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Abstract: Recently, a layer-stacked ESN model named deep echo state network (DeepESN) has
been established. As an interactional model of recurrent neural network and deep neural network,
investigations of DeepESN are of significant importance in both areas. Optimizing the structure
of neural networks remains a common task in artificial neural networks, and the question of how
many neurons should be used in each layer of DeepESN must be stressed. In this paper, our aim is
to solve the problem of choosing the optimized size of DeepESN. Inspired by the sensitive iterative
pruning algorithm, a neuronal similarity-based iterative pruning merging algorithm (NS-IPMA) is
proposed to iteratively prune or merge the most similar neurons in DeepESN. Two chaotic time series
prediction tasks are applied to demonstrate the effectiveness of NS-IPMA. The results show that the
DeepESN pruned by NS-IPMA outperforms the unpruned DeepESN with the same network size,
and NS-IPMA is a feasible and superior approach to improving the generalization performance of
DeepESN.

Keywords: reservoir computing; deep echo state network; neuronal similarity-based iterative pruning
merging algorithm; chaotic time series forecast

1. Introduction

Recurrent neural networks (RNNs) represent a consolidated computational abstraction for
learning with variable length time series data [1]. As a simplified paradigm of RNN, the echo state
network [2,3] (ESN) provides a prominent reduction in the computational cost compared to other
paradigms of RNNs(e.g. ([4], LSTM), ([5], GRU)), for which the hidden layer of ESN is constructed
by a randomly generated reservoir instead of independent neurons and the output weights of ESN
are trained by a simple linear regression rather than backpropagation algorithm. Thus, ESN has a
successful application in various time series prediction problems (e.g. [6–9]).

Deep neural networks [10] (DNNs) have the potential to learn data representations at various
levels of abstraction and are being increasingly stressed in the machine learning community. Recently,
a layer-stacked ESN model named deep echo state network (DeepESN) has been established and
investigated, theoretically and experimentally, by Gallicchio, etc. The inherent characterization of
the system dynamics developed at the different layers of DeepESN is experimentally analyzed in
[11] and theoretically explained in[12]; A theoretical foundation for the study of DeepESN from a
dynamical system point of view is introduced in [13]; Further details on the analysis and advancements
of DeepESN could be found in [14]. As an interactional model of RNN and DNN, investigations
of DeepESN are of significant importance in both areas. On the one hand, DeepESN expands our
knowledge on how the information with memory attracted by RNN is extracted by hierarchical
neural networks, on the other hand, DeepESN helps us better understand how the abstract intrinsic
representations of time series extracted by DNN are recalled in reservoirs. Furthermore, DeepESN
has richer nonlinear representation capacity and less computational complexity, and better predictive
performance than single layer ESN [15].
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Optimizing the structure of neural networks remains a common task in artificial neural networks,
and the same question of how many neurons should be used in each layer must be stressed in all
types of neutral network. If the neurons are too few, the architecture does not satisfy the error demand
by learning from the data, whereas if the neurons are too many, learning leads to the well-known
overfitting problem [16]. As far as we know, little research has been carried out on optimizing
architecture of DeepESN. For research that has already been carried out on DeepESN, the same number
is commonly assigned in each layer, which is acceptable but not optimal. In this paper, our aim is to
solve the problem of choosing the optimized size of DeepESN, especially the number of neuron in
different layers.

In 2014, a sensitive iterative pruning algorithm (SIPA) was proposed by Wang and Yan [17] to
optimize the simple cycle reservoir network (SCRN), the algorithm was used to prune the least sensitive
neurons one by one according to the sensitive analysis, the results showed that the SIPA method can
optimize the structure and improve the generalization performance of the SCRN, meanwhile, pruning
out redundant neurons could contribute to reducing the calculation and improving the computing
efficiency of the network. Inspired by these advantages of SIPA, we wanted to apply a similar iterative
pruning approach on DeepESN. However, SCRN is a kind of minimal-complexity ESN with simple
cycle topology, the topology of DeepESN is much more complex than SCRN. Pruning a neuron in the
network will raise perturbations on adjacent neurons, resulting in unstable network performance, in
SIPA, the perturbations could be eliminated by adjusting the input weights into the perturbed neurons
to minimum the distance of its input signal before and after pruning. Due to the hierarchical structure
of reservoirs in DeepESN, perturbation raised by pruning a neuron in the lower layer will propagate
into higher layers layer by layer, leading to greater instability of network performance and difficulty of
perturbation elimination.

In order to overcome above difficulty, a new neuronal similarity-based iterative pruning merging
algorithm (NS-IPMA) is proposed to iteratively prune out or merge the most similar neurons in
DeepESN. In NS-IPMA, a pair of most similar twin neurons, which is regarded as redundant neurons
in the network, are selected out iteratively, then, if they exist in different layers, the one in higher
layer will be pruned out, if they are in a same resverior, they will be merged into one neuron, which
works as the substitution of antecedent twin neurons. Quantive estimation of neuronal similarity
plays an essential role in determining the redundant neurons which should be pruned out, Four
neuronal similarity estimation criteria of NS-IPMA approach were attempted, including the inverse of
Euclidean distance, Pearson’s correlation, Spearman’s correlation and Kendall’s correlation. Reducing
the network size is a directly effective approach to improve generalization performance of neural
network, because pruning out neurons will lead to reduction of network size, to verify the effectiveness
of NS-IPMA method. The The DeepESNs pruned by the NS-IPMA method were compared with
unpruned DeepESNs, whose number of neurons in each reservoir is the same. The pruned DeepESN
and the unpruned DeepESN were compared with equal layer number advancements equal total
neruon number.The results of the experiment on two chaotic time series prediction tasks showed
that the NS-IPMA method has good network structure adaptability , and the DeepESNs pruned by
NS-IPMA methed have better generalization performance and better robustness than the unpruned
DeepESNs, indicating that the NS-IPMA methed is a feasible and superior approach to improving the
generalization performance of DeepESN. NS-IPMA method provides a novel approach for choosing
the appropriate network size of DeepESN, it also has application potential in other RNNs and DNNs.

This paper is organized as follows. DeepESN and entropy quantification of reservoir richness
is detailly introduced in Section 2, SIPA and new proposed NS-IPMA are described in Section 3,
experiments and results are presented and discussed in Section 4. Section 5 draws the conclusions.
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2. Deep echo state network

2.1. Leakey integrator echo state network

A leakey integrator echo state network [18],(LI-ESN), as shown in Figure 1, is a recurrent neural
network with three layers: input layer u(t) ∈ RNu×1, hidden layer x(t) ∈ RNx×1, output layer
y(t) ∈ RNy×1. t notes time sequence order. The hidden layer is regarded as a reservoir, which holds
the memory of foregone information, and x(t) is refreshed by state transition function:

x(t) = αx(t− 1) + (1− α) tanh(Wiu(t− 1) + Wrx(t− 1)), (1)

where Wi ∈ RNx×Nu is the input weight matrix randomly generated before training, Wr ∈ RNx×Nx

is the reservoir weight matrix previously given before training. α ∈ [0, 1] is the leaky parameter.
tanh(•) is the activation function of the hidden layer. The reservoir weights in Wr must be initialized
to satisfy the echo state property (ESP) [19,20], denoting by ρ(•) the spectral radius operator (i.e. the
largest absolute eigenvalue of its matrix argument), the necessary condition for the ESP is expressed as
follows:

ρ ((1− α)I + αWr) < 1. (2)

Accordingly,the values in matrix Wr are randomly selected from a uniform distribution(e.g.U[−1, 1]),
and then rescaled to satisfy above condition in equation 2.

... ...

u(t)

x(t)

reservoir

y(t)

Wi

Wr

Wo

Figure 1. Structure of LI-ESN.

The output y(t) can be calculated through a linear combination of reservoir states as follows:

y(t) = Wox(t), (3)

where Wo ∈ RNy×Nx is the output weight matrix.
During training, the states of reservoir neurons are collected in a training state matrix Xtrain =

[x(1), x(2) . . . x(Ltrain)], and an output target matrix Ytrain = [ŷ(1), ŷ(2) . . . ŷ(Ltrain)] is collected
correspondingly, where Ltrain is the number of training samples.

The output weights in Wo can be calculated by ridge regression as follows:

Wo =
(
(XT

trainXtrain + λI)−1XT
trainYtrain

)T
, (4)

where (•)T represents matrix transpose , (•)−1 represents matrix inversion, λI is a regularization term
ensuring XT

trainXtrain is invertible.
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2.2. Deep echo state network

DeepESN was first introduced by Gallicchio [11,14], as a stacked reservoir computing (RC)
architecture, multiple reservoir layers are stacked one on top of each other. The state transition
functions of hidden layers in DeepESN are expressed as:{

x1(t) = α1x1(t) + (1− α1) tanh(Wiu(t− 1) + W1
r x1(t− 1)), l = 1

xl(t) = αlxl(t) + (1− αl) tanh(Wl−1
p xl−1(t− 1) + Wl

rxl(t− 1)), l ∈ [2, L]
(5)

where the superscript(1 and l) is the layer notation,with totally L hidden layers in the network.
xl(t) ∈ RNl

x×1 represents the l-th hidden layer (i.e. reservoir(l)) with Nl
x neurons inside, Wi ∈ RN1

x×Nu

is the input weight matrix of the first hidden layer, Wl
r ∈ RNl

x×Nl
x is the reservoir weight matrix of the

l-th hidden layer, Wl−1
p ∈ RNl−1

x ×Nl
x is the propagate weight matrix which connects reservoir(l − 1) to

reservoir(l).

...u(t)

Wi

x1(t)

reservoir(1)

W1
r

W1
p

x2(t)

reservoir(2)

W2
r

W2
p

...

WL−1
p

W2
p

xL(t)

reservoir(L)

WL
r

...Wo

y(t)

Figure 2. Structure of DeepESN.

As in the standard LI-ESN approach, the reservoir weights of a DeepESN are initialized subject to
similar stability constraints. In the case of DeepESN, such constraints are expressed by the necessary
condition for the ESP of deep RC networks [13], described by the following equation:

max
l∈[1,L]

ρ
(
(1− αl)I + αlWr

)
< 1, (6)

a same leaky parameter (αl ≡ α) in each layer is considered in this paper.
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The values in each reservoir matrix{Wl
r|l ∈ [1, L]} are randomly initialized from a uniform

distribution (e.g.U[−1, 1]), after that, each Wl
r is spectral normalized by its spectral radius and rescaled

by a same reservoir scaling paramerter γr to meet the demand of equation 6.

Wl
r ←

γrWl
r

ρ(Wl
r)

, l ∈ [1, L]. (7)

The values in input weight matrix Wi are randomly selected from a uniform distribution U[−γi, γi],
where γi is the input scaling parameter. The values in each propagate weight matrix {Wl

p|l ∈ [1, L− 1]}
are randomly selected from a uniform distribution U[−γp, γp] where γp is the propagate scaling
parameter.

The output equation and the training equation of DeepESN are formed by concatenating all hidden
neurons in each reservoirs together, denoting x̃(t)T = [x1(t)T x2(t)T . . . xL(t)T ] and substituting x̃(t)
for x(t) in equation 3 and equation 4:

y(t) = Wo x̃(t), (8)

Wo =
(
(X̃T

trainX̃train + λI)−1X̃T
trainYtrain

)T
. (9)

2.3. Architechiecural richness of DeepESN

The components of the state should be as diverse as possible to provide a richer pool of dynamics
from which the trainable part can appropriately combine. From an information-theoretic point of view,
this form of richness could be measured by means of the entropy of instantaneous reservoir states
[1]. Here an efficient estimator of Renyi’s quadratic entropy is introduced: suppose that we have N
independent and identically distributed samples {v1, . . . , vN} for the continuous random variable V,
An estimation of Renyi entropy directly from sampling data is defined as:

H2(V) = − log(
1

N2

N

∑
i=1

N

∑
j=1

Gκ
√

2(vj − vi)), (10)

where Gκ
√

2(•) is a Gauss kernel function with standard deviation κ
√

2, κ could be determined by
Silverman’s rule:

κ = σ(V)(4N−1(2d + 1)−1)
1

d+4 , (11)

where σ(V) is standard deviation and d is the data dimensionality.
Average state entropy (ASE) is obtained by time average of instantaneous Renyi’s quadratic

estimation of reservoir neurons.

H(t) = H2(x̃(t)), (12)

ASE =
1
S

S

∑
t=1
H(t), (13)

where S is the sample number. ASE gives us a research perspective independent of learning aspect,
higher ASE values are preferable and denote richer dynamics in reservoirs[1].

3. Pruning deep echo state network with neuronal similarity-based iterative pruning merging
algorithm

3.1. Sensitive iterative pruning algorithm on simple cycle reservoir network

The simple cycle reservoir network(SCRN)is a kind of minimum complexity ESN, which has a
cycle topology in the reservoir [21]. Every reservoir neuron is unidirectionally connected to its two
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adjacent neurons, A SIPA method is introduced to choose the right network size of SCRN through
iteratively pruning out the least sensitive neurons [17].

SIPA method is carried out in the following steps:

Step 1. Establish an SCRN with a large enough reservoir and satisfactory performance.
Step 2. Select a neuron to be pruned using the sensitive criterion [22] (assume xm is to be pruned),

as diagramed in Figure 3, remove all weights connected to xm as follows:
Wi(m, :)←0

Wr(m, m− 1)←0

Wr(m + 1, m)←0

(14)

Step 3. Establish a new link between two neighbors of pruned neuron, the link weight is determined
to eliminate the perturbation caused by pruning, denating the input to xm+1 before pruning
Io = Wi(m + 1, :)u + Wr(m + 1, m)xm, the input to xm+1 after pruning In = Wi(m + 1, :)u +

Wr(m + 1, m− 1)xm−1, the perturbation is eliminated and the original reservoir behavior is
maintained as long as In is set as close as possible to Io, by solving the following optimization
problem:

min
Wr(m+1,m−1)

||Io − In||2. (15)

Step 4. Adjust the output weights by retraining the network.Then calculate the training error.
Step 5. Repeat steps 2-4 until the training error or the reservoir size reaches an acceptable range.

xm+1

xm

xm−1

Wr(m,m− 1)

Wr(m+ 1,m)

Wr(m+ 1,m− 1)

...

...

x1

xNx

u
Wi(m, :)

xm+1

xm−1

...

...

x1

xNx

u

(a) (b)

Figure 3. Connection weight coefficients diagram of neurons in reservoir of SCRN before(a) and after(b)
pruning a neuron by SIPA.

The key to a successful application of SIPA is Step 3. In Step 2, a reservoir perturbation is triggered
by pruning, making the performance of the pruned network unpredictable. Thus, the essential task
of Step 3 is to reduce the effects of perturbation so that the rest neurons remain unchanged and the
network performance is approximately as good as before.

3.2. Neuronal similarity-based iterative pruning merging algorithm on deep echo state network

Due to the simple topology of SCRN, only one neuron (xm+1) receives input from the pruned
neuron (xm). The perturbation elimination in SCRN is easy to perform. However, the topology of
DeepESN is much more complicated, more extensive perturbation will be raised by pruning one
neuron in DeepESN because, in a highly coupled reservoir, perturbation at any neuron will be diffused
to every neuron of same reservoir. In addition, in hierarchically stacked reservoirs, perturbation in
lower layer will be transmitted to every higher layer above. It is very difficult to eliminate all of these
perturbations.
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The merging method is designed to solve this difficulty, this coincides with Islam’s idea [23],
two neurons are merged by averaging their input weights. Consider the following ideal scenario:
Merging two identical twin neurons in a same reservoir will derive a new neuron that is identical to
anteceden two twins, this new burned neuron could act as eqivalent substitution for anteceden two
twins. Conseqently, a neuron is pruned without leading any perturbation through superimposing the
output weights of the merged twins as well. This ideal perturbation-free merging has the prerequisite
that two identical neurons to be found in the same reservoir, the more similar the two merged neurons
are, the weaker perturbation will be raised by merging. Neuronal similarity could be assessed by some
quantitative relations of the collected training state matrix. Distance and correlation are commonly
used to quantify similarity, four similarity estimation criteria are given in this paper including the
inverse of Euclidean distance (ED), Pearson’s correlation coefficient (PC),Spearman’s correlation
coefficient (SC) and Kendall’s correlation coefficient (KC) as follows:

Noting the total number of neurons in all reservoirs M = ∑L
l=0 Nl

x, renote the train state matrix

X̃train =


x1(1) x1(2) . . . x1(Ltrain)

x2(1) x2(2) . . . x1(Ltrain)
...

...
. . .

...
xL(1) xL(2) . . . xL(Ltrain)


(M×Ltrain)

=


n1

n2
...

nM

 , (16)

where Ltrain is the number of training samples,ni is the historical state of i-th neuron state during
training. The similarity of ni and nj is derived by:

ED(i, j) =
1

∥ ni − nj ∥2
, (17)

PC(i, j) =
σninj√

σnini σnjnj

, (18)

SC(i, j) = 1− 6 ∑Ltrain
t=1 d2

t

Ltrain

(
Ltrain

2 − 1
) , (19)

KC(i, j) =
c− d

1
2 Ltrain (Ltrain − 1)

, (20)

where σninj represents cross-correlation of ni and nj, σnini and σnjnj represents autocorrelation of ni
and nj. dt is the rank difference of ni(t) and nj(t), c is the number of concordant pairs and d is the
number of discordant pairs in ni and nj. NS-IPMA based on different similarity estimation criteria are
named correspondingly, for instance, ES-IPMA means NS-IPMA based on the inverse of Euclidean
distance criterion, etc.

The NS-IPMA method is carried out in the following steps:

Step 1. Initially generate a performable DeepESN with large enough reservoirs by tuning
hyperparameters to minimize the average of training and validate error using Particle
Swarm Optimization (PSO) algorithm, please refer to A for more detail on hyperparameter
tuning. This DeepESN is a primitive network to implement.

Step 2. Washout the reservoirs, activate the reservoirs using train samples to obtain the training
state matrix.

Step 3. Quantify the similarity of each two neurons (using one criterion of equation 17 - 20) and
select a pair of the most similar neurons.

Step 4. (1). If selected neurons are in the same reservoir (note as xl
i and xl

j), merge them. As

diagramed in Figure 4, xl
s is the son neurons merged as the substitute of its parents
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xl
i and xl

j. l is the reservoir layer where xl
i and xl

j exists in. Related weight matrix

Wl−1
p ,Wl

p and Wl
r is refreshed as follows1:

Wl−1
p (s, :)←

Wl−1
p (i, :) + Wl−1

p (j, :)

2

Wl
r(s, :)← Wl

r(i, :) + Wl
r(j, :)

2
Wl

r(:, s)← Wl
r(:, i) + Wl

r(:, j)

Wl
p(:, s)← Wl

p(:, i) + Wl
p(:, j)

(21)

(2). If selected neurons are in different reservoirs(note as xm
i and xl

j), prune one in high

layer (assume m < l). Related weight matrix Wl−1
p ,Wl

p and Wl
r is refreshed as follows1:

Wl−1
p (j, :)← 0

Wl
r(j, :)← 0

Wl
r(:, j)← 0

Wl
p(:, j)← 0

(22)

Step 5. Adjust the output weights by retraining the network.Then estimate the performance of the
current network.

Step 6. Repeat steps 2-5 until the training error or the network size reaches an acceptable range.

xl
i(t)

xl
j(t)

xl
N l

x
(t)

...

Wl−1
p (i, :)

Wl−1
p (j, :)

Wr(i, :)

Wr(:, j)

Wr(j, :)

Wr(:, i)

xl(t+ 1)

xl(t− 1)

xl−1(t) xl+1(t)

Wl
p(:, i)

Wl
p(:, j)

xl
s(t)

xl
N l

x
(t)

...

Wr(s, :)

xl(t+ 1)

xl(t− 1)

xl−1(t) xl+1(t)
Wl

p(:, s)Wl−1
p (s, :)

Wr(:, s)

(a) (b)

xl
1(t)

...

...

xl
1(t)

...

Figure 4. Connection weight coefficients diagram of neurons in reservoir(l) of DeepESN before(a) and
after(b) merging a neuron by NS-IPMA.

1 if l = 1, Wi perform as Wl−1
p ;if l = L,Wl

p does not exist.
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4. Experiments and results

4.1. Datasets

4.1.1. Mackey-Glass chaotic time-seriers

Mackey-Glass time series [24] is a standard benchmark for chaotic time series forecast models
where ESN has been successfully applied to demonstrate good performance. The 31 order
Mackey-Glass time series is defined in the following differential equation:

dx
dt

= 0.2
x31

1 + x31
11 − 0.1x, x31 = x(t− 31), (23)

the Mackey Glass dataset (MG) is sampled with a sample frequency of 4Hz. A Python library[25] was
used to generate this dataset.

4.1.2. Lorenz chaotic time series

The Lorenz time series prediction [26] is another benchmark problem for ESN. The Lorenz
dynamic system is described by the following equations:

dx
dt

= −34
3
(x− y);

dy
dt

= −298
11

(x− y) + xz;

dz
dt

= −17
7

z + xy

(24)

The initial values are set as [x(0), y(0), z(0)] = [0.5, 0,−0.5],the Lorenz z axis dataset (LZ) is sampled
with a sample frequency of 12.5Hz.

Before the experiments, both datasets are shifted by its mean to remove the DC bias.

4.2. Experiments

4.2.1. Next spot prediction task

In the next spot prediction experiment, the last four continuous spots were considered the input
and the next spot was considered the desired output, i.e.{u(t− 3), u(t− 2), u(t− 1), u(t)} was used to
predict u(t + 1). The number of the train samples and the test samples was 1800 and 2000, 200 samples
before the first training sample were used to wash out the initial transient(see Figure 5). The reservoir
diversity was quantized by the ASE(see: 2.3) of combined training and testing neuron states activated
by training and testing samples. the predictive error performance was quantized by normalized root
mean square error:

NRMSE =

√√√√ T

∑
t=1

| y(t)− ŷ(t) |2
T | y(t)− ȳ(t) |2 , (25)

where T is sample number,ŷ(t) is desired output,y(t) is the readout output and ȳ(t) is average of y(t).
Two different initial reservoir size conditions of DeepESN were performed in both dataset, the

first is 4 stacked reservoir with 100 neurons in each reservoir (Abbreviated to:4× 100) and the second
is 8 stacked reservoir with 50 neurons in each reservoir (Abbreviated to: 8× 50).All experiments were
carried out under two different initial conditions on two datasets, model hyperparameters tuned by
PSO were recorded in Table A1.
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Figure 5. (a) MG and (b) LZ datasets.

4.2.2. Ablation experiment and control experiment

In order to demonstrate the effectiveness of different similarity estimation criteria, the worst-case
scenario of NS-IPMA, Neuron iterative pruning merging algorithm without similarity estimation
(IPMA), was investigated as an ablation experiment. in IPMA, the similarity of each two neurons was
assigned by random values. Thus, two random neurons would be recognized as the most similar
neuron pairs and would be pruned (or merged).

To verify the effectiveness of NS-IPMA method. The pruned DeepESNs were compared with
a control experiment, the unpruned DeepESN, whose number of neurons in each reservoir is the
same, the pruned DeepESN and the unpruned DeepESN were compared with equal layer number,
equal total neruon number and same hyperparameters. The unpruned DeepESN is a standard
benchmark that indicates the evolutionary characteristic of network performance by reducing network
size. 90 percentage of neurons of random initalized DeepESNs were continuous pruned by different
criterion based NS-IPMA methods (ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA) and non-criterion
based IPMA,during pruning, networks were silhouetted and the performance were evaluated once
10 percentage of neurons had been pruned, these pruned groups were compared with unpruned
DeepESN. All experiments were repeated for 20 times and all results were averaged through 20
independent replications.
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Figure 6. Cont.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2023                   doi:10.20944/preprints202301.0533.v1

https://doi.org/10.20944/preprints202301.0533.v1


11 of 17

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(ED)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(PC)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(SC)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(KC)      

10

20

30

40

50

(c) MG : 8× 50

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(ED)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(PC)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(SC)      

0 10 20 30 40 50 60 70 80 90
1
2
3
4
5
6
7
8

(KC)      

10

20

30

40

50

(d) LZ : 8× 50

Figure 6. The number of remaining neurons in each layer of peuned DeepESN, which was processed
by different similarity estimation criteria based NS-IPMA methods. The vertical axis indicates layer
index, the horizontal axis indicates percentage of pruned neurons in the initial total number of neurons,
the mesh color indicates the number of remained neurons, the darker color indicates more neurons are
reamained. (a):Initial 4 layer reservoirs with 100 neurons in each reservoir on MG dataset;(b):Initial 8
layer reservoirs with 50 neurons in each reservoir on MG dataset; (c):Initial 4 layer reservoirs with 100
neurons in each reservoir on LZ dataset;(d):Initial 8 layer reservoirs with 50 neurons in each reservoir
on LZ dataset.

4.3. Results and disscusion

4.3.1. Hierarchical structure

During pruning, the number of remaining neurons in each reservoir of pruned DeepESN, which
was processed by different similarity estimation criterion based NS-IPMA, are shown in Figure 5
As NS-IPMA goes on, we observed significantly reduction of the neuron number in high layers at
a later stage, the reason was because the discard policy, of which when a redundant pair of most
similar neuron in different reservoirs were found, the neuron in higher layers would be pruned out.
Lower layer reservoirs are the foundation of higher layer reservoirs, too few neurons in lower layers
brings risk of insufficient information presentation and extracion in higher layers. Thus, the NS-IPMA
methods have good network structure adaptability .

4.3.2. Reservoir diversity and error performance

The quantitative performance comparations (ASE, training NRMSE, and testing NRMSE) of
unpruned DeepESN and DeepESN, which was pruned by IPMA and different similarity estimation
criterion based NS-IPMA, are illustrated in Figures 7–9 The results on the two datasets were similar
but different. On the whole, as reservoir size reduces, ASE will decrease and training NRMSE will
increase, confirming that the model with more neurons has better information representation ability
and better training effect. Initially, testing NRMSE is greater than training NRMSE, this phenomenon
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is called overfitting. As the reservoir size reduces, The training error went down and the overfitting is
improved. confirming that the reducing the network size is a directly effective approach to improve
generalization performance of the network. There is no doubt that pruning neurons will lead to
reduction of network size, that is the reason why the unpruned DeepESN is tested as a benchmark. A
successful pruning algorithm should outperform this benchmark. Furthermore, the minimum testing
NRMSE condition is choosen to compare the extreme generalization performance of each experiment
group, which was recorded in Table 1.
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Figure 7. ASE Comparation of unpruned DeepESN and DeepESN pruned by IPMA, ED-IPMA,
PC-IPMA, SC-IPMA, KC-IPMA. (a):Initial 4 layer reservoirs with 100 neurons in each reservoir on
MG dataset;(b):Initial 8 layer reservoirs with 50 neurons in each reservoir on MG dataset; (c):Initial 4
layer reservoirs with 100 neurons in each reservoir on LZ dataset;(d):Initial 8 layer reservoirs with 50
neurons in each reservoir on LZ dataset.
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Figure 8. Cont.
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Figure 8. Training NRMSE Comparation of unpruned DeepESN and DeepESN pruned by IPMA,
ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA. (a):Initial 4 layer reservoirs with 100 neurons in each
reservoir on MG dataset;(b):Initial 8 layer reservoirs with 50 neurons in each reservoir on MG dataset;
(c):Initial 4 layer reservoirs with 100 neurons in each reservoir on LZ dataset;(d):Initial 8 layer reservoirs
with 50 neurons in each reservoir on LZ dataset.

400 360 320 280 240 200 160 120 80 40
Neuron number

0.035

0.036

0.037

0.038

0.039

0.040

0.041

0.042

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(a) MG : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.035

0.036

0.037

0.038

0.039

0.040

0.041

0.042

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(b) MG : 8× 50

400 360 320 280 240 200 160 120 80 40
Neuron number

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(c) LZ : 4× 100

400 360 320 280 240 200 160 120 80 40
Neuron number

0.15

0.20

0.25

0.30

0.35

0.40

N
RM

SE
te
st

Unpruned DeepESN
ED-IPMA
PC-IPMA
SC-IPMA
KC-IPMA
IPMA

(d) LZ : 8× 50

Figure 9. Testing MRMSE Comparation of unpruned DeepESN and DeepESN pruned by IPMA,
ED-IPMA, PC-IPMA, SC-IPMA, KC-IPMA. (a):Initial 4 layer reservoirs with 100 neurons in each
reservoir on MG dataset;(b):Initial 8 layer reservoirs with 50 neurons in each reservoir on MG dataset;
(c):Initial 4 layer reservoirs with 100 neurons in each reservoir on LZ dataset;(d):Initial 8 layer reservoirs
with 50 neurons in each reservoir on LZ dataset.
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Table 1. Minimum testing NRMSE condition of each experiment group.

Group Unpruned DeepESN Pruned DeepESN

Method - ED-IPMA PC-IPMA SC-IPMA KC-IPMA IPMA

NRMSEtest (Mean) 0.036 105 0.036 046 0.036 240 0.036 206 0.036 243 0.036 380
MG : (4× 100) NRMSEtest (Std.) 0.000 483 0.000 388 0.000 221 0.000 281 0.000 144 0.000 291

Neuron number 120 120 80 120 120 120

NRMSEtest (Mean) 0.035 544 0.035 238 0.035 350 0.035 516 0.035 427 0.036 030
MG : (8× 50) NRMSEtest (Std.) 0.000 699 0.000 346 0.000 516 0.000 533 0.000737 0.000 338

Neuron number 160 200 240 280 280 240

NRMSEtest (Mean) 0.184 285 0.148 812 0.152 775 0.164 455 0.140 930 0.155 667
LZ : (4× 100) NRMSEtest (Std.) 0.043 201 0.026 072 0.024 417 0.022 953 0.031 862 0.027 816

Neuron number 400 200 160 280 240 200

NRMSEtest (Mean) 0.251 535 0.198 581 0.189 230 0.210 376 0.193 678 0.186 933
LZ : (8× 50) NRMSEtest (Std.) 0.044 484 0.027 631 0.024 995 0.033 404 0.029 164 0.024 092

Neuron number 320 160 120 160 160 120
Bold values indicate the best validation performance of all methods.
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Similarly, from Figure 7, the DeepESN pruned by ED-IPMA maintains a minimum ASE loss
as the number of neurons decreases, we suspect that there are some hidden relationships between
Euler distance and Renyi’s quadratic entropy; from Table 1, the pruned DeepESNs have a samller
standard deviation of the minimum testing NRMSE compared to the unpruned DeepESN, indicating
that NS-IPMA method has good robustness.

On MG dataset: from Figure 9a,b, In the early stage, the testing error of DeepESN pruned by
SC-IPMA and KC-IPMA drops rapidly; later, DeepESN pruned by ED-IPNA and PC-IPMA out stand
from crowd when the majority of neurons are pruned. From Table 1, although ED-IPMA achieved the
best extreme generalization performance, the pruned DeepESNs have no obvious improvement on the
mean value of minimum testing NRMSE compared to the unpruned DeepESN.

On LZ dataset: from Figures 8c,d and 9c,d, and Table 1, the taining error, testing error, and
extreme generalization performance of pruned DeepESNs are all significantly improved compared
with unpruned DeepESN, and the diversity of different similarity estimation criteria are not prominent,
non-criterion based IPMA method perfomed as good as criterion based NS-IPMA methods.

In summary, all these experimental results showed that the NS-IPMA method is a successful
approach to improving the generalization performance of DeepESN, which is specific in, under
most circumstances of our designed experiments, the DeepESN pruned by NS-IPMA has better
generalization performance than the standard unpruned DeepESN.

5. Conclusions

In our research, a new Iterative Pruning Merging algorithm was proposed to simplify the
architecture of DeepESN. As to which neurons should be pruned out, four different similarity
estimation criteria were attempted. The unpruned DeepESNs is a benchmark that indecates the
evolutionary characteristic of network performance by reducing network size, the effectiveness of
proposed methed was experimentally verified by comparing pruned DeepESNs with unpruned
DeepESNs in the same network size. The results showed that these NS-IPMA methods have
good network structure adaptability, and the DeepESNs pruned by NS-IPMA methed have better
generalization performance and better robustness than unpruned DeepESNs, indicating that NS-IPMA
methed is a feasible and superior approach to improving the generalization performance of DeepESN.
The NS-IPMA method provides a novel approach for choosing the appropriate network size of
DeepESN, one could start with a larger model than necessary reservoir size , then prune or merge
some similar neurons to obtain a better DeepESN model, one could select a simple architecture with
small computation requirements while keeping the testing error acceptable.

However, there are still some shortcomings in our work: First, the problem of how to choose
the redundant neurons to be pruned out, or what the best neuronal similarity estimation criterion
should be, remains unsolved. Second, only the hierarchical structure, the reservoir diversity, and the
overall error performance are investigated, more evolutionary characteristics of different reservoirs,
such as their spectral radius, resulting from the NS-IPMA method are not analyzed. Third, the effects
of pruning and merging are not clearly distinguished. Further research on the NS-IPMA method is
expected to be carried out.
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Appendix A. Hyperparameter tuning

Table A1. Hyperparameters applied under different initial resverior size on different datasets.

Dataset MG MG LZ LZ
Initial size 4× 100 8× 50 4× 100 8× 50

α 0.92 0.92 0.92 0.92
γr 0.8 0.8 0.8 0.8
γi
∗1 0.373 84 0.253 14 0.096 31 0.064 94

γp
∗2 0.211 36 0.241 62 0.335 51 0.347 11

λ 1× 10−10 1× 10−10 1× 10−10 1× 10−10

*1 Tuned by PSO in the range of [1× 10−5, 10]; *2 Tuned by PSO in the range of [0.1, 5].

As defined in Section 2.2, hyperparameters(α, γi, γr, γp and λ) play essential roles in the
performance of DeepESN, so as in the successful application of NS-IPMA. α and γr affect stability of
reservoirs, α = 0.92 and γr = 0.8 are set to satisfy equation 6; λ affects the generalization performance,
a small regularization facter λ = 1× 10−10 is chosen to make the output weights better fit the training
samples. γi adjusts the strength of input signal into the first layer of DeepESN, γp adjusts the strength
of input signal into higher layers of DeepESN, thus, γi is optimized on the LI-ESN which is the first
layer of DeepESN, after that γp is optimized on the DeepESN after higher layers hierarchically stacked
on original LI-ESN. The tuned results are recorded in Table A1.
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18. Jaeger, H.; Lukoševičius, M.; Popovici, D.; Siewert, U. Optimization and applications of echo state networks
with leaky- integrator neurons. Neural networks : the official journal of the International Neural Network Society
2007, 20 3, 335–52. https://doi.org/10.1016/j.neunet.2007.04.016.

19. Yildiz, I.B.; Jaeger, H.; Kiebel, S.J. Re-visiting the echo state property. Neural Networks 2012, 35, 1–9.
https://doi.org/https://doi.org/10.1016/j.neunet.2012.07.005.

20. Gallicchio, C.; Micheli, A. Architectural and Markovian factors of echo state networks. Neural Networks 2011,
24, 440–456. https://doi.org/https://doi.org/10.1016/j.neunet.2011.02.002.

21. Rodan, A.; Tino, P. Minimum complexity echo state network. newblock IEEE Transactions on Neural Networks
2011, 22, 131–144. https://doi.org/10.1109/TNN.2010.2089641.

22. Castellano, G.; Fanelli, A.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE
Transactions on Neural Networks 1997, 8, 519–531. https://doi.org/10.1109/72.572092.

23. Islam, M.M.; Sattar, M.A.; Amin, M.F.; Yao, X.; Murase, K. A New Adaptive Merging and Growing
Algorithm for Designing Artificial Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 2009, 39, 705–722. https://doi.org/10.1109/TSMCB.2008.2008724.

24. Mackey, M.C.; Glass, L. Oscillation and chaos in physiological control systems. Science 1977, 197 4300, 287–9.
25. Maat, J.R.; Malali, A.; Protopapas, P. TimeSynth: A Multipurpose Library for Synthetic Time Series in Python,

2017. https://github.com/TimeSynth/TimeSynth
26. Chao, K.H.; Chang, L.Y.; Xu, F.Q. Smart Fault-Tolerant Control System Based on Chaos Theory and

Extension Theory for Locating Faults in a Three-Level T-Type Inverter. Applied Sciences 2019, 9. https:
//doi.org/10.3390/app9153071.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2023                   doi:10.20944/preprints202301.0533.v1

https://doi.org/10.48550/arXiv.1712.04323
https://doi.org/10.1109/IJCNN.2018.8489368
https://doi.org/10.1109/IJCNN.2018.8489368
https://doi.org/10.1007/s11063-014-9366-5
https://doi.org/10.1016/j.neucom.2014.05.024
https://doi.org/10.1016/j.neucom.2014.05.024
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/https://doi.org/10.1016/j.neunet.2011.02.002
https://doi.org/10.1109/TNN.2010.2089641
https://doi.org/10.1109/72.572092
https://doi.org/10.1109/TSMCB.2008.2008724
https://github.com/TimeSynth/TimeSynth
https://doi.org/10.3390/app9153071
https://doi.org/10.3390/app9153071
https://doi.org/10.20944/preprints202301.0533.v1

	Introduction
	Deep echo state network
	 Leakey integrator echo state network
	Deep echo state network
	Architechiecural richness of DeepESN

	 Pruning deep echo state network with neuronal similarity-based iterative pruning merging algorithm
	 Sensitive iterative pruning algorithm on simple cycle reservoir network
	Neuronal similarity-based iterative pruning merging algorithm on deep echo state network

	Experiments and results
	Datasets
	Mackey-Glass chaotic time-seriers
	Lorenz chaotic time series

	Experiments
	Next spot prediction task
	Ablation experiment and control experiment

	Results and disscusion
	Hierarchical structure
	Reservoir diversity and error performance


	Conclusions
	 Hyperparameter tuning
	References

