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Abstract: While the language model using the stop sign as an independent token has been widely used to 

decide when the model should stop, it may lead to the growth of vocabulary dimensions and further problems. 

Similarly, present research on game algorithms usually estimate stopping point related problems based on the 

evaluation of the winning rate. However, information redundancy may also exist in such models, thus 

increasing the training difficulty. Above two types of tasks (and similar autoregressive tasks) show a common 

problem of stopping point prediction. In this paper, we describe a design of separated model, trying to separate 

the complexity of stopping point prediction from the main task model, so that the information used for 

estimating stopping point can be reduced. On this basis, in order to verify the rationality of using separated 

model, we propose a model-free test method. It judges the separability of transformed data based on point 

difference and sequence difference metrics. In this way, it can predict the credibility of the separated model 

inference. 

Keywords: sequence encoder; autoregressive sequence; separated model; statistical test; neural 

network 

 

CCS Concepts: Computing methodologies • Machine learning • Machine learning approaches • 

Learning latent representations 

1. Introduction 

A common problem in autoregressive sequence prediction models is when the model should 

stop predicting. For example, for language models, continuous backward prediction will make the 

model generate meaningless repetitive text. At present, the widely used language model [1,2] 

generally uses the stop sign as an independent token to solve this problem, but this will lead to the 

growth of vocabulary dimensions, further lead to the increase of the number of model parameters, 

and make training more difficult. Another example, for the strategy learning of multi round gambling 

games, researchers can predict the state of the next moment based on the past observation sequence 

[3]. However, the problem is that the stop condition(stopping point) of the game may not be reflected 

in the observable sequence: Consider a simple game in which two players take turns drawing in the 

deck. Each player can choose to compare the total card value in his hand with the other player in any 

round. The bigger side wins. In this problem, the observable sequence of players is only the cards in 

their hands. We can predict the expectation of the next card value based on this information (and a 

priori of the deck), but this model cannot know when we should decide to compete with the opponent. 

At present, the research on game algorithm generally makes the model predict the winning rate to 

answer such questions [4,5,6,7]. However, stopping point prediction does not necessarily require all 

the information of the policy model. Therefore, using the same model to calculate both may also have 

redundancy in information, which increases the training difficulty. Therefore, for the problem of 

stopping point prediction in the above two types of tasks (and similar autoregressive tasks), we 
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describe a general model to try to separate the complexity of stopping point prediction from the main 

task model. 

2. Separated Model 

Considering the autoregressive model 𝑀𝑀, at any time step 𝑛𝑛, we have: 𝑀𝑀(𝑂𝑂𝑂𝑂𝑂𝑂1 , … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛+1′  (1) 

Where 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖  is the past observation value and 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖′ is the prediction value. 

If we know the stop condition (e.g. stop at 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 < 𝑐𝑐), a perfect autoregressive prediction model 

can simultaneously calculate whether the next time step will stop. At this time, the model does not 

need to introduce additional complexity to calculate stopping points. However, in most cases, the 

stop condition depends on the sequence of past observations: 𝑆𝑆𝑆𝑆(𝑂𝑂𝑂𝑂𝑂𝑂1, … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛) = 𝑖𝑖𝑂𝑂𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛+1 (1 𝑖𝑖𝑜𝑜 0) (2) 

If we can determine based on prior information that 𝑀𝑀 and 𝑆𝑆𝑆𝑆 calculate results based on the 

same information (both are based on the same hidden representation inference). Then, for the 

approximation of 𝑀𝑀, we can use double output: 𝑀𝑀′(𝑂𝑂𝑂𝑂𝑂𝑂1, … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛+1′  , 𝑖𝑖𝑂𝑂𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛+1 (3) 

However, for many tasks, it is easier to judge the stop condition than to predict the next value. 

For example, we know a priori that 𝑆𝑆𝑆𝑆 only depends on a transformation 𝑇𝑇 of 𝑂𝑂𝑂𝑂𝑂𝑂 sequence: 𝑆𝑆𝑆𝑆(𝑇𝑇(𝑂𝑂𝑂𝑂𝑂𝑂1, … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛)) = 𝑖𝑖𝑂𝑂𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛+1 (4) 

At this point, we need to compare the complexity of model (3) and model (4). For example, if the 

number of parameters (used to approximate functions) of 𝑀𝑀′ is far greater than the sum of 𝑆𝑆𝑆𝑆 and 𝑇𝑇. Then we have reason to think that it is better to separate 𝑆𝑆𝑆𝑆 from 𝑀𝑀′ in estimation. Otherwise, 

many redundant information is used to estimate 𝑖𝑖𝑂𝑂𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛+1 , which will make training 𝑀𝑀′  more 

difficult. 

In this separated model, 𝑇𝑇 can be regarded as a sequence encoder and 𝑆𝑆𝑆𝑆 as a classifier. At 

this point, the whole autoregressive prediction algorithm will become: 

1. While 𝑆𝑆𝑆𝑆(𝑇𝑇(𝑂𝑂𝑂𝑂𝑂𝑂1′ , … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛′ )) = 0 

2. 𝑛𝑛 ← 𝑛𝑛 + 1 

3. 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛′ ← 𝑀𝑀(𝑂𝑂𝑂𝑂𝑂𝑂1′ , … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛−1′ ) 

3. Verifying Separable 

If we want to use the separated model, we need to verify whether 𝑀𝑀′ is separable. That is, 

whether 𝑇𝑇(𝑂𝑂𝑂𝑂𝑂𝑂1, … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛)  can provide enough information to infer 𝑖𝑖𝑂𝑂𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛+1 . The sufficient 

condition for this proposition is that sequence 𝑇𝑇(𝑂𝑂𝑂𝑂𝑂𝑂1, … … ,𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛) is autocorrelated, because the 

requirement for judging stopping point is weaker than prediction. Predictable sequences must be 

separable. The sequences we are facing may have complex patterns. To verify this sufficient condition, 

we need to carry out autocorrelation tests on sequences with nonlinear features. Previous work on 

sequence nonlinear autocorrelation test is mainly focused on testing whether the residuals of 

regression models are autocorrelated. "Nonlinear" describes the property of regression models. The 

classic Durbin-Wattson statistic only proves that residuals without autocorrelation under linear 

regression models present asymptotic normal distributions. It's generalization to nonlinear models 

may yield invalid conclusions [8], and it can only judge the first-order autocorrelation. Improvement 

from Barndorff [9] makes such models have faster asymptotic convergence speed. Fraser et al. [10] 

estimate the ancillary statistic in Barndorfff's method directly based on the data in regression models, 

making it easier to solve. Nguimkeu et al. [11] extend above methods to nonlinear. The third-order 

convergence technique of [9,10] has greatly improved its performance on small samples compared 

with the original Durbin-Wattson test. However, this method still only aims at first-order 

autocorrelated residuals. Although it is feasible to deduce for autocorrelation hypothesis tests with 
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different lagged terms, such a case-by-case method cannot cope with various complex sequence 

patterns we are faced with. Besides, our purpose of verifying separability is to verify whether 

separation method is feasible on current data. At this time, we do not have a specific model, so we 

need a model-free method. Above two points mean that most of hypotheses of classical statistical 

tests are not applicable to this problem. 

We consider the null hypothesis of the original proposition: only based on the information 

provided by the observed sequence, the value of the next time step cannot be classified into two 

categories (that is, whether it is a stopping point). This is equivalent to judging the overall prediction 

credibility of the separated model 𝑆𝑆𝑆𝑆(𝑇𝑇(·)). The overall prediction credibility can be estimated based 

on multiple single prediction credibility samples. Then we need to construct statistics to measure 

credibility. 

Obviously, if any case in positive cases is sufficiently different from the most similar case in 

negative cases, the training algorithm has the ability to obtain an effective classifier. Therefore, we 

measure credibility based on sequence difference. We firstly define point difference in sequences. 

Point difference calculates the difference between two sequence values: 𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃(𝑂𝑂𝑖𝑖 , 𝑂𝑂𝑗𝑗) = |𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑗𝑗| − 𝐼𝐼 (5) 

Where 𝐼𝐼 is the difference size boundary that we expect 𝑆𝑆𝑆𝑆(𝑇𝑇(·)) can recognize. The larger the 

|𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑗𝑗| is compared to 𝐼𝐼, the easier the difference is to be captured by the classifier. Otherwise, the 

difference is more difficult to be recognized. 

Then, if there are sequences 𝑆𝑆1 and 𝑆𝑆2: 𝑆𝑆1 = 𝑂𝑂1,1, … … , 𝑂𝑂1,𝑛𝑛 (6) 𝑆𝑆2 = 𝑂𝑂2,1, … … , 𝑂𝑂2,𝑛𝑛 (7) 

The difference sequence is defined as: 𝑆𝑆1 − 𝑆𝑆2 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃(𝑂𝑂1,1, 𝑂𝑂2,1), … … ,𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃(𝑂𝑂1,𝑛𝑛, 𝑂𝑂2,𝑛𝑛) (8) 

Then sequence difference can be defined as: 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃(𝑆𝑆1, 𝑆𝑆2) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆1 − 𝑆𝑆2) (9) 

Taking 𝑚𝑚𝑚𝑚𝑚𝑚  means that we consider the most recognizable difference between 𝑆𝑆1  and 𝑆𝑆2 . 

Because even if most of the values in two sequences are the same, the difference of only one value is 

enough for the classifier to recognize the difference between the two. 

For each case in the positive cases, we can calculate a sequence difference value. These values 

are the samples on the credibility distribution. Based on these samples, we can obtain the 

characteristics of the credibility distribution and judge the original proposition. For example, 

compare the current data distribution with data distribution that determines can support interference. 

Decide whether to reject or accept the zero hypothesis according to whether there is significant 

difference. 

4. Implementation 

The next question is what kind of prototype to use to estimate 𝑆𝑆𝑆𝑆  and 𝑇𝑇 . Since 𝑆𝑆𝑆𝑆  is a 

sequence encoder, a recurrent neural network can be used as the prototype. 𝑇𝑇 classify the encoded 

data, which should be calculated output using sigmoid full connection layer or softmax. 

It should be noted that simple neural network library (such as Keras) requires that all samples 

have the same shape. This means that we must define a fixed time window length (although RNN 

unit has the ability to encode sequences of different lengths). We suggest using the stopping time 

expectation of the autoregressive process as the window size. In addition, when the current 

observations are insufficient, the remaining positions of the time window need to be filled with values. 

If you want to set a token for the filling value, you need to seriously consider whether the separated 

model is useful for you. Because one of the reasons for using the separated model is that the 
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introduction of stop marked tokens in the main task model will cause additional complexity. If you 

still use additional tokens in the separated model, you need to carefully consider the number of 

parameters to confirm the usefulness of the separated model. If your observation sequence is a 

continuous value (filling token cannot be set independently), we suggest using the value closest to 

white noise (such as average, mode) as the filling value. 

If you can, you'd better use the neural network library that supports dynamic shape input, so 

that you can have a variable length time window and no longer need to fill in data. 

In addition, in the training process, it should be noted that since the stopping time of most such 

tasks is greater than 1, most of the training samples generated will be negative (indicating that the 

next time step is not stopped). This is a problem of unbalanced data classification, so we should focus 

on recall metrics. 

5. Experiment 

We will illustrate the role of the separated model with a practical task. Liu et al. [12] analyzed 

the upper bound that an algorithm that uses only BM25 [13] as a feature may reach on reading 

comprehension tasks. However, to make the actual algorithm approximate this upper bound, it is 

necessary to accurately determine a threshold 𝑖𝑖 for each (Document, Query) pair's BM25 sequence, 

and then discard all paragraphs whose BM25 value is less than. We can regard this process as the 

problem of stopping point prediction for BM25 sequence. As mentioned above, the separated model 

for stopping point prediction of the BM25 sequence decomposes the reading comprehension task into 

two steps: "calculating the BM25 value of each paragraph (sentence)" and "extracting answers based 

on the BM25 sequence". This makes it unnecessary to modify the BM25 algorithm itself to meet our 

needs. 

5.1. Generate Data 

This experiment is based on the reading comprehension dataset of Baidu SIT [14]. The dataset 

mainly includes three attributes: 𝑃𝑃 (document), 𝑄𝑄 (query) and 𝐴𝐴(groundtruth answer). For each 𝑃𝑃, the BM25 value of every sentence can be calculated jointly with 𝑄𝑄 after sentence segmentation. 

Then we can get BM25 sequences. Because the length of each BM25 sequence in this dataset is 

relatively uniform, we use fixed input shape. That is, use a sliding window with length 𝑤𝑤 = 5 to 

generate 𝑙𝑙 + 1 − 𝑤𝑤 training data for each BM25 sequence with a length of 𝑙𝑙. If data is the last data at 

the end of the sequence, its corresponding 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1, otherwise 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0. Because the BM25 value 

of most sentences is 0, we set the empty position to 0 when 𝑙𝑙 < 𝑤𝑤. The overall process is shown in 

Figure 1. 

 

Figure 1. Data Generation Process. 
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5.2. Verifying Separable on Data 

After using the method in the previous section to generate data, we use the method in Chapter 

3 to conduct a separate test for the data [15]. The positive value accounts for 41.3%, and the 

distribution is relatively uniform; Negative values account for 58.7%, and there are sub-intervals with 

prominent distribution. Further, we select the range of -0.01~0.01 with more samples. The distribution 

of this interval is shown in Figure 2. 

 

Figure 2. Distribution of Interval -0.01~0.01 in Sequence Differences. 

The range of -0.01~-0.0076 accounts for 78.1% in the range of -0.01~0.01. The sequence difference 

in this interval represents that the difference between the two sequences is very small, so it is difficult 

to classify. Value equal to -0.01 accounts for 20.9% of the total. The sequence difference is exactly 

equal to this value, which means that the difference between the two sequences is completely 

unrecognizable. This means that even if the model can distinguish the smallest difference, the recall 

on this data will not be higher than 79.1%. 

5.3. Train 

Although the separable test proves that 20.9% of the positive cases of the data cannot be 

separated from the negative cases, we still try to fit the data to get a preliminary observation of the 

training difficulty and calculation cost of the separated model. The network architecture we use is 

shown in Table 1. 

Table 1. Network Architecture. 

Layer Number of nodes Activation Note 

GRU 3  Input shape=(5,1) 

Dense 128 ReLU Dropout=0.8 

Dense 128 tanh Dropout=0.8 

Dense 128 ReLU  

Dense 128 ReLU Dropout=0.8 

Dense 128 tanh Dropout=0.8 

Dense 1 Sigmoid  
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We first trained 64 epochs with learning rate=0.007, took the checkpoint model with the highest 

recall value (recall=0.6 at this time), and then trained with a learning rate=1e-5. After 11 epochs, the 

final model was obtained: recall=0.751, accuracy=0.851. 

6. Conclusion 

In this paper, we describe the general idea of the separated model. On this basis, we propose a 

test method of verifying separable on a model-free way. We test the BM25 sequence of the STI reading 

comprehension dataset. In order to give preliminary observation to the training difficulty and 

calculation cost of the separated model, we trained a neural network model. Its recall is close to the 

estimated result of the separable test, which illustrates that this test method is effective. This also 

shows only the BM25 sequence cannot provide sufficient information for the reading comprehension 

task on the STI dataset, so other features need to be introduced. 
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