. Together with integrins, 
these receptors relay extracellular cues and signals to activate various signaling cascades. Activation 
of these non-integrin ECM receptors in stromal and cancer cells can enhance ECM synthesis via a 
feedback loop, thereby decreasing access of drugs to cancer cells [362–364]. For example, syndecan 4 
is highly expressed in various cancers and is known to  activate signaling cascades associated with 
cancer cell survival [365,366]. A major receptor for collagen, and hyaluronic acid is CD44. 
Structurally, CD44 traverse the cell membrane and has both an extracellular domain and a 
cytoplasmic component. The interaction of CD44 and hyaluronic acid leads to the activation of 
various other receptors including EGFR and c-MET [367,368]. Through activation of signalling 
cascades, hyaluronic acid-CD44 play a key role in tumorigenesis [369,370]. Infiltration of lymphocytes 
into tumors is partly mediated by the interaction of CD44 and fibronectin, which allows lymphocytes 
to bind to fibronectin and to other ECM components [371]. CD44 has been reported to play key roles 
in tumorigenesis and its overexpression is linked to poor patients survival and drug resistance 
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[372,373]. CD44 is one of the important cancer stem cell markers in many cancers including colon 
cancer, breast cancer, prostate cancer and lung cancer [374–377].  

External cues are sensed by receptors on the cell membrane and converted into cellular 
signalling to cause specific cellular behaviour. This process known as mechanotransduction is 
important in various cellular processes, from normal development to diseases. Mechanotransduction 
influences all cells within tumors, ultimately determining the progression of tumor development 
[378,379]. Whilst cells influence the deposition and accumulation of the extracellular matrix, the 
extracellular matrix properties such as mechanical and elasticity modulate cell behaviour [380–382]. 
Various signaling cascades are known to be activated by extracellular matrix-derived cues and these 
include the MEK-ERK, PI3K-Akt and the YAP-TAZ signaling [383,384].  

Cellular behaviour is modulated not just by the amount of ECM components, but also by the 
biochemical properties of the ECM such as tensile strength, mechano-resistance and elasticity. These 
biomechanical properties affect cellular processes such as cellular migration and metabolism 
[385,386]. Adhesion of cells on ECM of different elasticity show that ECM elasticity influence gene 
expression and integrin levels on cell surfaces [387]. In addition, cues and signaling molecules 
released during adhesion of cells to ECM influence the organisation of the cytoskeleton and therefore 
affect cellular migration and invasive behaviour [388,389]. Various signaling cascades including the 
FAK, PI3K-Akt have been shown to modulate ECM-cellular interactions, influencing normal cell 
growth and movement [390–392]. Increase in ECM proteins including collagens have been associated 
with migration of cells and development of chemoresistance [393,394].  

Extracellular Matrix and Cell Invasion and Metastasis 

Four major features of metastasis are the migration of cancer cells from their origin, honing to 
new sites and the regulation of secondary sites in preparation for tumor growth, heterogeneity of 
cancer cells and lastly the colonization of the new sites and growth of secondary tumors (Figure 3) 
[19,395,396]. At each stage of the metastatic process, the ECM plays a central role and its remodeling 
influence the progression of the process. The alignment of ECM proteins including collagens and 
fibronectin have been shown to influence tumor cell metastasis in various cancers [397–402]. Linear 
collagen molecules appear to promote tumor cell migration as the spaces between fibres allow cancer 
cells to move in a certain direction [397–400]. Furthermore, the action of both tumor- and stromal cell-
derived MMPs in the degradation of ECM molecules allows spaces to be created for tumor cell 
migration and invasion into surrounding areas [403–405]. ECM molecule post-translational 
modification processes including hydroxylation also promote metastasis by promoting enhanced 
synthesis of ECM molecules [192,406,407]. Due to their size and physical structures, ECM molecules 
can shield invading and migrating tumor cells from effects of shear stress during the tortuous journey 
to secondary sites [406–408]. One major feature of successful metastasis is the preparation of ‘new 
sites’ for tumor cells to colonize and grow. Various theories have been given to explain this process. 
For example, it is thought that tumor-derived MMPs degrade and remodel the existing ECM of the 
‘new sites’ prior to tumor cells colonizing these sites [409,410]. Following the ‘seed and soil’ 
hypothesis, this remodeling of existing ECM in new sites is important to create the right pro-
tumorigenic environments for colonization by the metastatic tumor cells [411,412]. Overall, it is 
accepted that the ECM play an important role in allowing metastatic tumor cells colonize new sites 
and be able to grow. In other instances, tumor cells do not grow into secondary tumors but remain 
quiescent for some time. These tumor cells can survive for a long time, re-awaken and grow into 
tumors after a long time [413–417]. For example, an upregulation of ECM molecule periostin has been 
shown to promote the re-awakening of breast cancer cells from dormancy [418,419].  
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Figure 3. The role of the ECM in tumor metastasis. 

Extracellular Matrix in Drug Resistance: The Extracellular Matrix shield tumor cells from anti-
cancer drugs 

Studies reveal that the ECM is a major player in tumorigenesis and treatment outcomes 
[187,420]. Furthermore, reports indicate that therapy itself can induce ECM remodeling and can result 
in molecules deposition within tumors [421–423]. TGF-B levels have been associated with increased 
ECM remodeling induced by drugs [424,425]. Increased levels of endogenous tissue inhibitors of 
metalloproteinases (TIMPs) are linked to positive clinical outcomes in many cancers [426,427]. On the 
other hand, increased levels of receptors including integrins is linked to poor outcomes and disease 
recurrence [350,428,429]. ECM stiffness impacts adhesion of cells, movement of cells, and response to 
therapy [430–434]. Increased matrix stiffness within tumors is linked to less responsive tumors and 
drug resistance (Figure 4) [408,435,436]. Generally, stiffer ECMs are found surrounding tumors 
compared to ECM in normal tissues [433,437–443]. ECM stiffness is linked to fibrosis in many cancers 
including breast cancer where it is observed that many signaling cascades are also activated 
[335,342,444–447]. Furthermore, various reports indicate that a stiff TME promote tumor progression 
via activation of integrin signaling [448–451]. Tumor metastasis has been shown to be promoted by 
ECM stiffening via the action of lysyl oxidase and deposition of collagens [452–454]. ECM stiffening 
can also induce microRNAs involved in downregulation of the tumor suppressor protein PTEN 
[455,456]. Drug delivery rely on diffusion and pressure within the interstitial spaces [457]. The 
remodeling of the ECM can create a barrier to drug diffusion and either impede drug movement 
altogether or limit its movement and therefore reduce its effectiveness [458–460].  
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Figure 4. Tumor ECM reduces therapeutic efficiency in solid tumors. 

The question on every scientist mind is whether the ECM has relevance to disease initiation and 
progression beyond what is already known. Analysis of tumor biopsy samples has so far revealed 
normal and disease-specific ECM signatures in various cancers [461,462]. Low levels of specific ECM 
molecules including decorin has been associated with poor patients’ survival in various cancers 
[322,463–465]. The understanding of ECM composition and amounts at different stages of 
tumorigenesis is valuable in disease targeting. Drugs can be designed to target or have great 
adherence for specific ECM molecules in order to deliver the drugs to specific tumor sites [466]. 
Studies in various cancers have shown that specific cancers have a specific ECM signature that is both 
predictive of patients’ survival [322,462,467], and the question is whether specific ECM proteins are 
pro-tumorigenic or anti-tumorigenic. Various in vitro studies have shown that knockdown or 
removal of certain ECM proteins can sensitize cancer cells to drugs [17,468,469]. Currently, the use of 
cancer-specific ECM signatures in treatment strategies is limited and require further detailed analysis 
of the ECM proteins at specific stages of tumorigenesis. Data from Senthebane and colleagues suggest 
that targeting fibrillar collagen and fibronectin in tumors may allow drugs to access tumor cells and 
therefore improve therapeutic efficiency [17].   

Many approaches have been utilized to block the pro-tumorigenic properties of the ECM. For 
example, stopping the expression of collagens and fibronectin leading to reduced drug resistance of 
cancer cells [142,470]. Several ECM members are known to accumulate in various cancers, and their 
degradation in combination with chemotherapy can result in better outcomes for patients [471,472]. 
Furthermore, since most ECM proteins require post-translational modifications for stability and to 
have the right conformation, disruption of modifications can also result in instable ECM proteins. 
This has a two-fold effect: decrease in ECM components leads to less fibrosis and can lead to increased 
drug efficacy and reduced ECM components means less MMPs are required and present within the 
TME. Less MMPs can reduce the aggressiveness of many cancers [473–475]. It is important to note 
that inhibitors of MMPs activities have given very disappointing results in many clinical trials [476–
478]. Part of the reason why MMPs inhibitors did not succeed as expected in the many members of 
the MMPs family and their overlapping activities [479,480].  
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In addition to targeting ECM components, many signaling cascades that are activated or 
downregulated by ECM proteins can be regulated. Various survival pathways are activated in 
various cancers [481–483]. Many developed small molecule inhibitors can abrogate cancer cell 
signaling, leading to induce drug sensitivity in cancer cells [484,485]. Whilst studies using inhibitors 
of ECM synthesis and signaling are giving promising data, it important to note that ECM components 
can have both pro- and anti-tumorigenic behavior. This complex behavior requires deep analysis, 
and many hurdles are still to be overcome.  

Therapeutic strategies targeting the Extracellular Matrix  

ECM composition consideration as well as genetic mutations has allowed the administration of 
drugs that target specific ECM molecules and specific organs leading to improved patient outcomes. 
Important in this regard are new drugs that target specific ECM components, either to upregulate or 
downregulate their expression, as these can be used in combination with existing drugs. Total 
removal of specific ECM components may not be the best way forward as this can actually promote 
tumor progression and impact normal tissue function. In tumors, collagen levels can be regulated at 
different stages of their synthesis and degradation. Collagen levels can be controlled via targeting 
various signalling cascades involved in its synthesis such as TGF-B signalling. Antibodies including 
fresolimumab is currently under clinical trials in cancers where its used to reduce collagen levels 
[486]. The inhibition of TGF-B signalling through the use of halofuginone has been shown to be 
effective at reducing collagen levels in various cancers [487,488]. Other drugs used to target the TGF-
B cascade include pirfenidone, metformin, tranilast and Ki26894 [489,490]. Caution is needed when 
inhibiting collagen levels via blocking the TGF-B signalling cascade as TGF-B is involved in other 
body processes such as inflammation [491,492]. Another way to reduce collagen levels is to use 
collagenases. In normal tissues, collagenases can easily be made available to degrade collagen [493]. 
In solid tumors that are compact, collagenases cannot be transported easily due to their large size 
[494]. A major issue regarding degrading collagen within solid tumors is the potential release of 
sequestered growth factors, resulting in unintended effects [495,496]. In addition, degradation of any 
ECM component may create ‘highways’ for cancer cell migration and metastasis [29,497].  MMPs 
can also be used to degrade ECM components such as collagen. The effectiveness of MMPs use and 
their inhibitors in cancers has been disappointing with many clinical trials yielding no good results 
[498].  

Various cancer therapies have been used to target fibronectin and these include its potential as 
a drug delivery molecule. Reports indicate that fibronectin or its isoforms are upregulated in many 
cancer tissues as well as in normal tissues [499–501]. Antibodies against fibronectin domains 
including L19 have been used to inhibit cancer cell growth [502,503]. In addition, peptides that bind 
to the fibronectin domain EDB (extra domain B) can be used to deliver drugs and drug-containing 
exosomes to tumors resulting in better shrinkage of tumors than just drugs alone [504]. Another ECM 
protein that has been targeted during cancer therapy is hyaluronic acid. Hyaluronic acid synthesis 
can be inhibited by 4-methylumbelliferone. The inhibition of hyaluronic acid synthesis leads to loss 
of tissue integrity, thus cause tumors to be leaky with no proper structure. Hyaluronic acid synthesis 
inhibition thus leads to more drugs reaching tumor cells compared to tumors with normal hyaluronic 
acid levels [505,506]. Hyaluronic acid can also be degraded via the use of hyaluronidase. Various 
reports and clinical trials are underway to evaluate the usefulness of hyaluronidase in combination 
with drugs [471,507]. Various integrins, expressed by cancer cells, can also be targeted in various 
cancers. The use of antibodies against integrins has shown great results in cancers including breast 
and colon cancers [508,509]. Such anti-integrin antibodies include volociximab and vitaxin. Small 
molecule integrin antagonists can target specific integrin-ECM interactions can block integrin-
mediated cancer cell migration and therefore prevents tumor cell invasion and metastasis. Such 
integrin antagonists include cilengitide [510,511]. Antibodies against CD44 including bivatuzumab 
and RO5429083 have shown anti-tumor activity in patients with advanced cancers [512,513].  
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Conclusions 

The ECM exist in normal and tumor tissues. During development the ECM performs functions 
including providing structural support for cells and directing cell differentiation. In tumors, the ECM 
is needed for continual support to the growing tumor mass as well as to promote tumor cell migration 
and metastasis. Over the years, new technologies and bioinformatic softwares have been developed 
to delve deeper into the composition of both normal and tumor ECM, revealing that the ECM can be 
used in directing cellular function and in diagnosis and predictive manner, for example. A better 
understanding of the ECM led to efforts to interfere with its synthesis and degradation in an effort to 
improve patient outcomes. In its simplistic nature, targeting individual ECM proteins inadvertently 
affect other physiological processes and must be done investigated further.  Disruptions in ECM 
synthesis and degradation is likely going to impact tissue homeostasis, a complex state maintained 
by many interlinked processes. Importantly, just merely disrupting ECM synthesis and degradation 
is not going to stop pathological conditions such as cancer but require being combined with 
therapeutic strategies such as chemotherapy, immunotherapy and radiotherapy. This calls for further 
deeper investigations of how multiple anti-tumor strategies can be combined to have synergistic or 
additive effects.  
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