

Article

Open-loop Control Strategies and Feasible System Re-
sponse for a Rear-Axle Bicycle Robot
Masiala Mavungu

Faculty of Engineering and Built Environment, University of Johannesburg, South Africa; masi-
alam@uj.ac.za
“This work was supported by the University of Johannesburg”

Abstract: This paper aims at computing feasible control strategies and the corresponding
feasible state trajectories to drive an autonomous rear-axle bicycle robot from a given ini-
tial state to a final state such that the total running cost is minimized. Pontryagin’s Mini-
mum Principle is applied and derives the optimality conditions from which the feasible
control functions, expressed as functions of state and costate variables, are substituted into
the combined state-costate system to obtain a new free-control state-costate nonlinear
system of ordinary differential equations. A computer program was written in Scilab to
solve the combined state-costate system and obtain the feasible state functions, the feasible
costate functions and the feasible control functions. Associated Computational Simulations
were provided to show the effectiveness and the reliability of the approach.

Keywords: Autonomous Vehicle, Bicycle Robot, Open-loop Control, Path Planning, Dif-
ferential Equation, Initial Value Problem, Runge-Kutta Method, Scientific Computing.

1. Introduction
Most of vehicle crash investigations performed by some country transport

departments certified that vehicle accidents are mostly caused by drivers who
sometimes, when driving long distances, get tired and lose control, and then
cannot manage the business of obstacle avoidance properly. The use of autono-
mous vehicles in general allows to reduce transport costs and can, in fast ways,
avoid obstacles and then prevent accidents and thus save lives. Path planning of
autonomous bicycles and study of their performances are subject to equilibrium
constraints and create a lot of research questions, business and research oppor-
tunities. The study and the control of the dynamics of autonomous bicycles have
become current and major concerns for the industrial operators and managers,
and then attract the attention of research engineers, research mathematicians, re-
search physicists, research computer scientists, etc. who develop suitable strate-
gies, tools and methods to tackle and address all the problems associated to au-
tonomous bicycles. There exists a considerable number of works on autonomous
bicycles carried out since some years. Paper [1] developed a bicycle robot with
balancing control. Paper [2] controlled the balance of a two-wheeled vehicle. Pa-
per [3] controlled a bicycle to illustrate the control of nonholonomic and un-
der-actuated systems with symmetry. Paper [4] designed and controlled a ball
riding bicycle robot. Paper [5] proposed a dynamical model for a bicycle. Book [6]
presents a different and unified perspective of the mechanics, planning and con-
trol of robots. The authors present the state of the art, the serew theoretic tech-
niques which capture the most salient features of a robot in an intuitive way.
Book [7] provides fundamental notions on mobile robots, navigation, localization,
manipulator-arm kinematics, dynamics, and point level control as well as camera
modelling, image processing, feature extraction and multi-view geometry. Paper

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202301.0527.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 13

[8] developed and analysed the kinematic and the dynamic models for a three
wheeled bicycle called pedicab. Paper [9] presented modelling and control strat-
egies for an autonomous three wheeled mobile robot with front wheel steer and
front wheel drive. Book [10] provides a summary of common vehicle control
systems and the dynamic models which are used to develop those control sys-
tems. All the above-mentioned papers are closely connected with the main subject
of this paper because they deal in one way or another with control. To the best of
my knowledge, none of those articles considered the control of an autonomous
bicycle robot where the desired point is the rear Axle and uses optimal control
theory methods. None of them computed the optimal state of the system, the
corresponding costate functions and optimal speed . Generally it is noticeable that
for other articles, before applying optimal control theory, the system is first re-
duced into a simpler one so that its characteristics can be determined easily. Most
of time, the state system is linearized with respect to an equilibrium point, and
inthose papers certain parameters are set in simpler values. The simplifications
are performed to easily apply certain operations such as designing a quadratic
regulator. However, when a nonlinear control system is reduced into a linear
one, if no strategy is adopted, there will be loss of information, and then the final
results will be considerably and significantly different from the exact ones. In this
paper, the control system is highly nonlinear and has been studied as it is. No
other paper has addressed the minimization of the running energy. No paper has
computed the optimality conditions. No article has performed the derivation of a
costate system of ordinary differential equations adjoining the state system. In the
literature no paper found as considering the impact of the size of the initial cos-
tate vector on the length of the trajectory. So, most of the above-cited papers and
others not cited addressed the bicycle stability problem, the tracking problem,
etc., without considering the minimization of the running costs. This article is
based on the control of the kinematics of a bicycle robot where the reference
point is the center of the rear wheel. This paper uses optimal control theory to
compute feasible control strategies of an autonomous bicycle and feasible state
trajectories such that the bicycle running cost is minimize. The main contributions
of this paper are the design and computation of two feasible control strategies, the
computation of the solution of the combined state-costate system of ordinary
differential equations which is defined by six feasible state functions representing
the feasible system responses to reference commands, six costate (adjoint) func-
tions. To perform computation, scilab computer programs were developed and
applied.

This paper is organized as follows: Section 2 develops different relevant
mathematical models and formulates the problem as an optimal control problem.
Section3 computes the system Hamiltonian, derives and solves the normal equa-
tions of optimality. Section 4 applies Pontryagin’s Minimum Principle to derive
all the relevant nonlinear ordinary differential equations. Section 5 develops rel-
evant computer programs in Scilab to compute the feasible control trajectories,
the corresponding state and costate (adjoint) trajectories, the bicycle speed func-
tion and all the other outputs. Section 6 designs the associated computational
simulations.

2-. Mathematical Models
2.1-. Control System, Kinematic Model

The reference point for the motion is at the centre of the rear-axle of the bi-
cycle. The motion of an autonomous bicycle on the horizontal plane is modelled
as follows:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) (1)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 3 of 13

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) (2)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿) (3)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐3𝜑𝜑 (4)
where 𝑐𝑐1 = 𝑅𝑅 and 𝑐𝑐2 = 𝑅𝑅/𝐿𝐿 are constant of proportionality, 𝑅𝑅 and 𝐿𝐿 are

respectively the radius of the wheels and the distance between the centre of the
rear and the front wheels. (𝑥𝑥,𝑦𝑦) are the coordinates of the projection of the
rear-axle’s center (which is the reference point for the motion) on the horizontal
plane, 𝜃𝜃 is the heading angle, 𝛿𝛿 is the steering angle, 𝜑𝜑 is the steering angle’s
velocity.

The reference commands which regulate the bicycle angular velocity and
the steering angle velocity are modelled as solution to a closed-loop system de-
fined by:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1 (5)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2 (6)
𝜏𝜏1 and 𝜏𝜏2 are the unknown input control variables to be developed. 𝑎𝑎1

and 𝑎𝑎2 are constants of proportionality.
The whole robot kinematic control system is
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) (7)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) (8)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿) (9)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐3𝜑𝜑 (10)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1 (11)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2 (12)

Figure 1. Rear-Axle Bicycle Robot Geometric Model.

2.2-. Objective functional
In this paper, the total running cost to be minimized is as follows:
𝐽𝐽(𝒖𝒖) = 𝐽𝐽(𝜏𝜏1, 𝜏𝜏2) = ∫ (𝜏𝜏12 + 𝜏𝜏22)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
 (13)

where 𝑡𝑡0 and 𝑡𝑡𝑓𝑓 are respectively the bicycle motion’s starting and final
times, 𝜏𝜏1 and 𝜏𝜏2 are the reference commands which control respectively the bi-
cycle angular velocity and steering angle velocity. 𝜏𝜏12 + 𝜏𝜏22 is called cost rate.

2.3. Problem Formulation
This paper addresses the following problem: Compute the feasible control

strategies and the associated feasible state functions, also called feasible robot
system responses, to bring the autonomous bicycle robot from a given initial
state to a final state such that the total running cost is minimized.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 4 of 13

3-. Hamiltonian and Feasible Controls
The Hamiltonian of the system is given by
𝐻𝐻(𝑡𝑡,𝒀𝒀(𝑡𝑡),𝜶𝜶(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = ℎ(𝑡𝑡) + ∑ 𝛼𝛼𝑘𝑘6

𝑘𝑘=1 (𝑡𝑡)𝑓𝑓𝑘𝑘(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) (14)
Where we have
ℎ(𝑡𝑡) = 𝜏𝜏1

2 + 𝜏𝜏22 is the energy cost rate,
𝑓𝑓1(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) is the x component of the linear velocity of

the bicycle,
𝑓𝑓2(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) is the y component of the linear velocity of

the bicycle,
𝑓𝑓3(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿) is the rate of change of the heading angle of

the bicycle,
𝑓𝑓4(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐3𝜑𝜑 is the rate of change of the steering angle of the

bicycle,
𝑓𝑓5(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1 is the rate of change of the bicycle angu-

lar velocity,
𝑓𝑓6(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2 is the rate of change of the velocity of

steering angle.
𝒀𝒀(𝑡𝑡) = (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝜃𝜃(𝑡𝑡), 𝛿𝛿(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) is the unkown state vector function.

It is built to store all the state functions.
𝜶𝜶(𝑡𝑡) = (𝛼𝛼1(𝑡𝑡),𝛼𝛼2(𝑡𝑡),𝛼𝛼3(𝑡𝑡),𝛼𝛼4(𝑡𝑡),𝛼𝛼5(𝑡𝑡),𝛼𝛼6(𝑡𝑡)) is the unkown costate (adjoint)

vector function.
It is built to store all the costate functions. Concerning the control functions,

the normal equations for optimality are as follows:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏1

= 2𝜏𝜏1∗ + 𝑎𝑎1𝛼𝛼5 = 0 (15)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏2

= 2𝜏𝜏2∗ + 𝑎𝑎2𝛼𝛼6 = 0 (16)
The feasible control functions are given by
𝜏𝜏1∗ = −0.5𝑎𝑎1𝛼𝛼5 (17)
𝜏𝜏2∗ = −0.5𝑎𝑎2𝛼𝛼6 (18)

4-. Normal Condition for Optimality
If 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗) is the optimal control of the above problem and 𝒀𝒀∗ =

(𝑥𝑥∗,𝑦𝑦∗,𝜃𝜃∗, 𝛿𝛿∗,𝜔𝜔∗,𝜑𝜑∗) the corresponding optimal system response to the input
control 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗) , then there exists a costate vector function 𝜶𝜶∗ =
(𝛼𝛼1∗,𝛼𝛼2∗,𝛼𝛼3∗,𝛼𝛼4∗,𝛼𝛼5∗,𝛼𝛼6∗), also called adjoint vector such that the following are
satisfied:

𝐽𝐽(𝒖𝒖∗) ≤ 𝐽𝐽(𝒖𝒖) (19)
𝑑𝑑𝑥𝑥∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃∗) (20)

𝑑𝑑𝑦𝑦∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃∗) (21)

𝑑𝑑𝜃𝜃∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐2𝜔𝜔∗𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿∗) (22)

𝑑𝑑𝛿𝛿∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐3𝜑𝜑∗ (23)

𝑑𝑑𝜔𝜔∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎1𝜔𝜔∗ + 𝑎𝑎1𝜏𝜏1∗ (24)

𝑑𝑑𝜑𝜑∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎2𝜑𝜑∗ + 𝑎𝑎2𝜏𝜏2∗ (25)

𝑑𝑑𝛼𝛼1∗

𝑑𝑑𝑑𝑑
= 0 (26)

𝑑𝑑𝛼𝛼2∗

𝑑𝑑𝑑𝑑
= 0 (27)

𝑑𝑑𝛼𝛼3∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗(𝛼𝛼1∗sin(𝜃𝜃∗) − 𝛼𝛼2∗cos(𝜃𝜃∗)) (28)

𝑑𝑑𝛼𝛼4∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐2𝛼𝛼3∗𝜔𝜔∗𝑠𝑠𝑠𝑠𝑠𝑠2(𝛿𝛿∗) (29)

𝑑𝑑𝛼𝛼5∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐1�𝛼𝛼1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃∗) − 𝛼𝛼2∗𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃∗)� + 𝑎𝑎1𝛼𝛼5∗ (30)

𝑑𝑑𝛼𝛼6∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐3𝛼𝛼4∗ + 𝑎𝑎2𝛼𝛼6∗ (31)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 5 of 13

By letting 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗), with 𝜏𝜏1∗ = −0.5𝑎𝑎1𝛼𝛼5∗ and 𝜏𝜏2∗ = −0.5𝑎𝑎2𝛼𝛼6∗ for
the control functions,

𝑧𝑧1∗ = 𝑥𝑥∗, 𝑧𝑧2∗ = 𝑦𝑦∗, 𝑧𝑧3∗ = 𝜃𝜃∗, 𝑧𝑧4∗ = 𝛿𝛿∗, 𝑧𝑧5∗ = 𝜔𝜔∗ and 𝑧𝑧6∗ = 𝜑𝜑∗ for the state
functions,

𝑧𝑧7∗ = 𝛼𝛼1∗ , 𝑧𝑧8∗ = 𝛼𝛼2∗ , 𝑧𝑧9∗ = 𝛼𝛼3∗ , 𝑧𝑧10∗ = 𝛼𝛼4∗ , 𝑧𝑧11∗ = 𝛼𝛼5∗ and 𝑧𝑧12∗ = 𝛼𝛼6∗ for
the costate functions

and by combining all the state and costate functions into a vector 𝒛𝒛 = [𝒀𝒀,𝜶𝜶],
then the combined state-costate system can be rewritten as

 𝑑𝑑𝑧𝑧1
∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧3∗) (32)

𝑑𝑑𝑧𝑧2∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧3∗) (33)

𝑑𝑑𝑧𝑧3∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐2𝑧𝑧5∗𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧4∗) (34)

𝑑𝑑𝑧𝑧4∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐3𝑧𝑧6∗ (35)

𝑑𝑑𝑧𝑧5∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎1𝑧𝑧5∗ + 𝑎𝑎1𝜏𝜏1 (36)

𝑑𝑑𝑧𝑧6∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎2𝑧𝑧6∗ + 𝑎𝑎2𝜏𝜏2 (37)

𝑑𝑑𝑧𝑧7∗

𝑑𝑑𝑑𝑑
= 0 (38)

𝑑𝑑𝑧𝑧8∗

𝑑𝑑𝑑𝑑
= 0 (39)

𝑑𝑑𝑧𝑧9∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗(𝑧𝑧7∗sin(𝑧𝑧3∗) − 𝑧𝑧8∗cos(𝑧𝑧3∗)) (40)

𝑑𝑑𝑧𝑧10∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐2𝑧𝑧9∗𝑧𝑧5∗𝑠𝑠𝑠𝑠𝑠𝑠2(𝑧𝑧4∗) (41)

𝑑𝑑𝑧𝑧11∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐1�𝑧𝑧7∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧3∗) − 𝑧𝑧8∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧3∗)� + 𝑎𝑎1𝑧𝑧11∗ (42)

𝑑𝑑𝑧𝑧12∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐3𝑧𝑧10∗ + 𝑎𝑎2𝑧𝑧12∗ (43)

Vector 𝒛𝒛 is built to vectorize the combined state and costate system of
equations so that the system can be analyzed and processed in a easy and rigor-
ous manner.

Notice that in the system (32)-(43) the right hand side and its gradient are
continuous. Therefore, the solution exists and is unique.

5-. Computer Program
Pontryagin’s Minimum Principle applied in this article involves a costate

system of ordinary differential equations which combined to the state system and
the feasible controls gives a combined free-control state-costate system of ordi-
nary differential equations. I order to solve any system of ordinary differential
equations which is an initial value problem, I developed (in Matlab) an algorithm
coding a fourth-order Runge-Kutta method. Such an algorithm can be translated
into many other programming languages. It is as follows:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 6 of 13

function [t,y] = runge_v2(fs,t0,tf,N,y0)
h=(tf-t0)./(N-1); // h is the step size for the discretization.
t=t0:h:tf; // t is the time vector.
t=t';
y = zeros(N,length(y0)); // y0 is the initial vector solution. y is initialized to zero.
y(1,:) = y0.'; // The solution at the starting time..
for n = 2:N
k1 = feval(fs,t(n-1),y(n-1,:));
k2 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k1');
k3 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k2');
k4 = feval(fs,t(n-1)+h,y(n-1,:)+h*k3');
y(n,:) = y(n-1,:)+(h/6)*(k1'+2*k2'+2*k3'+k4');
end

The above algorithm can be used to solve any initial value problem. Let’s use

it to solve the system (32)-(43) of equations. By translating and developing the
algorithm into Scilab codes we have the following set of codes:

clear all
clc; // To clear the screen
c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; // These are Constants of proportionality c1=R; c2=R/L;
// R is the radius of each wheel; L is the distance between the front and the rear wheels.
t0=0; // t0 is the initial time of the motion;
tf=6; // tf is the final time of the motion;
N=601; // N is the number of discrete point;
h=(tf-t0)/(N-1);// Step size.
t=t0:h:tf; // vector of discrete times
z=zeros(N,12); // Initialization of z
z(1,:)= [zeros(1,6),ones(1,6)]; // Good
k=zeros(1,12);
for n = 2:N
// For the 1st ordinary differential equation, equation (32), we have the following codes
k(1,1)=c1*z(n-1,5)*cos(z(n-1,3));
k(2,1)= c1*(z(n-1,5) +(h/2)* k(1,1))*cos(z(n-1,3) +(h/2)*k(1,1)); // The program continues
k(3,1)= c1*(z(n-1,5) +(h/2)* k(2,1))*cos(z(n-1,3) +(h/2)*k(2,1));
k(4,1)= c1*(z(n-1,5) +(h/2)* k(3,1))*cos(z(n-1,3) +(h/2)*k(3,1));
z(n,1)=z(n-1,1)+(h/6)*(k(1,1)+ 2*(k(2,1)+k(3,1))+k(4,1));
// For the 2nd ordinary differential equation, equation (33), we have the following codes
k(1,2)=c1*z(n-1,5)*sin(z(n-1,3));
k(2,2)= c1*(z(n-1,5)+(h/2)*k(1,1))*sin(z(n-1,3)+(h/2)*k(1,2));
k(3,2)= c1*(z(n-1,5)+(h/2)*k(2,2))*sin(z(n-1,3)+(h/2)*k(2,2));
k(4,2)= c1*(z(n-1,5)+(h/2)*k(3,2))*sin(z(n-1,3)+(h/2)*k(3,2));
z(n,2)=z(n-1,1)+(h/6)*(k(1,2)+2*(k(2,2)+k(3,2))+k(4,2));

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 7 of 13

// For the 3rd ordinary differential equation, equation (34), , we have the following codes
k(1,3)=c2*z(n-1,5)*tan(z(n-1,4));
k(2,3)= c2*(z(n-1,5)+(h/2)*k(1,3))*tan(z(n-1,4)+(h/2)*k(1,3));
k(3,3)= c2*(z(n-1,5)+(h/2)*k(2,3))*tan(z(n-1,4)+(h/2)*k(2,3));
k(4,3)= c2*(z(n-1,5)+(h/2)*k(3,3))*tan(z(n-1,4)+(h/2)*k(3,3));
z(n,3)=z(n-1,3)+(h/6)*(k(1,3)+2*(k(2,3)+k(3,3))+k(4,3));
// For the 4th ordinary differential equation, equation (35), we have the following codes
k(1,4) = c3*z(n-1,6);
k(2,4)= c3*(z(n-1,6)+(h/2)*k(1,4));
k(3,4)= c3*(z(n-1,6)+(h/2)*k(2,4));
k(4,4)= c3*(z(n-1,6)+(h/2)*k(3,4));
z(n,4)=z(n-1,4)+(h/6)*(k(1,4)+ 2*(k(2,4)+k(3,4))+k(4,4));
// For the 5th ordinary differential equation, equation (36), we have the following codes
k(1,5)= a1*(-0.5*a1*z(n-1,11)-z(n-1,5));
k(2,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(1,5))-(z(n-1,5)+(h/2)*k(1,5)));
k(3,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(2,5))-(z(n-1,5)+(h/2)*k(2,5)));
k(4,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(3,5))-(z(n-1,5)+(h/2)*k(3,5)));
z(n,5)=z(n-1,5)+(h/6)*(k(1,5)+2*(k(2,5)+k(3,5))+k(4,5));
// For the 6th ordinary differential equation, equation (37), we have the following codes
k(1,6)=a2*(-0.5*a2*z(n-1,12)-z(n-1,6));
k(2,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(1,6))-(z(n-1,6)+(h/2)*k(1,6)));
k(3,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(2,6))-(z(n-1,6)+(h/2)*k(2,6)));
k(4,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(3,6))-(z(n-1,6)+(h/2)*k(3,6)));
z(n,6)=z(n-1,6)+(h/6)*(k(1,6)+ 2*(k(2,6)+k(3,6))+k(4,6));
// For the 7th ordinary differential equation, equation (38), we have the following codes
k(1,7)=0;
k(2,7)=(h/2)*k(1,7);
k(3,7)=(h/2)*k(2,7);
k(4,7)=(h/2)*k(3,7);
z(n,7)=z(n-1,7)+(h/6)*(k(1,7)+ 2*(k(2,7)+k(3,7))+k(4,7));
// For the 8th ordinary differential equation, equation (39), we have the following codes
k(1,8)=0;
k(2,8)=(h/2)*k(1,8);
k(3,8)=(h/2)*k(2,8);
k(4,8)=(h/2)*k(3,8);
z(n,8)=z(n-1,8)+(h/6)*(k(1,8)+ 2*(k(2,8)+k(3,8))+k(4,8));
// For the 9th ordinary differential equation, equation (40), we have the following codes
k(1,9)=c1*z(n-1,5)*(z(n-1,7)*sin(z(n-1,3))- z(n-1,8)*cos(z(n-1,3)));
k(2,9)=c1*(z(n-1,5)+(h/2)*k(1,9))*((z(n-1,7)+(h/2)*k(1,9))*sin(z(n-1,3)+(h/2)*k(1,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(1,9)));
k(3,9)=c1*(z(n-1,5)+(h/2)*k(2,9))*((z(n-1,7)+(h/2)*k(2,9))*sin(z(n-1,3)+(h/2)*k(2,9))-(z(n-1,8)+(h/2)*k(2,9))*cos(z(n-
1,3)+(h/2)*k(2,9)));

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 8 of 13

k(4,9)=c1*(z(n-1,5)+(h/2)*k(3,9))*((z(n-1,7)+(h/2)*k(3,9))*sin(z(n-1,3)+(h/2)*k(3,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(3,9)));
z(n,9)=z(n-1,9)+(h/6)*(k(1,9)+2*(k(2,9)+k(3,9))+k(4,9));
// For the 10th ordinary differential equation, equation (41), we have the following codes
k(1,10)= -c2*z(n-1,5)*z(n-1,9)*((sec(z(n-1,4)))^2);
k(2,10)= -c2*(z(n-1,5)+(h/2)*k(1,10))*(z(n-1,9)+(h/2)*k(1,10))*((sec(z(n-1,4) +(h/2)*k(1,10)))^2);
k(3,10)= -c2*(z(n-1,5)+(h/2)*k(2,10))*(z(n-1,9)+(h/2)*k(2,10))*((sec(z(n-1,4) +(h/2)*k(2,10)))^2);
k(4,10)= -c2*(z(n-1,5)+(h/2)*k(3,10))*(z(n-1,9)+(h/2)*k(3,10))*((sec(z(n-1,4) +(h/2)*k(3,10)))^2);
z(n,10)=z(n-1,10)+(h/6)*(k(1,10)+2*(k(2,10)+k(3,10))+k(4,10));
// For the 11th ordinary differential equation, equation (42) , we have the following codes
k(1,11)=-c1*(z(n-1,7)*cos(z(n-1,3))- z(n-1,8)*sin(z(n-1,3)))+a1*z(n-1,11);
k(2,11)=-c1*((z(n-1,7)+(h/2)*k(1,11))*cos(z(n-1,3)+(h/2)*k(1,11))-(z(n-1,8)+(h/2)*k(1,11))*sin(z(n-1,3)+(h/2)*k(1,11))
)+a1*(z(n-1,11)+(h/2)*k(1,11));
k(3,11)=-c1*((z(n-1,7)+(h/2)*k(2,11))*cos(z(n-1,3)+(h/2)*k(2,11))-(z(n-1,8)+(h/2)*k(2,11))*sin(z(n-1,3)+(h/2)*k(2,11))
)+a1*(z(n-1,11)+(h/2)*k(2,11));
k(4,11)=-c1*((z(n-1,7)+(h/2)*k(3,11))*cos(z(n-1,3)+(h/2)*k(3,11))-(z(n-1,8)+(h/2)*k(3,11))*sin(z(n-1,3)+(h/2)*k(3,11))
)+a1*(z(n-1,11)+(h/2)*k(3,11));
z(n,11)=z(n-1,11)+(h/6)*(k(1,11)+2*(k(2,11)+k(3,11))+k(4,11));
// For the 12th ordinary differential equation, equation (43), we have the following codes
k(1,12)=-c3*z(n-1,10)+a2*z(n-1,12);
k(2,12)=-c3*(z(n-1,10)+(h/2)*k(1,12))+a2*(z(n-1,12)+(h/2)*k(1,12));
k(3,12)=-c3*(z(n-1,10)+(h/2)*k(2,12))+a2*(z(n-1,12)+(h/2)*k(2,12));
k(4,12)=-c3*(z(n-1,10)+(h/2)*k(3,12))+a2*(z(n-1,12)+(h/2)*k(3,12));
z(n,12)=z(n-1,12)+(h/6)*(k(1,12)+2*(k(2,12)+k(3,12))+k(4,12));
end
t=t';
// The program continues
control1=-0.5*a1*z(:,11); control2=-0.5*a2*z(:,12); control=[control1, control2];
dx= c1*z(:,5).*cos(z(:,3)); // x component of the velocity
dy= c1*z(:,5).*sin(z(:,3)); // y component of the velocity
dTheta=c2*z(:,5).*tan(z(:,4)); // Heading angular velocity
dDelta= c3*z(:,6); // Steering angular velocity
dOmega = a1*(-0.5*a1*z(:,11)-z(:,5)); // Rate of change of the heading angular velocity
dPhi= a2*(-0.5*a2*z(:,12)-z(:,6)); // Rate of change of the steering angular velocity
Ham=z(:,7).*(c1*z(:,5).*cos(z(:,3))) + z(:,8).*(c1*z(:,5).*sin(z(3))) + z(:,9).*(c2*z(:,5).*tan(z(:,4))) + z(:,10).*(c3*z(:,6))
+ z(:,11).*(a1*(-0.5*a1*z(11)-z(5)))+z(:,12).*(a2*(-0.5*a2*z(12)-z(6)));
// Optimal trajectory
scf(0);
plot(z(:,1),z(:,2), 'r'); xlabel('x (in meters) ');ylabel('y=f(x) (in meters)');
z(1,:)=[zeros(1,6),rand(1,6)]
distance=sqrt(max(z(:,1))^2 + max(z(:,2))^2)
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicycletrajectory.png')

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 9 of 13

// First 3 state functions
scf(0);
subplot(3,1,1);plot(t,z(:,1), 'r');xlabel('Time t in seconds');ylabel('State 1 ');
subplot(3,1,2);plot(t,z(:,2) , 'r');xlabel('Time t in seconds ');ylabel('State 2 ');
subplot(3,1,3);plot(t,z(:,3) , 'r');xlabel('Time t in seconds ');ylabel('State 3 ');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclefirst3states.png ')
// Last 3 state functions
scf(0);
subplot(3,1,1);plot(t,z(:,4) , 'r');xlabel('Time t in seconds ');ylabel('State 4');
subplot(3,1,2);plot(t,z(:,5) , 'r');xlabel('Time t in seconds ');ylabel('State 5');
subplot(3,1,3);plot(t,z(:,6) , 'r');xlabel('Time t in seconds ');ylabel('State 6');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclelast3States.png ')
// First 3 costate functions
scf(0);
subplot(3,1,1);plot(t,z(:,7) , 'r');xlabel('Time t in seconds ');ylabel('Costate 1');
subplot(3,1,2);plot(t,z(:,8) , 'r');xlabel('Time t in seconds ');ylabel('Costate 2');
subplot(3,1,3);plot(t,z(:,9) , 'r');xlabel('Time t in seconds ');ylabel('Costate 3');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclefirst3Costates.png ')
// Last 3 costate functions; // The program continues
scf(0);
subplot(3,1,1);plot(t,z(:,10) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 4');
subplot(3,1,2);plot(t,z(:,11) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 5');
subplot(3,1,3);plot(t,z(:,12) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 6');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclelast3Costates.png ')
// Control strategies
scf(0);
subplot(2,1,1);plot(t,control1, 'r');xlabel('Time t in seconds ');ylabel('Control1');
subplot(2,1,2);plot(t,control2, 'r');xlabel('Time t in seconds ');ylabel('Control2');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicycleControls.png ')
// Velocities
scf(0);
subplot(3,1,1);plot(t,dx, 'r'); xlabel('Time t in seconds ');ylabel('Linear velocity along x axis');
subplot(3,1,2);plot(t,dy, 'r'); xlabel('Time t in seconds ');ylabel('Linear velocity along y axis');
subplot(3,1,3);plot(t, c1*z(:,5) , 'r'); xlabel('Time t in seconds ');ylabel('Robot speed');
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclex_velocity.png ');
 // The program ends

6-. Computational simulations

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 10 of 13

Figure 2. Feasible Bicycle Robot Trajectory.

Figure 2 gives the feasible trajectory of the bicycle robot. The starting point
of the path is (0,0).

 FIGURE 3. First three feasible state functions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 11 of 13

FIGURE 4. Last three feasible state functions.

The above plotted function state1 describes the instantaneous robot’s posi-
tion in the 𝑥𝑥 direction. In other words we have state1 = 𝑥𝑥(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The
above plotted function state2 describes the instantaneous robot’s position in the
𝑦𝑦 direction. In other words we have state2 = 𝑦𝑦(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above plot-
ted function state3 describes the instantaneous robot’s heading angle. In other
words we have state3 = 𝜃𝜃(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above plotted function state4 de-
scribes the instantaneous steering angle. state4 = 𝛿𝛿(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above
plotted function state5 describes the instantaneous angular velocity. state5 =
 𝜔𝜔(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above plotted function state6 describes the instantaneous
steering angle’s velocity. state6 = 𝜑𝜑(𝑡𝑡), 𝑡𝑡 ∈ [0,6].

Figure 5. First three feasible costate functions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 12 of 13

Figure 6. Last three feasible costate functions.

The function 𝑐𝑐𝑐𝑐state1 is the adjoint function to the function state1 .
𝑐𝑐𝑐𝑐state1 = 𝛼𝛼1(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state2 is the adjoint function to the
function state2. 𝑐𝑐𝑐𝑐state2 = 𝛼𝛼2(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state3 is the ad-
joint function to the function state3. 𝑐𝑐𝑐𝑐state3 = 𝛼𝛼3(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function
𝑐𝑐𝑐𝑐state4 is the adjoint function to the function state4. 𝑐𝑐𝑜𝑜state4 = 𝛼𝛼4(𝑡𝑡), 𝑡𝑡 ∈
[0,6].

The function 𝑐𝑐𝑐𝑐state5 is the adjoint function to the function state5 .
𝑐𝑐𝑐𝑐state5 = 𝛼𝛼5(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state6 is the adjoint function to the
function state4. 𝑐𝑐𝑐𝑐state6 = 𝛼𝛼6(𝑡𝑡), 𝑡𝑡 ∈ [0,6].

One can notice that 𝛼𝛼1(𝑡𝑡) and 𝛼𝛼2(𝑡𝑡) are constant because their time deriv-
atives are zeros.

 FIGURE 7. Feasible control strategies.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

https://doi.org/10.20944/preprints202301.0527.v1

 13 of 13

The function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 describes the instantaneous reference command to
the robot angular velocity. In other words we have 1 = 𝜏𝜏1(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The
function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 describes the instantaneous reference command to the robot
angular velocity. In other words we have 2 = 𝜏𝜏2(𝑡𝑡), 𝑡𝑡 ∈ [0,6].

7-. Conclusion
The aim of this paper was to compute the feasible control strategies and the

associated feasible state functions, also called feasible robot system response to
control, for an autonomous rear-axle bicycle robot to bring it from a given initial
state to a final state such that the total running cost is minimized. A fourth-order
Runge-Kutta was used to solve the combined free-control state-costate system of
ordinary differential equations obtained from Pontryagin’s Minimum Principle.
The obtained results enable to predict the performance of the autonomous bicycle
robot so that it can be controlled accurately and efficiently. The computer pro-
grams are useful to any reader or any researcher who is familiar with program-
ming and who would want to learn more. Computational Simulations are pro-
vided to show the effectiveness and the reliability of the approach. In future,
control policies will be developed for the rear-axle bicycle robot to asymptotical-
ly track a prescribed trajectory. Some methodology will be performed to develop
optimal control strategies using Lagrange Interpolating polynomial.

Funding: This research was funded by the University of Johannesburg, Fac-
ulty of Engineering through UJ-GES.

Data Availability Statement: This study did not report any data.
Conflicts of Interest: The authors declare no conflict of interest.

References

1- Anan Suebsomran, Balancing Control of Bicycle Robot (2012), 2012 IEEE International Conference on cyber tech-

nology in Automation, control and Intelligent Systems(Cyber), pp. 69-73.

2- Ngoc Kien Vu., Hong Quang Nguyen, Balancing control of a Two-wheeled bicycle (2020), Mathematical Problems

in Engineering. Published by Hindawi.

3- Neil H. Getz, Jerrold E. Marsden, Control for an Autonomous Vehicle, Department of Electrical Engineering,

University of California. Berkeley, CA 94720, getz@eecs.berkeley.edu.

4- Pongsakorn Seekkao and Manukid Parnichkun, Development and control of a bicycle robot based on steering and

pendulum balancing, Mechatronics, Volume 69, August 2020.

5- Y. Tanaka and T. Murakami, Self Sustaining Bicycle Robot with Steering Controller, Advanced Control, 2004 IEEE

International Workshop on Advanced Control, 27-31 may 2012.

6- Lynch, Kevin M., and franck C. Park, Modern Robotics: Mechanics, Planning, and Control 1st edition, Cambridge

Press, 2017.

7- Corke, Peter I. Robotics, Vision and Control: Fundamental Algorithms in Matlab, Springer, 2011.

8- Noverina, Nur Hamid, Grafika Jati, M. Anwar Ma’sum, Wisnu Jatmiko, Kinematics and Dynamics Analysis of an

Autonomous Three-Wheeled Bicycle Modeling, 2019 4th Asia-Pacific Conference on Intelligent Robot Systems

(Conference Paper), July 2019.

9- A. Pandey, S. Jha, and D. Chakravarty, Modeling and Control of an autonomous three-wheeled mobile robot with

front steer, Proceeding 2017 1st Conference on Robot and Computing. IRC 2017, pp. 136-142, 2017.

10- R. Rajamani, Vehicle Dynamics and Control, vol. Spec No. 2001.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 doi:10.20944/preprints202301.0527.v1

mailto:getz@eecs.berkeley.edu
https://doi.org/10.20944/preprints202301.0527.v1

	1. Introduction
	2-. Mathematical Models
	2.1-. Control System, Kinematic Model
	2.2-. Objective functional
	2.3. Problem Formulation

	3-. Hamiltonian and Feasible Controls
	4-. Normal Condition for Optimality
	5-. Computer Program
	6-. Computational simulations
	7-. Conclusion
	References

