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Abstract: This paper presents a critical review and comparison of the results of recently published 
studies in the fields of human-machine interface and the use of sonomyography (SMG) for the con-
trol of upper limb prothesis. For this review paper, a combination of the keywords "Human Machine 
Interface", "Sonomyography", "Ultrasound", "Upper Limb Prosthesis", "Artificial Intelligence" and 
"Non-Invasive Sensors" was used to search for articles on Google Scholar and PubMed. Sixty-one 
articles were found, of which 59 were used in this review. For a comparison of the different ultra-
sound modes, feature extraction methods, and machine learning algorithms, 16 articles were used. 
It was found that various modes of ultrasound devices for prosthetic control, various machine learn-
ing algorithms for classifying different hand gestures, as well as various feature extraction methods 
for increasing the accuracy of artificial intelligence used in their controlling systems are reviewed in 
this article. The results of the review article show that ultrasound sensing has the potential to be 
used as a viable human-machine interface in order to control bionic hands with multiple degrees of 
freedom. Moreover, different hand gestures can be classified by different machine learning algo-
rithms trained with extracted features from collected data with an accuracy of around 95%. 

Keywords: Controlling system; human machine interface; machine learning; non-invasive sensor; 
prosthesis, sonomyography.  
 

1. Introduction 
Human machine interfaces (HMIs) and wearable technologies have sparked a great 

deal of interest in recent decades because they can be used for a wide range of applica-
tions, including immersive games [1], rehabilitation engineering [2-5], the automotive in-
dustry [6, 7], tele-operation in space [8], and virtual reality [9]. Furthermore, a HMI is 
frequently employed in the development of various control systems in prostheses and 
exoskeletons. In contrast to the many advancements in mechanical design, there are still 
significant challenges in regard to HMIs at higher levels of the control hierarchy to over-
come. There is a specific type of interface that may be utilized to predict patients’ voli-
tional movement from their residual muscle contractions or neuroactivities [10, 11]. How-
ever, detecting a user's motion intention fast enough to coordinate with devices is an im-
portant issue that requires further study [12]. A range of sensing modalities have been 
used to regulate human-machine interfaces. Sensing technologies for HMIs have been de-
veloped in order to provide accurate and trustworthy information to assist in the under-
standing of movement intentions. 

In order to control prostheses, the most often used approach is the use of biological 
signals, which may be recorded by a variety of sensors and electrodes by interfacing with 
either the peripheral nervous system (PNS) or the central nervous system (CNS) [13, 14]. 
This technique is classified as either non-invasive such as surface electromyography 
(sEMG), electroencephalography (EEG), forcemyography (FMG), mechanomyography 
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(MMG), magnetoencephalography (MEG), force sensitive resistance (FSR), and magneto-
micrometry (MM), with the last one being presently developed in MIT [15], or invasive 
like implanted electromyography (iEMG), myoelectric implantable recording arrays 
(MIRAs), electroneurography (ENG), electrocorticography (ECoG), brain chip interfaces 
(BCHIs), and magnetomicrometry (MM) [16].   

Recently, there has been a concentrated attempt to non-invasively monitor user in-
tention and intuitively operate various degrees of freedom of cutting-edge prostheses. 
This endeavour has been ongoing during the last decade. Non-invasive techniques in-
clude placing electrodes on the skin of the scalp or skeletal muscles, and applying con-
ductive gel to the electrodes and skin surface in order to improve the contact area and 
conductivity between the electrodes and skin surface [17]. However, in order to collect 
low-amplitude electrical impulses from skeletal muscles, bipolar electrodes are put on the 
skeletal muscles in order to record muscular activities. But, there is a difficulty with the 
non-invasive technique in that the data obtained by sensors may be substantially influ-
enced by a variety of circumstances, including electrode placement and movement, per-
spiration, and even noise caused by the electronic devices. Also, these methods have poor 
spatial resolution due to the interferences between the signals generated by neighbouring 
or overlapping muscles. Surface EMG is also unable to accurately record the activity of 
deep muscles, and as a result, it is difficult to utilize this approach to control protheses 
with multiple degrees of freedom [18]. Additionally, training users to control robots using 
biological signals is difficult and requires time, which is another drawback of these inter-
face methods [19], as the signals are often not linearly related to the muscle outputs, such 
as force or angle [18].  

Biomaterials have been used for implants for a long time [20]. Implanted myoelectric 
sensors, peripheral nerve implants, targeted muscle reinnervation, brain computer inter-
faces [21], and implanted stimulators [22] are examples of new technologies and methods 
that have the potential to provide significant improvements and new opportunities in 
neurological research. Invasive techniques include the placing of neural implants deep 
into the brain, on the nerves or the skeletal muscles [16] and the recording of signals from 
the cerebral cortex, part of the brain, or muscle activity. These implants are able to connect 
with the brain, nerves, and muscles to collect electrical signals during nerve or muscle 
activation. In addition, they give electrical impulses to neurons as well as transmit electri-
cal signals between neurons and computers, or between computers and neurons through 
a chip [20, 23]. While invasive approaches may increase the stability of biological signals 
as well as give more accurate information about the activities of the brain or muscles [24], 
these novel interface methods raise a lot of worries regarding the safety and efficacy of 
the operations which involve surgery or implanted devices [19]. Furthermore, these sig-
nals also have presence of noises, the same as non-invasive techniques.  

Researchers have also made significant efforts in recent years to employ new tech-
nologies and propose novel techniques for controlling prosthetic hands, such as aug-
mented reality (AR) glasses [25], inductive tongue control systems (ITCSs) [26], voice com-
mands, and inertial measurement units (IMUs) [27, 28]. Some concepts have proved that 
even the simplest techniques may have compelling results.  

These techniques are often utilized for prostheses that only have a single degree of 
freedom. Hence, the analysis or classification of biological signals necessitates the devel-
opment of intelligent characteristic algorithms that are capable of accurately classifying 
the different signals gathered with the least number of errors [29]. Utilizing a variety of 
machine learning methods, including deep learning, significant improvements in the pro-
cessing and classification of biological signals have been made in recent years. For exam-
ple, the use of machine learning has yielded good results and achieved high performance 
accuracy across a wide variety of topics, including the rehabilitation and re-education of 
physically handicapped human limbs [30]. In enhancing robot control, various algorithms 
such as K nearest neighbours (KNN), Support Vector Machines (SVMs), Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA), Artificial Neural Networks 
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(ANNs), Convolutional Neural Networks (CNNs), and Bayes networks can be used to 
classify signals with an accuracy of approximately 90% [31]. 

Recently, it has been proven that replacing biological signals with ultrasound (US) 
imaging that may provide real-time dynamic images of interior tissue movements linked 
with physical and physiological activity enables better discernment between discrete mo-
tions or categorization of full finger flexion [32]. Muscle architectural changes can be de-
tected by putting an ultrasound probe on the residual limb and by classifying different 
hand gestures based on muscle movement and activities for controlling a prosthesis [33]. 

Biosensing approaches and novel wearable devices, such as the sonomyography 
(SMG) technique for the implementation of control for upper limb prostheses, as well as 
machine learning algorithms for hand gesture recognition, are reviewed in this paper. The 
objective of this paper is to provide information about SMG systems for controlling upper 
limb prostheses based on the sensing of architectural changes in a subject’s muscles dur-
ing contraction. Section 2 describes in detail the history of the SMG approach for control-
ling prostheses throughout the years, different modes of US, feature extraction for increas-
ing the accuracy of classification, artificial intelligence (AI), and innovative decoding 
methods for hand movement classification. 

2. Methodology 
Available articles on upper limb prostheses and different controlling and HMI meth-

ods especially controlling robots using SMG published between 2004 and 2022 were re-
viewed using Google Scholar and PubMed resources in English. For this review paper, 
the combination of the keywords "Human Machine Interface", "Sonomyography", "Ultra-
sound", "Upper Limb Prosthesis", "Artificial Intelligence" and "Non-Invasive Sensors" was 
used to search for articles. Sixty-one articles were found, of which 59 were used in this 
review, and the two discarded articles were found to not be relevant.  

For the first time in 2006, the SMG method as a novel HMI technique was presented. 
In the past 16 years, different groups have tried to study the potential of US to be utilized 
in controlling upper limb prostheses. To review the different feature extraction methods 
and machine learning algorithms to control a robotic hand using three distinct US modes 
and evaluate the progression of accuracy and reliability of SMG as a HMI method, 16 
articles published by different groups were utilized. 

The original research publications as well as review articles published in English be-
tween the years 2004 and 2022 were considered for inclusion in this article. However, case 
reports, editorials, and commentaries were among the types of publications that did not 
meet the requirements to be reviewed in this article. 

3. Sonomyography (SMG) 
The use of ultrasonic technology in sensor implementation for identifying finger mo-

tions in prosthetic applications has been researched over the last ten years. A ground-
breaking study by Zheng et al. investigated whether ultrasound imaging of the forearm 
might be used to control a powered prosthesis, and the term ‘sonomyography’ (SMG) was 
coined by the group [34]. Ultrasound signals have recently garnered the interest of re-
searchers in the area of HMIs because they can collect information from both superficial 
and deep muscles and so provide more comprehensive information than other techniques 
[35]. Due to the great spatiotemporal resolution and specificity of ultrasound measure-
ments of muscle deformation, researchers have been able to infer fine volitional motor 
activities such as finger motions and dexterous control of robotic hands [36, 37]. To retain 
performance, a prosthesis that responds to the user's physiological signals must be fast to 
respond. sEMG, EEG, and other intuitive interfaces are capable of detecting neuromuscu-
lar signals prior to the beginning of motion; therefore, they are predicted to appear before 
the motion itself [38-40]. However, ultrasound imaging can detect skeletal muscle kine-
matic and kinetic characteristics [41], which indicate the continued creation of cross 
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bridges during motor unit recruitment and prior to the generation of muscular force [39, 
42], and these changes occur during sarcomere shortening, when muscle force exceeds 
segment inertial forces, and before the beginning of joint motion [39]. It is important to 
note that the changes in kinetic and kinematic ultrasonography properties of muscles oc-
cur prior to joint motion. As a result, prosthetic hands will be able to respond more quickly 
in the present and future. 

3.1. Ultrasound modes used in SMG 
Real-time dynamic images of muscle activities can be provided by US imaging sys-

tems. There are five different types of ultrasound modes, and each of them generates dif-
ferent information, but only some of them are applicable for use in controlling artificial 
robotic hands. The most popular ultrasound modes utilized in prosthesis control are A-
mode, B-mode, and M-mode.  

1) A-mode SMG: One of the most basic types of US is A-mode, which offers data in 
one dimension in the form of a graph in which the y axis indicates information about echo 
amplitude and the x axis represents time, similar to the way that EMG signals indicate 
muscle activity.  

In 2008, Guo et al. [43] introduced a novel HMI method called one-dimensional son-
omyography (1D SMG) as a viable alternative to EMG for assessing the muscle activities 
and controlling protheses. In this study, nine healthy volunteers were asked to perform 
different types of hand and wrist movements. During these experiments, different data 
were collected, such as joint angles, EMG signals of forearm muscles, and muscle activities 
collected from A-mode Ultrasound. The results of their study showed that the 1D SMG 
technique can be reliable and has the potential to be used for controlling one-degree-of-
freedom bionic hands. 

 A study by Guo et al. [44] was carried out in order to assess and compare the per-
formance of one-dimensional A-mode SMG and sEMG signals while following guided 
patterns of wrist extension. They also looked at the possibility of using the 1D SMG to 
control bionic hands. They invited 16 healthy right-handed participants to conduct a va-
riety of wrist motions with a variety of guided waveforms at a variety of movement 
speeds for their experiment. During wrist motions, a 1D SMG transducer with a sEMG 
electrode was connected to the forearm of participants, making it possible for them to 
record and capture the activity of the participants’ forearm muscle groups. Root mean 
squares (RMS) were computed from the extensor carpi radialis after normalizing the sig-
nals obtained from the SMG and sEMG after they had been collected and normalized, 
respectively. When comparing the abilities of SMG and sEMG to follow guiding wave-
form patterns, the paired t test was utilized to make the comparison. In addition, one-way 
analysis of variance (ANOVA) was utilized to determine the differences in SMG perfor-
mance at different movement speeds. For sinusoidal, square, and triangular guiding 
waveforms, the mean RMS tracking errors of SMG were found to be between 13.6% and 
21.5%, whereas sEMG was found to be between 24% and 30.7%. The results of a paired t 
experiment revealed that the RMS errors of SMG tracking were much lower than those of 
sEMG tracking.  

When Guo and her colleagues [45] successfully tested A-mode US on healthy partic-
ipants, they used the same procedure on an amputee (Figure 1A). Participants in the study 
were instructed to extend their phantom wrist in order to control the prosthetic hand. Her 
research found a correlation between muscle thickness and wrist extension angle with a 
correlation coefficient of 0.94. Furthermore, the relationship between wrist angle and mus-
cle thickness was studied, and they calculated the mean ratio of angle deformation, which 
was around 0.13%. 

As a continuous part of their research, Chen et al. [46] investigated whether it is fea-
sible to control a prosthetic hand with one degree of freedom using muscle thickness var-
iations recorded by a one-degree-of-freedom SMG. With varying patterns and movement 
speeds, nine right-handed healthy individuals were instructed to operate a prosthetic 
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hand with their wrist motions and match the visual input with the target track. The open-
ing position of the prosthesis was controlled by SMG signals from the subject's extensor 
carpi radialis muscle. A prosthesis opening position was measured using an electronic 
goniometer in this investigation. The tracking error between the opening position of the 
prosthetic hand and the target track was computed in order to evaluate the performance 
of the controlling system. This study's findings indicated that the SMG control's mean 
RMS tracking errors ranged from 9.6% to 19.4% while moving at various speeds. 

In a study published in 2013, Guo et al. [47] further employed three different machine 
learning approaches to estimate the angle of the wrist using a one-dimensional A-mode 
ultrasonic transducer, and the results were promising. During the experiment, nine 
healthy volunteers were instructed to execute wrist extension exercises at speeds of 15, 
22.5, and 30 cycles per minute, while an A-mode ultrasound transducer recorded data 
from the participants' forearm muscles (Figure 1B-C). 

  
Figure 1. A: The original image of the experimental setting, conducted by Guo and her colleagues 
in 2010. A-mode SMG setting for collecting SMG and EMG signals from a residual forearm for con-
trolling a prosthesis to compare their performances, with the screen showing the A-mode ultra-
sound signal (lower half) and the guiding signal for muscle contraction (upper half). B: The place-
ment of the electro goniometer and sensors on healthy volunteers. C: Placing A-mode small trans-
ducer (with a diameter of 7 mm) in between sEMG electrodes to collect both EMG and SMG signals 
from extensor carpi radialis muscle, simultaneously [47].  

 Because of the ability of US transducers to detect morphological changes in deep 
muscles and tendons, Yang et al. [48] presented a US-driven HMI as a viable alternative 
to sEMG for dexterous motion identification. Four A-mode piezoelectric ceramic trans-
ducers were built for their study. A custom-made armband was constructed to fix the four 
transducers while capturing the activity of the flexor digitorum superficialis (FDS), flexor 
digitorum profundus (FDP), flexor pollicis longus (FPL), extensor digitorum communis 
(EDC), and extensor pollicis longus (EPL), which all play a critical part in finger move-
ments, including flexion and combined finger motions. Participants were asked to make 
11 different hand gestures and hold such gestures for 3 to 5 seconds throughout the offline 
trial. Due to the fact that the raw echo signals obtained from the A-mode ultrasound trans-
ducer are constantly distorted by scattering noises and attenuation in tissues, signal pro-
cessing was accomplished using temporal gain compensation (TGC), Gaussian filtering, 
Hilbert transform, and log compression [49].  

In 2020 Yang et al. [50] suggested subclass discriminant analysis (SDA) and principal 
component analysis (PCA) to simultaneously predict wrist rotation (pronation/supina-
tion) and finger motions using wearable 1D SMG system. They carried out trials both of-
fline and online. In offline studies, eight tiny A-mode ultrasound transducers were 
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mounted onto the hands of eight healthy volunteers, and the forearm muscles were cap-
tured using the transducers. In their study, the wrist rotations and eight kinds of finger 
motions (rest, fist, index point, fine pinch, tripod grasp, key grip, peace sign, and hang 
loose) were investigated. However, in the online test, a customized graphical user inter-
face (GUI) was employed to conduct a tracking task in order to validate the simultaneous 
wrist and hand control. The results of this study showed that it was possible to classify 
the finger gestures and wrist rotation simultaneously using the SDA machine learning 
algorithm with an accuracy of around 99.89% and 95.2%, respectively.  

In 2020, Engdahl et al. [51] proposed a unique wearable low-power SMG system for 
controlling a prosthetic hand. The proposed SMG system was comprised of four single-
element transducers that were driven by a 7.4 V battery and operated at a constant fre-
quency. In their investigation, a portable ultrasound transducer was fixed to the hands of 
five healthy participants in order to obtain muscle activity data. The data collected from 
participants were used to train an AI model in order to classify different finger move-
ments. The results of this study showed that, using their proposed method, it was possible 
to classify nine different finger movements with an accuracy of around 95%. 

2) B-mode SMG: B-mode, or 2D mode, provides a cross-sectional image of tissues or 
organs and is one of the most popular US modes used in a wide range of medical appli-
cations. In B-mode US, organs and tissues show up as points of different brightness in 2D 
greyscale images made from the echoes. B-mode ultrasound can provide a real-time image 
of muscles under contraction.  

Zheng et al. [34] for the first time studied the potential of a portable B-mode ultra-
sound scanner for evaluation of the dimensional change of muscles and control of pros-
thetic hands. In their study six healthy volunteers and three amputee participants were 
asked to perform wrist flexion and extension in order to capture the activities of forearm 
muscles (Figure 2). The morphological deformation of forearm muscles during activities 
was effectively identified and linearly linked with wrist angle. The mean ratio of wrist 
angle to percentage of forearm muscle contraction was evaluated in normal participants. 
When the three amputee participants engaged their residual forearm muscles, the SMG 
signals from their residual forearms were likewise recognized and recorded satisfactorily. 
They discovered that SMG may be used to regulate and monitor musculoskeletal disor-
ders as a consequence of their research.  

 
Figure 2. Collecting SMG signals from an amputee subject using a B-mode SMG system [34]. (a) the 
experimental setup; (b) a typical B-mode image of the residual limb. 

 
A study by Shi et al. [52] analysed the possibility of real-time control of a prosthetic 

hand with one degree of freedom utilizing muscle thickness fluctuations recorded by a 
US probe. They investigated the feasibility of controlling a prosthetic hand utilizing the 
extensor carpi radialis thickness deformation and found that a 1-DOF prosthetic hand can 
be controlled by only one muscle of the forearm using the SMG technique.  
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Shi et al. [53] employed B-mode ultrasound imaging to capture muscle activity dur-
ing a finger’s flexion and extension. Artificial intelligence was then utilized to determine 
which fingers had been bent in various directions. All of the information was handled 
offline. A total of 750 sets of US pictures were obtained, with images from each group 
selected from forearm muscles during finger flexion and extension. 

Ortenzi et al. [17] reported the use of ultrasound as a hand prosthesis HMI. Using a 
portable ultrasonic scanner equipped with a linear transducer, US pictures were captured 
and processed in the B-mode (2D imaging) in order to show the transverse section of the 
forearm underneath the transducer as a greyscale image. In the testing, the US transducer 
remained in position on the wrist thanks to an elastic band attached to a special plastic 
cradle. Specifically, this was done in order to limit the amount of motion artefacts that 
would arise. Specifically, the goal of this research was to evaluate the categorization of ten 
various hand postures and grab forces. 

 Employing a computationally efficient approach to distinguish between compli-
cated hand movements, Akhlaghi and colleagues [54] presented a real-time controlling 
system in relation to stroke rehabilitation, basic research into motor control biomechanics 
and artificial robotic limb control to analyse the feasibility of using 2D-mode US as a ro-
bust muscle computer interface and evaluate the possible therapeutic applications. They 
used a B-mode ultrasound transducer to evaluate the possibility of the classification of 
complex hand gestures and dexterous finger movements. In their study, dynamic ultra-
sound pictures of six healthy volunteers’ forearm muscles were provided and these data 
were evaluated to map muscle activity based on the muscle deformation during diverse 
hand movements.  

In 2017, McIntosh et al. [55] looked at how suitable different forearm mounting posi-
tions (transverse, longitudinal, diagonal, wrist, and posterior) were for a wearable ultra-
sound device. This is because the location of a device has a big impact on how comfortable 
it is and how well it works. In their study, in order to fix the B-mode US transducer on the 
participants' arms, they designed a fixture manufactured by a 3D printer and strap. The 
gloves also had flexible sensors sewn into them so that they could measure the precise 
angle of each finger's flexion.  

In a 2019 study, Akhlaghi et al. [56] evaluated the impact of employing a sparse set 
of ultrasound scanlines in order to find the best location on the forearm for capturing the 
maximal deformation of the primary forearm muscles during finger motions as well as 
classifying different types of hand gestures and finger movements. Five subjects were 
asked to make four different hand movements in order to see how the FDS, FDP, and FPL 
muscles worked.  

In 2021, Fernandes et al. [57] developed a wearable HMI that made use of 2D ultra-
sonic sensors and non-focused ultrasound. The ultrasound radiofrequency (RF) signals 
were captured using a B-mode linear array ultrasound probe while five healthy volun-
teers performed individual finger flexions. To intentionally diminish the lateral resolution 
of the ultrasound data, RF waves were averaged into fewer lateral columns. For full reso-
lution, the first and third quartiles of classification accuracy were found to be between 
80% and 92%. Using the suggested feature extraction approach with discrete wavelet 
transform, averaging into four RF signals might obtain a median classification accuracy 
of 87%. According to the results of their study, the authors mentioned that low-resolution 
images can have the same level of accuracy as high-resolution images. 

3) M-mode SMG: An M-mode scan, also known as a motion mode scan, uses a series 
of A-mode scan signals, normally by selecting one line in B-mode imaging, to depict tissue 
motion over time. Using the M-mode, it is possible to estimate the velocity of individual 
organ structures. In comparison to the B and A modes, the motion mode US scans at a 
greater frequency and provides more comprehensive information about the tissue. 

Li et al. [35] conducted a study to determine the possibility of using M-mode ultra-
sound to detect wrist and finger movements. They compared M-mode and B-mode ultra-
sonography performance in the classification of 13 wrist and finger movements. A total of 
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13 movements were performed on eight healthy participants. Stable ultrasound data were 
collected by placing an ultrasound probe on an arm with a custom-made transducer 
holder. In order to cover the muscles of the forearm that are responsible for finger flexion 
and extension, the transducer was positioned at about half way along the forearm’s 
length. During the same procedure, to ensure that the comparison was fair, the M-mode 
and B-mode ultrasound signals were both collected from the forearm. As a consequence 
of their investigation, M-mode SMG transducers were shown to be as accurate as B-mode 
SMG signals in detecting wrist and finger movements as well as distinguishing between 
diverse hand gestures, and they may be employed in HMIs. 

3.2. Muscle location and probe fixation 
It is vital to note that the position and location of the probe are critical in order to 

have greater control over robotic hands. The main muscles which perform different types 
of finger flexion are the FDS, FDP, and FPL muscles. However, to perform different wrist 
movements the pronator teres, flexor carpi radialis, flexor carpi ulnaris, palmaris longus 
and pronater quadratus are involved (Figure 3).  

 
Figure 3. Illustration of the main forearm flexor muscles [58] 

  Hence, the placing of sensors to collect these muscle activities with better and more 
reliable control over the robot is important. After collecting data from healthy volunteers, 
Akhlaghi et al. [56] discovered that muscular distortion was significant in the 30–50% of 
forearm length from the elbow and that this region is the best place to record muscle 
movements for controlling robots. However, after testing various locations and fixing po-
sitions on a range of healthy individuals, McIntosh et al. [55] discovered that the wrist 
region is the most effective place for classifying discrete motions. Furthermore, they ob-
served that the diagonal position is the most effective position for collecting data for iden-
tifying discrete gestures, whereas the diagonal and transverse positions are the most ef-
fective for predicting finger angles (Figure 4).  
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Figure 4. A comparison of the ultrasound probe's various hand mounting positions, along with the 
related picture [55] 

3.3. Feature extraction algotithm 
To classify the finger movements and different hand gestures, it is important to use 

different types of algorithms to extract features from signals or images captured by US 
transducers because machine learning algorithms cannot process all the information. It is 
worth mentioning that using a machine learning algorithm without extracting features 
can classify different hand gestures, but the accuracy would be significantly less. 

Shi et al. [53] captured the forearm muscle activities and controlled a hand prosthesis 
with B-mode ultrasound, and AI was used to classify the finger movements. Before using 
collected data to train their AI, a deformation field was constructed to extract features 
from the data after registering the ultrasound image pair with the demons registration 
algorithm for each group. Valerio Ortenzi [17] used the SMG technique as a valid HMI 
method to control a robotic hand. In order to classify ten different hand gestures and grasp 
forces, visual characteristics such as Regions of Interest gradients and Histogram of Ori-
ented Gradient (HOG) features were extracted from the collected images, and these fea-
tures were used to train three machine learning algorithms.  

The activity pattern was generated using an image processing method developed by 
Akhlaghi et al. [54]. MATLAB (MathWorks, Natick, MA, USA) was used to extract the 
activity patterns for each kind of hand movement from the B-mode ultrasound picture 
frames. Pixel-wise differences were determined and then averaged across a time span to 
identify the spatial distribution of intensity variations that corresponded to the muscle 
activity in each sequential frame of each series (raw activity pattern). A hand motion was 
mapped to a single activity pattern using this method. On the basis of the global thresh-
olding level and decimal block size, the raw activity pattern was then transformed into a 
binary image. This database was then used to train the Nearest Neighbour classification 
algorithm.  

McIntosh et al. [55] collected data from the forearm muscles of subjects in order to 
evaluate the effect of probe position on the control of a hand prosthesis. They utilized a B-
mode US transducer to capture the muscle activities of volunteers. Before using the col-
lected data to train their AI, the optical flow between the first frame of the new session 
and the base frame of the training set was estimated. The flow was then averaged to gen-
erate a 2D translation and to reduce mistakes caused by US displacement, which might 
result in differing anatomical characteristics. Following that, modification was made to 
the current video in order to better match the training and sample characteristics.  

In the study conducted by Yang et al. [48], before using the collected data to train the 
machine learning model, the feature extraction process was carried out using segmenta-
tion and linear fitting to increase the accuracy of classification. Inspired by Castellini and 
colleagues [59, 60], first-order spatial features were used to guide the feature extraction 
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procedure. After selecting an evenly spaced grid of interest spots in the ultrasound pic-
ture, plane fitting was used to identify the spatial first-order features. Nevertheless, in 
their technique, the plane fitting was turned into linear fitting [61]. It was because of this 
change that the approach could be used for one-dimensional ultrasonic data.  

Yang et al. [50] in 2020 classified and detected simultaneous wrist and finger move-
ments using SDA and PCA algorithms. To train their AI model, the characteristics of the 
data collected from participants were extracted using the Tree Bagger function and the 
Random Forest method was used to evaluate the significance of characteristics. After that, 
two kinds of statistically significant characteristics were concatenated together for further 
analysis.  

Fernandes et al. [57] used the LDA method to classify finger movements using B-
mode SMG. To make the classification more reliable and accurate, the authors used two 
different methodologies to extract characteristics from the data collected from volunteers. 
First, using the discrete wavelet transform (DWT) approach, the average RF signals were 
pre-processed prior to being used in the second method. In the next step, the mean ab-
sorption value (MAV) of the detail coefficient at various levels, as determined by the DWT 
approach, was determined. The second technique involves calculating a linear function 
over segmented portions of the envelope along the depth using linear regression (LR). It 
was decided to utilize the slopes and intercepts of the predicted linear function as spatial 
characteristics in this study.  

Li et al. [35] compared the productivity of B and M mode ultrasound transducers in 
relation to controlling an artificial robotic hand. In their study, they collected data from 
participants and then the features from signals collected from an M-mode probe were ex-
tracted using a linear fitting approach, while the features from pictures captured with a 
B-mode transducer were extracted using a static ultrasound image method. These features 
were used for training the SVM algorithm.  

3.4. Artificial intelligence in classification 
To have dexterous and precise control over prostheses, different deep learning and 

machine learning algorithms have been developed to classify different hand gestures and 
intended movements using SMG with high accuracy.  

To control a prosthetic device in real time, Shi et al. [52] looked at the sum of absolute 
differences (SAD), the two-dimensional logarithmic search (TDL), the cross-correlation 
(CC) method, and algorithms like SAD and TDL in conjunction with streaming single-
instruction multiple-data extensions (SSE). They utilized a block-matching method to 
measure the muscle deformation during contraction. To compare TDL with and without 
SSE, the findings revealed good execution efficiency, with a mean correlation coefficient 
of about 0.99, a mean standard root-mean-square error of less than 0.75, and a mean rela-
tive root-mean-square error of less than 8.0%. Tests have shown that a prosthetic hand can 
be controlled by only one muscle position, which allows for proprioception of muscle ten-
sion. They mentioned that SMG is good at controlling prosthetic hands, allowing them to 
open and close proportionally and quickly.  

In order to capture muscle activity in a finger’s flexion and extension and evaluate 
the potential of using an ultrasound device in HMI, Shi et al. [53] employed B-mode ul-
trasound imaging. The deformation field was used to extract features, which were then 
input into the SVM classifier for the identification of finger movements. The experimental 
results revealed that the overall mean recognition accuracy was around 94%, indicating 
that this method has high accuracy and reliability. They assert that the suggested ap-
proach might be utilized in place of surface electromyography for determining which fin-
gers move in distinct ways.  

Guo and her colleagues [47] conducted a study and asked nine healthy volunteers to 
perform different wrist extensions; meanwhile, an A-mode portable probe was used to 
capture the activities of the extensor carpi radialis muscle. An SVM, radial basis function 
artificial neural network (RBFANN), and back propagation artificial neural network (BP 
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ANN) were trained by data collected from extension exercises at 22.5 cycles per minute, 
and the rest of the data were used for cross-validation. For the purpose of evaluating the 
accuracy of the predictions made by the AI models utilized in their research, correlation 
coefficients and relative root mean square error (RMSE) were calculated. The findings re-
vealed that the SVM method is the most accurate in predicting the wrist angle, with an 
RMSE of 13% and a correlation coefficient of 0.975%.  

In 2015, Ortenzi et al. [17] proposed an advanced HMI method using US devices. In 
their study, data were collected from three healthy participants using B-mode ultrasound 
in order to train a machine learning algorithm to classify different hand gestures. The first 
dataset included US pictures of six hand postures and four functional grasps, each with 
just one degree of grip force. The second dataset was used to evaluate the capacity to rec-
ognize various degrees of force for each kind of grip. In order to classify photos from the 
five datasets, an LDA classifier, a Naive Bayes classifier, and a Decision Tree classifier 
were used, among other methods. The LDA classifier trained with features extracted by 
HOGs outperformed the others and achieved 80% success in categorizing 10 pos-
tures/grasps and 60% success in classifying functional grasps with varied degrees of grip 
force in an experiment involving three intact human volunteers.  

In order to classify complex hand gestures and dexterous finger movements, 
Akhlaghi et al. [54] collected the forearm muscle activities in different hand gestures in 
conjunction with wrist pronation. Using the activity patterns collected during the training 
phase, a database of potential hand movements was created, and the nearest neighbour 
classifier was used to categorize the various activity patterns using the database. The fea-
ture vectors in closest neighbour classification were created using two-dimensional activ-
ity pattern pictures, and the distance metric in a classification algorithm was determined 
by the cross-correlation coefficient between two patterns. For each participant, a database 
of activity patterns corresponding to various hand gestures was created during the train-
ing portion of the study. It was discovered that during the testing phase, unique activity 
patterns were categorized using the database, with an average classification accuracy of 
91%. A virtual hand could be controlled in real time using an image-based control system 
that had an accuracy of 92% on average.  

McIntosh et al. [55] collected data from participants’ forearm muscles in order to clas-
sify 10 different hand gestures using US. In order to identify the finger positions or esti-
mate finger angles, two machine learning algorithms were used. However, because ma-
chine learning algorithms cannot process all of the information, an optical flow was used 
to classify discrete gestures, and a first-order surface was used to detect finger angle. SVM 
and MLP algorithms were used to classify the different gestures and finger flexing in dif-
ferent joints. The results of this study showed that finger flexion and extension for per-
forming 10 different hand gestures were classified after using image processing and neu-
ral networks with an accuracy of above 98%. They also found out that the MLP algorithm 
had a slight advantage over the SVM method in every location. After analyzing the data 
collected from finger flexion and extension in different joints, they mentioned that it is 
possible to classify the flexion and extension of each finger in different joints with an ac-
curacy of 97.4%.  

In an experiment reported by Yang et al. [48], in order to classify and identify the 
finger movements using wearable 1D SMG system, the muscle activity of participants 
during the performance of 11 different hand gestures was collected. Then the data were 
used to train LDA and SVM algorithms to classify hand movements. It was decided to use 
a five-fold cross-validation method. All the information was gathered in one database, 
which was then separated into five sections randomly and evenly distributed among 
them. One of the five components was designated as a testing set, while the other four 
were designated as training sets. The trial findings indicated that the accuracy of offline 
recognition was up to 98.83% ± 0.79%. The completion percentage of real-time motions 
was 95.4% ± 8.7%, and the time required to choose an online move was 0.243 s ± 0.127 s.  
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In order to classify the finger movements, Akhlaghi et al. [56] used a B-mode ultra-
sound probe to capture the main forearm muscles’ activities. In addition, three different 
scanline reductions were used to limit the scanlines of the US. The data, after being col-
lected and limited, were used to train a Nearest Neighbour algorithm to classify different 
finger movements and different hand gestures. Using the complete 128 scanline picture, 
the classification accuracy was 94.6%, while using four equally spaced scanlines, the clas-
sification accuracy averaged at 94.5%. On the other hand, there was no significant differ-
ence in the ability to categorize items when the best scanlines were selected using fisher 
criteria (FC) and mutual information (MI). They also suggested that instead of using the 
whole imaging array, a select subset of ultrasonic scanlines may be employed, which 
would not result in a reduction in classification accuracy for multiple degrees of freedom. 
Wearable sonomyography muscle computer interfaces (MCIs) may also benefit from se-
lecting a restricted number of transducer parts to decrease computation, instrumentation, 
and battery use.  

To detect finger movements and wrist rotation simultaneously, Yang et al. [50] col-
lected data from muscle activities during different finger movements with wrist rotation. 
Before using the collected data in the training of machine learning algorithms, different 
techniques were used to extract the features. The simultaneous wrist rotation and finger 
motions were predicted using an SDA technique and a PCA approach. The results indi-
cated that SDA is capable of accurately classifying both finger movements and wrist rota-
tions in the presence of dynamic wrist rotations. Using three subclasses to categorize wrist 
rotations, it is possible to properly classify around 99% of finger movements and 93% of 
wrist rotations. They also discovered that the wrist rotation angle is linearly related to the 
first principal component (PC1) of the chosen ultrasonography characteristics, independ-
ent of the finger motions being used. With just two minutes of user training, it was possi-
ble to achieve wrist tracking precision (R2) of 0.954 and finger gesture categorization ac-
curacy (96.5%) with the PC1.  

Fernandes et al. [57] developed a wearable SMG technology to classify and categorize 
finger flexion and extension. In their study, 2D-mode US was used to collect five subjects’ 
muscle activities during finger movements. Before the LDA method was employed to cat-
egorize the finger motions, a feature selection process was carried out. The number of 
spatial and temporal characteristics that were extracted was reduced as a result of this 
procedure. This aids in the differentiation of various forms of finger flexion. An accuracy 
of 80–92% (full resolution) was achieved in the first and third quarters of 10 separate arm 
trials. Using the suggested feature extraction approach in conjunction with discrete wave-
let transform, they demonstrated that classification accuracy may be improved by as much 
as 87% by averaging four radio frequency signals. According to the findings of their re-
search, reduced resolutions may achieve high accuracy levels that are comparable to those 
of full resolution. Furthermore, they carried out pilot research employing a multichannel 
single-element ultrasound system using flexible wearable ultrasonic sensors (WUSs) that 
utilize non-focused ultrasound. Three WUSs were connected to one subject's forearm, and 
ultrasonic RF signals were recorded while the person flexed his or her fingers individu-
ally. Using WUS sensors, the researchers discovered that they could accurately categorize 
finger movement with an accuracy of about 98%, with F1 scores ranging between 95% and 
98%.  

Li et al. [35] collected the muscle activities of participants using M-mode ultrasound. 
The data acquired were utilized to train SVM and BP ANNs, which were then used to 
categorize the movements of the wrist and hands. The SVM classifier had an average clas-
sification accuracy (CA) of 98.83% for M-mode and 98.77% for B-mode across the eight 
subjects’ 13 movements. Regarding the BP classifier, the average CA of M-mode and B-
mode was around 98.7% ± 0.99% and 98.76% ± 0.91%, respectively, according to the re-
sults. CAs did not vary between M-mode and B-mode (p > 0.05). Aside from that, M-mode 
seems to have potential dominance in feature analysis. Their findings indicate that M-
mode ultrasonography may be used to detect wrist and finger motions in addition to other 
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applications. The results of their study also show that M-mode ultrasound can be used in 
HMI.  

Table 1 presents a summary of the different machine learning algorithms, feature 
extraction methods, and modes of ultrasound devices used to classify different types of 
finger movements and hand gestures since 2006.  

Table 1. Summary of the methods and results of the SMG controlling system used in the past 16 
years 

Authors Year Ultrasound 
Mode 

Feature extrac-
tion method 

Machine 
learning 

algorithm 

Subjects Location Targeted 
muscles 

Probe 
mounting 
position 

Fixation 
methods 

Results 

Zheng et 
al. [34] 

2006 B-Mode N/A N/A 6 healthy 
and 3 am-
putee vol-

unteers 

Forearm ECR Posterior N/A The normal participants had a ratio of 
7.2±3.7% between wrist angle and 

forearm muscle percentage distortion. 
This ratio exhibited an intraclass corre-

lation coefficient (ICC) of 0.868 be-
tween the three times it was tested. 

 
Guo et al. 

[43] 
2008 A-Mode N/A N/A 9 healthy 

partici-
pants 

Forearm ECR NA Custom-
maid holder 

A mean correlation value of r = 0.91 
for nine individuals was found based 
on the findings of a linear regression 
study linking muscle deformation to 
wrist extension angle. A correlation 

between wrist angle and muscle distor-
tion was also investigated. The total 

mean ratio of deformation to angle was 
0.130%/°. 

 
Guo et al. 

[44] 
2009 A-Mode N/A N/A 16 healthy 

right-
handed 
partici-
pants 

Forearm ECR NA Custom-de-
signed 
holder 

The root mean square tracking errors 
between SMG and EMG were meas-
ured, and the results showed that the 

SMG had a lower error in comparison 
with EMG. The mean RMS tracking 
error of SMG and EMG under three 

different waveform patterns ranged be-
tween 17-18.9 and 24.7-30.3 respec-

tively. 
 

Chen et al. 
[46] 

2010 A-Mode N/A N/A 9 right-
handed 

healthy in-
dividuals 

Forearm ECR NA Custom-de-
signed 
holder 

SMG control's mean RMS tracking er-
rors were 12.8% & 3.2% and 14.8% & 
4.6% for sinusoid and square tracks, 
respectively, at various movement 

speeds. 
 

Shi et al. 
[52] 

2010 B-Mode N/A N/A 7 healthy 
partici-
pants 

Forearm ECR NA Custom-
made 

bracket 

There was excellent execution effi-
ciency for the TDL algorithm, with 

and without streaming single-instruc-
tion multiple-data extensions, with a 
mean correlation coefficient of about 

0.99. In this technique, the mean stand-
ard root-mean-square error was less 
than 0.75%, and the mean relative 

root-mean-square was less than 8.0% 
when compared to the cross-correla-

tion algorithm baseline. 
 

Shi et al. 
[53] 

2012 B-Mode Deformation 
field generated 
by the demons 

algorithm 

SVM 6 healthy 
volunteers 

Forearm ECU, EDM, 
ED, and 

EPL  

Posterior Custom-
maid holder 

A mean F value of 0.94±0.02 indicates 
a high degree of accuracy and depend-

ability for the proposed approach, 
which classifies finger flexion move-

ments with an average accuracy of 
roughly 94%, with the best accuracy 

for the thumb (97%) and the lowest ac-
curacy for the ring finger (92%). 

 
Guo et al. 

[47] 
2013 A-Mode N/A SVM, 

RBFANN 
and BP 
ANN 

9 healthy 
volunteers 

Forearm ECR NA N/A The SVM algorithm, with a CC of 
around 0.98 and a RMSE of around 

13%, had excellent potential in the pre-
diction of wrist angle in comparison 

with the RBFANN and BP ANN. 
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Ortenzi et 

al. [17] 
2015 B-Mode Regions of In-

terest gradients 
and HOG 

LDA, Na-
ive Bayes 
classifier 
and Deci-
sion Trees 

3 able bod-
ied volun-

teers 

Forearm Extrinsic 
forearm 
muscles 

Transverse Custom-
made plastic 

cradle 

The LDA classifier had the highest ac-
curacy and could categorize 10 pos-
tures/grasps with 80% success, and 
could classify the functional grasps 

with varied degrees of grip force with 
an accuracy of 60%. 

Akhlaghi 
et al. [54] 

2015 B-Mode Customized 
image pro-

cessing 

Nearest 
Neighbor 

6 healthy 
volunteers 

Forearm FDS, FDP 
and FPL 

Transverse Custom de-
sign cuff 

In offline classification, 15 different 
hand motions with an accuracy of 

around 91.2% were categorized. How-
ever, in real-time control of a virtual 

prosthetic hand, the accuracy of classi-
fication was 92%. 

 
McIntosh 
et al. [55] 

2017 B-Mode Optical flow MLP and 
SVM 

2 healthy 
volunteers 

Wrist and 
Forearm 

FCR, FDS, 
FPL, FDP 
and FCU 

Trans-
verse, lon-
gitudinal, 
diagonal, 
wrist and 
posterior 

 

3D printed 
fixture 

Both machine learning algorithms 
could classify 10 discrete hand ges-
tures with an accuracy of more than 

98%. In contrast to SVM, MLP had a 
minor advantage. 

Yang et al. 
[48] 

2018 A-Mode Segmentation 
and linear fit-

ting 

LDA and 
SVM 

Eight 
healthy 
partici-
pants 

Forearm FDP, FPL, 
EDC, EPL 
and flexor 
digitorum 
sublimis 

 

NA custom-
made arm-

band 

Finger movements were classified with 
an accuracy of around 98%. 

Akhlaghi 
et al. [56] 

2019 B-Mode N/A Nearest 
Neighbor 

5 able bod-
ied sub-

jects 

Forearm FDS, FDP 
and FPL 

Transverse Custom de-
sign cuff 

The 5 different hand gestures were cat-
egorized with an accuracy of 94.6% 
with 128 scanlines and 94.5% with 4 

scanlines that were evenly spaced. 
 

Yang et al. 
[50] 

2020 A-Mode Random Forest 
technique with 
the help of the 
Tree Bagger 

function 

SDA and 
PCA 

8 healthy 
volunteers 

Forearm FCU, FCR, 
FDP, FDS, 
FPL, APL, 
EPL, EPB, 
ECU, ECR 
and ECD 

 

NA customized 
armband 

The finger motions and wrist rotation 
simultaneously using the SDA ma-

chine learning algorithm were classi-
fied with an accuracy of around 
99.89% and 95.2%, respectively. 

Engdahl et 
al. [51] 

2020 A-Mode N/A N/A 5 healthy 
partici-
pants 

Forearm NA NA Custom-
made wear-
able band 

9 different finger movements with an 
accuracy of around 95% were classi-

fied. 
 

Fernandes 
et al. [57] 

2021 B-Mode DWT and LR LDA 5 healthy 
partici-
pants 

Forearm NA Wrist N/A Classification accuracy ranged from 
80% to 92% at full resolution. How-
ever, at low resolution, the accuracy 
improved to an average of 87% after 
using the proposed feature extraction 
method with discrete wavelet trans-
form, which was considered good 
enough for classification purposes. 

 
Li et al. 

[35]  
2022 M-Mode and 

B-Mode 
Linear fitting 

approach 
SVM and 
BP ANN 

8 healthy 
partici-
pants 

Forearm FCR, FDS, 
FPL, FDP, 
ED, EPL 
and ECU 

Transverse custom-
made trans-
ducer holder 

The accuracy of the SVM classifier to 
classify 13 motions was 98.83±1.03% 
and 98.77±1.02% for M-mode and B-
mode, respectively. However, the ac-
curacy of the BP ANN classifier was 

98.70±0.99% for M-mode and 
98.76±0.91% for B-mode. 

 
The following abbreviations are used in the table: Not available (N/A); histogram of Oriented gra-
dients (HOG); discrete wavelet transform (DWT); linear regression (LR); support vector machine 
(SVM); radial basis function artificial neural network (RBFANN); back propagation artificial neural 
network (BP ANN); linear discriminant analysis (LDA); multilayer perceptron (MLP); subclass dis-
criminant analysis (SDA); principal component analysis (PCA); correlation coefficients (CC); root 
mean square error (RMSE); root mean square (RMS); sonomyography (SMG); electromyography 
(EMG); two-dimensional logarithmic (TDL); extensor carpi radialis (ECR); extensor carpi ulnaris 
(ECU); extensor digiti minimi (EDM); extensor digitorum (ED); extensor pollicis longus (EPL); flexor 
digitorum superficialis (FDS); flexor digitorum Profundus (FDP); flexor pollicis longus (FPL); ex-
tensor digitorum communis (EDC); extensor pollicis longus (EPL); abductor pollicis longus (APL); 
extensor pollicis brevis (EPB). 
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4. Discussion 
This In this paper, we conducted a review of the research works using sonomyogra-

phy (SMG) for controlling upper limb prostheses during the last 16 years, since it was first 
proposed in 2006 [32]. In this technique, different hand gestures can be classified based on 
the images or signals captured by the US probe to control the prosthesis with multiple 
degrees of freedom. Because ultrasound imaging can provide information about both su-
perficial and deep muscle activities, this HMI method has a lot of potentials for controlling 
prostheses with more degrees of freedom. To classify hand gestures for controlling robots, 
various machine learning algorithms and deep learning methods are needed. However, 
machine learning algorithms are not able to process all the information collected from US 
transducers. Hence, different transfer learning models have been proposed to extract the 
characteristics of the collected data and use these features to train the model. The results 
of this review showed that the most popular algorithms used to categorize the different 
hand gestures with an accuracy of about 95% from the data collected by US devices are 
SVM, RBFANN, BP ANN, LDA, K-NN, MLP, SDA, and PCA.  

To control a prosthesis using SMG, three different US imaging modes are utilized, 
namely A-mode, B-mode, and M-mode. The result of this review paper shows that the 
accuracy of the SMG method with three modes can be good enough to be used for con-
trolling prostheses. The A-mode US system uses very tiny transducers; thus, it can make 
the system very compact and US transducers can be integrated with EMG electrodes. 
However, because the detailed activities of neighbouring muscles can be detected in B-
mode ultrasound, the reliability of using this US mode may be higher than others. More-
over, the precision can be increased by utilizing different machine learning algorithms in 
combination with distinct feature extraction methods. 

Despite the fact that recent studies have demonstrated the feasibility of using US 
transducers to control robotic hands, this method has some limitations. Because this 
method can detect residual muscle activity, it is only appropriate for prostheses in people 
with a transradial hand amputation level or lower. Moreover, current ultrasound imaging 
systems are bulky and power-hungry, which makes the prosthesis large and heavy. Fur-
thermore, ultrasound gels or gel pads were used in the published studies for acoustic cou-
pling; thus, the subject’s skin was exposed to moisture for a long period of time, which 
may have the potential to cause skin problems. 

According to this review, the following areas should be further explored and devel-
oped for a wider application of SMG for both prothesis control as well as functional mus-
cle assessment [62]. Firstly, it is necessary to develop a wearable ultrasound imaging sys-
tem that can be worn by the subject or installed together with their prothesis with dimen-
sions that are sufficiently compact. Recently, a wearable ultrasound data collection device 
for muscle functional assessment has already been demonstrated [61]. Therefore, research 
works can be focused on further reducing the dimension of the ultrasound system, the 
footprint of the transducer, as well as the power consumption of the system. Secondly, it 
is very important to solve the acoustic coupling between the skin and ultrasound trans-
ducer for practical application of SMG for prothesis control, as the subject may wear their 
prosthesis for a long time every day. The traditional ultrasound gel or gel pad, which is 
designed for a short period of use, may not be suitable for this application. Recently, it has 
been demonstrated that some biocompatible materials can serve as coupling medium for 
long-term ultrasound imaging of the human body [63]. Similar materials can be used for 
the future study of SMG prothesis control. Thirdly, all the research works published so 
far have used a computer to process the ultrasound signal, some in real time and some 
offline. While it has been demonstrated that real-time signal or image processing, which 
is required for real-time prosthesis control, is feasible, it requires a high-end computer. 
For practical use of SMG control for protheses, such signal or image processing must be 
integrated into a compact and low-power consuming microprocessor, which should be 
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ultimately installed into the prosthesis for daily activity. Thus, the improvement of effi-
ciency and speed of signal or image processing algorithm should be an important future 
direction. Last but not least, SMG provides information about different muscles and with 
multiple transducers arranged at various locations, we are able to collect images of mus-
cles involved in complicated hand actions. Thus, it is possible to provide more degrees of 
freedom for prosthesis control, using more advanced algorithms, such as various deep 
learning methods. 

5. Conclusions 
According to the review of SMG conducted in this paper, we conclude that SMG has 

great potential as a novel HMI method for controlling prostheses. It has been clearly 
demonstrated that SMG signals collected in A-mode, B-mode, and M-mode ultrasound 
imaging can be used for controlling prostheses effectively. Various machine learning 
methods have been successfully used to extract control signals from SMG to control pros-
theses with multiple degrees of freedom by classifying different hand gestures and finger 
movements. SMG for prosthesis control is becoming a more mature technique since it was 
first proposed in 2006. Since ultrasound can inherently detect both deep and superficial 
muscle movements as well as neighbouring muscle activities, SMG has great potential for 
controlling advanced prostheses with multiple degrees of freedom. With the further im-
provement of SMG systems by reducing the dimension and cost and increasing the accu-
racy and battery life, and solving the acoustic coupling issue, SMG has potential to become 
a popular HMI method in the future.      
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