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Abstract: Non-linear activation functions are one of the main parts of deep neural network

architectures. The choice of the activation function can affect model speed, performance and

convergence. Most popular activation functions don’t have any trainable parameters and don’t

alter during the training. We propose different activation functions with and without trainable

parameters. Said activation functions have a number of advantages and disadvantages. We’ll be

testing the performance of said activation functions and comparing the results with widely known

activation function ReLU [1]. We assume that the activation functions with trainable parameters can

outperform functions without ones, because the trainable parameters allow the model to “select” the

type of each of the activation functions itself, however, this strongly depends on the architecture of

the deep neural network and the activation function itself. The code and models have been publicly

available at github repositoryhttps://github.com/Pe4enIks/TrainableActivation.

Keywords: trainable activations; trainable activation functions; CosLU; DELU; LinComb;

NormLinComb; ReLUN; ScaledSoftSign; ShiLU

1. Introduction

As deep neural networks developed, various activation functions were used and non-linearity

remained the main requirement for all functions, which allows you to build deeper neural networks

operating in more complex domains.

Sigmoid was one of the first successful activation functions. It performed well in simple tasks, but

was not suitable for more complex tasks due to the problem of vanishing gradient [2]. The Rectified

Linear Unit (ReLU) has become extremely popular in deep neural networks, getting rid of the problem

of the vanishing gradient that Sigmoid had. However, ReLU has its own problems too, for example

shifted from zero mean unit. Leaky ReLU [3], Exponential Linear Unit (ELU) [4] activation functions

were designed to get rid of hard nullifying in the negative area, as well as to shift the mean unit closer

to zero.

Most of these activation functions are non-trainable. We have developed several trainable

activation functions to expand this set, with some of them showing better performance than

non-trainable ones under certain conditions, which we will talk about later.

The article is structured as follows: In Section 2, we discuss the related works. In Section 3,

we discuss the proposed approach. Section 4 contains the presentation of the results. We end with

concluding remarks in Section 5.

2. Related Work

We have found several major articles that propose the trainable activation functions.

Sinu-Sigmoidal Linear Unit (SinLU) [5] is an activation function that has two trainable parameters,

first one is the amplitude of the sine function, second one is the frequency of the sine wave. The main

property of this function is the usage of periodical properties of the sine function.

ErfAct and Pserf [9] are trainable activation functions that are based on the Gauss error function

and can be interpreted as smooth approximations of the ReLU. These functions outperform the ReLU

and some other standard activation functions, but are more computationally non efficient. Forward

pass of these functions is almost 1.5 times slower than that of the ReLU and the backward pass is 2

times slower.
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Fourier-CNN and LC-CNN [10] are convolutional neural networks that use fourier series and

linear combination as their activation functions.

In [11] authors review a large set of trainable activation functions and conduct a comparison

using different datasets and model architectures. Authors divided them into two major categories:

parameterized standard functions and functions based on ensemble methods. Parameterized standard

functions are modifications of the standard activation functions using trainable parameters. Functions

based on ensemble methods are combinations of different functions using trainable parameters.

Given articles inspired us to conduct this study: to create our own trainable activation functions

and to modify existing ones so that they can compete with and, possibly, outperform current most

popular choice when it comes to activation functions.

3. Proposed Approach

In this section, we discuss the proposed activation functions — Cosinu-Sigmoidal Linear Unit

(CosLU), DELU, Linear Combination (LinComb), Normalized Linear Combination (NormLinComb),

Rectified Linear Unit N (ReLUN), Scaled Soft Sign (ScaledSoftSign), Shifted Rectified Linear Unit

(ShiLU). Each of these functions has its own advantages and disadvantages, some of them suffer from

ReLU problems (ReLUN, ShiLU) because they were designed as ReLU modification, some may suffer

from the problem of a vanishing gradient (ScaledSoftSign), some lose in the model speed (LinComb

and NormLinComb).

3.1. CosLU

In this section, we discuss the proposed activation function, which is defined by Equation 1.

CosLU(x) = (x + α cos(βx))σ(x) (1)

Here σ is a sigmoid function (Equation 2) and α and β are trainable parameters.

σ(x) =
1

1 + e−x
(2)

Proposed function is similar to SinLU but uses a different type of periodic function, a cosine

function is used instead of a sine function. Parameter α controls the cosine amplitude, thereby

determining the effect of the cosine on the entire activation function, parameter β controls the cosine

frequency. Figure 1 shows different variants of the CosLU activation function with different values of

parameters α and β.
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Figure 1. The plot of the CosLU activation function for different values of its parameters. The subplot

(a) refers to a CosLU curve with α=1.0, β=1.0; (b) refers to a CosLU curve with α=1.0, β=3.0; (c) refers to

a CosLU curve with α=3.0, β=1.0.
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3.2. DELU

In this section, we discuss the proposed activation function, which is defined by Equation 3.

DELU(x) =

{

SiLU(x), x 6 0

(n + 0.5)x + |e−x − 1|, x > 0
(3)

Here SiLU is Sigmoid Linear Unit (SiLU) [6] activation function and n is a trainable parameter.

SiLU(x) = xσ(x) (4)

This function uses the left part of SiLU, thus getting a buffer region to the left of zero, which allows

you to get a smooth output from the function near zero. The right part is similar to an ordinary ReLU,

but more smoothed, because it uses |e−x − 1|. In addition to the exponent, we use the coefficient n to

be able to change the slope of the linear part of the activation function (the coefficient at x). Figure 2

shows different variants of the DELU activation function with different values of parameter n.
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Figure 2. The plot of the DELU activation function for different values of its parameter. The subplot (a)

refers to a DELU curve with n=0.5; (b) refers to a DELU curve with n=1.0; (c) refers to a DELU curve

with n=2.0.

3.3. LinComb and NormLinComb

In this section, we discuss the LinComb and NormLinComb activation functions, which are

defined by Equation 5 and Equation 6 correspondingly.

LinComb(x) =
n

∑
i=0

wiFi(x) (5)

NormLinComb(x) =

n

∑
i=0

wiFi(x)

|| W ||
(6)

Here wi is a trainable parameter, Fi is an activation function, n is the number of terms in a linear

combination.

NormLinComb is an analog of linear combination from the [10], but with other set of functions in

the linear combination.

We chose (ReLU, Sigmoid, Tanh, SoftSign) set of functions because it does not significantly reduce

the speed of the model and gives a good result.

ReLU(x) = max(0, x) (7)

Tanh(x) =
ex − e−x

ex + e−x
(8)
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So f tSign(x) =
x

1 + |x|
(9)

These functions implement the idea of combining various activation functions as one linear

combination with all coefficients for the functions as trainable parameters, allowing the model to

independently determine the contribution of each of the functions during training. Thus, this activation

function is more flexible and can adapt to the data, but, unfortunately, compared to other developed

functions, the speed of the model reduces significantly.

In the NormLinComb activation function the linear combination is normalized using the weight’s

norm after being obtained. Figures 3 and 4 show different variants of the LinComb and NormLinComb

activation functions with different values of trainable parameters.
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Figure 3. The plot of the LinComb activation function for different values of its parameters. The

subplot (a) refers to a LinComb curve with w0=1.0 (ReLU), w1=1.0 (Sigmoid), w2=1.0 (Tanh), w3=1.0

(SoftSign); (b) refers to a LinComb curve with w0=0.25 (ReLU), w1=0.25 (Sigmoid), w2=0.25 (Tanh),

w3=0.25 (SoftSign); (c) refers to a LinComb curve with w0=0.75 (ReLU), w1=0.15 (Sigmoid), w2=0.07

(Tanh), w3=0.03 (SoftSign).
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Figure 4. The plot of the NormLinComb activation function for different values of its parameters. The

subplot (a) refers to a NormLinComb curve with w0=1.0 (ReLU), w1=1.0 (Sigmoid), w2=1.0 (Tanh),

w3=1.0 (SoftSign); (b) refers to a NormLinComb curve with w0=0.25 (ReLU), w1=0.25 (Sigmoid), w2=0.25

(Tanh), w3=0.25 (SoftSign); (c) refers to a NormLinComb curve with w0=0.75 (ReLU), w1=0.15 (Sigmoid),

w2=0.07 (Tanh), w3=0.03 (SoftSign).

3.4. ReLUN

In this section, we discuss the ReLUN activation function, which is defined by Equation 10.

ReLUN(x) = min(max(0, x), n) (10)

ReLU6(x) = min(max(0, x), 6) (11)

Here n is a trainable parameter.
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ReLUN is a trainable version for ReLU6, which is defined by Equation 11. During the use of this

activation function, we allow the model to “select” the maximum possible value itself, which allows us

to get rid of undesirably high values after each layer where this activation function is used. However,

this type of function does not get rid of all the problems of the original ReLU. Figure 5 shows different

variants of the ReLUN activation function with different values of the parameter n.
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Figure 5. The plot of the ReLUN activation function for different values of its parameter. The subplot

(a) refers to a ReLUN curve with n=1.0; (b) refers to a ReLUN curve with n=2.5; (c) refers to a ReLUN

curve with n=4.0.

3.5. ScaledSoftSign

In this section, we discuss the ScaledSoftSign activation function, which is defined by Equation 12.

ScaledSo f tSign(x) =
αx

β + |x|
(12)

Here α and β are trainable parameters.

The developed function is a scaled version of SoftSign, which is defined in Equation 9, the α

parameter allows you to make a function with different ranges of values on the y axis, and β allows you

to control the rate of transition between signs. Figure 6 shows different variants of the ScaledSoftSign

function with different values of the α and β parameters.
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Figure 6. The plot of the ScaledSoftSign activation function for different values of its parameter. The

subplot (a) refers to a ScaledSoftSign curve with α=1.0, β=1.0; (b) refers to a ScaledSoftSign curve with

α=2.0, β=2.0; (c) refers to a ScaledSoftSign curve with α=3.0, β=3.0.
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Table 1. ResNet architectures for CIFAR-10. Building blocks are shown in brackets, with the numbers

of blocks stacked.

layer name output size 8-layer 14-layer 20-layer 26-layer 32-layer 44-layer 56-layer

conv1 32×32 3×3, 16, stride 1, padding 1

conv2_x 32×32

[

3×3, 16
3×3, 16

]

×1

[

3×3, 16
3×3, 16

]

×2

[

3×3, 16
3×3, 16

]

×3

[

3×3, 16
3×3, 16

]

×4

[

3×3, 16
3×3, 16

]

×5

[

3×3, 16
3×3, 16

]

×7

[

3×3, 16
3×3, 16

]

×9

conv3_x 16×16

[

3×3, 32
3×3, 32

]

×1

[

3×3, 32
3×3, 32

]

×2

[

3×3, 32
3×3, 32

]

×3

[

3×3, 32
3×3, 32

]

×4

[

3×3, 32
3×3, 32

]

×5

[

3×3, 32
3×3, 32

]

×7

[

3×3, 32
3×3, 32

]

×9

conv4_x 8×8

[

3×3, 64
3×3, 64

]

×1

[

3×3, 64
3×3, 64

]

×2

[

3×3, 64
3×3, 64

]

×3

[

3×3, 64
3×3, 64

]

×4

[

3×3, 64
3×3, 64

]

×5

[

3×3, 64
3×3, 64

]

×7

[

3×3, 64
3×3, 64

]

×9

8×8 flatten, 10-d fc

Table 2. DNN architectures for MNIST.

DNN-2 DNN-3 DNN-5

flatten

fc 392-d

fc 512-d
fc 392-d fc 256-d
fc 196-d fc 128-d

fc 64-d

fc 10-d

3.6. ShiLU

In this section, we discuss the ShiLU activation function, which is defined by Equation 13.

ShiLU(x) = αReLU(x) + β (13)

Here ReLU is the activation function, which is defined by Equation 7. α and β are trainable parameters.

This function is a trainable version of the ReLU function, in which the α parameter allows you to

control the slope of the linear function x on the right side of the activation function. The β parameter

allows you to shift our activation function relative to the y axis. The derivative of our function remains

computationally efficient, but we allow the model to “select” the form of our function, which can

improve the model performance. However, this type of function doesn’t get rid of the problems of the

original ReLU. Figure 7 shows different variants of the ShiLU activation function with different values

of the α and β parameters.
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Figure 7. The plot of the ShiLU activation function for different values of its parameter. The subplot (a)

refers to a ShiLU curve with α=0.5, β=0.25; (b) refers to a ShiLU curve with α=0.25, β=1.0; (c) refers to a

ShiLU curve with α=1.5, β=0.0.
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4. Experiments

In this section, we performed a number of experiments to test the performance of the proposed

activation functions. We compare the performance of the proposed activation functions against ReLU

and each other. This function was chosen because of its frequent usage in deep neural networks. The

experiments were carried out on the CIFAR-10 [7] and MNIST [12] datasets. ResNet [8] and DNN

(Deep Neural Network) models were used.

4.1. Dataset

CIFAR-10. The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes (airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, truck), with 6000 images per class. There are

50000 training images and 10000 test images. All images belong to only one unique class, for example,

there are no intersections between the truck and automobile class.

MNIST. The MNIST handwritten digits dataset consists of 70000 28x28 grayscale images in 10 classes,

has a training set of 60000 examples, and a test set of 10000 examples.

4.2. Model

ResNet. We used ResNet models for all tests on the CIFAR-10 dataset. Since we were using the

CIFAR-10 dataset, we could not use the popular ResNet-18, ResNet-34 models, so we used the

ResNet-20, ResNet-32, ResNet-44, ResNet-56 models described in the original ResNet [8] article.

We modified these models and called them ResNet-8, ResNet-14 and ResNet-26 (n=1, n=2, n=4,

respectively). See Table 1 for detailed architectures.

DNN. We used DNN models for all tests on the MNIST dataset. These architectures don’t have

convolutional layers, only linear ones. We use DNN-2, DNN-3 and DNN-5 models (n=2, n=3, n=5,

respectively). See Table 2 for detailed architectures.

4.3. Results

CIFAR-10. All training parameters, such as data augmentation, data splitting, learning rate, weight

decay, optimizer, scheduler were taken from the original ResNet [8] article section about training on

CIFAR-10 data. Figures 8–14 show a comparison of the values of the loss function in training and

validation stages (default is the ReLU). Comparison of metrics in training/testing is presented in

Table 3.

MNIST. Training parameters, such as learning rate, optimizer, scheduler were taken from the SinLU

[5] article section about lightweight neural networks. Figures 15–17 show a comparison of the values

of the loss function in training and validation stages (default is the ReLU). Comparison of metrics in

training/testing is presented in Table 4.

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

Here TP (True Positives), FP (False Positives), TN (True Negatives), FN (False Negatives) are parts of

the Confusion Matrix.
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Figure 8. Comparison for ResNet-8 model on the CIFAR-10 dataset.

0 20 40 60 80
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
ss

cifar10
train_default
train_lincomb
train_relun
train_scaledsoftsign
train_shilu
train_helu
train_delu
train_sinlu
train_coslu
train_normlincomb

0 20 40 60 80
epoch

0.5

1.0

1.5

2.0

2.5

3.0
lo
ss

cifar10
valid_default
valid_lincomb
valid_relun
valid_scaledsoftsign
valid_shilu
valid_helu
valid_delu
valid_sinlu
valid_coslu
valid_normlincomb

Figure 9. Comparison for ResNet-14 model on the CIFAR-10 dataset.
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Figure 10. Comparison for ResNet-20 model on the CIFAR-10 dataset.
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Figure 11. Comparison for ResNet-26 model on the CIFAR-10 dataset.
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Figure 12. Comparison for ResNet-32 model on the CIFAR-10 dataset.
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Figure 13. Comparison for ResNet-44 model on the CIFAR-10 dataset.
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Figure 14. Comparison for ResNet-56 model on the CIFAR-10 dataset.
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Figure 15. Comparison for DNN-2 model on the MNIST dataset.

0 2 4 6 8
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
ss

mnist
train_default
train_lincomb
train_relun
train_scaledsoftsign
train_shilu
train_helu
train_delu
train_sinlu
train_coslu
train_normlincomb

0 2 4 6 8
epoch

0.15

0.20

0.25

0.30

0.35

0.40

lo
ss

mnist
valid_default
valid_lincomb
valid_relun
valid_scaledsoftsign
valid_shilu
valid_helu
valid_delu
valid_sinlu
valid_coslu
valid_normlincomb

Figure 16. Comparison for DNN-3 model on the MNIST dataset.
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Figure 17. Comparison for DNN-5 model on the MNIST dataset.

Table 3. Accuracy (in %, Equation 14) comparison (train/test) for the CIFAR-10 dataset.

model name ReLU CosLU DELU LinComb NormLinComb ReLUN ScaledSoftSign ShiLU

ResNet-8 92.4 / 86.7 93.3 / 86.5 92.5 / 85.6 93.5 / 86.3 92.8 / 86.3 92.1 / 86.3 70.0 / 69.9 93.7 / 86.1

ResNet-14 98.1 / 89.2 98.4 / 89.0 97.7 / 88.6 97.0 / 87.5 98.0 / 88.3 97.9 / 88.6 93.2 / 86.0 98.0 / 88.6

ResNet-20 99.2 / 90.1 99.4 / 90.4 98.8 / 88.7 96.3 / 87.3 99.2 / 89.8 99.0 / 89.4 94.9 / 86.6 98.7 / 89.2

ResNet-26 99.6 / 90.7 99.6 / 91.1 99.0 / 89.5 93.4 / 84.6 99.7 / 90.7 99.0 / 88.8 94.9 / 86.3 98.3 / 88.2

ResNet-32 99.7 / 90.9 99.7 / 90.9 99.1 / 88.8 98.8 / 87.7 99.7 / 90.0 99.2 / 87.1 94.4 / 85.6 98.4 / 87.5

ResNet-44 99.7 / 89.8 99.8 / 90.5 99.0 / 89.6 99.1 / 87.6 99.8 / 90.0 43.7 / 44.7 93.8 / 86.1 96.3 / 85.4

ResNet-56 99.8 / 89.4 99.8 / 88.8 98.4 / 88.8 99.2 / 87.9 99.7 / 89.1 69.7 / 67.1 91.1 / 84.4 91.1 / 78.7

Table 4. Accuracy (in %, Equation 14) comparison (train/test) for the MNIST dataset.

model name ReLU CosLU DELU LinComb NormLinComb ReLUN ScaledSoftSign ShiLU

DNN-2 93.6 / 96.0 92.9 / 95.7 94.4 / 96.4 93.4 / 96.0 95.1 / 96.5 94.0 / 96.3 94.0 / 96.2 93.8 / 96.0

DNN-3 95.1 / 96.7 94.3 / 96.4 95.7 / 97.0 95.0 / 96.7 95.5 / 96.8 95.7 / 97.0 95.0 / 96.4 94.9 / 96.6

DNN-5 96.1 / 97.1 95.7 / 96.9 96.6 / 97.2 95.7 / 97.0 96.2 / 97.1 96.2 / 97.1 95.3 / 96.3 95.6 / 96.9

4.3.1. CosLU comparison

CIFAR-10. Using this activation, we obtained results comparable to ReLU. We can spot that the larger

the model is, the earlier our activation function outperforms ReLU, but at the same time the moment

of a significant drop in loss occurs earlier for ReLU and both activation functions allow us to obtain a

comparable loss value in training and validation as a result.

MNIST. The results obtained using this activation function turned out to be slightly worse than those

of the ReLU. Using CosLU for the DNN models, we failed to achieve the desirable results.

4.3.2. DELU comparison

CIFAR-10. Using this activation function, we could not get adequate results. For ResNet-8 the results

were comparable to ReLU, however, the performance decreased with the expansion of the model. Also,

in addition to the performance decrease, there was a strong instability on validation until the moment

of a significant drop of the loss function value. We failed to achieve the desired result for DELU.

MNIST. This activation function has proven itself to be well suited for DNN models. It outperformed

the ReLU in all tests, while not affecting the speed of the model. The average accuracy increase was

about 0.5%.

4.3.3. LinComb and NormLinComb comparison

CIFAR-10. The LinComb activation function performed well on the ResNet-8 model, but on all

other models the results turned out worse than those of the ReLU. Moreover, similarly to DELU, the

problem of instability on validation was detected. The NormLinComb function managed to handle
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this particular problem better. The results on all ResNet models turned out to be good, some are

comparable to the results of ReLU, some outperform the ReLU. It was not possible to achieve the

desired result on most ResNet models using the LinComb function, with the exception of ResNet-8,

however, NormLinComb function achieved the desirable results.

MNIST. The results obtained using the LinComb activation function are comparable to the results

of the ReLU. On average, the accuracy decrease was 0.1%. However, all the results obtained with

NormLinComb surpassed the results of the ReLU. The accuracy increase averaged 0.5%.

4.3.4. ReLUN comparison

CIFAR-10. This activation function showed results comparable to ReLU on all models except ResNet-44

and ResNet-56. We were not able to achieve significant improvement over ReLU, but there was no

degradation of the results on small models.

MNIST. This activation function, as well as the DELU and NormLinComb functions, has proven itself

to be well suited for DNN models. It outperformed the ReLU in all tests, the average accuracy increase

was about 0.4%.

4.3.5. ScaledSoftSign comparison

CIFAR-10. This activation function showed results worse than that of the ReLU for all ResNet models.

MNIST. This activation function outperformed the ReLU on the DNN-2 model, however, with the

increase in the model size the results of this function became worse in comparison with ReLU.

4.3.6. ShiLU comparison

CIFAR-10. This activation function performed well on the ResNet-8 model, outperforming ReLU.

However, with the model expansion, the results deteriorated.

MNIST. The results obtained using this activation function are comparable to the results of the ReLU.

On average, the accuracy decrease was 0.1%.

5. Conclusions

In this article, we have developed several activation functions with trainable parameters. We

tested each function and compared them with ReLU. Results varied from one function to another. Some

of them were good, some were comparable, and some were poor. We have identified one property of

the majority of presented activation functions with trainable parameters, which is the larger the model

becomes, the more their performance decreases in comparison to other popular functions such as ReLU.

We assume that this is due to an increase in the number of layers, thereby the number of activation

functions. Each function is trained independently from the others, and as a result, the performance of

the model decreases. We assume that in the future these functions will find their application in some

specific domains, small architectures of deep neural networks, etc. This topic remains open for further

research, which will allow for a significant increase in the performance relative to the current state.

References

1. Nair, V., Hinton, G; Rectified Linear Units Improve Restricted Boltzmann Machines; ICML: Haifa, Israel,

2010; pp. 807–814.

2. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.

3. Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y. Rectifier nonlinearities improve neural network

acoustic models. In ICML, volume 30, 2013.

4. Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter. Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs). arXiv:1511.07289, 2015.

5. Paul Ashis, Bandyopadhyay Rajarshi, Yoon Jin, Geem Zong Woo, Sarkar Ram. SinLU: Sinu-Sigmoidal Linear

Unit. Mathematics. 10. 337. 10.3390/math10030337, 2022.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2023                   doi:10.20944/preprints202301.0463.v1

https://doi.org/10.20944/preprints202301.0463.v1


13 of 13

6. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation

in reinforcement learning. Neural Netw. 2018,107, 3–11.

7. Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.

arXiv:1512.03385, 2015.

9. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, Ashish Kumar Pandey. ErfAct and Pserf: Non-monotonic

Smooth Trainable Activation Functions. arXiv:2109.04386, 2009.

10. Zhaohe Liao. Trainable Activation Function in Image Classification. arXiv:2004.13271, 2004.

11. Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, Roberto Prevete. A survey on modern trainable

activation functions. arXiv:2005.00817, 2005.

12. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278-2324, November 1998.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2023                   doi:10.20944/preprints202301.0463.v1

https://doi.org/10.20944/preprints202301.0463.v1

	Introduction
	Related Work
	Proposed Approach
	CosLU
	DELU
	LinComb and NormLinComb
	ReLUN
	ScaledSoftSign
	ShiLU

	Experiments
	Dataset
	Model
	Results
	CosLU comparison
	DELU comparison
	LinComb and NormLinComb comparison
	ReLUN comparison
	ScaledSoftSign comparison
	ShiLU comparison


	Conclusions
	References

