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Abstract: This paper presents PrognosEase; a software that provides an easier way to produce different types 

of run-to-failure data mimicking real-world conditions to simplify prognosis studies in terms of data collection 

and improvement in ML degradation modelling process. Different types of degradation types made available 

to meet different types of applications. Besides, some primary ML tests were performed to ensure that 

complexity patterns of real systems could be observed in the training/testing predictions attitude. This paper 

also presents the impacts, limitations and potential improvements of the data generator. 
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1. Motivation and Significance 

Prognosis and health management (PHM) is a discipline dedicated to study health 

deteriorations of systems under operating conditions [1,2]. Thus, it plays a crucial role in scheduling 

Condition-Based Maintenance (CBM) tasks while reducing downtime through early failure detection. 

Remaining Useful Life (RUL) is the primary health indicator, upon which the prognosis process 

depends to assess the spread of damage during system operating conditions. Indeed, this is the time 

between the current state of health (SoH) (i.e. the health state prediction time) and the time when the 

failure could occur. Logically, the run-to-failure RUL labels are obtained from real degradation cycles. 

However, for some systems (e.g. aircraft engines) it is impossible to achieve such conditions as a 

higher level of criticality and damage could be achieved, including financial, reputational loss and of 

life [3]. 

As an alternative, accelerated aging experiments and simulation models are the available data 

source used to build data-driven methods [3–5]. In this case, acceleration and simulation will not 

maintain RUL synchronization as in real conditions. Accordingly, other health indicators such as 

Health Index (HI) and Health Stage (HS) should be used to identify SoH of the system [1,2]. The HI 

index whose deterioration function is declined in different trends (e.g. linear and exponential) gives 

information on the current performance of the system. HS indicates the health level of the system at 

the time of SoH assessment based on some specific divisions (e.g. healthy, critical, and unhealthy 

SoH) defined by ML developers. Data obtained from accelerated tests suffers from missing patterns 

and labels, and also suffers from higher-level non-stationarity due to the harsh conditions imposed 

by the experiment [6]. Moreover, simulation models lack real data patterns. In addition to lacking 

authenticity at some point, the most significant drawback of both data collection methods is the 

cumbersome timelines and financial costs that make replication difficult to do. 

In this context, it is important to provide an easy way to collect massive data needed to produce 

and study ML algorithms faster and more accurately as easily as possible. Accordingly, PrognosEase 

is introduced in this article with the aim of overcoming the shortcomings of accelerated aging and 

simulation models, simplifying ML studies and speeding up data generation process. The philosophy 

of PrognosEase depends on the generation of complete life cycles based on specific measurement 

types and the corresponding HI. These measurements are equivalent to sensor measurements in real 

applications and show a variety of trends, for example, linear degradation trends like in fuel cells [7], 

exponential like in turbofan engines [8,9], sinusoidal with exponential growth as in bearings [10], 

cyclic linear degradation trends as for Li-ion batteries [11]. Since the signals are generated according 

to some specific patterns, hence they lack RUL timings. In this case, HI and HS can be used. HI from 

PrognosEase comes with two different types, namely exponential and linear deterioration trends. 

Non-stationary and changing working conditions are generated as noise and distortion in a kind of 

randomly injected pulses in the generated measurements. Accordingly, this article is dedicated to 

presenting all these signals in relation to sensor and HI measurements. Also, it is dedicated to 

presenting some ML experiments indicating the training attitude and providing similar conclusions 

to accelerated aging and simulation experiments. In addition, it presents the impact of PrognosEase 

in the field of PHM, the limitations and potential improvements. 

This paper is organized as follows. Besides, the introduction in section 1, section 2 describes 

PrognosEase and its main features. Section 3 is devoted to some ML experiments conducted using 

data generated by PrognosEase. Section 4 is devoted to the study of the impact of PrognosEase in the 

field of PHM. Section 5 presents limitations and potential improvements. Finally, Section 5 concludes 

this work. 

2. Software Description 

This section is dedicated to introducing different aforementioned types of measurements in life 

cycles generated by PrognosEase in two different subsections, both sensor measurements generation 

and also types of HI trends. 
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2.1. Generating Sensors Measurements 

As mentioned earlier, the measurement trends are generated according to some specific 

variations inspired by some well-known works in the literature, including linear, exponential and 

exponentially growing sinusoidal, cyclic with linear and exponential trends. Additional features such 

as noise and distortions have been added to emulate real-world conditions affecting the system. 

Linear: The sensors measurement describing a linear trend 𝐿  are generated according to a 

linearly growing function with the slop 𝑎 and initial value 𝑏 for an input time unites 𝑥 as in one 

(1). A random noise 𝜇 is generated from a specific type of probability distribution 𝑃(𝑥) defined 

according to user experience as addressed by (2). After that, the noise 𝜇 and the degradation trend 𝐿 are summed up while the noise is penalized with some specific noise rate 𝜗 to construct the 

signal 𝑆ே∗  as in (3). Next, 𝑆ே∗  will be scaled in range [0,1] using min-max normalization as in (4) to 

obtain 𝑆௅∗∗. Finally, 𝑆௅∗∗ will subject to some random distortion 𝜌 with random number of pulses 𝑛𝜌 

controlled according specific amplitude 𝑤, and normalization factors {𝛼ఘ,𝛽ఘ} , to generate the final 

measurements 𝑆௅  as in (6) while, the pulses are periodically generated according to the discreet 

function as in (5). 𝐿 = 𝑎𝑥 + 𝑏 (1)𝜇 = 𝑃(𝑥) (2)𝑆ே∗ = (𝜗𝐿)𝜇 + 𝐿 (3)

𝑆ே∗∗ =
 𝑆ே∗ −𝑚𝑖𝑛 ( 𝑆ே∗ )𝑚𝑎𝑥( 𝑆ே∗ ) −𝑚𝑖𝑛 ( 𝑆ே∗ )

 (4)

𝜌 = { 𝑤𝑒±௟௡൫ఈഐ൯௫(௜)/ఉഐ}௜ୀଵ௡ఘ
 (5)𝑆௅ =  𝑆ே∗∗ + 𝜌௅ (6)

Figure 1 showcases an example constructing a linear sensors measurement trend with 𝑃(𝑥) is a 

Gaussian noise, 𝜗 = 0.9, 𝑛𝜌 = 2, 𝑤 = 0.1. 

 

Figure 1. An example of a sensors measurements generated according a linear trend. 

Exponential: Sensors measurements describing an exponential trend 𝐸 are generated according 

to Formula (7) with the base of exponentiation 𝑒  and exponentiation parameter  𝛼ா . The 

measurements of 𝐸 follows similar steps of corruptions by adding the noise and distortions pulses 

while, scaling is also necessary (i.e. Equations (3)–(5)) to finally attend the 𝑆ா as in (8). 𝐸 = 𝑒(ఈಶ௫) (7)𝑆ா =  𝑆ே∗∗ + 𝜌 (8)

Figure 2 is an example constructing a sensor measurements according to an exponential trend 

with 𝑃(𝑥) is a Gaussian noise, 𝜗 = 0.03, 𝑛𝜌 = 2, 𝑤 = 0.1. and 𝛼ா = 0.01. 
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Figure 2. An example of a sensors measurements generated according an exponential degradation 

trend. 

Sinusoidal with exponential growth: This type of measurements of sinusoidal with exponential 

growth 𝑆𝐸  are generated according to Formula (9) with an exponentiation parameter 𝛼ௌா  and 

angular frequency 𝜔 while being subject to distortion by noise and randomly injected pulses until 

the final shape 𝑆ௌா reached using Formula (10). 𝑆𝐸 = 𝑒(ఈೄಶ௫)𝑐𝑜𝑠(𝜔𝑥) (9)𝑆ௌா =  𝑆ே∗∗ + 𝜌 (10)

Figure 3 is an example constructing a sensor measurements according to a sinusoidal with 

exponential growth trend with 𝑃(𝑥) is a Gaussian noise, 𝜗 = 0.1, 𝑛𝜌 = 2, 𝑤 = 0.1. 𝛼ௌா = 0.02, and 𝜔 = 0.2. 

 

Figure 3. An example of a sensors measurements generated according a sinusoidal with exponential 

growth trend. 

Cyclic degradation: The cyclic degradation 𝑆஼  comes up with two types (i.e. linear and 

exponential trends). The pulses are similarly generated according to Equation (5) but periodically 

with a distance between pulses 𝐷 dynamically changes at each cycle with a specific user ratio 𝜗஼ as 

in Formula (11) while (12) is describing the final output signal. 

𝜌 = { 𝑤𝑒±௟௡൫ఈഐ൯௫(௜)ఉഐ + 𝜗஼𝐷}௜ୀଵ௡ఘ
 (11)

𝑆஼ =  𝑆ே∗∗ + 𝜌 (12)

Figure 4 is an example that showcases both types of cyclic degradation that PrognosEase 

programed to do. 
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Figure 4. An example of a sensors measurements generated according a cyclic degradation trend: (a) 

An exponential cyclic degradation; (b) A linear cyclic degradation. 

2.2. Generating RUL Measurements 

In PrognosEase, RUL degradation function is actually a HI generated according to two main 

trends either exponential or linear following Formulas (1) and (7) respectively with different 

parameters values from the sensors measurements. These parameters are user-defined ones depends 

on accuracy of predictions and also user experience. The example in Figure 5 illustrates both types of 

HIs. 

 

Figure 5. An example of HI degradation functions: (a) A linear degradation; (b) An exponential 

degradation. 

3. Illustrative Examples 

In this study, PrognosEase is used to generate a dataset that combines a mixture of sensor 

measurements types with a higher level of complexity, similar to the work done in the literature in 

terms of data generation. 10 features, 5 lifecycles for training and 2 cycles for testing are generated 

with cycles that are 1000 samples long. The training and testing lifecycles are showcased in Figure 6. 

The data visualization addresses that the constructed features space includes different types of 

complex samples with higher-level non-stationarity. In fact, these samples are supposed to be flown 

from the same devices under different conditions. This means that all data generation parameters are 

fixed when reconstructing the data set while retaining only the noise generation and distortion that 

changes the conditions. This is done with the aim of reaching a certain level by mimicking real-world 

conditions. HI is set in this case by default to the exponential deterioration function due to the 

existence of an exponential deterioration phenomenon in the collected measurements. 

An ML model, namely a long-term memory neural network, is tested for its potential capabilities 

using a grid search mechanism to adjust its parameters for a better approximation. The curve fitting 
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results for training and testing are shown in Figure 7. The learning model shows that it tries to mimic 

the shape of the decay trend in the training process as it is logically difficult to do for new unseen 

samples to the model. Thus, improving ML models will consist of improving the curve fitting as 

much as possible in the testing phase while taking into account real-world conditions and training 

constraints such as centralized, decentralized and federated learning, etc., with all types of learning 

paradigms such as online, offline and reinforcement learning etc. 

 

Figure 6. Visualizing feature spaces of a dataset generated by Prognosis: (a) Training set; (b) Testing 

set. 

 

Figure 7. Visualizing Curve fit results with a deep learning network: (a) Training set; (b) Testing set. 

4. Impact 

PrognosEase actually introduced an effective and a simple way to study ML models for 

deterioration analysis. Its simplicity remains in following items: 

 Easily generating many types of degradation samples with any preferred number of training 

and testing cycles making useful for many types of many applications. 

 PrognosEase simplifies centralized learning for both offline and online learning. 
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 PrognosEase also allows experiments to be done according decentralized and federated learning 

[12]. 

 PrognosEase provides a feature space accessing times series experiments for both cyclic and non-

cyclic degradation. 

 PrognosEase provides features achieving great experiments on direct HI predictions 

experiments. 

 PrognosEase doesn’t follow supervised direct HI and time series predictions; in fact, it can be 

used for unsupervised HS assessment with clustering methods also. 

 PrognosEase allows experiments not only be limited to improving ML methods. In fact, it can 

also be used for studying data quality and preprocessing tools also. 

5. Limits and Potential Improvements 

PrognosEase has limits in addressing reality in context of following items: 

 Similar to simulation and accelerated aging, PrognosEase doesn’t have the capability of 

estimating actual RUL timing. Rather than that, it provides His instead. 

 PrognosEase comes up with Gaussian noise only, so potential improvement will consist of 

adding more types of noises to approach reality when emulating real conditions. 

 Only single type of pulses generation when distorting generated measurements. Accordingly, 

more efforts can be made on generating other pulses types mimicking distortions in real 

applications. 

 For cyclic degradations better formulas could be released to better control cycles dynamic 

changes as in real systems such as for batteries for instance. 

6. Conclusions 

This paper presented PrognosEase; a software for generating run-to-failure data for Data-driven 

prognosis studies. PrognosEase mimics real conditions of different systems by generating similar 

measurements to their real degradation trends and working conditions. Data visualization for feature 

spaces generated by PrognosEase and Some ML experiments shows that the software is able to 

address prediction complexity for unseen samples as in real samples. This paper also presented 

impact of PrognosEase in PHM filed besides to some future prospects on its potential improvements. 
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