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Abstract: This paper aims at computing feasible control strategies and the corresponding
feasible state trajectories to drive an autonomous rear-axle bicycle robot from a given ini-
tial state to a final state such that the total running cost is minimized. Pontryagin’s Mini-
mum Principle is applied and derives the optimality conditions from which the feasible
control functions, expressed as functions of state and costate variables, are substituted into
the combined state-costate system to obtain a new free-control state-costate nonlinear
system of ordinary differential equations. A computer program was written in Scilab to
solve the combined state-costate system and obtain the feasible state functions, the feasible
costate functions and the feasible control functions. Associated Computational Simulations
were provided to show the effectiveness and the reliability of the approach.
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1. Introduction

Most of vehicle crash investigations performed by some country transport
departments certified that vehicle accidents are mostly caused by drivers who
sometimes, when driving long distances, get tired and lose control, and then
cannot manage the business of obstacle avoidance properly. The use of autono-
mous vehicles in general allows to reduce transport costs and can, in fast ways,
avoid obstacles and then prevent accidents and thus save lives. Path planning of
autonomous bicycles and study of their performances are subject to equilibrium
constraints and create a lot of research questions, business and research oppor-
tunities. The study and the control of the dynamics of autonomous bicycles have
become current and major concerns for the industrial operators and managers,
and then attract the attention of research engineers, research mathematicians, re-
search physicists, research computer scientists, etc. who develop suitable strate-
gies, tools and methods to tackle and address all the problems associated to au-
tonomous bicycles. There exists a considerable number of works on autonomous
bicycles carried out since some years. Paper [1] developed a bicycle robot with
balancing control. Paper [2] controlled the balance of a two-wheeled vehicle. Pa-
per [3] controlled a bicycle to illustrate the control of nonholonomic and un-
der-actuated systems with symmetry. Paper [4] designed and controlled a ball
riding bicycle robot. Paper [5] proposed a dynamical model for a bicycle. Book [6]
presents a different and unified perspective of the mechanics, planning and con-
trol of robots. The authors present the state of the art, the serew theoretic tech-
niques which capture the most salient features of a robot in an intuitive way.
Book [7] provides fundamental notions on mobile robots, navigation, localization,
manipulator-arm kinematics, dynamics, and point level control as well as camera
modelling, image processing, feature extraction and multi-view geometry. Paper
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[8] developed and analysed the kinematic and the dynamic models for a three
wheeled bicycle called pedicab. Paper [9] presented modelling and control strat-
egies for an autonomous three wheeled mobile robot with front wheel steer and
front wheel drive. Book [10] provides a summary of common vehicle control
systems and the dynamic models which are used to develop those control sys-
tems. All the above-mentioned papers are closely connected with the main subject
of this paper because they deal in one way or another with control. To the best of
my knowledge, none of those articles considered the control of an autonomous
bicycle robot where the desired point is the rear Axle and uses optimal control
theory methods. None of them computed the optimal state of the system, the
corresponding costate functions and optimal speed . Generally it is noticeable that
for other articles, before applying optimal control theory, the system is first re-
duced into a simpler one so that its characteristics can be determined easily. Most
of time, the state system is linearized with respect to an equilibrium point, and
inthose papers certain parameters are set in simpler values. The simplifications
are performed to easily apply certain operations such as designing a quadratic
regulator. However, when a nonlinear control system is reduced into a linear
one, if no strategy is adopted, there will be loss of information, and then the final
results will be considerably and significantly different from the exact ones. In this
paper, the control system is highly nonlinear and has been studied as it is. No
other paper has addressed the minimization of the running energy. No paper has
computed the optimality conditions. No article has performed the derivation of a
costate system of ordinary differential equations adjoining the state system. In the
literature no paper found as considering the impact of the size of the initial cos-
tate vector on the length of the trajectory. So, most of the above-cited papers and
others not cited addressed the bicycle stability problem, the tracking problem,
etc., without considering the minimization of the running costs. This article is
based on the control of the kinematics of a bicycle robot where the reference
point is the center of the rear wheel. This paper uses optimal control theory to
compute feasible control strategies of an autonomous bicycle and feasible state
trajectories such that the bicycle running cost is minimize. The main contributions
of this paper are the design and computation of two feasible control strategies, the
computation of the solution of the combined state-costate system of ordinary
differential equations which is defined by six feasible state functions representing
the feasible system responses to reference commands, six costate (adjoint) func-
tions. To perform computation, scilab computer programs were developed and
applied.

This paper is organized as follows: Section 2 develops different relevant
mathematical models and formulates the problem as an optimal control problem.
Section3 computes the system Hamiltonian, derives and solves the normal equa-
tions of optimality. Section 4 applies Pontryagin’s Minimum Principle to derive
all the relevant nonlinear ordinary differential equations. Section 5 develops rel-
evant computer programs in Scilab to compute the feasible control trajectories,
the corresponding state and costate (adjoint) trajectories, the bicycle speed func-
tion and all the other outputs. Section 6 designs the associated computational
simulations.

2-. Mathematical Models
2.1-. Control System, Kinematic Model

The reference point for the motion is at the centre of the rear-axle of the bi-
cycle. The motion of an autonomous bicycle on the horizontal plane is modelled

as follows:
% = cywcos(0) (1)
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2 = cwsin(6) @)
% = c,wtan(9) 3)
das

2 69 4)

where ¢; =R and ¢, = R/L are constant of proportionality, R and L are
respectively the radius of the wheels and the distance between the centre of the
rear and the front wheels. (x,y) are the coordinates of the projection of the
rear-axle’s center (which is the reference point for the motion) on the horizontal
plane, 6 is the heading angle, § is the steering angle, ¢ is the steering angle’s
velocity.

The reference commands which regulate the bicycle angular velocity and
the steering angle velocity are modelled as solution to a closed-loop system de-

fined by:
Z—? =—-aqw+at; (5
Z_f = =@ + a,T, (6)

7; and 7, are the unknown input control variables to be developed. a;
and a, are constants of proportionality.
The whole robot kinematic control system is

% = c;wcos(0) (7)
Z—J; = c,wsin(0) (8)
% = c,wtan(d) 9)
ZTZZ csp (10)
= Thotan (11)
Z—f =—a,p + a,T, (12)

(xr, .3’7')

Figure 1. Rear-Axle Bicycle Robot Geometric Model.

2.2-. Objective functional

In this paper, the total running cost to be minimized is as follows:
t
J@) =J(t1,72) = ftof(’ﬁz +1,2)dt  (13)
where t, and t; are respectively the bicycle motion’s starting and final
times, 7; and 7, are the reference commands which control respectively the bi-
cycle angular velocity and steering angle velocity. 7,2 + 7,2 is called cost rate.

2.3. Problem Formulation

This paper addresses the following problem: Compute the feasible control
strategies and the associated feasible state functions, also called feasible robot
system responses, to bring the autonomous bicycle robot from a given initial
state to a final state such that the total running cost is minimized.
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3-. Hamiltonian and Feasible Controls

The Hamiltonian of the system is given by

HEY (), a(t), (), () = h(t) + Zi=1 ax ()Y (), 0(1), @) (14)

Where we have

h(t) = 1,° + 1,2 is the energy cost rate,

LX), w(t), o(t)) = ciwcos(8) is the x component of the linear velocity of
the bicycle,

LX), w(t), (t)) = cywsin(8) is the y component of the linear velocity of
the bicycle,

LX), w(), (t)) = cowtan(d) is the rate of change of the heading angle of
the bicycle,

f2(Y (), w(t), 9(t)) = c3¢ is the rate of change of the steering angle of the
bicycle,

Y @), w(),p)) = —a;w + a;7; is the rate of change of the bicycle angu-
lar velocity,

fs(Y(®), w(t), (t)) = —a,¢ + a,7, is the rate of change of the velocity of
steering angle.

Y(t) = (x(t),y(t),0(t),5(t), w(t), p(t)) is the unkown state vector function.
It is built to store all the state functions.

a(t) = (ay(t), az(t), as(t), a,(t), as(t), ag(t)) is the unkown costate (adjoint)
vector function.

It is built to store all the costate functions. Concerning the control functions,

the normal equations for optimality are as follows:

M =2t +aqas =0 (15)

014

M o 20, +aag =0 (16)

P42

The feasible control functions are given by
7" = —0.50;a5 17)

7," = —0.5a,a, (18)

4-. Normal Condition for Optimality

If w = (7,",7,") is the optimal control of the above problem and Y~ =
(x*,y7,0%, 6", w",@*) the corresponding optimal system response to the input
control u" = (7,%,7,"), then there exists a costate vector function a* =
(a0, a3%, a,", as5™, ag™), also called adjoint vector such that the following are

satisfied:
Jw) < J(w) (19)
% =c w cos(0") (20)
= ¢ w'sin(8") 1)
2 = c,w'tan(8") 22)
das* .
a9 (23)
L= a0 o (24)
d‘;’;* = _a2¢* + az’[z* (25)
da" _
.- 0 (26)
an _
“r=0 27)
dg: = c;w*(a,*sin(8*) — a,*cos(6*)) (28)
dg:* = —qaz*w'sec?(6*)  (29)
dz:* = —¢(a,7cos(8%) — a,"sin(0)) + a;as"  (30)
dag*

dt = —C30l4_* + azaﬁ* (31)
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By letting u* = (1,",7,"), with 7," = —0.5a;a5" and 7, = —0.5a,a4" for
the control functions,

z"=x", z,"=y", 23" =0", z,"=6", zz" = w" and z;" = @" for the state
functions,

;" =%, 7zt =y, z9" = as3”, zy = a,", z1, = as” and z;," = ag* for
the costate functions

and by combining all the state and costate functions into a vector z = [Y, «],

then the combined state-costate system can be rewritten as
dz,*

—— = 12505 (23") (32)

d;i = 125" sin(z3%) (33)
d;:* = cyz5"tan(z,") (34)
dzs* .
L (35)
ddz_i = —0125* + a1T1 (36)
d;—?* = —aZZG* + a,t, (37)
dz;*
R =0 (38)

Zg _
o (39)
‘izz_: = 125 (27"sin(z3") — zg"cos(z3")) (40)
dz_ltO* = —(y29"25"sec?(z,")  (41)
dfiltl_* = —c; (27" cos(23") — 25"sin(23")) + ay21,” (42)
dzyp*

= TGzt Az (49)
Vector z is built to vectorize the combined state and costate system of
equations so that the system can be analyzed and processed in a easy and rigor-
ous manner.
Notice that in the system (32)-(43) the right hand side and its gradient are

continuous. Therefore, the solution exists and is unique.

5-. Computer Program

Pontryagin’s Minimum Principle applied in this article involves a costate
system of ordinary differential equations which combined to the state system and
the feasible controls gives a combined free-control state-costate system of ordi-
nary differential equations. I order to solve any system of ordinary differential
equations which is an initial value problem, I developed (in Matlab) an algorithm
coding a fourth-order Runge-Kutta method. Such an algorithm can be translated
into many other programming languages. It is as follows:
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function [t,y] = runge_v2(fs,t0,tf,N,y0)

h=(tf-t0)./(N-1); // h is the step size for the discretization.
t=t0:h:tf; // t is the time vector.

t=t’;

y = zeros(N,length(y0)); // y0 is the initial vector solution. y is initialized to zero.
y(1,:) =y0.'; // The solution at the starting time..
forn=2:N

k1 = feval(fs,t(n-1),y(n-1,2));

k2 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k1");

k3 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k2");

k4 = feval(fs, t(n-1)+h,y(n-1,:)+h*k3");

y(n,2) = y(n-1,2)+(h/6)* (K1'+2*k2'+2*k3"+k4');

end
The above algorithm can be used to solve any initial value problem. Let’s use
it to solve the system (32)-(43) of equations. By translating and developing the
algorithm into Scilab codes we have the following set of codes:
clear all

clc; // To clear the screen

c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; // These are Constants of proportionality c1=R; c2=R/L;
// R is the radius of each wheel; L is the distance between the front and the rear wheels.
t0=0; // t0 is the initial time of the motion;

tf=6; // tfis the final time of the motion;

N=601; // N is the number of discrete point;

h=(tf-t0)/(N-1);// Step size.

t=t0:h:tf; // vector of discrete times

z=zeros(N,12); // Initialization of z

z(1,:)= [zeros(1,6),ones(1,6)]; // Good

k=zeros(1,12);

forn=2:N

// For the 1st ordinary differential equation, equation (32), we have the following codes
k(1,1)=c1*z(n-1,5)*cos(z(n-1,3));

k(2,1)= c1*(z(n-1,5) +(h/2)* k(1,1))*cos(z(n-1,3) +(h/2)*k(1,1)); // The program continues
k(3,1)= c1*(z(n-1,5) +(h/2)* k(2,1))*cos(z(n-1,3) +(h/2)*k(2,1));

k(4,1)= c1*(z(n-1,5) +(h/2)* k(3,1))*cos(z(n-1,3) +(h/2)*k(3,1));
z(n,1)=z(n-1,1)+(h/6)*(k(1,1)+ 2*(k(2,1)+k(3,1))+k(4,1));

// For the 2nd ordinary differential equation, equation (33), we have the following codes
k(1,2)=cl*z(n-1,5)*sin(z(n-1,3));

k(2,2)= c1*(z(n-1,5)+(h/2)*k(1,1))*sin(z(n-1,3)+(h/2)*k(1,2));

k(3,2)= c1*(z(n-1,5)+(h/2)*k(2,2))*sin(z(n-1,3)+(h/2)*k(2,2));

k(4,2)= c1*(z(n-1,5)+(h/2)*k(3,2))*sin(z(n-1,3)+(h/2)*k(3,2));
z(n,2)=z(n-1,1)+(h/6)*(k(1,2)+2*(k(2,2)+k(3,2))+k(4,2));
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/] For the 3rd ordinary differential equation, equation (34), , we have the following codes
k(1,3)=c2*z(n-1,5)*tan(z(n-1,4));

k(2,3)= c2*(z(n-1,5)+(h/2)*k(1,3))*tan(z(n-1,4)+(h/2)*k(1,3));

k(3,3)= c2*(z(n-1,5)+(h/2)*k(2,3))*tan(z(n-1,4)+(h/2)*k(2,3));

k(4,3)= c2*(z(n-1,5)+(h/2)*k(3,3))*tan(z(n-1,4)+(h/2)*k(3,3));
z(n,3)=z(n-1,3)+(h/6)*(k(1,3)+2*(k(2,3)+k(3,3))+k(4,3));

// For the 4th ordinary differential equation, equation (35), we have the following codes
k(1,4) = c3*z(n-1,6);

k(2,4)= c3*(z(n-1,6)+(h/2)*k(1,4));

k(3,4)= c3*(z(n-1,6)+(h/2)*k(2,4));

k(4,4)= 3*(z(n-1,6)+(h/2)*k(3,4));

z(n,4)=z(n-1,4)+(h/6)*(k(1,4)+ 2*(k(2,4)+k(3,4))+k(4,4));

// For the 5th ordinary differential equation, equation (36), we have the following codes
k(1,5)= a1*(-0.5*al*z(n-1,11)-z(n-1,5));

k(2,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(1,5))-(z(n-1,5)+(h/2)*k(1,5)));

k(3,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(2,5))-(z(n-1,5)+(h/2)*k(2,5)));

k(4,5)= a1*(-0.5*al*(z(n-1,11)+(h/2)*k(3,5))-(z(n-1,5)+(h/2)*k(3,5)));
z(n,5)=z(n-1,5)+(h/6)*(k(1,5)+2*(k(2,5)+k(3,5))+k(4,5));

// For the 6th ordinary differential equation, equation (37), we have the following codes
k(1,6)=a2*(-0.5*a2*z(n-1,12)-z(n-1,6));
k(2,6)=a2*(-0.5%a2*(z(n-1,12)+(h/2)*k(1,6))-(z(n-1,6)+(h/2)*k(1,6)));
k(3,6)=a2*(-0.5%a2*(z(n-1,12)+(h/2)*k(2,6))-(z(n-1,6)+(h/2)*k(2,6)));
k(4,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(3,6))-(z(n-1,6)+(h/2)*k(3,6)));
z(n,6)=z(n-1,6)+(h/6)*(k(1,6)+ 2*(k(2,6)+k(3,6))+k(4,6));

/] For the 7th ordinary differential equation, equation (38), we have the following codes
k(1,7)=0;

k(2,7)=(h/2)*k(1,7);

k(3,7)=(h/2)*k(2,7);

k(4,7)=(h/2)*k(3,7);

z(n,7)=z(n-1,7)+(h/6)*(k(1,7)+ 2*(k(2,7)+k(3,7))+k(4,7));

// For the 8th ordinary differential equation, equation (39), we have the following codes
k(1,8)=0;

k(2,8)=(h/2)*k(1,8);

k(3,8)=(h/2)*k(2,8);

k(4,8)=(h/2)*k(3,8);

z(n,8)=z(n-1,8)+(h/6)*(k(1,8)+ 2*(k(2,8)+k(3,8))+k(4,8));

/] For the 9th ordinary differential equation, equation (40), we have the following codes
k(1,9)=c1*z(n-1,5)*(z(n-1,7)*sin(z(n-1,3))- z(n-1,8)*cos(z(n-1,3)));
k(2,9)=c1*(z(n-1,5)+(h/2)*k(1,9))*((z(n-1,7)+(h/2)*k(1,9))*sin(z(n-1,3)+(h/2)*k(1,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(1,9)));
k(3,9)=c1*(z(n-1,5)+(h/2)*k(2,9))*((z(n-1,7)+(h/2)*k(2,9))*sin(z(n-1,3)+(h/2)*k(2,9))-(z(n-1,8)+(h/2)*k(2,9))*cos(z(n-
1,3)+(h/2)*k(2,9)));
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k(4,9)=c1*(z(n-1,5)+(h/2)*k(3,9))*((z(n-1,7)+(h/2)*k(3,9))*sin(z(n-1,3)+(h/2)*k(3,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(3,9)));

z(n,9)=z(n-1,9)+(h/6)*(k(1,9)+2*(k(2,9)+k(3,9))+k(4,9));

// For the 10th ordinary differential equation, equation (41), we have the following codes

k(1,10)= -c2*z(n-1,5)*z(n-1,9)*((sec(z(n-1,4)))"2);

k(2,10)= -c2*(z(n-1,5)+(h/2)*k(1,10))*(z(n-1,9)+(h/2)*k(1,10))*((sec(z(n-1,4) +(h/2)*k(1,10)))"2);

k(3,10)= -c2*(z(n-1,5)+(h/2)*k(2,10))*(z(n-1,9)+(h/2)*k(2,10))*((sec(z(n-1,4) +(h/2)*k(2,10)))"2);

k(4,10)= -c2*(z(n-1,5)+(h/2)*k(3,10))*(z(n-1,9)+(h/2)*k(3,10))*((sec(z(n-1,4) +(h/2)*k(3,10)))"2);
z(n,10)=z(n-1,10)+(h/6)*(k(1,10)+2*(k(2,10)+k(3,10))+k(4,10));

// For the 11th ordinary differential equation, equation (42) , we have the following codes
k(1,11)=-c1*(z(n-1,7)*cos(z(n-1,3))- z(n-1,8)*sin(z(n-1,3)))+al*z(n-1,11);
k(2,11)=-c1*((z(n-1,7)+(h/2)*k(1,11))*cos(z(n-1,3)+(h/2)*k(1,11))-(z(n-1,8)+(h/2)*k(1,11))*sin(z(n-1,3)+(h/2)*k(1,11))
yal*(z(n-1,11)+(h/2)*k(1,11));
k(3,11)=-c1*((z(n-1,7)+(h/2)*k(2,11))*cos(z(n-1,3)+(h/2)*k(2,11))-(z(n-1,8)+(h/2)*k(2,11))*sin(z(n-1,3)+(h/2)*k(2,11))
yal*(z(n-1,11)+(h/2)*k(2,11));
k(4,11)=-c1*((z(n-1,7)+(h/2)*k(3,11))*cos(z(n-1,3)+(h/2)*k(3,11))-(z(n-1,8)+(h/2)*k(3,11))*sin(z(n-1,3)+(h/2)*k(3,11))
Mal*(z(n-1,11)+(h/2)*k(3,11));

z(n,11)=z(n-1,11)+(h/6)*(k(1,11)+2*(k(2,11)+k(3,11))+k(4,11));

// For the 12th ordinary differential equation, equation (43), we have the following codes
k(1,12)=-c3*z(n-1,10)+a2*z(n-1,12);

k(2,12)=-c3*(z(n-1,10)+(h/2)*k(1,12))+a2*(z(n-1,12)+(h/2)*k(1,12));
k(3,12)=-c3*(z(n-1,10)+(h/2)*k(2,12))+a2*(z(n-1,12)+(h/2)*k(2,12));
k(4,12)=-c3*(z(n-1,10)+(h/2)*k(3,12))+a2*(z(n-1,12)+(h/2)*k(3,12));
z(n,12)=z(n-1,12)+(h/6)*(k(1,12)+2*(k(2,12)+k(3,12))+k(4,12));

end

t=t';

/] The program continues

control1=-0.5%al*z(:,11); control2=-0.5*a2*z(:,12); control=[ control1, control2];

dx= c1*z(:,5).*cos(z(:,3)); // x component of the velocity

dy= c1*z(:,5).*sin(z(:,3)); // y component of the velocity

dTheta=c2*z(:,5).*tan(z(:,4)); // Heading angular velocity

dDelta= c3*z(:,6); // Steering angular velocity

dOmega = al*(-0.5*al*z(;,11)-z(:,5)); // Rate of change of the heading angular velocity

dPhi= a2*(-0.5%a2*z(:,12)-z(:,6)); // Rate of change of the steering angular velocity

Ham=z(:,7).*( c1*z(:,5).*cos(z(:,3))) + z(:,8).*(c1*z(:,5).*sin(z(3))) + z(:,9).*(c2*z(:,5).*tan(z(:,4))) + z(:,10).*(c3*z(:,6))
+7(:,11).*(al*(-0.5%al*z(11)-z(5)))+z(:,12).*(a2*(-0.5%a2*z(12)-z(6)));

/] Optimal trajectory

scf(0);

plot(z(:,1),z(:,2), 't'); xlabel('x (in meters) ');ylabel('y=f(x) (in meters)');

z(1,:)=[zeros(1,6),rand(1,6)]

distance=sqrt(max(z(:,1))"2 + max(z(:;,2))"2)

xs2png(0,'C:\ Users\ Guest\ Documents\ 17january2023\ bicycletrajectory.png’)
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// First 3 state functions
scf(0);
subplot(3,1,1);plot(t,z(:,1), 'r');xlabel('Time t in seconds');ylabel('State 1");
subplot(3,1,2);plot(t,z(:,2) , '1');xlabel('Time t in seconds ');ylabel('State 2 ');
subplot(3,1,3);plot(t,z(:,3) , 'r');xlabel('Time t in seconds ');ylabel('State 3 ');
xs2png(0,'C:\ Users\ Guest\ Documents\ 17january2023\ bicyclefirst3states.png ')
// Last 3 state functions
scf(0);
subplot(3,1,1);plot(t,z(:,4) , 'r');xlabel('Time t in seconds ');ylabel('State 4');
subplot(3,1,2);plot(t,z(:;,5) , 'r');xlabel('Time t in seconds ');ylabel('State 5');
subplot(3,1,3);plot(t,z(:,6) , 1');xlabel('Time t in seconds ');ylabel('State 6');
xs2png(0,'C:\ Users\ Guest\ Documents\ 17january2023\ bicyclelast3States.png ')
// First 3 costate functions
scf(0);
subplot(3,1,1);plot(t,z(:,7) , '1');xlabel('Time t in seconds ');ylabel('Costate 1');
subplot(3,1,2);plot(t,z(:,8) , 1');xlabel('Time t in seconds ');ylabel('Costate 2');
subplot(3,1,3);plot(t,z(:,9) , 'r');xlabel('Time t in seconds ');ylabel('Costate 3');
xs2png(0,'C:\ Users\ Guest\ Documents \ 17january2023\ bicyclefirst3Costates.png ')
// Last 3 costate functions;  // The program continues
scf(0);
subplot(3,1,1);plot(t,z(;,10) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 4');
subplot(3,1,2);plot(t,z(;,11) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 5');
subplot(3,1,3);plot(t,z(:,12) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 6');
xs2png(0,'C:\ Users\ Guest\ Documents \ 17january2023\ bicyclelast3Costates.png ')
/] Control strategies
scf(0);
subplot(2,1,1);plot(t,controll, 't');xlabel('Time t in seconds ');ylabel('Controll’);
subplot(2,1,2);plot(t,control2, 'r');xlabel('Time t in seconds ');ylabel('Control2');
xs2png(0,'C:\ Users\ Guest\ Documents \ 17january2023\ bicycleControls.png ')
// Velocities
scf(0);
subplot(3,1,1);plot(t,dx, 'r'); xlabel('Time t in seconds ');ylabel('Linear velocity along x axis');
subplot(3,1,2);plot(t,dy, 't'); xlabel('Time t in seconds ');ylabel('Linear velocity along y axis');
subplot(3,1,3);plot(t, c1*z(:,5) , 't'); xlabel('Time t in seconds ');ylabel('Robot speed');
xs2png(0,'C:\ Users\ Guest\ Documents\ 17january2023 \ bicyclex_velocity.png ');

/] The program ends

6-. Computational simulations
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Figure 2. Feasible Bicycle Robot Trajectory.

Figure 2 gives the feasible trajectory of the bicycle robot. The starting point

of the path is (0,0).
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FIGURE 3. First three feasible state functions.
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FIGURE 4. Last three feasible state functions.

The above plotted function statel describes the instantaneous robot’s posi-
tion in the x direction. In other words we have statel = x(t), t € [0,6]. The
above plotted function state2 describes the instantaneous robot’s position in the
y direction. In other words we have state2 = y(t), t € [0,6]. The above plot-
ted function state3 describes the instantaneous robot’s heading angle. In other
words we have state3 = 6(t), t € [0,6]. The above plotted function state4 de-
scribes the instantaneous steering angle. state4 = 6(t), t € [0,6]. The above
plotted function state5 describes the instantaneous angular velocity. state5 =
w(t), t €[0,6]. The above plotted function state6 describes the instantaneous
steering angle’s velocity. state6 = ¢(t), t € [0,6].
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Figure 5. First three feasible costate functions.
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Figure 6. Last three feasible costate functions.

The function costatel is the adjoint function to the function statel.
costatel = a;(t), t € [0,6]. The function costate2 is the adjoint function to the
function state2. costate2 = a,(t), t € [0,6]. The function costate3 is the ad-
joint function to the function state3. costate3 = a3(t), t € [0,6]. The function
costate4 is the adjoint function to the function state4.
[0,6].

The function costate5 is the adjoint function to the function state5.
costate5 = a5(t), t € [0,6]. The function costate6 is the adjoint function to the
function state4. costate6 = a4(t), t € [0,6].

One can notice that a,(t) and a,(t) are constant because their time deriv-
atives are zeros.

costated = a,(t), t €
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FIGURE 7. Feasible control strategies.


https://doi.org/10.20944/preprints202301.0527.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2023 d0i:10.20944/preprints202301.0527.v1

13 of 13

The function controll describes the instantaneous reference command to
the robot angular velocity. In other words we have 1= 7,(t), t € [0,6]. The
function controll describes the instantaneous reference command to the robot
angular velocity. In other words we have 2 = 1,(t), t € [0,6].

7-. Conclusion

The aim of this paper was to compute the feasible control strategies and the
associated feasible state functions, also called feasible robot system response to
control, for an autonomous rear-axle bicycle robot to bring it from a given initial
state to a final state such that the total running cost is minimized. A fourth-order
Runge-Kutta was used to solve the combined free-control state-costate system of
ordinary differential equations obtained from Pontryagin’s Minimum Principle.
The obtained results enable to predict the performance of the autonomous bicycle
robot so that it can be controlled accurately and efficiently. The computer pro-
grams are useful to any reader or any researcher who is familiar with program-
ming and who would want to learn more. Computational Simulations are pro-
vided to show the effectiveness and the reliability of the approach. In future,
control policies will be developed for the rear-axle bicycle robot to asymptotical-
ly track a prescribed trajectory. Some methodology will be performed to develop
optimal control strategies using Lagrange Interpolating polynomial.
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