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Abstract: We analyze the behavior of relativistic spherical objects within the context of modified

f (R, T) gravity considering Tolman VI spacetime, where gravitational lagrangian is a function of Ricci

scalar(R) and trace of energy momentum tensor(T) i.e, f (R, T) = R + 2βT, for some arbitrary constant

β. For developing our model, we have chosen £m = −p, where £m represents matter lagrangian. For

this investigation, we have chosen three compact stars namely PSR J1614-2230 [Mass=(1.97± 0.4)M⊙;

Radius= 9.69+0.02
−0.02 Km] ,Vela X-1 [Mass=(1.77± 0.08)M⊙; Radius= 9.560+0.08

−0.08 Km] and 4U 1538-52

[Mass=(9.69)M⊙; Radius= 1.97 Km]. In this theory the equation of pressure isotropy is identical to

standard Einstein’s theory. So all known metric potential solving Einstein’s equations are also valid

here. In this paper, we have investigated the effort of coupling parameter (β) on the local matter

distribution. Sound of speed and adiabatic index are higher with grater values of β while on contrary

mass function and gravitational redshift are lower with higher values of β . For supporting the

theoretical results, graphical representation are also employed to analyze the physical viability of the

compact stars.

Keywords: Tolman VI spacetime; compact stars; f (R, T) gravity

1. Introduction

The analysis of the interior of the stars is fascinating to astrophysicists, mainly to the General

theory of relativity (GR). For the fact that, about the late phase of stellar evolution, general relativistic

effects much more important. In this direction, one of the incredible works was that of the Tolman [1]

solution (1939). Tolman extensively deliberated the stellar interior and gave us a explicit solutions

for the static, spherically symmetric equilibrium fluid distribution [2]. In different dimension, it has

been tested in which include cosmology, gravitational waves, astrophysics and thermodynamics [3]

of the stellar system and it has present important contributions to the different astrophysics and

cosmological issues. Many of them present collapsing of wormhole solution with static spherically

symmetric geometry [4] and non static spherically symmetric object with anisotropic fluid profile.

Moraes and his co-authors [5] studied modified Tolman-Oppenheimer-Volkoff (TOV) equation in

which they illustrates the equilibrium conditions of the compact structures.

In the modifying form of gravitational action asks for lots of fundamental challenges. These

models can show ghost-like behavior, instabilities, while on the other side, it has to match with

experiments and observations in the low energy limit. Also in the framework of f (R, T) gravity some

interesting results have been found at solar system [6], galactic and cosmological scales.

Several models exist which attempt to explain the early acceleration of the universe. The most

accepted models contain a slowly varying potential and a scalar field. There are another class of models

where the gravity is modified under the general relativity. One of the procedure of the modifications

depended upon phenomenological considerations is provided by f (R, T) theory of gravity. Indeed,

f (R, T) theories are conformally identical to Einstein’s theory plus a scalar degree of freedom classified

the scalar in which potential is uniquely established from Ricci scalar. There are various model, in the

literature, where the authors [7] considered Einstein equation with corrections. The consistent theory

of gravity, modified or classified, should be equally suitable to the strong gravity regime.

Here f (R, T) is a analytic (general) function of R (Ricci scalar). As an example, cosmological

solutions gives the accelerated expansion of the universe at late times. Also it have been found that
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many stability conditions may lead to avoid tachyon and ghost solution. In addition, there exist viable

f (R, T) models satisfying both stability conditions [8] and background cosmological constraints and

results have been obtained to place constants on f (R, T) cosmological model by cosmic microwave

background radiation (CMBR) galaxy and anisotropic power spectrum [9,10]. To consider f (R, T)

gravity in low energy limit, it is viable to obtain accurate gravitational potentials capable of describing

the flat rotational curves of the dynamics of galaxy or spiral galaxies clusters without considering large

amount of dark matter [11].

Numerous investigations [12–16] have used different method to examined the stability as well as

consistency of f (R) gravity theory. There are definite form of f (R) algebraic function which eliminated

the existence of stable astrophysical form and reported unrealistic. In recent years, more research has

been performed on the steadiness, dynamical unsteadiness, existence of celestial stellar system of this

theory [17–19]. Harko et.all [20] proposed the concept of matter and curvature couplings to represent a

new version of altered theory of gravity, namely f (R, T) gravity. They also represented the relating field

equation with the help of gravitational potential mechanism and showed the important of alternative

gravity theory. Also the same authors have initiated various model for f (R, T) algebraic functional

for detachable compose viz. f (R, T)= f1(R)+ f2(T). Houndjo [21] investigated matter instructed age

of accelerating cosmic by f (R, T) gravity. Also, Baffou and his teammates [22] examined spatially

uniform cosmic in the field of f (R, T) gravity.

Modified and extended models are always popular due to the potential of representation

of gravitational field nature near curvature singularities accurately and as well to overcome the

cosmological constant problems. Convincing confirmation for the extension of the universe has been

provided by the many independent observations, some of these are supernovas Ia data [23], cosmic

microwave background radiation [24] and baryon acoustic oscillation [25] according to the study by

the WMAP. For addressing this phenomenon, several assumption have been suggested from dark

energy model to modified theories of gravity . Nowadays, dark energy model have no sufficient

observational support. In particular, the dark energy idea requires an eqn. of state (EoS) ω = p
ρ ,

where p, q represents spatially homogeneous pressure, energy density , respectively and the value

of the parameter ω is −1. Several results have initiated for interior exact solutions of the Einstein

field equation and Schwarzschild found the first interior solution. Tolman proposed an inventive

method for treatment of the Einstein field equation which are known as Tolman I, II, III, IV, V, VI,

VII and VIII [26].

In this paper, we consider Tolman VI model [27] in the class of modified gravity in which the

gravitational action carries a general function f (R, T). For this model, the study of the background

cosmological evolution can be simplified by performing transformation on metric. Such type of

transformation maps from a frame where the resulting field equations and gravitational action are

modified from general relativity (GR), called the Jordan frame, to a frame where the gravitational

action for the new obtain metric is the Einstein-Hilbert one, called the Einstein frame. The f (R, T)

gravity theory has been related to stellar astrophysics [28] and cosmology [29], among other areas,

giving testable and interesting results.

The present article deals with isotropic Tolman VI in modified f (R, T) gravity. The physical

characteristics of our obtained model are studied for three compact stars PSR J1614-2230, Vela X-1 and

4U 1538-52. The paper is organized in following order of sections. Sec. II, we explain about the general

formalism of f (R, T) gravity and in section III, the proposed model is obtained for different values of

coupling parameter β. At the boundary, we matched our interior space-time to the exterior space-time

in section IV. Section V explains the physical properties between Einstein theory and f (R, T) gravity.

Finally in section VI, we discuss and concludes the whole work by pointing on major findings.
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2. Mathematics Behind f(R,T) Gravity

In this section we devote how the f(R,T) was introduced. The Ricci scalar is integrated over a

four dimensional volume element d4x when Einstein’s field equation is derived from Einstein-Hilbert

action as

SEH =
1

16π

∫

R
√

−gd4x (1)

If we replace the Ricci scalar R by f (R,T), We can get the f(R,T) field equations. Therefore, the complete

action in f (R,T) formalism is

S =
∫

£m

√

−gd4x +
1

16π

∫

f (R, T)
√

−gd4x (2)

where, T is the trace of the energy momentum tensor Tµν. Also, £m represents the Lagrangian matter

dencity and g = det(gµν).

The energy momentum tensor is defined as

Tµν = − 2√−g

δ(
√−g£m)

δgµν (3)

along with the trace T = gµνTµν. Also the Lagrangian density £m depends only the metric tensor

component gµν, not its derivatives. Here, we have

Tµν = gµν£m − 2
∂£m

∂gµν (4)

By variation principle w.r.t gµν, Equation (2) gives the field equation

(Rµν −∇µ∇ν) fR(R, T) + gµνBOX fR(R, T)− 1

2
f (R, T)gµν

= 8πTµν − Tµν fT(R, T)− Θµν fT(R, T) (5)

where, fR(R, T) = ∂ f (R,T)
∂R and fT(R, T) = ∂ f (R,T)

∂T . Here, covariant derivative ∇µ is associated with

Levi-Civita connection of the metric tensor gµν and the box operation BOX is defined as

BOX ≡ 1√−g
∂

∂xµ (
√−ggµν ∂

∂xν ) with Θµν = gαβ δTαβ

δgµν The covariant derivative of the Equation (5) gives

∇µTµν =
fT(R, T)

8π − fT(R, T)

[

(Tµν + Θµν)∇µ ln fT(R, T) +∇µTµν −
1

2
gµν∇µT

]

(6)

In f (R, T) gravity, the stress-energy tensor of the matter field do not obey the conservation low due to

interaction between the curvature and matter as in general relativity. With the help of the Equation (3),

we get the tensor Θµν as follows

Θµν = gµν∇µ − 2Tµν − 2gαβ ∂2£m

∂gµν∂gαβ
(7)

for the field equation, we assume the energy-momentum tensor as

Tµν = (ρ + p)uµuν − pgµν, (8)
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provided, the µµ four velocity, such that µµµµ = 1 and µµ∇µµµ = 0 with ρ, pr and pt are matter

density, radial pressure and transverse pressure, respectively. If we specify pressure as −P = £m, the

Equation (7) reduces to

Θµν = −Pgµν − 2Tµν (9)

3. Interior space-time and the realistic viable f(R,T) gravity models:

We will represent the model with the help of realistic f(R, T ) gravity model. Here, we consider a

separable functional form of f(R, T ) given by,

f (R, T) = f1(R) + f2(T) (10)

in the relativistic structures to study the coupling effects of matter and curvature components in f(R, T )

gravity, where f1(R) and f2(T) representing arbitrary functions of R and T, respectively. Several viable

model in f(R, T ) gravity can be generated in linear combining of different forms of f1(R) and f2(T). In

the present model, we assume f1(R) = R and f2(T) = 2βT . Then the expression for f (R, T) becomes

f (R, T) = R + 2βT (11)

where, β is arbitrary constant to be evaluated depending on many physical requirements.

In curvature coordinate, we consider the static and spherically symmetric line element describing a

wormhole region by the following metric:

ds2 = −eνdt2 + eλdr2 + r2dΩ
2, (12)

where, both ν, λ depends on r, i.e both are purely radial and dΩ2 = sin2 θdφ2 + dθ2. In modified

gravity, the field equation along the line element (12) can be written as

8πρ + β(3ρ − p) =
1 − e−λ

r2
+

e−λλ′

r
, (13)

8πp − β(ρ − 3p) =
e−λ − 1

r2
+

e−λν′

r
, (14)

8πp − β(ρ − 3p) = e−λ

[

ν′′

2
+

ν′2

4
− ν′λ′

4
+

ν′ − λ′

2r

]

. (15)

where a prime (′) denotes differentiation with respect to the radial coordinates ‘r’.

We denote ρE and pE by,

ρE = ρ +
β

8π
(3ρ − p), (16)

pE = p − β

8π
(ρ − 3p). (17)

where, ρE represents the density and pE represents the pressure in Einstein gravity. To solve the

Equations (13)−(15) we use the metric potential by Tolman [1] in which the expression

eλ = 2 − n2, (18)

eν = (Ar1−n − Br1+n)2. (19)
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where, A,B are arbitrary constant. The restriction of λ is 0 < λ <

√
2, but this is not most general

choice. Using the expression of the Equation (13) and (18), we obtain the Einstein density as

ρE =
1 − n2

8πr2(2 − n2)
(20)

Similarly, using the expression of the Equations (14), (18) and (19), we obtain the Einstein pressure as

follows

pE =
A(n − 1)2 − B(n + 1)2r2n

8πr2(2 − n2)(A − Br2n)
. (21)

If we eliminate radius r from (20) and (21), we obtain the relation between Einstein density and

pressure. Also, the positivity of density profile demands the range for n are n < −
√

2 or n >

√
2 or

−1 < n < 1. So the interval of validity is 0 < n < 1. Now, using the expression ρE and pE from (16)

and (21), we get the expression for matter density(ρ) and pressure(p) in modified f (R, T) gravity as

follows

ρ =
A(n − 1)χ1 − B(n + 1)χ2r2n

4r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (22)

p =
−A(n − 1)χ2 + B(n + 1)χ1r2n

4r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (23)

where,

χ1 = 4(n + 1)π + (n + 2)β,

χ2 = 4(n − 1)π + (n − 2)β. (24)

The square of the sound velocity for Einstein and our present model are obtained as follows

V2
E =

(

dp

dρ

)

E

= − (A(n − 1) + B(n + 1)r2n)2

(n2 − 1)(A − Br2n)2
, (25)

V2 =
dp

dρ
= − A2(n − 1)χ2 + 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ1r4n

A2(n − 1)χ1 − 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ2r4n
(26)

Negative sign in the sound speed index can be removed in the interval 0 < n < 1. The profile

of density and pressure are shown in Figures 1 and 2, respectively. One can see that the density and

pressure are both positive definite but at the stellar center both are infinite.

Figure 1. Behavior of the “energy density” with respect to the radial coordinate “r” for the compact

star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel) corresponding to

the numerical value of constants A and B from the table II and for different values of β.
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Figure 2. Behavior of the “pressure” with respect to the radial coordinate “r” for the compact star

PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel) corresponding to the

numerical value of constants A and B from the table II and for different values of β.

In the literature, it is well-known that the mass distributions must obey all the energy conditions in

its interiors. These energy conditions are named as null, strong, week and dominant energy conditions

and symbolized by NEC, SEC, WEC and DEC. All the energy conditions are satisfied for our present

model if the following inequality are hold.

NEC: ρ + p ≥ 0, SEC: ρ + p ≥ 0, ρ + 3p ≥ 0, WEC: ρ + p ≥ 0, p ≥ 0, DEC:ρ − p ≥ 0, p ≥ 0.

(ρ + p)E =
A(n − 1) + B(n + 1)r2n

4πr2(n2 − 2)(A − Br2n)
, (27)

ρ + p =
A(n − 1) + B(n + 1)r2n

r2(n2 − 2)(4π + β)(A − Br2n)
, (28)

(ρ + 3p)E =
−A(n − 1)(n − 2) + B(n + 1)(n + 2)r2n

4r2β(n2 − 2))(A − Br2n)
, (29)

ρ + 3p =
A(n − 1)(t − 2(2π + β))B(n + 1)r2n(S + 2(2π + β))

2r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (30)

(ρ − p)E =
n(A(n − 1) + B(n + 1)r2n)

4πr2(n2 − 2)(A − Br2n)
, (31)

ρ − p =
n(A(n − 1)− B(n + 1)r2n)

4r2β(n2 − 2))(A − Br2n)
, (32)

(33)

It is clear from Figure 3 that ρ + p ≥ 0, in the Figure 4, ρ + 3p ≥ 0 and ρ − p ≥ 0 is non negative

shown in the Figure 5. So all the necessary energy conditions have been fulfilled for our f (R, T) gravity

model.

Figure 3. Behavior of the “Speed sound” with respect to the radial coordinate “ r” for the compact star

PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)corresponding to the

numerical value of constants A and B from the table II and for different values of β.
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Figure 4. Variation of “ adiabatic index” with respect to the radial coordinate “ r ” for the compact star

PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)corresponding to the

numerical value of constants A and B from the table II and for different values of β.

Figure 5. Behavior of the “Week energy condition” with respect to the radial coordinate “ r ” for

the compact star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)

corresponding to the numerical value of constants A and B from the table II and for different values of

β.

Figure 6. Behavior of the “Strong energy condition” with respect to the radial coordinate “ r ” for

the compact star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)

corresponding to the numerical value of constants A and B from the table II and for different values of

β.

Figure 7. Behavior of the “Dominant energy condition” with respect to the radial coordinate “ r ”

for the compact star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)

corresponding to the numerical value of constants A and B from the table II and for different values of

β.
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4. Exterior space-time and boundary condition:

Now, we have matched our interior space-time to exterior Schwarzschild line element at the

r = R.

The Exterior line element is

ds2
+ = −

(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2). (34)

and the interior line element is

ds2
− = −(Ar1−n − Br1+n)2dt2 + (2 − n2)dr2 + r2(sin2 θdφ2 + dθ2). (35)

The continuity of the metric

(

1 − 2M

R

)−1

= (2 − n2), (36)

(

1 − 2M

R

)

= (AR1−n − BR1+n)2. (37)

The pressure vanishes at the boundary r = R i.e p(r = R) = 0 which gives the following equation in

modified gravity as follows

−A(n − 1)χ2 − B(n + 1)χ2R2n

4R2(n2 − 2)(2π + β)(4π + β)(A − BR2n)
= 0 (38)

• Determination of n and the constants A and B: Solving the Equations (36)–(38), we get the

expression for n and the constants A and B as follows:

n = ±
√

R − 4M

R − 2M
,

A = − (n + 1)χ2Rn−2
√

R(R − 2M)

2nβ
,

B =
(1 − n)χ1Rn−2

√

R(R − 2M)

2nβ
.

For numeric values of the constants A and B, we chosen Mass M, radius R accordingly different

compact stars. Also, for well-behaved solution, we use different values of the parameter β

5. Physical properties of the present model:

• Nature of equation of state: It is very important to describe a relationship between energy

density and the pressure which is called the equation of state(EoS). The relation between the

pressure and matter density can be find out by dimensionless quantity which is known as the

equation of state parameter.

p = ω × ρ. (39)

Hence, the equation of state parameter(w) for Einstein and our model are obtained as follows

ωE =
pE

ρE
=

A(n − 1)2 − B(n + 1)2r2n

(1 − n2)(A − Br2n)
, (40)

ω =
p

ρ
=

−A(n − 1)χ2 + B(n + 1)χ1r2n

A(n − 1)χ1 − B(n + 1)χ2r2n
(41)
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The behavior of equation of state parameter is shown in the Figure 8. We can see that equation of

state parameter is monotonic decreasing function of radius r.

Figure 8. Behavior of the “EoS parameter” with respect to the radial coordinate “ r ” for the compact

star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)corresponding to

the numerical value of constants A and B from the table II and for different values of β.

• Relativistic adiabatic index: For a compact star, stability is one of the most crucial requirement.

For this reason we have discussed stability along with the variation of adiabatic index(Γ) inside

the compact star. The adiabatic index can be displays the stability for both non-relativistic and

relativistic compact stars. The stability condition for a Newtonian sphere is Γ >
4
3 and Γ = 4

3 is

the condition for a neutral equilibrium according to [30]. The expression relativistic adiabatic

index for Einstein and our present model are

ΓE =

(

ρ + p

p

dp

dρ

)

E

=
2(A(n − 1) + B(n + 1)r2n)

B(n + 1)2r2n − A(n − 1)2
V2 (42)

Γ =
4(A(n − 1) + B(n + 1)r2n)(2π + β)

A(n − 1)χ2 − B(n + 1)2χ2r2n
V2 (43)

• TOV Equation: The hydrostatic equilibrium (Fh) equation is an important feature of the physical

realistic compact objects. The fluid sphere remains at equilibrium under three forces namely,

gravitational force(Fg), hydrostatic force(Fh) and the additional force due to modified gravity(Fm)

and this situation represents by an equation, which is known as Tolman-Oppenheimer-Volkov

(TOV) equation. With the help of generalized TOV equation, we can analyze the equilibrium

equation for our three compact stars. The generalized TOV eqn. for the isotropic fluid [31]

distribution in f(R, T ) modified gravity can be written as

−ν′

2
(ρ + p)− dp

dρ
− β

2(4π + β)
(p′ − ρ′) = 0 (44)

The equation (44) can be written as follows,

Fg + Fh + Fm = 0, (45)

where,

Fg =
(A(n − 1) + B(n + 1)r2n)2

r3(n2 − 2)(4π + β)(A − Br2n)2
, (46)

Fh =
A2(n − 1)χ2 + 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ1r4n

2r3(2 − n2)(2π + β)(4π + β)(A − Br2n)2
, (47)

Fm =
nβ(A2(n − 1) + B2(n + 1)r4n)

2r3(2 − n2)(2π + β)(4π + β)(A − Br2n)2
. (48)
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Since, β = 0 corresponds to GR. Hence Fm = 0, the TOV Equation for Einstein reduces to

−ν′

2
(ρ + p)E −

(

dp

dρ

)

E

= 0 (49)

The equation (49) can be written as follows,

(Fg)E + (Fh)E = 0, (50)

where,

(Fg)E =
(A(n − 1) + B(n + 1)r2n)2

4πr3(n2 − 2)(A − Br2n)2
, (51)

(Fh)E =
(A(n − 1) + B(n + 1)r2n)2

4πr3(2 − n2)(A − Br2n)2
. (52)

• Mass radius relationship and compactness parameter : let U be the compactification factor and

M be the mass function. Then we can get following relation between them,

UE =
ME

R
=

(1 − n2)

2(2 − n2)
, (53)

U =
M
R

=
π((n + 1)χ2) + 2nβ2F1(1, 1

2n , 1 + 1
2n , BR2n

A )

(2π + β)(4π + β)(A − BR2n)
(54)

where, M = m(r)|r=R. and 2F1 represents the hypergeometric function. The expression for mass

function for Einstein and our present model are

mE = 4π
∫ r

0 ρEr2dr =
(1 − n2)r

2(2 − n2)
, (55)

m = 4π
∫ r

0 ρr2dr =
πr((n + 1)χ2) + 2nβ2F1(1, 1

2n , 1 + 1
2n , Br2n

A )

(2π + β)(4π + β)(A − Br2n)
(56)

• Gravitational red-shift(z(r)) function and surface red-shift(zs) : The gravitational redshift can

be determined by the formula

z(r) = e−ν/2 − 1 =
1

(Ar1−n − Br1+n)
− 1 (57)

Furthermore, the following formula can be used to calculate surface redshift (zs) for Einstein

and our present model are

(zs)E =
1√

1 − 2UE
− 1 =

√

2 − n2 − 1 (58)

zs =
1√

1 − 2U
− 1 (59)

=
1

√

1 − 2π((n+1)χ2)+2nβ2F1(1, 1
2n ,1+ 1

2n , BR2n
A )

(2π+β)(4π+β)(A−BR2n)

− 1 (60)

Figure 10 shows the nature of redshift function with respect to the radial coordinate function r.

For our model, z(r) is monotonically decreasing function. The value of surface redshift(zs) for

three compact stars are shown in Table 2. One can see from the table that the value of(zs) lies

within the range zs < 1.
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6. Discussion and concluding remarks

In this present work, we have investigated the behavior of Tolman VI spacetime in modified

gravity. We endeavored to solve the modified field equations and investigated the physical viability

according to the standard theory. We contrasted the behavior of the matter energy density, isotropic

pressure, the sound speed energy, the all energy conditions (namely, weak, strong and dominated

energy condition), EoS parameter, mass profile as well as gravitational redshift between the modified

f (R, T) theory and standard Einstein theory.

For the arbitrary constant β = 2, 4, 6, 8 and 10 the graphical picture have been presented in the

Figures 1–10 for the compact stars PSRJ1614 − 2230, VelaX − 1 and 4U1538 − 52 while, β = 0 gives

the General relativity case.

Figure 9. Behavior of the “mass profile” with respect to the radial coordinate “ r ” for the compact star

PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)corresponding to the

numerical value of constants A and B from the table II and for different values of β.

Figure 10. Behavior of the “Gravitational red-shift” with respect to the radial coordinate “ r ” for

the compact star PSR J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel)

corresponding to the numerical value of constants A and B from the table II and for different values of

β.

• A clear picture of energy progression has been obtained in Figure 1. The figure shows declining

nature about the surface and promises the real origination of stellar body with positive behavior

at the stellar interior.
• We have plotted pressure p versus radius r in Figure 2 for the three compact stars PSR

J1614-2230(left panel), Vela X-1(middle panel) and 4U 1538-52(right panel) for various values of

β. One can see that p > 0 i.e positive, continuous and monotonically decreasing. Also, at some

radial value, the pressure does vanish for both the cases.
• Square of the sound speed and relativistic adiabatic index have been plotted in Figures 3 and 4,

respectively. From the Figure 3, one can see that the square of the sound speed lies in the

predicted range i.e. 0 < V2
< 1 throughout the fluid sphere. The Figure 4 confirms the stability

of under the adiabatic index Γ >
4
3 for our present model.

• In our f (R, T) gravity model, the weak energy condition (WEC) in Figure 5, the strong energy

condition (SEC) in Figure 6 and dominant energy condition (DEC) in Figure 7 are also met. For the

complication in the expressions of density and pressure we have shown graphical presentation

which certifies about the well behaved nature of the energy conditions.
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• We have plotted equation of state parameter profile ω in Figure 8 for different values of β. It is

clear from the figure that at the center of the star these parameter take maximum values while it

decreases towards the boundary. Moreover, ω lies between 0 to 1 i.e 0 < ω < 1 which indicates

the non-exotic behavior of matter distribution. Also, we can see that there are linear relation

between isotropic pressure (p) and matter density (ρ).
• The mass function is plotted against radius in Figure 9. This figure shows that mass function is

monotonic increasing function of radius and having no central singularity. The mass functional

values are in agreement with required physical conditions as one can investigate from the figure.
• We have plotted the Gravitational redshift in Figure 10 for different values of β. One can see that

Gravitational redshift is monotonic decreasing function of radius. Also, gravitational redshift is

lower with higher values of coupling parameter β

From all graphical illustrations and obtained results, we can conclude that our present model is

regular and potentially stable. Also, detailed numerical features can be found from Tables 1 and 2. The

numerical values of A and B increases with increasing values of β. The surface density ρs, and surface

red-shift zs all takes lower values when coupling parameter β increases. Moreover, the central values

of adiabatic index (Γ at r = 0) increase with increasing values of β, which concludes that for higher

values of β our model becomes more stable. Through analytical, numerical and graphical analysis, all

the features of our present model are well described. Finally, we summarize our discussion that we

are convinced by the calculated outcomes which shows that the system is physically reasonable and

viably stable. Also, our outcomes could be useable in modeling relativistic compact objects as a real

astrophysical phenomena.

Table 1. Numerical values of constants for three well-known celestial compact stars.

Compact Star Mobs/M⊙ Robs (km) M (M⊙) R (km) n =
√

R−4M
R−2M

PSR J1614-2230 1.97± 0.4 9.69± 0.02 1.97 9.69 0.56
Vela X-1 1.77± 0.08 9.56± 0.08 1.77 9.56 0.64
4U 1538-52 9.69 1.97 9.69 1.97 0.85

Table 2. Numerical values of constants for three well-known celestial compact stars.

n = 0.56

Compact Star β A B ρs zs Γ(r=0) Us

PSR J1614-2230 2 0.31368 0.00236 1.88338×1014 0.22404 1.80526 0.33257

4 0.31746 0.00266 1.57940×1014 0.18006 3.42727 0.28188

6 0.32019 0.00288 1.35301×1014 0.15082 5.59965 0.24493

8 0.32225 0.00304 1.19365×1014 0.12990 8.32942 0.21671

10 0.32386 0.00316 1.06375×1014 0.11415 11.6206 0.19441

n = 0.64

Compact Star β A B ρs zs Γ(r=0) Us

Vela X-1 2 0.37509 0.00128 1.76517×1014 0.19764 1.22451 0.30282

4 0.37862 0.00148 1.47994×1014 0.15965 2.43408 0.25640

6 0.38117 0.00162 1.27408×1014 0.13419 4.08345 0.22263

8 0.38309 0.00173 1.11849×1014 0.11585 6.17906 0.19687

10 0.38460 0.00181 0.99677×1014 0.10200 8.72458 0.17655

n = 0.85

Compact Star β A B ρs zs Γ(r=0) Us

4U 1538-52 2 0.65534 0.00230 1.52410×1014 0.10190 0.19370 0.17640

4 0.65764 0.00299 1.27783×1014 0.83973 0.48583 0.14893

6 0.65930 0.00349 1.10008×1014 0.07154 0.91913 0.12907

8 0.66055 0.00387 0.96574×1014 0.06237 1.49672 0.11398

10 0.66153 0.00416 0.860641×1014 0.05532 2.22038 0.10211
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