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Abstract: This paper aims at computing feasible control strategies and the corresponding 
feasible state trajectories to drive an autonomous rear-axle bicycle robot from a given ini-
tial state to a final state such that the total running cost is minimized. Pontryagin’s Mini-
mum Principle is applied and derives the optimality conditions from which the feasible 
control functions, expressed as functions of state and costate variables, are substituted into 
the combined state-costate system to obtain a new free-control state-costate nonlinear 
system of ordinary differential equations. A computer program was written in Scilab to 
solve the combined state-costate system and obtain the feasible state functions, the feasible 
costate functions and the feasible control functions. Associated Computational Simulations 
were provided to show the effectiveness and the reliability of the approach. 
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1. Introduction 
Most of vehicle crash investigations performed by some country transport 

departments certified that vehicle accidents are mostly caused by drivers who 
sometimes, when driving long distances, get tired and lose control, and then 
cannot manage the business of obstacle avoidance properly. The use of autono-
mous vehicles in general allows to reduce transport costs and can, in fast ways, 
avoid obstacles and then prevent accidents and thus save lives. Path planning of 
autonomous bicycles and study of their performances are subject to equilibrium 
constraints and create a lot of research questions, business and research oppor-
tunities. The study and the control of the dynamics of autonomous bicycles have 
become current and major concerns for the industrial operators and managers, 
and then attract the attention of research engineers, research mathematicians, re-
search physicists, research computer scientists, etc. who develop suitable strate-
gies, tools and methods to tackle and address all the problems associated to au-
tonomous bicycles. There exists a considerable number of works on autonomous 
bicycles carried out since some years. Paper [1] developed a bicycle robot with 
balancing control. Paper [2] controlled the balance of a two-wheeled vehicle. Pa-
per [3] controlled a bicycle to illustrate the control of nonholonomic and un-
der-actuated systems with symmetry. Paper [4] designed and controlled a ball 
riding bicycle robot. Paper [5] proposed a dynamical model for a bicycle. Book [6] 
presents a different and unified perspective of the mechanics, planning and con-
trol of robots. The authors present the state of the art, the serew theoretic tech-
niques which capture the most salient features of a robot in an intuitive way. 
Book [7] provides fundamental notions on mobile robots, navigation, localization, 
manipulator-arm kinematics, dynamics, and point level control as well as camera 
modelling, image processing, feature extraction and multi-view geometry. Paper 
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[8] developed and analysed the kinematic and the dynamic models for a three 
wheeled bicycle called pedicab. Paper [9] presented modelling and control strat-
egies for an autonomous three wheeled mobile robot with front wheel steer and 
front wheel drive. Book [10] provides a summary of common vehicle control 
systems and the dynamic models which are used to develop those control sys-
tems. All the above-mentioned papers are closely connected with the main subject 
of this paper because they deal in one way or another with control. To the best of 
my knowledge, none of those articles considered the control of an autonomous 
bicycle robot where the desired point is the rear Axle and uses optimal control 
theory methods. None of them computed the optimal state of the system,  the 
corresponding costate functions and optimal speed . Generally it is noticeable that 
for other articles, before applying optimal control theory, the system is first re-
duced into a simpler one so that its characteristics can be determined easily. Most 
of time, the state system is linearized with respect to an equilibrium point, and 
inthose papers certain parameters are set in simpler values. The simplifications 
are performed to easily apply certain operations such as designing a quadratic 
regulator. However, when a  nonlinear control system is reduced into a linear 
one, if no strategy is adopted, there will be loss of information, and then the final 
results will be considerably and significantly different from the exact ones. In this 
paper, the control system is highly nonlinear and has been studied as it is. No 
other paper has addressed the minimization of the running energy. No paper has 
computed the optimality conditions. No article has performed the derivation of a 
costate system of ordinary differential equations adjoining the state system. In the 
literature no paper found as considering the impact of the size of the initial cos-
tate vector on the length of the trajectory. So, most of the above-cited papers and 
others not cited addressed the bicycle stability problem, the tracking problem, 
etc., without considering the minimization of the running costs. This article is 
based on the control  of the kinematics of a bicycle robot where the reference 
point is the center of the rear wheel. This paper uses optimal control theory to 
compute feasible control strategies of an autonomous bicycle and feasible state 
trajectories such that the bicycle running cost is minimize. The main contributions 
of this paper are the design and computation of two feasible control strategies, the 
computation of the solution of the combined state-costate system of ordinary 
differential equations which is defined by six feasible state functions representing 
the feasible system responses to reference commands, six costate (adjoint) func-
tions. To perform computation, scilab computer programs were developed and 
applied.  

This paper is organized as follows: Section 2 develops different relevant 
mathematical models and formulates the problem as an optimal control problem. 
Section3 computes the system Hamiltonian, derives and solves the normal equa-
tions of optimality. Section 4 applies Pontryagin’s Minimum Principle to derive 
all the relevant nonlinear ordinary differential equations. Section 5 develops rel-
evant computer programs in Scilab to compute the feasible control trajectories, 
the corresponding state and costate (adjoint) trajectories, the bicycle speed func-
tion and all the other outputs. Section 6 designs the associated computational 
simulations.  

2-. Mathematical Models 
2.1-. Control System, Kinematic Model 

The reference point for the motion is at the centre of the rear-axle of the bi-
cycle. The motion of an autonomous bicycle on the horizontal plane is modelled 
as follows:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃)           (1) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃)           (2) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿)          (3) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐3𝜑𝜑                (4) 
where 𝑐𝑐1 = 𝑅𝑅 and 𝑐𝑐2 = 𝑅𝑅/𝐿𝐿 are constant of proportionality, 𝑅𝑅 and 𝐿𝐿 are 

respectively the radius of the wheels and the distance between the centre of the 
rear and the front wheels. (𝑥𝑥,𝑦𝑦) are the coordinates of the projection of the 
rear-axle’s center (which is the reference point for the motion) on the horizontal 
plane, 𝜃𝜃 is the heading angle, 𝛿𝛿 is the steering angle, 𝜑𝜑 is the steering angle’s 
velocity. 

The reference commands which regulate the bicycle angular velocity and 
the steering angle velocity are modelled as solution to a closed-loop system de-
fined by: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1   (5) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2   (6) 
𝜏𝜏1 and 𝜏𝜏2 are the unknown input control variables to be developed. 𝑎𝑎1 

and 𝑎𝑎2 are constants of proportionality. 
The whole robot kinematic control system is 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃)                  (7) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃)                  (8)  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿)                 (9) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐3𝜑𝜑                       (10) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1              (11) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2              (12)  

 
Figure 1. Rear-Axle Bicycle Robot Geometric Model. 

 

2.2-. Objective functional 
In this paper, the total running cost to be minimized is as follows: 
𝐽𝐽(𝒖𝒖) = 𝐽𝐽(𝜏𝜏1, 𝜏𝜏2) = ∫ (𝜏𝜏12 + 𝜏𝜏22)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
  (13) 

where 𝑡𝑡0  and 𝑡𝑡𝑓𝑓  are respectively the bicycle motion’s starting and final 
times, 𝜏𝜏1 and 𝜏𝜏2 are the reference commands which control respectively the bi-
cycle angular velocity and steering angle velocity. 𝜏𝜏12 + 𝜏𝜏22 is called cost rate.  

2.3. Problem Formulation 
This paper addresses the following problem: Compute the feasible control 

strategies and the associated feasible state functions, also called feasible robot 
system responses, to bring the autonomous bicycle robot from a given initial 
state to a final state such that the total running cost is minimized.  
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3-. Hamiltonian and Feasible Controls 
The Hamiltonian of the system is given by 
𝐻𝐻(𝑡𝑡,𝒀𝒀(𝑡𝑡),𝜶𝜶(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = ℎ(𝑡𝑡) + ∑ 𝛼𝛼𝑘𝑘6

𝑘𝑘=1 (𝑡𝑡)𝑓𝑓𝑘𝑘(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) (14) 
Where we have  
ℎ(𝑡𝑡) = 𝜏𝜏1

2 + 𝜏𝜏22 is the energy cost rate,  
𝑓𝑓1(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) is the x component of the linear velocity of 

the bicycle,   
𝑓𝑓2(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐1𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝜃𝜃) is the y component of the linear velocity of 

the bicycle, 
𝑓𝑓3(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐2𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔(𝛿𝛿) is the rate of change of the heading angle of 

the bicycle,  
𝑓𝑓4(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = 𝑐𝑐3𝜑𝜑 is the rate of change of the steering angle of the 

bicycle,  
𝑓𝑓5(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = −𝑎𝑎1𝜔𝜔 + 𝑎𝑎1𝜏𝜏1 is the rate of change of the bicycle angu-

lar velocity, 
𝑓𝑓6(𝒀𝒀(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) = −𝑎𝑎2𝜑𝜑 + 𝑎𝑎2𝜏𝜏2 is the rate of change of the velocity of 

steering angle. 
𝒀𝒀(𝑡𝑡) = (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡),𝜃𝜃(𝑡𝑡), 𝛿𝛿(𝑡𝑡),𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡)) is the unkown state vector function. 

It is built to store all the state functions. 
𝜶𝜶(𝑡𝑡) = (𝛼𝛼1(𝑡𝑡),𝛼𝛼2(𝑡𝑡),𝛼𝛼3(𝑡𝑡),𝛼𝛼4(𝑡𝑡),𝛼𝛼5(𝑡𝑡),𝛼𝛼6(𝑡𝑡)) is the unkown costate (adjoint) 

vector function. 
It is built to store all the costate functions. Concerning the control functions, 

the normal equations for optimality are as follows: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏1

= 2𝜏𝜏1∗ + 𝑎𝑎1𝛼𝛼5 = 0  (15) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏2

= 2𝜏𝜏2∗ + 𝑎𝑎2𝛼𝛼6 = 0  (16) 
The feasible control functions are given by   
𝜏𝜏1∗ = −0.5𝑎𝑎1𝛼𝛼5              (17) 
𝜏𝜏2∗ = −0.5𝑎𝑎2𝛼𝛼6              (18) 
 

4-. Normal Condition for Optimality 
If 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗) is the optimal control of the above problem and 𝒀𝒀∗ =

(𝑥𝑥∗,𝑦𝑦∗,𝜃𝜃∗, 𝛿𝛿∗,𝜔𝜔∗,𝜑𝜑∗)  the corresponding optimal system response to the input 
control 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗) , then there exists a costate vector function 𝜶𝜶∗ =
(𝛼𝛼1∗,𝛼𝛼2∗,𝛼𝛼3∗,𝛼𝛼4∗,𝛼𝛼5∗,𝛼𝛼6∗), also called adjoint vector such that the following are 
satisfied: 

𝐽𝐽(𝒖𝒖∗) ≤ 𝐽𝐽(𝒖𝒖)              (19) 
𝑑𝑑𝑥𝑥∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃∗)         (20)  

𝑑𝑑𝑦𝑦∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃∗)         (21) 

𝑑𝑑𝜃𝜃∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐2𝜔𝜔∗𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿∗)         (22) 

𝑑𝑑𝛿𝛿∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐3𝜑𝜑∗                (23) 

𝑑𝑑𝜔𝜔∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎1𝜔𝜔∗ + 𝑎𝑎1𝜏𝜏1∗      (24) 

𝑑𝑑𝜑𝜑∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎2𝜑𝜑∗ + 𝑎𝑎2𝜏𝜏2∗      (25) 

𝑑𝑑𝛼𝛼1∗

𝑑𝑑𝑑𝑑
= 0                  (26) 

𝑑𝑑𝛼𝛼2∗

𝑑𝑑𝑑𝑑
= 0                  (27)  

𝑑𝑑𝛼𝛼3∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝜔𝜔∗(𝛼𝛼1∗sin(𝜃𝜃∗) − 𝛼𝛼2∗cos(𝜃𝜃∗))  (28) 

𝑑𝑑𝛼𝛼4∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐2𝛼𝛼3∗𝜔𝜔∗𝑠𝑠𝑠𝑠𝑠𝑠2(𝛿𝛿∗)   (29) 

𝑑𝑑𝛼𝛼5∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐1�𝛼𝛼1∗𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃∗) − 𝛼𝛼2∗𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃∗)� + 𝑎𝑎1𝛼𝛼5∗  (30) 

𝑑𝑑𝛼𝛼6∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐3𝛼𝛼4∗ + 𝑎𝑎2𝛼𝛼6∗  (31) 
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By letting 𝒖𝒖∗ = (𝜏𝜏1∗, 𝜏𝜏2∗), with 𝜏𝜏1∗ = −0.5𝑎𝑎1𝛼𝛼5∗   and 𝜏𝜏2∗ = −0.5𝑎𝑎2𝛼𝛼6∗  for 
the control functions, 

𝑧𝑧1∗ = 𝑥𝑥∗, 𝑧𝑧2∗ = 𝑦𝑦∗, 𝑧𝑧3∗ = 𝜃𝜃∗, 𝑧𝑧4∗ = 𝛿𝛿∗, 𝑧𝑧5∗ = 𝜔𝜔∗ and 𝑧𝑧6∗ = 𝜑𝜑∗ for the state 
functions, 

𝑧𝑧7∗ = 𝛼𝛼1∗ , 𝑧𝑧8∗ = 𝛼𝛼2∗ , 𝑧𝑧9∗ = 𝛼𝛼3∗ , 𝑧𝑧10∗ = 𝛼𝛼4∗ , 𝑧𝑧11∗ = 𝛼𝛼5∗   and 𝑧𝑧12∗ = 𝛼𝛼6∗  for 
the costate functions 

and by combining all the state and costate functions into a vector 𝒛𝒛 = [𝒀𝒀,𝜶𝜶], 
then the combined state-costate system can be rewritten as 

 𝑑𝑑𝑧𝑧1
∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧3∗)      (32) 

𝑑𝑑𝑧𝑧2∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧3∗)       (33) 

𝑑𝑑𝑧𝑧3∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐2𝑧𝑧5∗𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧4∗)       (34) 

𝑑𝑑𝑧𝑧4∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐3𝑧𝑧6∗               (35) 

𝑑𝑑𝑧𝑧5∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎1𝑧𝑧5∗ + 𝑎𝑎1𝜏𝜏1      (36) 

𝑑𝑑𝑧𝑧6∗

𝑑𝑑𝑑𝑑
= −𝑎𝑎2𝑧𝑧6∗ + 𝑎𝑎2𝜏𝜏2      (37) 

𝑑𝑑𝑧𝑧7∗

𝑑𝑑𝑑𝑑
= 0                  (38) 

𝑑𝑑𝑧𝑧8∗

𝑑𝑑𝑑𝑑
= 0                  (39) 

𝑑𝑑𝑧𝑧9∗

𝑑𝑑𝑑𝑑
= 𝑐𝑐1𝑧𝑧5∗(𝑧𝑧7∗sin(𝑧𝑧3∗) − 𝑧𝑧8∗cos(𝑧𝑧3∗)) (40) 

𝑑𝑑𝑧𝑧10∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐2𝑧𝑧9∗𝑧𝑧5∗𝑠𝑠𝑠𝑠𝑠𝑠2(𝑧𝑧4∗)   (41) 

𝑑𝑑𝑧𝑧11∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐1�𝑧𝑧7∗𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧3∗) − 𝑧𝑧8∗𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧3∗)� + 𝑎𝑎1𝑧𝑧11∗ (42) 

𝑑𝑑𝑧𝑧12∗

𝑑𝑑𝑑𝑑
= −𝑐𝑐3𝑧𝑧10∗ + 𝑎𝑎2𝑧𝑧12∗  (43) 

Vector 𝒛𝒛 is built to vectorize the combined state and costate system of 
equations so that the system can be analyzed and processed in a easy and rigor-
ous manner.  

Notice that in the system (32)-(43) the right hand side and its gradient are 
continuous. Therefore, the solution exists and is unique.  

5-. Computer Program 
Pontryagin’s Minimum Principle applied in this article involves a costate 

system of ordinary differential equations which combined to the state system and 
the feasible controls gives a combined free-control state-costate system of ordi-
nary differential equations. I order to solve any system of ordinary differential 
equations which is an initial value problem, I developed (in Matlab) an algorithm 
coding a fourth-order Runge-Kutta method. Such an algorithm can be translated 
into many other programming languages. It is as follows: 
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function [t,y] = runge_v2(fs,t0,tf,N,y0) 
h=(tf-t0)./(N-1); // h is the step size for the discretization. 
t=t0:h:tf; // t is the time vector.  
t=t';  
y = zeros(N,length(y0)); // y0 is the initial vector solution. y is initialized to zero. 
y(1,:) = y0.'; // The solution at the starting time.. 
for n = 2:N 
k1 = feval(fs,t(n-1),y(n-1,:)); 
k2 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k1'); 
k3 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k2'); 
k4 = feval(fs,t(n-1)+h,y(n-1,:)+h*k3'); 
y(n,:) = y(n-1,:)+(h/6)*(k1'+2*k2'+2*k3'+k4'); 
end 

 
The above algorithm can be used to solve any initial value problem. Let’s use 

it to solve the system (32)-(43) of equations. By translating and developing the 
algorithm into Scilab codes we have the following set of codes:  

 

clear all 
clc; // To clear the screen 
c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; // These are Constants of proportionality c1=R; c2=R/L; 
// R is the radius of each wheel; L is the distance between the front and the rear wheels. 
t0=0; // t0 is the initial time of the motion; 
tf=6; //  tf is the final time of the motion; 
N=601; // N is the number of discrete point; 
h=(tf-t0)/(N-1);// Step size.   
t=t0:h:tf; // vector of discrete times 
z=zeros(N,12); // Initialization of z 
z(1,:)= [zeros(1,6),ones(1,6)]; // Good 
k=zeros(1,12); 
for n = 2:N 
// For the 1st ordinary differential equation, equation (32), we have the following codes 
k(1,1)=c1*z(n-1,5)*cos(z(n-1,3)); 
k(2,1)= c1*(z(n-1,5) +(h/2)* k(1,1))*cos(z(n-1,3) +(h/2)*k(1,1)); // The program continues 
k(3,1)= c1*(z(n-1,5) +(h/2)* k(2,1))*cos(z(n-1,3) +(h/2)*k(2,1)); 
k(4,1)= c1*(z(n-1,5) +(h/2)* k(3,1))*cos(z(n-1,3) +(h/2)*k(3,1)); 
z(n,1)=z(n-1,1)+(h/6)*(k(1,1)+ 2*(k(2,1)+k(3,1))+k(4,1)); 
// For the 2nd ordinary differential equation, equation (33), we have the following codes 
k(1,2)=c1*z(n-1,5)*sin(z(n-1,3)); 
k(2,2)= c1*(z(n-1,5)+(h/2)*k(1,1))*sin(z(n-1,3)+(h/2)*k(1,2)); 
k(3,2)= c1*(z(n-1,5)+(h/2)*k(2,2))*sin(z(n-1,3)+(h/2)*k(2,2)); 
k(4,2)= c1*(z(n-1,5)+(h/2)*k(3,2))*sin(z(n-1,3)+(h/2)*k(3,2)); 
z(n,2)=z(n-1,1)+(h/6)*(k(1,2)+2*(k(2,2)+k(3,2))+k(4,2)); 
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// For the 3rd ordinary differential equation, equation (34), , we have the following codes 
k(1,3)=c2*z(n-1,5)*tan(z(n-1,4)); 
k(2,3)= c2*(z(n-1,5)+(h/2)*k(1,3))*tan(z(n-1,4)+(h/2)*k(1,3)); 
k(3,3)= c2*(z(n-1,5)+(h/2)*k(2,3))*tan(z(n-1,4)+(h/2)*k(2,3)); 
k(4,3)= c2*(z(n-1,5)+(h/2)*k(3,3))*tan(z(n-1,4)+(h/2)*k(3,3)); 
z(n,3)=z(n-1,3)+(h/6)*(k(1,3)+2*(k(2,3)+k(3,3))+k(4,3)); 
// For the 4th ordinary differential equation, equation (35), we have the following codes 
k(1,4) = c3*z(n-1,6); 
k(2,4)= c3*(z(n-1,6)+(h/2)*k(1,4)); 
k(3,4)= c3*(z(n-1,6)+(h/2)*k(2,4)); 
k(4,4)= c3*(z(n-1,6)+(h/2)*k(3,4)); 
z(n,4)=z(n-1,4)+(h/6)*(k(1,4)+ 2*(k(2,4)+k(3,4))+k(4,4)); 
// For the 5th ordinary differential equation, equation (36), we have the following codes 
k(1,5)= a1*(-0.5*a1*z(n-1,11)-z(n-1,5)); 
k(2,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(1,5))-(z(n-1,5)+(h/2)*k(1,5))); 
k(3,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(2,5))-(z(n-1,5)+(h/2)*k(2,5))); 
k(4,5)= a1*(-0.5*a1*(z(n-1,11)+(h/2)*k(3,5))-(z(n-1,5)+(h/2)*k(3,5))); 
z(n,5)=z(n-1,5)+(h/6)*(k(1,5)+2*(k(2,5)+k(3,5))+k(4,5)); 
// For the 6th ordinary differential equation, equation (37), we have the following codes 
k(1,6)=a2*(-0.5*a2*z(n-1,12)-z(n-1,6)); 
k(2,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(1,6))-(z(n-1,6)+(h/2)*k(1,6))); 
k(3,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(2,6))-(z(n-1,6)+(h/2)*k(2,6))); 
k(4,6)=a2*(-0.5*a2*(z(n-1,12)+(h/2)*k(3,6))-(z(n-1,6)+(h/2)*k(3,6))); 
z(n,6)=z(n-1,6)+(h/6)*(k(1,6)+ 2*(k(2,6)+k(3,6))+k(4,6)); 
// For the 7th ordinary differential equation, equation (38), we have the following codes 
k(1,7)=0; 
k(2,7)=(h/2)*k(1,7); 
k(3,7)=(h/2)*k(2,7); 
k(4,7)=(h/2)*k(3,7); 
z(n,7)=z(n-1,7)+(h/6)*(k(1,7)+ 2*(k(2,7)+k(3,7))+k(4,7)); 
// For the 8th ordinary differential equation, equation (39), we have the following codes 
k(1,8)=0; 
k(2,8)=(h/2)*k(1,8); 
k(3,8)=(h/2)*k(2,8); 
k(4,8)=(h/2)*k(3,8); 
z(n,8)=z(n-1,8)+(h/6)*(k(1,8)+ 2*(k(2,8)+k(3,8))+k(4,8)); 
// For the 9th ordinary differential equation, equation (40), we have the following codes 
k(1,9)=c1*z(n-1,5)*(z(n-1,7)*sin(z(n-1,3))- z(n-1,8)*cos(z(n-1,3))); 
k(2,9)=c1*(z(n-1,5)+(h/2)*k(1,9))*((z(n-1,7)+(h/2)*k(1,9))*sin(z(n-1,3)+(h/2)*k(1,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(1,9))); 
k(3,9)=c1*(z(n-1,5)+(h/2)*k(2,9))*((z(n-1,7)+(h/2)*k(2,9))*sin(z(n-1,3)+(h/2)*k(2,9))-(z(n-1,8)+(h/2)*k(2,9))*cos(z(n-
1,3)+(h/2)*k(2,9))); 
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k(4,9)=c1*(z(n-1,5)+(h/2)*k(3,9))*((z(n-1,7)+(h/2)*k(3,9))*sin(z(n-1,3)+(h/2)*k(3,9))-(z(n-1,8)+(h/2)*k(1,9))*cos(z(n-
1,3)+(h/2)*k(3,9))); 
z(n,9)=z(n-1,9)+(h/6)*(k(1,9)+2*(k(2,9)+k(3,9))+k(4,9)); 
// For the 10th ordinary differential equation, equation (41), we have the following codes 
k(1,10)= -c2*z(n-1,5)*z(n-1,9)*((sec(z(n-1,4)))^2); 
k(2,10)= -c2*(z(n-1,5)+(h/2)*k(1,10))*(z(n-1,9)+(h/2)*k(1,10))*((sec(z(n-1,4) +(h/2)*k(1,10)))^2); 
k(3,10)= -c2*(z(n-1,5)+(h/2)*k(2,10))*(z(n-1,9)+(h/2)*k(2,10))*((sec(z(n-1,4) +(h/2)*k(2,10)))^2); 
k(4,10)= -c2*(z(n-1,5)+(h/2)*k(3,10))*(z(n-1,9)+(h/2)*k(3,10))*((sec(z(n-1,4) +(h/2)*k(3,10)))^2); 
z(n,10)=z(n-1,10)+(h/6)*(k(1,10)+2*(k(2,10)+k(3,10))+k(4,10)); 
// For the 11th ordinary differential equation, equation (42) , we have the following codes 
k(1,11)=-c1*(z(n-1,7)*cos(z(n-1,3))- z(n-1,8)*sin(z(n-1,3)))+a1*z(n-1,11); 
k(2,11)=-c1*((z(n-1,7)+(h/2)*k(1,11))*cos(z(n-1,3)+(h/2)*k(1,11))-(z(n-1,8)+(h/2)*k(1,11))*sin(z(n-1,3)+(h/2)*k(1,11))
)+a1*(z(n-1,11)+(h/2)*k(1,11)); 
k(3,11)=-c1*((z(n-1,7)+(h/2)*k(2,11))*cos(z(n-1,3)+(h/2)*k(2,11))-(z(n-1,8)+(h/2)*k(2,11))*sin(z(n-1,3)+(h/2)*k(2,11))
)+a1*(z(n-1,11)+(h/2)*k(2,11)); 
k(4,11)=-c1*((z(n-1,7)+(h/2)*k(3,11))*cos(z(n-1,3)+(h/2)*k(3,11))-(z(n-1,8)+(h/2)*k(3,11))*sin(z(n-1,3)+(h/2)*k(3,11))
)+a1*(z(n-1,11)+(h/2)*k(3,11)); 
z(n,11)=z(n-1,11)+(h/6)*(k(1,11)+2*(k(2,11)+k(3,11))+k(4,11)); 
// For the 12th ordinary differential equation, equation (43), we have the following codes 
k(1,12)=-c3*z(n-1,10)+a2*z(n-1,12); 
k(2,12)=-c3*(z(n-1,10)+(h/2)*k(1,12))+a2*(z(n-1,12)+(h/2)*k(1,12)); 
k(3,12)=-c3*(z(n-1,10)+(h/2)*k(2,12))+a2*(z(n-1,12)+(h/2)*k(2,12)); 
k(4,12)=-c3*(z(n-1,10)+(h/2)*k(3,12))+a2*(z(n-1,12)+(h/2)*k(3,12)); 
z(n,12)=z(n-1,12)+(h/6)*(k(1,12)+2*(k(2,12)+k(3,12))+k(4,12)); 
end 
t=t'; 
// The program continues 
control1=-0.5*a1*z(:,11); control2=-0.5*a2*z(:,12); control=[ control1, control2]; 
dx= c1*z(:,5).*cos(z(:,3)); // x component of the velocity 
dy= c1*z(:,5).*sin(z(:,3)); // y component of the velocity 
dTheta=c2*z(:,5).*tan(z(:,4)); // Heading angular velocity 
dDelta= c3*z(:,6); // Steering angular velocity 
dOmega = a1*(-0.5*a1*z(:,11)-z(:,5)); // Rate of change of the heading angular velocity 
dPhi= a2*(-0.5*a2*z(:,12)-z(:,6)); // Rate of change of the steering angular velocity 
Ham=z(:,7).*( c1*z(:,5).*cos(z(:,3))) + z(:,8).*(c1*z(:,5).*sin(z(3))) + z(:,9).*(c2*z(:,5).*tan(z(:,4))) + z(:,10).*(c3*z(:,6)) 
+ z(:,11).*(a1*(-0.5*a1*z(11)-z(5)))+z(:,12).*(a2*(-0.5*a2*z(12)-z(6))); 
// Optimal trajectory  
scf(0); 
plot(z(:,1),z(:,2), 'r'); xlabel('x (in meters) ');ylabel('y=f(x) (in meters)');  
z(1,:)=[zeros(1,6),rand(1,6)] 
distance=sqrt(max(z(:,1))^2 + max(z(:,2))^2) 
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicycletrajectory.png') 
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// First 3 state functions  
scf(0); 
subplot(3,1,1);plot(t,z(:,1), 'r');xlabel('Time t in seconds');ylabel('State 1 ');  
subplot(3,1,2);plot(t,z(:,2) , 'r');xlabel('Time t in seconds ');ylabel('State 2 ');   
subplot(3,1,3);plot(t,z(:,3) , 'r');xlabel('Time t in seconds ');ylabel('State 3 ');  
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclefirst3states.png ') 
// Last 3 state functions 
scf(0); 
subplot(3,1,1);plot(t,z(:,4) , 'r');xlabel('Time t in seconds ');ylabel('State 4');  
subplot(3,1,2);plot(t,z(:,5) , 'r');xlabel('Time t in seconds ');ylabel('State 5');   
subplot(3,1,3);plot(t,z(:,6) , 'r');xlabel('Time t in seconds ');ylabel('State 6');  
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclelast3States.png ') 
// First 3 costate functions 
scf(0); 
subplot(3,1,1);plot(t,z(:,7) , 'r');xlabel('Time t in seconds ');ylabel('Costate 1');  
subplot(3,1,2);plot(t,z(:,8) , 'r');xlabel('Time t in seconds ');ylabel('Costate 2');   
subplot(3,1,3);plot(t,z(:,9) , 'r');xlabel('Time t in seconds ');ylabel('Costate 3');  
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclefirst3Costates.png ') 
// Last 3 costate functions;   // The program continues 
scf(0); 
subplot(3,1,1);plot(t,z(:,10) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 4');   
subplot(3,1,2);plot(t,z(:,11) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 5');   
subplot(3,1,3);plot(t,z(:,12) , 'r'); xlabel('Time t in seconds ');ylabel('Costate 6');  
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclelast3Costates.png ') 
// Control strategies 
scf(0); 
subplot(2,1,1);plot(t,control1, 'r');xlabel('Time t in seconds ');ylabel('Control1');  
subplot(2,1,2);plot(t,control2, 'r');xlabel('Time t in seconds ');ylabel('Control2');   
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicycleControls.png ') 
// Velocities 
scf(0); 
subplot(3,1,1);plot(t,dx, 'r'); xlabel('Time t in seconds ');ylabel('Linear velocity along x axis');  
subplot(3,1,2);plot(t,dy, 'r'); xlabel('Time t in seconds ');ylabel('Linear velocity along y axis');  
subplot(3,1,3);plot(t, c1*z(:,5) , 'r'); xlabel('Time t in seconds ');ylabel('Robot speed');  
xs2png(0,'C:\Users\Guest\Documents\17january2023\bicyclex_velocity.png '); 
 // The program ends 

 

6-. Computational simulations 
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Figure 2. Feasible Bicycle Robot Trajectory. 

Figure 2 gives the feasible trajectory of the bicycle robot. The starting point 
of the path is (0,0). 

      

                            FIGURE 3. First three feasible state functions. 
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FIGURE 4. Last three feasible state functions. 

The above plotted function state1 describes the instantaneous robot’s posi-
tion in the 𝑥𝑥 direction. In other words we have state1 =  𝑥𝑥(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The 
above plotted function state2 describes the instantaneous robot’s position in the 
𝑦𝑦 direction. In other words we have state2 =  𝑦𝑦(𝑡𝑡), 𝑡𝑡 ∈ [0,6].  The above plot-
ted function state3 describes the instantaneous robot’s heading angle. In other 
words we have state3 =  𝜃𝜃(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above plotted function state4 de-
scribes the instantaneous steering angle. state4 =  𝛿𝛿(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above 
plotted function state5 describes the instantaneous angular velocity. state5 =
 𝜔𝜔(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The above plotted function state6 describes the instantaneous 
steering angle’s velocity. state6 =  𝜑𝜑(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. 

    

Figure 5. First three feasible costate functions. 
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Figure 6. Last three feasible costate functions. 

The function 𝑐𝑐𝑐𝑐state1  is the adjoint function to the function state1 .  
𝑐𝑐𝑐𝑐state1 = 𝛼𝛼1(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state2 is the adjoint function to the 
function state2.  𝑐𝑐𝑐𝑐state2 = 𝛼𝛼2(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state3 is the ad-
joint function to the function state3.  𝑐𝑐𝑐𝑐state3 = 𝛼𝛼3(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 
𝑐𝑐𝑐𝑐state4 is the adjoint function to the function state4.  𝑐𝑐𝑜𝑜state4 = 𝛼𝛼4(𝑡𝑡), 𝑡𝑡 ∈
[0,6]. 

The function 𝑐𝑐𝑐𝑐state5  is the adjoint function to the function state5 .  
𝑐𝑐𝑐𝑐state5 = 𝛼𝛼5(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The function 𝑐𝑐𝑐𝑐state6 is the adjoint function to the 
function state4.  𝑐𝑐𝑐𝑐state6 = 𝛼𝛼6(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. 

One can notice that 𝛼𝛼1(𝑡𝑡) and 𝛼𝛼2(𝑡𝑡) are constant because their time deriv-
atives are zeros.  

 
                             FIGURE 7. Feasible control strategies. 
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The function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 describes the instantaneous reference command to 
the robot angular velocity. In other words we have 1 =  𝜏𝜏1(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. The 
function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 describes the instantaneous reference command to the robot 
angular velocity. In other words we have 2 =  𝜏𝜏2(𝑡𝑡), 𝑡𝑡 ∈ [0,6]. 

7-. Conclusion 
The aim of this paper was to compute the feasible control strategies and the 

associated feasible state functions, also called feasible robot system response to 
control, for an autonomous rear-axle bicycle robot to bring it from a given initial 
state to a final state such that the total running cost is minimized. A fourth-order 
Runge-Kutta was used to solve the combined free-control state-costate system of 
ordinary differential equations obtained from Pontryagin’s Minimum Principle. 
The obtained results enable to predict the performance of the autonomous bicycle 
robot so that it can be controlled accurately and efficiently. The computer pro-
grams are useful to any reader or any researcher who is familiar with program-
ming and who would want to learn more. Computational Simulations are pro-
vided to show the effectiveness and the reliability of the approach. In future, 
control policies will be developed for the rear-axle bicycle robot to asymptotical-
ly track a prescribed trajectory. Some methodology will be performed to develop 
optimal control strategies using Lagrange Interpolating polynomial. 
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