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Article 
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Abstract:  We  combined  observations  of  ocean  surface  winds  from  Indian  SCATterometer  SATellite  ‐1 
(SCATSAT‐1) with a background wind field from a numerical weather prediction (NWP) model available at 
National Centre for Medium‐Range Weather Forecast (NCMRWF) to generate a 6‐hourly gridded hybrid wind 
product. A  distinctive  feature  of  the  study  is  to  produce  a  global  gridded wind  field  from  SCATSAT‐1 
scatterometer passes with spatio‐temporal data gaps at regular synoptic hours relevant for forcing models and 
other NWP studies. We are following    the concept from the modern particle filter technique, which does not 
represent the model probability density function (PDF) as Gaussian. We generated the 6 hourly hybrid winds 
for 2018 and validated using  the wind speed  from daily gridded  level‐4 SCATSAT‐1 winds  (L4AW), Cross 
Calibrated Multi‐Platform (CCMP) dataset and global buoy data from National Data Buoy Centre (NDBC). The 
results suggest the potential of the technique to produce scatterometer winds at the desired temporal frequency 
with significantly less noise and bias along the swath. The study shows that the generated hybrid winds are of 
prime  quality  compared with  the  already  existing  daily  products  available  from  Indian  Space  Research 
Organization (ISRO). 

Keywords:  Winds;  SCATSAT‐1;  NCMRWF  (National  Center  for  Medium  Range  Weather 
Forecasting); CCMP (Cross Calibrated Multi‐Platform) and Particle filter 

1. Introduction

Scatterometers are active microwave radars operating in Ku‐Band or C‐ band, dedicated to the 
measurement of ocean winds. These space‐borne instruments have a long legacy due to continued 
efforts from various international space agencies. Its journey began in 1978 with short‐lived success 
of Seasat scatterometer by the National Aeronautics and Space Administration (NASA). Further, in 
1996 Ku‐band scatterometer‐ the NASA Scatterometer (NSCAT) onboard Advanced Earth Observing 
Satellite  (ADEOS‐1) was  launched.  Following  the  success  of NSCAT, NASA  also  launched  the 
SeaWinds scatterometer onboard Quick Scatterometer (QuikSCAT) in 1999. At the end of the mission 
in 2009, NASA launched Rapid Scatterometer (RapidSCAT) on the International Space Station (ISS) 
in 2014. China also initiated scatterometer missions in 2011 with four scatterometers by the China 
National Space Administration (CNSA): HaiYang (HY)‐2A, HY‐2B, HY‐2C, and HY‐2D. Further, in 
2018 China‐France  cooperation  led  to  the  successful  launch of a  rotating  fan beam  scatterometer 
onboard Chinese–French Oceanography Satellite (CFOSAT). European Space Agency (ESA) had a 
prolonged and continued effort toward C‐Band scatterometer. European Remote Sensing Satellites, 
ERS‐1 and ERS‐2, officially known as Advanced Microwave Instrument (AMI) scatterometers were 
launched  in  1991  and  1995,  respectively.  ESA  further  launched  three  Advanced  Scatterometer 
(ASCAT) instruments onboard Meteorological Operational‐A (METOP‐A), METOP‐B, and METOP‐
C    in 2006, 2012 and 2018, respectively. A detailed description of the international cooperation in the 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2023                   doi:10.20944/preprints202301.0510.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202301.0510.v1
http://creativecommons.org/licenses/by/4.0/


  2 

 

field of  scatterometry  can be  learned  from  [1] and  [2].  India began  its  scatterometer program on 
September  8,  2009 with  launch  of  the  first  scatterometer  called Ocean  SCATterometer  (OSCAT) 
onboard Oceansat‐2. SCATteromete SATellite‐1 (SCATSAT‐1) is the second scatterometer mission by 
the  Indian Space Research Organization  (ISRO). This study deals with  the generation of 6 hourly 
global gridded wind data from SCATSAT‐1.     

SCATSAT‐1 carries a dual‐polarized pencil beam scatterometer dedicated to measuring wind 
over the ocean.    ISRO launched this satellite using Polar Satellite Launch Vehicle (PSLV) C‐35 on 26th 
September 2016 from Sriharikota. It is an active microwave scatterometer operating at a frequency of 
13.5 GHz (Ku band) dedicated to measuring the backscatter (σ0)    from the ocean surface. This σ0 is 
eventually used to compute wind vectors over the global oceans.    SCATSAT‐1 has been instrumental 
in catering to weather forecasting, cyclone prediction, ocean state prediction, climate change, naval 
operations, ship routing, etc. The SCATSAT‐1 monitors 90% of the global ocean with a repeat orbit 
of 2 days.  It has  two beams with horizontal and vertical polarizations with a  scan  speed of 20.5 
rotations per minute.    The inner and outer beam makes an incidence angle of 48.9 º and 57.6 º on the 
ground respectively with a ground resolution of    25 x 25 km. [3] 

Data  processing  of  the  scatterometer  involving  of  converting    σ0  into  meaningful  wind 
information  is  extremely  complicated with various  stages, details of which  are  available  in    [4]. 
While Level‐1B (L1B) has actual scan data, Level‐2A (L2A)   maps    σ0 over a    geographical area at a 
fixed  grid  interval  (25  km  or  50  km).    Level‐2B  (L2B)  combines  σ0 and wind  information  from   
Numerical  Weather  Prediction  (NWP)  models  using  a  geophysical  Model  Function  (GMF)  to 
generate wind vector information corresponding to each cell of the swath. Wind vectors are marked 
for sea ice and rain flags at this level. Thus, the L2B product provides the wind speed over the global 
ocean along the passes of the scatterometer as shown in Figure 1.   However, user requirement for 
wind data is stringent. For example, most of the users use wind fields to force their numerical models 
and thus the wind field has to be gridded preferably at standard synoptic hours of 00, 06, 12, 18 hours. 
To partially address this requirement the daily analysed wind product from SCATSAT‐1 is also made 
available  by  ISRO  via  the  official website, www.mosdac.gov.in.  This  is  a  value‐added  product 
depicting  the gridded daily scatterometer analysed wind and  is referred  to as Level‐4 Aanalyzed 
Wind  or L4AW  [5]. This  is  currently  the  only  standard data product  form  ISRO  addressing  the 
requirement of the modelers.      In this study, we propose to utilize the particle filter technique for 
statistically combining SCATSAT‐1 and background wind from National Centre for Medium Range 
Weather Forecasting (NCMRWF) to generate a hybrid wind product every 6 hours (00, 06,12 and 18 
UTC).  The  choice  of  the  particle  filter  technique  is  not  arbitrary.  This  widely  used  option  to 
statistically  combine  different  fields  uses  optimum  interpolation  technique.  Alternately  other 
ensemble based techniques include the ensemble Kalman filter (EnKF) method of assimilation [6] and 
particle  filter  [7].    But  unlike  other  approaches,  the  particle  filter  does  not  consider  the  apriori 
assumption of  the Gaussianity of  the probability distribution  function  (PDF) of  the  system. This 
technique is more suitable where the system is highly non‐linear. Recently, particle filter techniques 
have been successfully utilized in the assimilation of highly non‐linear coastal waves in wave models 
[8]. In similar lines, chlorophyll data have been assimilated in highly nonlinear coupled bio‐physical 
models [9].   

The paper is organised as follows: details on data used and methodology are provided in Section 
2, followed by the results & discussions presented in Section 3. Conclusions are presented in Section 
4. 

2. Data and Methods   

In this study, we combine the NCMRWF wind fields with those from L2B product of SCATSAT‐
1  for  2018. The NCMRWF winds  are  available  from www.ncmrwf.gov.in, which  are  at  a  spatial 
resolution of 25 Km x 25 km and are available at 6 hourly intervals at standard synoptic hours of 00, 
06, 12 and 18 UTC. We also utilized the SCATSAT‐1 L2B winds and L4AW winds in this study. The 
L2B wind is used in combination with NCMRWF fields to generate the particle filter‐based analyzed 
wind  (PF wind).    L4AW  is used  for validating  the PF wind speed. Both  these wind products are 
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available at www.mosdac.gov.in, which is the official data dissemination center of ISRO.    The L2B 
data used here are the wind fields along the satellite track and for each day there are approximately 
60 track data containing the ascending (south to north) and descending (north to south) passes. These 
fields are at 25 km    spatial resolution. A typical single‐day L2B passes of SCATSAT‐1 are shown in 
Figure 1. In this study, we collected the wind fields        from    Jan 01‐00UTC to Dec 3100UTC for the 
entire 2018.    These passes are  categorized  in    synoptic  time  frames of 00, 06, 12 and 18 UTC by 
drawing passes within ± 3hours for particular hours. Thus, at end of this exercise observed SCATSAT‐
1 winds are also available at fixed synoptic hours similar to the NCMRWF background winds.     

We compared the resultant hybrid product or PF wind     with the existing ISRO‐L4AW. This is 
a gridded daily wind  field available at  the same spatial resolution  [5].       Cross Calibrated Multi‐
Platform (CCMP) gridded surface vector winds that are generated using satellite, moored buoy, and 
model wind data are used  for validation of  the newly generated wind product.    These data are 
available from Remote Sensing Systems (RSS) website, www.remss.com. It combines QuikSCAT and 
ASCAT scatterometer wind vectors, moored buoy wind data, and ERA‐Interim model wind fields 
using a Variational Analysis Method  (VAM)  to produce  four maps per day as 0.25 x 0.25‐degree 
gridded  vector winds. This  is  an  excellent  resource  for  ocean  studies  and  is  known  for  its  high 
accuracy [10,11]. In this study, the Version‐2 of CCMP wind is used for      2018.    The biases between 
the CCMP and ISRO daily analysed L4AW wind and particle filter‐based winds are calculated for 
various months to validate the quality of the newly derived wind product for    2018. Apart from this, 
the NDBC buoy data for 2018 have also been used for validation.   

 

Figure‐1. (a) L2B and (b) L4AW winds from SCATSAT‐1 on Dec 1, 2018. 

Particle filter and its implementation procedure   
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As mentioned, the combination of the SCATSAT –L2B and NCMRWF wind fields is based on 
the concept of particle filter which is an ensemble‐based technique [7]. The novelty of the scheme is 
that, unlike other ensemble techniques, the particle filter does not impose any restriction on the form 
of the PDF of the background field. Especially, it does not assume the PDF to be Gaussian, which is 
the  standard assumption of EnKF, and which often gets violated  in practice  [7,12].    The  realistic 
implementation of the particle filter is clearly explained in [13], [9] and [8].   

Particle filter, like any other ensemble based data assimilation scheme, assumes the NCMRWF 
model wind field background to be stochastic where the state ψ is described by a multivariate PDF, 
pm(ψ). The observation vector d (which is SCATSAT‐1 wind field here) has associated PDF, pd(d). 
The cornerstone of particle filter is Bayes’s theorem which reads as 

 𝑝௠ሺ𝜓|𝑑ሻ ൌ 𝑝ௗሺ𝑑|𝜓ሻ𝑝௠ሺ𝜓ሻ𝑝ௗሺ𝑑ሻ                                  ሺ1ሻ 
The  subscripts  in  the  PDFs  are  dropped  assuming  that  the  arguments  will  clarify  which 

particular  PDF  is  being  used.  The  PDF  in  the  denominator  can  be  easily  calculated  from  the 
numerator by integration, 𝑝ሺ𝑑ሻ ൌ න𝑝ሺ𝑑,𝜓ሻ𝑑𝜓 ൌ න𝑝ሺ𝑑|𝜓ሻ𝑝ሺ𝜓ሻ𝑑𝜓       ሺ2ሻ 

Calculation of posterior PDF needs only the knowledge of PDF of observations given the apriori 
PDF from the background wind fields. The difficulty lies in the calculation of the apriori PDF since 
the dimension of the state space is prohibitively large.    Ensemble‐based technique is the solution to 
this issue. In particle filtering, the background wind PDF is represented by several random draws 
from  the state space, called ensemble members or particles.  If  there are N  such particles, namely ψ ௜with the index i spanning the range 1 to N , the    PDF,  𝑝ሺ𝜓ሻ  becomes 𝑝ሺ𝜓ሻ ൌ  

1𝑁෍𝛿ሺ𝜓 െ 𝜓௜ሻே
௜ୀଵ                                 ሺ3ሻ 

Substituting PDF from (3) into the basic equation (1) we obtain 

p(ψ|d) =∑ 𝑤௜𝛿ே௜ୀଵ ሺ𝜓 െ 𝜓௜ሻ                                                                    (4) 
with the weights being given by 𝑤௜ ൌ 𝑝ሺ𝑑|𝜓௜ሻ∑ 𝑝ሺ𝑑 ∨ 𝜓௜ሻே௜ୀଵ                                      ሺ5ሻ 

Here,  the numerator  is  the PDF of observations given  the model  state  ψ ௜   and  is known  as 
likelihood. Computation  of  the  likelihood  is  a must  for weight  generation. Weights  are  already 
normalized so that their sum is unity. Often this likelihood is considered Gaussian, however, there is 
no compelling reason to do so. Another important aspect is that the likelihoods or the weights, which 
are  just  normalized  likelihoods  are  inversely  proportional  to  the  distance  between  a  given 
observation and its model background.    Thus, more weight should be given to a particle nearer to a 
particular observation than to a particle that is farther apart.   
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Figure 2. Particle filter implementation steps. 

We summarised the practical implementation of the method      in the flow diagram of Figure 2. 
The particle generation in this study as shown in the green box of the flow chart is done by adding 
biases to the background field. It is like perturbing the background field by introducing some random 
noise. In the initial phase of the study, we added fixed biases with no spatial variation to the entire 
field  to produce    a  large number of particles  (128). RMSE  is  then obtained by  comparing  every 
particle     with  the  SCATSAT‐1  observations.    There  are  two major  outcomes  of  this  sensitivity 
experiment. First, applying a particle  filter on  these particles yielded wind  fields  that were more 
skewed  to  the  background  field.  Second,  variation  of  the RMSE with  the  introduced  bias  being   
governed by the bounds between which we introduced the biases. Thus, the distribution of the bias 
between its minimum and maximum range is more important than considering a large number of 
particles. Hence, we varied these additive biases    spatially and based them    on the monthly biases 
between the background and the observation fields.   As the background field absorbs these biases 
we generated    particles  similar  to SCATSAT‐1 wind  field by using  the mean difference between 
observation and background as a perturbation.     

Further, these global difference between observation and background are taken on a monthly 
scale  because  on  a daily  scale,  global  coverage  of  SCATSAT  ‐1  is not  available due  to  its  2 day 
repetivity. Bias at a scale of a few days can be influenced by high wind over several locations across 
the globe facing tropical/subtropical storms. Also, as the winds have great seasonal variability taking 
bias at more than a month scale would not be suitable for the study. Thus, monthly bias between 
observation and background was preferred over other alternatives. In addition, following the second 
conclusion of  the sensitivity experiment, when  this monthly bias was used as perturbation  to  the 
background field, we restricted the total number of the particles    to 20 such that with an iterative 
increment of 5% of the bias field,100% of the bias could be accommodated.     

Thus, we  selected 20 particles      by adding biases  to  the background  field. For each particle 
between N=1 and N=20 the bias added to background field is NX5 % of the total monthly bias at that 
grid point.   Using  initial particles, N=20, and  the original observation  from SCATSAT‐1 L2B, we 
calculated the weights from (5)      to their corresponding particles. The scheme described is popularly 
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referred  to  as  importance  sampling, which  results  in  filter  degeneracy  [7,8], where  one  particle 
practically has all the weights.     

A remedy to this situation is the idea of resampling. The basic idea behind this resampling is to 
discard particles with low weights and to retain multiple copies of particles with relatively higher 
weights so that the total number of particles remains the same. Thus, it is required to calculate the 
weights  and  resample  the  particles  and  again  assign  them  equal  weights  (1/N).  This  weight 
calculation and resampling is the process by which observations get assimilated into the model. This 
resampling process is called sequential importance resampling (SIR)    [8].    [7] outlined the decision 
of exactly how many copies of a particle with a relatively high weight has  to be retained.  In  this 
process, we put N weights    after each other on a line [0,1].   A    random number is drawn from a 
uniform density on [0,1/N ]. N‐1 line pieces starting from this number with interval length 1/N are 
laid on the line [0,1]. A particle is chosen when one of the endpoints of these line pieces falls in the 
weight bin of that particle. The individual particles or ensemble members are not modified during 
the process to maintain the dynamical balance of the field.   

In this case, observations are winds from SCATSAT‐1 at each synoptic hour and we generated 
the particles (N=20)      from NCMRWF wind fields by adding spatially varying biases to them.   We 
then collocated  these    points at  the nearest grid point every six hours. Thus, after every six hour 
interval, distances di between observation and ith particle is computed which are converted to weights 
following [8]. The raw weights are inverse of these distances (1/di). The constant of proportionality 
has no role to play as the weights are normalized following equation 5.    The particle filter discussed 
above  is  then  applied  and  the population  of  20  ensembles  is  resampled  keeping  the  number  of 
ensembles  intact. At each synoptic hour,  the mean of  this resampled population  is eventually  the 
newly derived PF wind field. The methodology is summarised in the flow diagram in Figure 2. Figure 
3 shows the scatter of the distance of each particle with the biases added for its generation and Figure 
4 shows the corresponding weights assigned to it. It can be seen in Figure 3 that as random errors 
between ±1m/s are introduced in the background wind field, the error between the background and 
SCATSAT‐1 observations starts reducing until 0.4 m/s. After that, the errors again rise. Thus, between 
0 and 0.4m/s    random error introduced in the background, we get a maxima in the weights (Figure 
4). Here, the total number of particles used is 128 and the distribution of the RMSE with introduced 
bias  is  typically    between  the minima  and  the maxima  of  the  introduced  bias.    Based  on  these 
weights and after the implementation of the sequential importance resampling, some particles with 
certain  introduced random biases are completely removed  from  the resampled population. These 
removed particles are those with very low weights. Similarly, some particles with higher weights are 
repeated with    total population remaining the same.    Figure 5a shows the variability of biases in the 
initial and  final populations. Thus,  for  the  initial population of  the generated particles,  the mean 
perturbation  of  all  20  particles would  be  by  default  52.5%  of monthly  bias. However,  after  the 
application of the filter procedure the set of particles changes but the total number of particles are 
same as 20. So,  the mean perturbation of  the  final  set of  the population would vary  largely. For 
example on 31 May 2018, it was 76.25% of monthly bias. Figure 5b represent the spatial structure of 
the mean of the bias present in the initial population and resampled population on 31st May 2018. 
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Figure 3. Variation of RMSE of each ensemble w.r.t introduced biases in wind fields. 

 

Figure 4. Variation of weights in each ensemble w.r.t introduced biases in wind fields. 
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Figure 5.  (a) Histogram of  the bias  in  initial and  final population.  (b) mean perturbation  in  initial 
population (top) and same in resampled population (bottom) on 31 May 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2023                   doi:10.20944/preprints202301.0510.v1

https://doi.org/10.20944/preprints202301.0510.v1


  9 

 

 

Figure 6. Mean wind field Jan‐Dec 2018 from (a) SCATSAT‐1 (b) NCMRWF and (c) Particle filter‐
based Reanalysis. 

3. Results and Discussions 

We  generated  the  newly  derived  hybrid  wind,  which  is  called  PF  wind  hereafter  in  the 
manuscript,    for the entire    2018. We did this by combining the L2B wind field from SCATSAT‐1 
and  the background  field of NCMRWF and by perturbing  to produce 20 particles using spatially 
varying additive biases. This wind is now at every 6‐hour interval like any standard model output.   
Figure 6 represents the mean wind fields from SCATSAT‐1 L2B, the NCMRWF original field and the 
PF wind  speed. Large‐scale  features  in SCATSAT‐1 L2B winds are  reproduced  in  the    PF wind. 
Visually the mean field of PF winds is closer to the SCATSAT‐1 winds as compared to the winds from 
the NCMRWF. Lower  and  higher wind  regions  are  nicely  reproduced  in  the  PF winds  and  are 
qualitatively closer to the SCATSAT‐1     
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Figure 7. Bias between (a) NCMRWF wind speed and SCATSAT‐1 wind speed (b) Particle filter‐based 
reanalyzed wind speed and SCATSAT‐1 wind speed between Jan‐Jun 2018 and Jul‐Dec 2018 winds 
as  compared  to  the  NCMRWF  winds.  This  indicates  the  successful  statistical  inclusion  of  the 
SCATSAT‐1 measurements in a background field using the particle filter technique. 

Figure 7 represents the biases between a) NCMRWF wind speed and SCATSAT‐1 wind speed 
b) PF wind speed and SCATSAT‐1 wind speed for a 6‐monthly duration during Jan‐Jun, 2018 and 
Jul‐Dec 2018, respectively. The difference between NCMRWF and SCATSAT‐1 wind (7a) has a strong 
signature of precipitation and cross‐scan biases in the satellite data.    L2B winds of SCTSAT‐1 contain   
flags for rain, winds and good quality data. We flagged the data for good quality wind data but not 
for rain.      The  intention of not using the rain‐flag data  is to preserve the original observations of 
SCATSAT‐1 and establish the success of the technique in reproducing the scatterometer‐like wind 
field.  More  difference  between  the  background  and  observation  helps  in  better  testing  of  the 
technique. However, the cross‐scan bias is a feature that remains an unsolved issue in the L2B data.   
The biases between SCATSAT‐1 and PF wind speed (7b) are much less as compared those between 
NCMRWF    and SCATSAT‐1 winds. Globally, the biases near the equator are a little more (negative) 
as compared  to  the poles  (positive). This  is because  the biases  in  the SCATSAT‐1 winds near  the 
equator are generally higher due to rain contaminations as compared to those in the NCMRWF wind 
fields [14]. These biases have significantly reduced by applying the particle filter technique (Figure 
7b). This indicates that the particle filter technique is successful in incorporating the SCATSAT‐1 wind 
features and reduces the bias between the original NCMRWF fields and the SCATSAT‐1 observations 
at    6 hourly temporal scales.   
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Figure 8. The spatial distribution of bias  in wind speed  (m/s) between CCMP wind speed and  (i) 
SCATSAT‐1 L2B wind speed (top panel), (ii)    Particle filter based reanalysed wind speed (middle 
panel) (iii)    SCATSAT‐1 L4AW wind speed (bottom panel)    during January 2018. 
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Figure 9. The spatial distribution of bias in wind speed (m/s)    between CCMP wind speeds and (i) 
SCATSAT‐1 L2B wind  speed  (top panel),  (ii) Particle  filter based  reanalysed wind  speed  (middle 
panel)    (iii)    SCATSAT‐1 L4AW wind speed (bottom panel)    during July 2018. 

To  assess  the  quality  of  the  particle‐filter‐based  product, we  compared  CCMP wind  field, 
considered as a reference field with the wind speeds from daily L2B‐, L4AW‐SCATSAT‐1    and PF‐
based reanalysed products. Biases thus computed and shown in Figures 8 and 9 for January and July, 
2018,  respectively  are  relatively  large  and  positive  in  the  tropical  equatorial  regions,  gradually 
decreasing to negative    over the mid‐latitudes. Out of the three, PF based reanalysis has the  least 
bias between ‐0.6m/s to 0.9m/s in all regions signifying the effectiveness of the PF method (Figures 8 
and 9). Figure 10 shows the global RMSE and standard deviations of the SCATSAT‐1 L4AW daily 
analysed winds and PF winds with  respect  to  the CCMP winds  for  the entire year.  In doing  this 
analysis the daily CCMP winds are averaged to compare with the daily SCATSAT‐1 L4AW product.   
However, we computed RMSE of PF based winds with 6 hourly CCMP winds. PF winds are of better 
quality to the CCMP winds which is considered reference wind. All global regions like North Atlantic 
and Pacific and the Southern Ocean show a significant reduction in RMSE from around 3.2 m/s to 
2m/s. Another important aspect of the PF wind is a significant reduction in errors along the swath 
edges appearing due to cross‐scan bias.    The errors are less even in the equatorial areas. Figure 10 
also shows the standard deviations between the CCMP wind and the PF and    L4AW winds for the 
entire 2018. Less RMSE and standard deviation in the newly generated PFwind confirms the better 
quality of this product.   
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To further strengthen the validation component, we used the NDBC global buoy data in      2018.     
We  first pre‐processed the data  to get 10m wind speed and  finally    collocated with PF wind and 
L4AW wind to carry out a detailed comparison. 

 
Figure 10. The spatial distribution of RMSE (top panel) and standard deviation (bottom panel)  in 
wind speed (m/s) between daily CCMP winds and (a) Particle filter based reanalysed wind speed and 
(b) SCATSAT‐1 L4AW   wind speed during 2018. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2023                   doi:10.20944/preprints202301.0510.v1

https://doi.org/10.20944/preprints202301.0510.v1


  14 

 

 
Figure 11. The normalized histogram of SCATSAT‐1 L2B, daily L4AW wind speed, particle  filter‐
based reanalyzed wind speed and wind speed observations from NDBC global buoys. 

Figure  11  represents  the variation of normalized  counts  at wind  speed bins  from  the buoy, 
SCATSAT‐1 L2B, analyzed daily L4AW and PF winds. The PF wind matches the L2B wind speed 
more closely compared to L4AW. Figure 12 is the mean wind and standard deviation of the difference 
between buoy winds and a) analyzed    L4AW wind and (b) PF‐wind.    This binning is calculated on 
basis of the average of the two wind speeds to avoid statistical effects at the low and high wind. The 
blue and orange  lines represent the mean wind plotted against the primary y‐axis (left) while the 
standard  deviation  of  difference  is  in  the  grey  line  plotted  against  the  secondary  y‐axis  (right). 
Clearly,      the bias between the 6‐hourly PF wind and buoy observation is almost constant over every 
wind speed bin. On the other hand, the bias between    L4AW wind and the buoy wind on daily basis 
varies significantly. The standard deviation of the difference is also low in PF wind for low and high 
winds. The RMSE and standard deviations for PF wind are 1.82 and 1.12m/s respectively while that 
of the L4AW are 1.96 and 1.15m/s respectively. The correlation is around 0.81 for PF wind and 0.78 
for the L4AW. These results indicate the superiority of the newly suggested approach. 
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Figure 12. Mean wind and standard deviation of the difference between NDBC global buoy winds 
and (a) analyzed    L4AW wind and (b) PF‐wind for the year 2018. . 

Hence, we generated globally gridded wind product at 6 hourly time interval using PF wind, 
which is the newly generated hybrid wind produced by combining the NWP model outputs with 
SCATSAT‐1 pass winds    This global product generated using particle‐filter technique suffices the 
requirement of modelers/researchers who wish to force their NWP models using these winds.      This 
technique does not assume gaussianity about the system in general. This wind produced for 2018 has 
been validated using the CCMP winds and NDBC buoy observations. In both validation exercises, 
the PF wind emerges as a high‐quality wind with less noise and reduced bias even along the swath 
edges compared with the well‐established daily SCATSAT‐1 wind products known as the analyzed 
L4AW wind available from ISRO on an operational basis.       

4. Summary and Conclusions 

The  space‐based  satellite  observations  of winds  are  crucial  for  a  variety  of  oceanographic 
applications. The main objective of ocean wind measurements using scatterometers is the utilization 
of winds  for ocean  state modeling  that  requires  a  6‐hourly gridded wind  field. Currently,  ISRO 
produces daily gridded scatterometer winds  to partially address  this  issue.  In  this study, particle 
filter technique is utilized to generate the gridded 6‐hourly wind field at 25 km spatial resolution. 
This is done by statistically combining the SCATSAT‐1 winds and NCMRWF model analysis winds 
that are also available at 6 hourly intervals at the same resolution. The ways of combining the two 
different fields are many. The choice of particle filter is an appealing alternative, as it is not bound by 
restrictions of Gaussian distribution      and is most suitable for non‐linear systems.    In this paper, 
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we have used concepts  from  this  technique  for combining  the SCATSAT  ‐1 L2B wind  fields and 
NCMRWF wind speed.    This wind  is generated  for 2018 and  is validated using  the CCMP wind 
fields and NDBC buoy observations. The bias and RMSE between  the CCMP and PF‐based wind 
speed  are  less.  Even  the  comparison  with  NDBC  buoys,    the  PF  winds  are  found  to  be  of 
substantially better quality than L4AW winds.    The results unequivocally demonstrate the efficiency 
and power of  this  simplified  technique based on  the particle  filter  for  regeneration of  the global 
gridded scatterometer winds at specific time intervals.     
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