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1. Motivation and Significance

Prognosis and health management (PHM) is a discipline dedicated to study health
deteriorations of systems under operating conditions [1,2]. Thus, it plays a crucial role in scheduling
Condition-Based Maintenance (CBM) tasks while reducing downtime through early failure detection.
Remaining Useful Life (RUL) is the primary health indicator, upon which the prognosis process
depends to assess the spread of damage during system operating conditions. Indeed, this is the time
between the current state of health (SoH) (i.e. the health state prediction time) and the time when the
failure could occur. Logically, the run-to-failure RUL labels are obtained from real degradation cycles.
However, for some systems (e.g. aircraft engines) it is impossible to achieve such conditions as a
higher level of criticality and damage could be achieved, including financial, reputational loss and of
life [3].

As an alternative, accelerated aging experiments and simulation models are the available data
source used to build data-driven methods [3-5]. In this case, acceleration and simulation will not
maintain RUL synchronization as in real conditions. Accordingly, other health indicators such as
Health Index (HI) and Health Stage (HS) should be used to identify SoH of the system [1,2]. The HI
index whose deterioration function is declined in different trends (e.g. linear and exponential) gives
information on the current performance of the system. HS indicates the health level of the system at
the time of SoH assessment based on some specific divisions (e.g. healthy, critical, and unhealthy
SoH) defined by ML developers. Data obtained from accelerated tests suffers from missing patterns
and labels, and also suffers from higher-level non-stationarity due to the harsh conditions imposed
by the experiment [6]. Moreover, simulation models lack real data patterns. In addition to lacking
authenticity at some point, the most significant drawback of both data collection methods is the
cumbersome timelines and financial costs that make replication difficult to do.

In this context, it is important to provide an easy way to collect massive data needed to produce
and study ML algorithms faster and more accurately as easily as possible. Accordingly, PrognosEase
is introduced in this article with the aim of overcoming the shortcomings of accelerated aging and
simulation models, simplifying ML studies and speeding up data generation process. The philosophy
of PrognosEase depends on the generation of complete life cycles based on specific measurement
types and the corresponding HI. These measurements are equivalent to sensor measurements in real
applications and show a variety of trends, for example, linear degradation trends like in fuel cells [7],
exponential like in turbofan engines [8,9], sinusoidal with exponential growth as in bearings [10],
cyclic linear degradation trends as for Li-ion batteries [11]. Since the signals are generated according
to some specific patterns, hence they lack RUL timings. In this case, HI and HS can be used. HI from
PrognosEase comes with two different types, namely exponential and linear deterioration trends.
Non-stationary and changing working conditions are generated as noise and distortion in a kind of
randomly injected pulses in the generated measurements. Accordingly, this article is dedicated to
presenting all these signals in relation to sensor and HI measurements. Also, it is dedicated to
presenting some ML experiments indicating the training attitude and providing similar conclusions
to accelerated aging and simulation experiments. In addition, it presents the impact of PrognosEase
in the field of PHM, the limitations and potential improvements.

This paper is organized as follows. Besides, the introduction in section 1, section 2 describes
PrognosEase and its main features. Section 3 is devoted to some ML experiments conducted using
data generated by PrognosEase. Section 4 is devoted to the study of the impact of PrognosEase in the
field of PHM. Section 5 presents limitations and potential improvements. Finally, Section 5 concludes
this work.

2. Software Description

This section is dedicated to introducing different aforementioned types of measurements in life
cycles generated by PrognosEase in two different subsections, both sensor measurements generation
and also types of HI trends.
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2.1. Generating Sensors Measurements

As mentioned earlier, the measurement trends are generated according to some specific
variations inspired by some well-known works in the literature, including linear, exponential and
exponentially growing sinusoidal, cyclic with linear and exponential trends. Additional features such
as noise and distortions have been added to emulate real-world conditions affecting the system.

Linear: The sensors measurement describing a linear trend L are generated according to a
linearly growing function with the slop a and initial value b for an input time unites x as in one
(1). A random noise u is generated from a specific type of probability distribution P(x) defined
according to user experience as addressed by (2). After that, the noise u and the degradation trend
L are summed up while the noise is penalized with some specific noise rate 9 to construct the
signal Sy as in (3). Next, Sy will be scaled in range [0,1] using min-max normalization as in (4) to
obtain S;*. Finally, S;* will subject to some random distortion p with random number of pulses np
controlled according specific amplitude w, and normalization factors {a,,,} , to generate the final
measurements S; as in (6) while, the pulses are periodically generated according to the discreet
function as in (5).

L=ax+b @)
w= P @
St =@OLu+L ®)

Sy —min (Sy)
¥ max(Sy) — min (S W
p = { wetn(@p)x®/Bpyme ©)
S, = Sy +p ©)

Figure 1 showcases an example constructing a linear sensors measurement trend with P(x) isa
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Figure 1. An example of a sensors measurements generated according a linear trend.

Exponential: Sensors measurements describing an exponential trend E are generated according

to Formula (7) with the base of exponentiation e and exponentiation parameter ap . The
measurements of E follows similar steps of corruptions by adding the noise and distortions pulses
while, scaling is also necessary (i.e. Equations (3)—(5)) to finally attend the S asin (8).

E = e(@ @)
Sg= S +p (8)

Figure 2 is an example constructing a sensor measurements according to an exponential trend

with P(x) is a Gaussian noise, 9 = 0.03, np =2, w = 0.1. and ay = 0.01.
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Figure 2. An example of a sensors measurements generated according an exponential degradation
trend.

Sinusoidal with exponential growth: This type of measurements of sinusoidal with exponential
growth SE are generated according to Formula (9) with an exponentiation parameter ag; and
angular frequency w while being subject to distortion by noise and randomly injected pulses until
the final shape Sgz reached using Formula (10).

SE = e(@sE¥) cos(wx) )

Figure 3 is an example constructing a sensor measurements according to a sinusoidal with
exponential growth trend with P(x) is a Gaussian noise, 9 = 0.1, np = 2, w = 0.1. ag; = 0.02, and
w=0.2.
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Figure 3. An example of a sensors measurements generated according a sinusoidal with exponential
growth trend.

Cyclic degradation: The cyclic degradation S comes up with two types (i.e. linear and
exponential trends). The pulses are similarly generated according to Equation (5) but periodically
with a distance between pulses D dynamically changes at each cycle with a specific user ratio 9. as
in Formula (11) while (12) is describing the final output signal.

+in(ap)x (i)

g 11
p={we Po  +0.D}, ()

Se= Sy +p (12)

Figure 4 is an example that showcases both types of cyclic degradation that PrognosEase
programed to do.
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Figure 4. An example of a sensors measurements generated according a cyclic degradation trend: (a)
An exponential cyclic degradation; (b) A linear cyclic degradation.

2.2. Generating RUL Measurements

In PrognosEase, RUL degradation function is actually a HI generated according to two main
trends either exponential or linear following Formulas (1) and (7) respectively with different
parameters values from the sensors measurements. These parameters are user-defined ones depends
on accuracy of predictions and also user experience. The example in Figure 5 illustrates both types of

Hls.
1 1
0.9 0.9 \
0.8 0.8 \\\
\
0.7 0.7 \\
06 06 \
Tos Tos \
0.4 0.4 \
0.3 0.3 \‘
|
02 02 |
|
0.1 0.1
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time cycles Time cycles
(a) (b)

Figure 5. An example of HI degradation functions: (a) A linear degradation; (b) An exponential
degradation.

3. Illustrative Examples

In this study, PrognosEase is used to generate a dataset that combines a mixture of sensor
measurements types with a higher level of complexity, similar to the work done in the literature in
terms of data generation. 10 features, 5 lifecycles for training and 2 cycles for testing are generated
with cycles that are 1000 samples long. The training and testing lifecycles are showcased in Figure 6.
The data visualization addresses that the constructed features space includes different types of
complex samples with higher-level non-stationarity. In fact, these samples are supposed to be flown
from the same devices under different conditions. This means that all data generation parameters are
fixed when reconstructing the data set while retaining only the noise generation and distortion that
changes the conditions. This is done with the aim of reaching a certain level by mimicking real-world
conditions. HI is set in this case by default to the exponential deterioration function due to the
existence of an exponential deterioration phenomenon in the collected measurements.

An ML model, namely a long-term memory neural network, is tested for its potential capabilities
using a grid search mechanism to adjust its parameters for a better approximation. The curve fitting
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results for training and testing are shown in Figure 7. The learning model shows that it tries to mimic
the shape of the decay trend in the training process as it is logically difficult to do for new unseen
samples to the model. Thus, improving ML models will consist of improving the curve fitting as
much as possible in the testing phase while taking into account real-world conditions and training
constraints such as centralized, decentralized and federated learning, etc., with all types of learning
paradigms such as online, offline and reinforcement learning etc.

Training set
T

Measurements

o

L i }
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time cycles
(a)
Testing set

2 \
: ol
e | il “ wml "\HWH ”W ”
§ 0.4 | ’ ‘lm‘”‘ , \‘ ‘f\ "
0.2 L gl ay ! L L 40 W‘
00 200 400 600 800 100 12I00 1400 1600 1800 2000

Time cycles

(b)

Figure 6. Visualizing feature spaces of a dataset generated by Prognosis: (a) Training set; (b) Testing
set.
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Figure 7. Visualizing Curve fit results with a deep learning network: (a) Training set; (b) Testing set.

4. Impact

PrognosEase actually introduced an effective and a simple way to study ML models for
deterioration analysis. Its simplicity remains in following items:
e  Easily generating many types of degradation samples with any preferred number of training

and testing cycles making useful for many types of many applications.
e  PrognosEase simplifies centralized learning for both offline and online learning.
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e  PrognosEase also allows experiments to be done according decentralized and federated learning
[12].

e  PrognosEase provides a feature space accessing times series experiments for both cyclic and non-
cyclic degradation.

e PrognosEase provides features achieving great experiments on direct HI predictions
experiments.

e  PrognosEase doesn’t follow supervised direct HI and time series predictions; in fact, it can be
used for unsupervised HS assessment with clustering methods also.

e  PrognosEase allows experiments not only be limited to improving ML methods. In fact, it can
also be used for studying data quality and preprocessing tools also.

5. Limits and Potential Improvements

PrognosEase has limits in addressing reality in context of following items:

e Similar to simulation and accelerated aging, PrognosEase doesn’t have the capability of
estimating actual RUL timing. Rather than that, it provides His instead.

e PrognosEase comes up with Gaussian noise only, so potential improvement will consist of
adding more types of noises to approach reality when emulating real conditions.

e  Only single type of pulses generation when distorting generated measurements. Accordingly,
more efforts can be made on generating other pulses types mimicking distortions in real
applications.

e  For cyclic degradations better formulas could be released to better control cycles dynamic
changes as in real systems such as for batteries for instance.

6. Conclusions

This paper presented PrognosEase; a software for generating run-to-failure data for Data-driven
prognosis studies. PrognosEase mimics real conditions of different systems by generating similar
measurements to their real degradation trends and working conditions. Data visualization for feature
spaces generated by PrognosEase and Some ML experiments shows that the software is able to
address prediction complexity for unseen samples as in real samples. This paper also presented
impact of PrognosEase in PHM filed besides to some future prospects on its potential improvements.
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