

Article

Novel learning for control of nonlinear spacecraft dynamics

Bo-Ruei Huang 1 and Timothy Sands 2,*

1 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA;

bh574@cornell.edu
2 Department of Mechanical Engineering (CVN), Columbia University, New York, NY 10027 USA

* Correspondence: dr.timsands@caa.columbia.edu

Abstract: With correct dynamic system parameters (embodied in self-awareness statements), a con-

troller can provide precise signals for tracking desired state trajectories. If dynamic system param-

eters are initially guessed incorrectly, a learning method may be used to find the correct parameters.

In the deterministic artificial intelligence method, self-awareness statements are formed as mathe-

matical expressions of the governing physics. When the nonlinear, coupled expressions are precisely

parameterized as the product of known matrix components and unknown victrix (i.e., a regression

form) tracking errors may be projected onto the known matrix to update the unknown victrix in an

optimal form (in a two-norm sense). In this work, a modified learning method is proposed and

proved to have global convergence of both state error and parameter estimation error. The modified

learning method is compared with those in the prequels using simulation experiments of three-

dimensional rigid body dynamic rotation motion. The modified approach is two magnitudes better

than the methods in the prequels in terms of state error convergence.

Keywords: nonlinear systems; mechanics; spacecraft attitude control; deterministic artificial intelli-

gence; regression, learning

1. Introduction

Consider intricate robotic operations in low-earth orbit near the space station as dis-

played in figure 1, where considerable human intervention is available. Next contemplate

the requirements to autonomously do such operations in far distant cis-lunar orbits. The

latter systems must be able to learn in real-time dynamic changes that occur when the

space robot grasps and grapples targeted spacecraft. Dynamics and control issues associ-

ated with rendezvous in Cis-lunar space near rectilinear halo orbits were investigated in

[1] where a fully-safe, automatic rendezvous strategy was developed between a passive

vehicle and an active one orbiting around the Earth–Moon L2 Lagrangian point.

 (a) (b)

Figure 1. (a) The International Space Station's Canadarm2 and Dextre carry the Rapidscat instru-

ment assembly after removing it from the trunk of the SpaceX Dragon cargo ship (upper right),

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202301.0472.v1
http://creativecommons.org/licenses/by/4.0/

which is docked to the nadir port of the Harmony node. (b) NASA Gateway would support a grow-

ing space economy Photos taken from [2] and [3] respectively in compliance with NASA’s image

use policy [4].

Bando, et. al, [5] proposed a chattering attenuation sliding mode control utilizing the

eigen structure of the linearized flow around a libration point of the Earth-Moon circular

restricted three-body problem, and this novel article serves as a reminder of the preva-

lence of linearization when dealing with multiple, coupled nonlinear equations. In 2021,

Colombia presented a guidance, navigation and control framework for 6 degrees of free-

dom (6DOF) coupled Cislunar rendezvous and docking, and the article highlighted the

importance of dealing with full, coupled translational-rotational dynamics of multi-body

(i.e., highly flexible) dynamics seeking guaranteed coupled-state estimation [6]. Immedi-

ately that same year [7], new techniques for highly flexible multi-body space robotics were

proposed as a competing narrative to the just-proposed “whiplash compensation” of flex-

ible space robotics [8]. China now has two robotic arms attached to its space station [9],

where large robotic arm can "crawl" along the outside of the spacecraft [10].

Meanwhile, Zhang et. al, proposed an adaptive control strategy based on the full,

nonlinear equations accounting for modeling uncertainties using an adaptive neural net-

work amidst external disturbances [11].

In 2020, deterministic artificial intelligence was proposed by Smeresky et. al. [12],

which stated that the system dynamics constitute a feedforward control when paired with

analytic trajectories; and when the dynamics are expressed in a canonical regression form,

optimal feedback (in the two-norm sense) can aid control of spacecraft attitude. The

method stems from incremental development of a common nonlinear adaptive scheme

offered by Slotine [13] for spacecraft attitude control, where elements of classical feedback

were eliminated in 2020 foremost applied to unmanned underwater robotics [14]. The

burgeoning lineage of research continued in 2022, when Sandberg et. al. [15] compared

several trajectory-generation schemes and a nominal learning method based on the re-

gression model, where applied torque is estimated by an enhanced Luenberger observer.

Very shortly afterwards, Raigoza [16] augmented Sandberg’s trajectory generators with

autonomous collision avoidance. In November 2022, Wilt examined efficacy in the face of

simulated craft damage and environmental disturbances [17].

In prequel works [12–17], the error convergence property is obtained using the

proper design of the trajectory generation process. However, if the external disturbance

makes the current state deviate from the trajectory, even if the system parameter is already

converged to a correct value, the trajectory will need to be re-calculated to fit the current

state, so that the deterministic artificial intelligence can continue to drive the system using

optimal feedforward control signal.

As a result, provided the initial error between the current state and the current de-

sired trajectory as well as incorrect initial parameter value, the goal of the modified learn-

ing approach proposed in this manuscript is to guarantee the convergence to zero of both

parameter error and the state error. This work focuses on the rotation rate control problem

of a spacecraft and provided 2 ways of modification to the learning phase of the determin-

istic artificial intelligence algorithm and compared them with the original deterministic ar-

tificial intelligence using simulation in MATLAB®. Moreover, the modified method can be

proved to make the error converge to zero using similar way as how Slotine and Li [13]

proved the stability of the non-linear system controlled by some specific feed-for-

ward/feed-back controllers. That is, the Lyapunov candidate function is provided, and the

time derivative of the candidate function can be proved to be negative with the proposed

modified learning method.

Main contribution of the study. A novel, stable learning approach is proposed to enhance de-

terministic artificial intelligence and efficacy amidst external disturbances is evaluated.

2. Materials and Methods

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

2.1. Spacecraft Rotation Rate Control

The spacecraft rotation rate control problem focuses on applying torque so that the

rotation rate of a spacecraft converges to the desired value. The dynamic can be described

by the Euler equation (displayed in equation (1)). Euler’s moment equations can be pa-

rameterized in canonical regression form. This full form of the coupled, nonlinear equa-

tions whose importance was highlighted by the research cited in the Introduction.

𝜏 = 𝐼𝜔̇ + 𝜔 × 𝐼𝜔 = [

𝜔̇𝑥 𝜔̇𝑦 − 𝜔𝑥𝜔𝑧 𝜔̇𝑧 + 𝜔𝑥𝜔𝑦 −𝜔𝑦𝜔𝑧 𝜔𝑦
2 − 𝜔𝑧

2 𝜔𝑦𝜔𝑧

𝜔𝑥𝜔𝑧 𝜔̇𝑥 + 𝜔𝑦𝜔𝑧 𝜔𝑧
2 − 𝜔𝑥

2

−𝜔𝑥𝜔𝑦 𝜔𝑥
2 − 𝜔𝑦

2 𝜔̇𝑥 −𝜔𝑦𝜔𝑧

𝜔̇𝑦 𝜔̇𝑧 − 𝜔𝑥𝜔𝑦 −𝜔𝑥𝜔𝑧
𝜔𝑥𝜔𝑦 𝜔̇𝑦 + 𝜔𝑥𝜔𝑧 𝜔̇𝑧

]

⏟
𝛷 {

𝐼𝑥𝑥
𝐼𝑥𝑦
𝐼𝑥𝑧
𝐼𝑦𝑦
𝐼𝑦𝑧
𝐼𝑧𝑧}

⏟
𝛩

 (1)

The matrix Φ is the matrix of known, which is composed of the current state and the

rate of the state (ω and dω/dt). The matrix Θ is the vector of the unknown, which is com-

posed of system parameters, in this case, the moment of inertia. The way of formulation

shows that it is possible to estimate the moment of inertia with the correct measurement

of the current state.

2.2. Original deterministic artificial intelligence control

The idea of deterministic artificial intelligence is that if the matrix of the unknown

can be estimated and the desired trajectory of the state is given, the optimal control signal

will be multiplying the desired matrix of known (Φd), which includes the information of

the current desired state, with the best guess of the parameter (𝛩̂). This turns the system

dynamic to equation (2).

𝜏 = 𝛷𝛩 → 𝑢 ≡ 𝛷𝑑𝛩̂ (2)

However, the Θ̂ can be incorrect or changed in the middle of operation. Therefore, a

learning approach should be provided so that the vector of the unknown can converge to

a correct value. The original learning approach in the space rotation rate control problem

is described in equation 3.

𝛩̇̂ = 𝛷𝐻(𝜏𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝛷𝛩̂) (3)

Where 𝜏𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the controller torque output, and the capital H means the pseudo

inverse of a non-square matrix. In short, this provided a way to turn the difference be-

tween the applied torque and the expected torque into the parameter error, which should

be a minimal square error estimation using the information in the current time stamp.

Concerning the stability of the parameter estimation, the learning of the parameter is ap-

plied incrementally.

Additionally, deterministic artificial intelligence requires a trajectory generation pro-

cess to produce a trajectory that leads from the current state to the desired state. If the

current state deviates undesirably from the trajectory, it is better to update the trajectory,

or the error of the state may accumulate. Please be aware that the desired state of the

trajectory generation is not the desired state of the controller, which follows the output of

the trajectory generator by making the trajectory the desired state of the controller should

follow. In this manuscript, all the “desired states” mentioned are the desired state for the

controller, if not specifically noted.

2.3. Modified Learning Method, a General Version

The target of the modification is that if the learning approach can also guarantee to

decrease the error in the current state when doing the parameter estimation, the chance of

regenerating trajectory can be decreased because the error is kept from growing, which

increases the robustness. In a general version of the modification, we consider all the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

systems that can be expressed in the regression form, as in equation (2), where the infor-

mation of the current state is provided in the matrix of known. To study the error of the

parameters and state, the error between the desired matrix of known and the current ma-

trix of known is noted as 𝜙, and the error of the unknown vector is noted as 𝜃. Equation

(2) can therefore be turned into equation (4). In this case, the goal becomes driving both

𝜙 and 𝜃 to 0 simultaneously using a modified learning method.

𝛷𝜃 + 𝜙𝛩̂ = 0 𝑤ℎ𝑒𝑟𝑒 𝜙 = 𝛷𝑑 − 𝛷 𝑎𝑛𝑑 𝜃 = 𝛩 − 𝛩̂ (4)

Considering the Lyapunov candidate function described in equation (5), the function

value must decrease to 0 if both 𝜙 and 𝜃 goes to 0. If there is a parameter update ap-

proach 𝜃̇ that makes the candidate function globally stable, it is very likely that the error

of the state 𝜙 goes to 0 together with 𝜃. Equation(7) shows that if 𝜃̇ is taken in a form

of equation(6), and considering equation (4) and the time derivative of equation (4), the

time derivative of the Lyapunov function will be globally negative, and leads to the global

stability of the system as long as the matrix G is positive definitive.

𝑉 = 𝛩̂𝑇𝜙𝑇𝜙𝛩̂ + 𝜃𝑇𝜃 (5)

𝜃̇𝑇 = 𝛩̂𝑇𝜙𝑇((𝛷𝛷̇𝐻)(𝛷𝐻 + 𝛷𝑇)𝐻 + (𝛷𝐻 + 𝛷𝑇)𝑇𝐺(𝛷𝐻 + 𝛷𝑇)) (6)

𝑉̇

2
= [𝛩̂𝑇𝜙𝑇𝛷𝛷̇𝐻 − 𝜃̇𝑇𝛷𝐻 − 𝜃̇𝑇𝛷𝑇]𝜙𝛩̂ = 𝛩̂𝑇𝜙𝑇(𝛷𝐻 + 𝛷𝑇)𝑇𝐺(𝛷𝐻 + 𝛷𝑇)𝜙𝛩̂ (7)

The modified learning method provided here guarantees that the Lyapunov function

always goes to zero. However, if the rank of the matrix of known is not as much as the

number of the unknown parameter, it is possible that the state won’t converge when the

Lyapunov function goes to zero. In the target application in this manuscript, the rank of

the matrix of known is 3 while the parameter number in the vector of unknown is 6, this

makes the learning method provided unable to guarantee convergence. One example is

that when the unknown parameter happens to be correct while the state error exists, the

state error will not be going to be zero. This can be seen in equation (2) that when Θ̂ =

Θ, the term Θ̂𝑇𝜙𝑇 = Θ̂𝑇(Φ𝑑 −Φ)
𝑇 will always be 0. When Φ has smaller rank than the

number of unknowns, it is possible that Θ̂𝑇𝜙𝑇=0 when 𝜙 is not zero.

Another concern of using this method is that the calculation of Φ̇ is prone to noises

and will cause latency in the real-time calculation because it requires the knowledge of

the double derivative of the rotation rate, which generally requires special treatments like

the smoothing process.

2.4. Modified Learning Method, a Specific Version

To avoid the problem mentioned in 2.3, mainly the rank issue of the known matrix,

a specific version of the modified learning method is provided for the rotation rate con-

troller. The non-regression form of the system dynamic is considered in equation (8),

and the modified learning method is provided in equation (10) which utilizes both the

state error as well as parameter error. Also, the character “i” means the error in the inertia

matrix in a 3*3 form rather than in a 1*6 unknown vector. The torque input to the system

is slight modified from 𝜔𝑑 × 𝐼𝜔𝑑 to 𝜔𝑑 × 𝐼𝜔, which improves the global stability but

won’t affect the feed forward optimality in the deterministic artificial intelligence much

when the state is very close to the desired value.

𝐼𝜔̇ + 𝜔 × 𝐼𝜔 = 𝐼𝜔̇𝑑 +𝜔𝑑 × 𝐼𝜔 𝑤ℎ𝑒𝑟𝑒 𝑖̂ = 𝐼 − 𝐼 𝑎𝑛𝑑 𝜔′ = 𝜔 − 𝜔𝑑 (8)

𝐼𝜔̇′ = −(𝜔′ × 𝐼𝜔𝑑 + 𝜔
′ × 𝐼𝜔′) + (𝑖′𝜔̇𝑑 + 𝜔𝑑 × 𝑖𝜔𝑑 + 𝜔𝑑 × 𝑖𝜔

′) = 𝐶𝜔′ + 𝐾𝜃 (9)

𝜃̇ = −𝑄𝜔′ − 𝑅𝜃 (10)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

The equation (8) is rearranged to equation (9), and the 𝜃, again, means the inertia in

a unknown vector form. To proof the global convergence of both state error 𝜔′ and pa-

rameter error 𝜃, another Lyaponuv function (equation (11)) is provided, which have a

physical meaning close to the square error of the whole system, where the state square

error is weighted by the inertia. If the Q term in equation (10) is the transpose of K term

in equation (9), and the R term in equation (10) is positive definite, the Lyapunov function

will be stable globally, as shown in equation (12), and can achieve zero state error and

parameter error is guaranteed. Finally, the parameter vector is chosen based on equation

(13), derived from equation (4), and the value is used for modified learning method in

equation (10).

𝑉 = 𝜔′
𝑇
𝐼𝜔′ + 𝜃𝑇𝜃 (11)

𝑉̇

2
= 𝜔′

𝑇
𝐼𝜔′̇ + 𝜃𝑇𝜃̇ = 𝜔′

𝑇[−(𝜔′ × 𝐼𝜔𝑑 + 𝜔
′ × 𝐼𝜔′)]𝜔′̇ + 𝜃𝑇(𝐾𝑇 − 𝑄)𝜔′ − 𝜃𝑇𝑅𝜃

= 𝜃𝑇(𝐾𝑇 − 𝑄)𝜔′ − 𝜃𝑇𝑅𝜃 = −𝜃𝑇𝑅𝜃 < 0

(12)

𝜃 = −𝛷𝐻𝜙𝛩̂ (13)

2.5. Simulation

The trajectory tracking of the rotation rate controller will be simulated. In the simu-

lation, the trajectory is generated using arbitrary test torque, as shown in equation (14).

The controller does not possess the test torque value, but instead receives a stream of de-

sired rotation rate and the time derivative of the rotation rate. The idea is that if the deter-

ministic artificial intelligence can track the test trajectory, it should also be able to track

any trajectory generated by another trajectory planner.

𝐼𝜔̇𝑑 + 𝜔𝑑 × 𝐼𝜔𝑑 = 𝜏𝑡𝑒𝑠𝑡 (14)

Two types of performance matrices are considered: norm ratio of the state error, and the

norm ratio of the parameter error, in equation (16). The result is plotted in Section 3.

𝑆𝑡𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑛 (
||𝜔′||2

2

||𝜔𝑑||2
2)

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 =
||𝜃′||2

2

||𝛩||2
2

(15)

3. Results

In this section, simulation results of the rotation rate problem (section 2.1) under dif-

ferent condition is presented, and the performance of both types of modification (general

version in section 2.3 and specific version in 2.4) is compared with the original determin-

istic artificial intelligence (section 2.2) learning approach.

3.1. Performance Comparison without the Product of Inertia

This case aims at testing the learning method when there is no product of inertia

value in both the system's true parameter and the initial estimation of the unknown vector.

The initial condition and the system parameters are listed in Table 1. The norm ratio of

the state error and parameter error is shown in Fig. 1. Also, the G in equation (7) and the

R in equation (10) will be a scaler “r” multiplied by a 6*6 identity matrix, and this form of

G and R will be used in all the cases presented in this manuscript.

Table 1. Initial condition for the simulation in section 3.1.

Variable Value Variable Value Variable Value

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

𝐼𝑥𝑥 1 𝐼𝑦𝑦 2 𝐼𝑧𝑧 3

𝐼𝑥𝑦 0.2 𝐼𝑥𝑧 0.3 𝐼𝑦𝑧 0.4

𝜔𝑖𝑛𝑖𝑡,𝑥 0.02 𝜔𝑖𝑛𝑖𝑡,𝑦 0.03 𝜔𝑖𝑛𝑖𝑡,𝑧 0.01

𝜏𝑡𝑒𝑠𝑡,𝑥 5 𝜏𝑡𝑒𝑠𝑡,𝑦 2 𝜏𝑡𝑒𝑠𝑡,𝑧 -2

r 3

(a) (b)

Figure 1. The convergence of the parameter error and state error. (a) Parameter error norm ratio on

the ordinant versus time in seconds on the abscissa. (b) State error norm ratio on the ordinant versus

time in seconds on the abscissa.

Table 2. Convergence of inertia estimation and tracking errors

Figure of merit
Original method

(prequels)

Proposed version

general

Proposed version

specific

Parameter error mean 0.0019 0.0027 0.0029

Parameter error deviation 0.0032 0.0037 0.0064

Mean tracking error 0.0401 -0.0094 -0.00037

Tracking error deviation 0.1518 0.0138 0.0065

3.2. Performance Comparison with the Product of Inertia

This case is similar to section 3.1, but the product of inertia values in both the system's

true parameter and the initial estimation of the unknown vector is not zero. The initial

condition and the system parameters are listed in Table 3. The norm ratio of the state error

and parameter error is shown in Fig. 2.

Table 3. Initial condition for the simulation in section 3.2.

Variable Value Variable Value Variable Value

𝐼𝑥𝑥 1 𝐼𝑦𝑦 2 𝐼𝑧𝑧 1

𝐼𝑥𝑦 0.2 𝐼𝑥𝑧 0.3 𝐼𝑦𝑧 0.4

𝐼𝑥𝑥,𝑖𝑛𝑖𝑡 1.06 𝐼𝑦𝑦,𝑖𝑛𝑖𝑡 1.90 𝐼𝑧𝑧,𝑖𝑛𝑖𝑡 1.15

𝐼𝑥𝑦,𝑖𝑛𝑖𝑡 0.21 𝐼𝑥𝑧,𝑖𝑛𝑖𝑡 0.31 𝐼𝑦𝑧,𝑖𝑛𝑖𝑡 0.41

𝜔𝑖𝑛𝑖𝑡,𝑥 0.02 𝜔𝑖𝑛𝑖𝑡,𝑦 0.03 𝜔𝑖𝑛𝑖𝑡,𝑧 0.01

𝜏𝑡𝑒𝑠𝑡,𝑥 5 𝜏𝑡𝑒𝑠𝑡,𝑦 2 𝜏𝑡𝑒𝑠𝑡,𝑧 -2

r 3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

(a) (b)

Figure 2. The convergence of the parameter error and state error. (a) Parameter error norm ratio on

the ordinant versus time in seconds on the abscissa. (b) State error norm ratio on the ordinant versus

time in seconds on the abscissa.

3.3. Performance Comparison with Different r value

This case shows for the modified learning method (Specific Version) how the r value,

which can be seen as the “magnitude” of the G in equation (7) and the R in equation (10),

affects the final result. The initial condition and parameters used in this case are identical

to case 3.2 and can be checked in Table 3, except for the r value.

(a) (b)

Figure 3. The convergence of the parameter error and state error. Original deterministic artificial

intelligence displayed by a thick, solid green line, dashed purple line displays 𝑟 = 0.5, thin solid

black line displays 𝑟 = 1, dotted blue line displays 𝑟 = 2, dot-dashed red line displays 𝑟 = 4, (a)

Parameter error norm ratio on the ordinant versus time in seconds on the abscissa. (b) State error

norm ratio on the ordinant versus time in seconds on the abscissa.

Table 4. Convergence of inertia estimation and tracking errors

Figure of merit
Original method

(prequels)

Modified

with 𝒓 = 𝟎. 𝟓

Modified

with 𝒓 = 𝟏

Modified

with 𝒓 = 𝟐

Modified

with 𝒓 = 𝟒

Parameter error mean 0.0247 0.0351 0.0348 0.0345 0.0341

Parameter error deviation 0.0124 0.0306 0.0272 0.0239 0.0217

Mean tracking error -0.0401 -0.0033 -0.0033 -0.0033 -0.0034

Tracking error deviation 0.1761 0.0296 0.0246 0.0189 0.0143

4. Discussion

In sections 3.1 and 3.2, the modified learning method yields better state error conver-

gence than the original method. For the specific version of the modified method, the final

state error norm ratio is about 2 magnitudes smaller (rough order × 10–8 compared with

× 10–3) than the original learning method, due to the data are shown in both Fig. 1 and 2.

 In section 3.1, all the learning methods yield similar convergence rate of the param-

eter error when the moment of inertia matrix doesn’t contain the product of inertia terms,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

as shown in the left part of Fig. 1. However, when the moment of inertia matric contains

nonzero product of inertia, as has been done in section 3.2, the left part of Fig.2 shows that

the modified methods are not better than the original method.

Table 5. Percent performance enhancement: Convergence of inertia estimation and tracking errors

Figure of merit
Original method

(prequels)

Proposed version

general

Proposed version

specific

Parameter error mean 0% 42% 53%

Parameter error deviation 0% 16% 100%

Mean tracking error 0% –77% –99%

Tracking error deviation 0% –91% –96%

 In section 3.3, Fig. 3 shows that when the magnitude of R in equation (10) goes big-

ger, the convergence rate also increases. Because equation (12) states that the convergence

rate of the Lyapunov function (equation (11)) is only determined by the size of R and 𝜃,

the result in section 3.3 is reasonable.

Table 6. Percent performance enhancement: Convergence of inertia estimation and tracking errors

Figure of merit
Original method

(prequels)

Modified

with 𝒓 = 𝟎. 𝟓

Modified

with 𝒓 = 𝟏

Modified

with 𝒓 = 𝟐

Modified

with 𝒓 = 𝟒

Parameter error mean 0.00% -42.11% -40.89% -39.68% -38.06%

Parameter error deviation 0.00% -146.77% -119.35% -92.74% -75.00%

Mean tracking error 0.00% 91.77% 91.77% 91.77% 91.52%

Tracking error deviation 0.00% 83.19% 86.03% 89.27% 91.88%

From the convergence condition of errors in Fig. 1, 2, and 3, it can be concluded that

the convergence trajectories of the specific version of the modified learning method are

more “bumpy” and contains more jitters and oscillations. This phenomenon may result

from the way of 𝜃 value determination provided in equation (13), which only consider

the data in the current time stamp, and the indeterminate nature of equation (13) makes

the estimation of 𝜃 very unstable.

It can be concluded that the specific version of the modified learning method can

achieve the convergence of both parameter error and state error in the simulation done in

this manuscript, which can increase the robustness of the rotation rate controller.

4.1. Recommended Future Work

From the parameter error data of the specific version of modified method in Fig. 1~3,

the increasing jitters can be observed. The reason for such instability after the convergence

is unclear. It could result from the numerical instability of the chosen ODE solver and the

options given to it, or the indeterminate way used for determining 𝜃 value in equation

(13).

Moreover, the property of the “general version of modified learning method” hasn’t

been explored carefully because it is not suitable in this case by nature. Also, a better way

of estimating 𝜃 may improve the result of the modified learning method as well. Finally,

a better way of choosing the G in equation (7) and the R in equation (10) is also an inter-

esting topic.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The MATLAB® code used in this manuscript is pasted below. The program utilizes

the ode45 solver to simulate the response of the overall system combining the controller

and the controlled system.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

%% deterministic artificial intelligence 3D Euler Test

clc; clear; close all

% syms

syms fwx(t) fwy(t) fwz(t)

syms Ixx Ixy Ixz Iyy Iyz Izz real

syms wx wy wz dwx dwy dwz ddwx ddwy ddwz real

w = [fwx;fwy;fwz];

wT = [fwx fwy fwz];

dw = diff(w,t);

ddw = diff(dw,t);

I = [Ixx Ixy Ixz; Ixy Iyy Iyz; Ixz Iyz Izz];

PhTh = I*dw + cross(w,I*w);

Peq = PhTh == 0;

[P, sbz] = equationsToMatrix(Peq, [Ixx Ixy Ixz Iyy Iyz Izz]);

dP = diff(P,t);

sP = subs(P, [fwx fwy fwz diff(wT,t) diff(diff(wT,t),t)], [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);

sdP = subs(dP, [fwx fwy fwz diff(wT,t) diff(diff(wT,t),t)], [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);

sfP = symfun(sP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);

sfdP = symfun(sdP, [wx wy wz dwx dwy dwz ddwx ddwy ddwz]);

%%

syms wdx wdy wdz dwdx dwdy dwdz real

syms ixx ixy ixz iyy iyz izz real

w = [wx;wy;wz];

wd = [wdx;wdy;wdz];

dwd = [dwdx dwdy dwdz]';

i = [ixx ixy ixz; ixy iyy iyz; ixz iyz izz];

Ki = i'*dwd + cross(wd,i*wd) + cross(wd,i*w);

Keq = Ki == [0;0;0];

[K, sbz] = equationsToMatrix(Keq, [ixx ixy ixz iyy iyz izz]);

fK = symfun(K, [wx wy wz wdx wdy wdz dwdx dwdy dwdz]);

%% param

clc; close all

% p.J = [1 0 0; 0 2 0; 0 0 3];

p.J = [1 0.2 0.3; 0.2 2 0.4; 0.3 0.4 1];

p.dwd = [1 1 1]';

p.P = MATLAB®Function(sfP);

p.dP = MATLAB®Function(sfdP);

p.K = MATLAB®Function(fK);

p.G = 3*eye(6);

Jt = [p.J(1,1);p.J(1,2);p.J(1,3);p.J(2,2);p.J(2,3);p.J(3,3)];

% time

tfinal = 5;

deltat = 0.001;

t = 0:deltat:tfinal;% for evaluating solution

% solve the ODE

z0 = [1 0 0 0 0 0 0 0.08 0.08 0.04 1.06 0.21 0.31 1.90 0.41 1.15]';

options = odeset('absTol',1e-10,'relTol',1e-10);

% The simulation for the general version of modified learning method

[t_dai, z_dai] = ode45(@(t,z)deterministic_artificial_intelligence_modified_general(t,z,p), t, z0, options);

% The simulation for the specific version of modified learning method

[t_dmd, z_dmd] = ode45(@(t,z)deterministi_artificia_intelligence_modified_specific(t,z,p), t, z0, options);

% The simulation for the original version of learning method

[t_dor, z_dor] = ode45(@(t,z)deterministic_artificial_intelligence_original(t,z,p), t, [z0;0;0;0], options);

%% Plot parameter estimations and state trajectories

figure()

plot(t_dai, z_dai(:,11),t_dai, z_dai(:,14),t_dai, z_dai(:,16))

figure()

plot(t_dmd, z_dmd(:,11),t_dmd, z_dmd(:,14),t_dmd, z_dmd(:,16))

figure()

plot(t_dor, z_dor(:,11),t_dor, z_dor(:,14),t_dor, z_dor(:,16))

figure()

plot(t_dai, z_dai(:,7),t_dor, z_dor(:,7),t_dmd, z_dmd(:,7),t_dai, z_dai(:,10))

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

legend('Modified 1', 'Original', 'Modified 2', 'Desired');

figure()

plot(t_dai, z_dai(:,6),t_dor, z_dor(:,6),t_dmd, z_dmd(:,6),t_dai, z_dai(:,9))

legend('Modified 1', 'Original', 'Modified 2', 'Desired');

figure()

plot(t_dai, z_dai(:,5),t_dor, z_dor(:,5),t_dmd, z_dmd(:,5),t_dai, z_dai(:,8))

legend('Modified 1', 'Original', 'Modified 2', 'Desired');

%% Analysis the norm rates

% inertia norm

J_dai = z_dai(:,11:16);

J_dmd = z_dmd(:,11:16);

J_dor = z_dor(:,11:16);

n = length(t_dai);

nJ_dai = vecnorm(J_dai'-Jt*ones(1,n))/norm(Jt);

nJ_dmd = vecnorm(J_dmd'-Jt*ones(1,n))/norm(Jt);

nJ_dor = vecnorm(J_dor'-Jt*ones(1,n))/norm(Jt);

figure()

plot(t_dai, nJ_dai, t_dmd, nJ_dmd, t_dor, nJ_dor);

legend('deterministic artificial intelligence modified General Version', 'deterministic artificial intelligence

modified Specific Version', 'deterministic artificial intelligence original');

title('Convergence of the parameter error norm ratio');

xlabel('time (s)');

ylabel('Parameter error norm ratio');

% state error norm

dw_dai = z_dai(:,5:7)-z_dai(:,8:10);

nw_dai = vecnorm(dw_dai')./vecnorm(z_dai(:,8:10)');

dw_dmd = z_dmd(:,5:7)-z_dmd(:,8:10);

nw_dmd = vecnorm(dw_dmd')./vecnorm(z_dmd(:,8:10)');

dw_dor = z_dor(:,5:7)-z_dor(:,8:10);

nw_dor = vecnorm(dw_dor')./vecnorm(z_dor(:,8:10)');

figure()

plot(t_dai, log(nw_dai), t_dmd, log(nw_dmd), t_dor, log(nw_dor));

legend('deterministic artificial intelligence modified General Version', 'deterministic artificial intelligence

modified Specific Version', 'deterministic artificial intelligence original');

title('Convergence of the state error norm ratio');

xlabel('time (s)');

ylabel('State error norm ratio');

%% Function

function zdot = deterministic_artificial_intelligence_modified_general(t, z, p)

 q = z(1:4);

 w = z(5:7);

 wd = z(8:10);

 th = z(11:16); % theta hat

 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];

 % generate trajectory

 [sdwd,sddwd] = traj_gen(t,wd,p);

 % generate feed forward control torque

 tau = Jh*sdwd + cross(wd', Jh*wd)';

 % update the dynamic of the system

 dw = p.J\(tau-cross(w', p.J*w)');

 dq = 0.5*quatmultiply([0 w'],q');

 % update the parameter estimation

 ddw = [0;0;0];

 Pd = p.P(wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3),sddwd(1),sddwd(2),sddwd(3));

 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);

 dP = p.dP(w(1),w(2),w(3),dw(1),dw(2),dw(3),ddw(1),ddw(2),ddw(3));

 ph = Pd-P; %P - Pd;

 A = dP*pinv(P)*pinv(P' + pinv(P));

 B = (P' + pinv(P))'*p.G;

 dth = (th'*ph'*(A+B))';

 if abs(t-round(t)) < 0.001

 disp(t)

 end

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

 zdot = [dq';dw;sdwd;dth];

end

function zdot = deterministic_artificial_intelligence_modified_specific(t, z, p)

 q = z(1:4);

 w = z(5:7);

 wd = z(8:10);

 th = z(11:16); % theta hat

 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];

 % generate trajectory

 [sdwd,sddwd] = traj_gen(t,wd,p);

 % generate feed forward control torque

 tau = Jh*sdwd + cross(wd', Jh*wd)';

 % update the dynamic of the system

 dw = p.J\(tau-cross(w', p.J*w)');

 dq = 0.5*quatmultiply([0 w'],q');

 % update the parameter estimation

 Pd = p.P(wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3),sddwd(1),sddwd(2),sddwd(3));

 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);

 ph = Pd-P;

 K = p.K(w(1),w(2),w(3),wd(1),wd(2),wd(3),sdwd(1),sdwd(2),sdwd(3));

 dth = -K'*(w-wd) + p.G*(pinv(P)*ph*th);

 if abs(t-round(t)) < 0.001

 disp(t)

 end

 zdot = [dq';dw;sdwd;dth];

end

function zdot = deterministic_artificial_intelligence_original(t, z, p)

 q = z(1:4);

 w = z(5:7);

 wd = z(8:10);

 th = z(11:16); % theta hat

 Jh = [th(1) th(2) th(3); th(2) th(4) th(5); th(3) th(5) th(6)];

 ei = z(17:19);

 % generate trajectory

 [sdwd,sddwd] = traj_gen(t,wd,p);

 % generate feed forward control torque

 tau = Jh*sdwd + cross(wd', Jh*wd)';

 % update the dynamic of the system

 dw = p.J\(tau-cross(w', p.J*w)');

 dq = 0.5*quatmultiply([0 w'],q');

 % update the parameter estimation

 P = p.P(w(1),w(2),w(3),dw(1),dw(2),dw(3),0,0,0);

 dth = 1.5*pinv(P)*(tau-P*th);

 e = -wd+w;

 dei = e;

 zdot = [dq';dw;sdwd;dth;dei];

end

function [dwd,ddwd] = traj_gen(t,wd,p)

 tau = [5;2;-2];

 if t>7

 tau = [0;0;0];

 end

 dwd = p.J\(tau-cross(wd', p.J*wd)');

 ddwd = [0;0;0];

end

References

1. Bucchioni, G.; Innocenti, M. Rendezvous in Cis-Lunar Space near Rectilinear Halo Orbit: Dynamics and Control Issues. Aero-

space 2021, 8, 68.

2. Johnson, M. Space Station Robotic Arms Have a Long Reach. Available online: https://www.nasa.gov/mission_pages/station/re-

search/news/b4h-3rd/hh-robotic-arms-reach (accessed on 23 December 2022).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

3. Mahoney, E. NASA Seeks Ideas for Commercial Uses of Gateway. Available online: https://www.nasa.gov/feature/nasa-seeks-

ideas-for-commercial-uses-of-gateway (accessed on 23 December 2022).

4. NASA Image Use Policy. Available online: https://gpm.nasa.gov/image-use-policy (accessed on 23 December 2022).

5. Bando, M.; Namati, H.; Akiyama, Y.; Hokamoto, S. Formation flying along libration point orbits using chattering attenuation

sliding mode control. Front. Space Technol. 2022, 3, 919932.

6. Colombia, F.; Colagrossi, A.; Lavagna, M. Characterization of 6DOF natural and controlled relative dynamics in cislunar space.

Acta Astronautica 2022, 196, 369-379.

7. Sands, T. Flattening the Curve of Flexible Space Robotics. Appl. Sci. 2022, 12, 2992.

8. Sands, T. Optimization Provenance of Whiplash Compensation for Flexible Space Robotics. Aerospace 2019, 6(9), 93.

9. Jones, A. Chinese space station robot arm tests bring amazing views from orbit. Available online: https://www.space.com/china-

space-station-wentian-robot-arm-test (accessed on 23 December 2022).

10. Jones, A. See a large robotic arm 'crawl' across China's space station. https://www.space.com/china-space-station-robot-arm-

video (accessed on 23 December 2022).

11. Zhang, K.; Pan, B. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty. J. ZheJiang

Univ. 2022, 56(4), 833-842.

12. Smeresky, B.; Rizzo, A.; Sands, T. Optimal Learning and Self-Awareness Versus PDI. Algorithms 2020, 13,23.

13. Slotine, J.; Li, W. Applied Nonlinear Control; Prentice-Hall, Inc.: Englewood Cliffs, NJ, U.S.A., 1991; pp. 392–436.

14. Sands, T. Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV). J. Mar. Sci.

Eng. 2020, 8, 578

15. Sandberg, A.; Sands, T. Autonomous Trajectory Generation Algorithms for Spacecraft Slew Maneuvers. Aerospace 2022, 9,135.

16. Raigoza, K.; Sands, T. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance. Sen-

sors 2022, 22, 7066. https://doi.org/10.3390/s22187066

17. Wilt, E.; Sands, T. Microsatellite Uncertainty Control Using Deterministic Artificial Intelligence. Sensors 2022, 22, 8723.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2023 doi:10.20944/preprints202301.0472.v1

https://doi.org/10.20944/preprints202301.0472.v1

