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Abstract: This paper presents a critical review and comparison of the results of recently published
studies in the fields of human-machine interface and the use of sonomyography (SMG) for the con-
trol of upper limb prothesis. For this review paper, a combination of the keywords "Human Machine
Interface”, "Sonomyography", "Ultrasound", "Upper Limb Prosthesis”, "Artificial Intelligence" and
"Non-Invasive Sensors" was used to search for articles on Google Scholar and PubMed. Sixty-one
articles were found, of which 59 were used in this review. For a comparison of the different ultra-
sound modes, feature extraction methods, and machine learning algorithms, 16 articles were used.
It was found that various modes of ultrasound devices for prosthetic control, various machine learn-
ing algorithms for classifying different hand gestures, as well as various feature extraction methods
for increasing the accuracy of artificial intelligence used in their controlling systems are reviewed in
this article. The results of the review article show that ultrasound sensing has the potential to be
used as a viable human-machine interface in order to control bionic hands with multiple degrees of
freedom. Moreover, different hand gestures can be classified by different machine learning algo-
rithms trained with extracted features from collected data with an accuracy of around 95%.

Keywords: Controlling system; human machine interface; machine learning; non-invasive sensor;
prosthesis, sonomyography.

1. Introduction

Human machine interfaces (HMlIs) and wearable technologies have sparked a great
deal of interest in recent decades because they can be used for a wide range of applica-
tions, including immersive games [1], rehabilitation engineering [2-5], the automotive in-
dustry [6, 7], tele-operation in space [8], and virtual reality [9]. Furthermore, a HMI is
frequently employed in the development of various control systems in prostheses and
exoskeletons. In contrast to the many advancements in mechanical design, there are still
significant challenges in regard to HMIs at higher levels of the control hierarchy to over-
come. There is a specific type of interface that may be utilized to predict patients” voli-
tional movement from their residual muscle contractions or neuroactivities [10, 11]. How-
ever, detecting a user's motion intention fast enough to coordinate with devices is an im-
portant issue that requires further study [12]. A range of sensing modalities have been
used to regulate human-machine interfaces. Sensing technologies for HMIs have been de-
veloped in order to provide accurate and trustworthy information to assist in the under-
standing of movement intentions.

In order to control prostheses, the most often used approach is the use of biological
signals, which may be recorded by a variety of sensors and electrodes by interfacing with
either the peripheral nervous system (PNS) or the central nervous system (CNS) [13, 14].
This technique is classified as either non-invasive such as surface electromyography
(SEMG), electroencephalography (EEG), forcemyography (FMG), mechanomyography
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(MMG), magnetoencephalography (MEG), force sensitive resistance (FSR), and magneto-
micrometry (MM), with the last one being presently developed in MIT [15], or invasive
like implanted electromyography (iEMG), myoelectric implantable recording arrays
(MIRAsS), electroneurography (ENG), electrocorticography (ECoG), brain chip interfaces
(BCHIs), and magnetomicrometry (MM) [16].

Recently, there has been a concentrated attempt to non-invasively monitor user in-
tention and intuitively operate various degrees of freedom of cutting-edge prostheses.
This endeavour has been ongoing during the last decade. Non-invasive techniques in-
clude placing electrodes on the skin of the scalp or skeletal muscles, and applying con-
ductive gel to the electrodes and skin surface in order to improve the contact area and
conductivity between the electrodes and skin surface [17]. However, in order to collect
low-amplitude electrical impulses from skeletal muscles, bipolar electrodes are put on the
skeletal muscles in order to record muscular activities. But, there is a difficulty with the
non-invasive technique in that the data obtained by sensors may be substantially influ-
enced by a variety of circumstances, including electrode placement and movement, per-
spiration, and even noise caused by the electronic devices. Also, these methods have poor
spatial resolution due to the interferences between the signals generated by neighbouring
or overlapping muscles. Surface EMG is also unable to accurately record the activity of
deep muscles, and as a result, it is difficult to utilize this approach to control protheses
with multiple degrees of freedom [18]. Additionally, training users to control robots using
biological signals is difficult and requires time, which is another drawback of these inter-
face methods [19], as the signals are often not linearly related to the muscle outputs, such
as force or angle [18].

Biomaterials have been used for implants for a long time [20]. Implanted myoelectric
sensors, peripheral nerve implants, targeted muscle reinnervation, brain computer inter-
faces [21], and implanted stimulators [22] are examples of new technologies and methods
that have the potential to provide significant improvements and new opportunities in
neurological research. Invasive techniques include the placing of neural implants deep
into the brain, on the nerves or the skeletal muscles [16] and the recording of signals from
the cerebral cortex, part of the brain, or muscle activity. These implants are able to connect
with the brain, nerves, and muscles to collect electrical signals during nerve or muscle
activation. In addition, they give electrical impulses to neurons as well as transmit electri-
cal signals between neurons and computers, or between computers and neurons through
a chip [20, 23]. While invasive approaches may increase the stability of biological signals
as well as give more accurate information about the activities of the brain or muscles [24],
these novel interface methods raise a lot of worries regarding the safety and efficacy of
the operations which involve surgery or implanted devices [19]. Furthermore, these sig-
nals also have presence of noises, the same as non-invasive techniques.

Researchers have also made significant efforts in recent years to employ new tech-
nologies and propose novel techniques for controlling prosthetic hands, such as aug-
mented reality (AR) glasses [25], inductive tongue control systems (ITCSs) [26], voice com-
mands, and inertial measurement units (IMUs) [27, 28]. Some concepts have proved that
even the simplest techniques may have compelling results.

These techniques are often utilized for prostheses that only have a single degree of
freedom. Hence, the analysis or classification of biological signals necessitates the devel-
opment of intelligent characteristic algorithms that are capable of accurately classifying
the different signals gathered with the least number of errors [29]. Utilizing a variety of
machine learning methods, including deep learning, significant improvements in the pro-
cessing and classification of biological signals have been made in recent years. For exam-
ple, the use of machine learning has yielded good results and achieved high performance
accuracy across a wide variety of topics, including the rehabilitation and re-education of
physically handicapped human limbs [30]. In enhancing robot control, various algorithms
such as K nearest neighbours (KNN), Support Vector Machines (S§VMs), Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA), Artificial Neural Networks
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(ANNSs), Convolutional Neural Networks (CNNs), and Bayes networks can be used to
classify signals with an accuracy of approximately 90% [31].

Recently, it has been proven that replacing biological signals with ultrasound (US)
imaging that may provide real-time dynamic images of interior tissue movements linked
with physical and physiological activity enables better discernment between discrete mo-
tions or categorization of full finger flexion [32]. Muscle architectural changes can be de-
tected by putting an ultrasound probe on the residual limb and by classifying different
hand gestures based on muscle movement and activities for controlling a prosthesis [33].

Biosensing approaches and novel wearable devices, such as the sonomyography
(SMG) technique for the implementation of control for upper limb prostheses, as well as
machine learning algorithms for hand gesture recognition, are reviewed in this paper. The
objective of this paper is to provide information about SMG systems for controlling upper
limb prostheses based on the sensing of architectural changes in a subject’s muscles dur-
ing contraction. Section 2 describes in detail the history of the SMG approach for control-
ling prostheses throughout the years, different modes of US, feature extraction for increas-
ing the accuracy of classification, artificial intelligence (AI), and innovative decoding
methods for hand movement classification.

2. Methodology

Available articles on upper limb prostheses and different controlling and HMI meth-
ods especially controlling robots using SMG published between 2004 and 2022 were re-
viewed using Google Scholar and PubMed resources in English. For this review paper,

"o

the combination of the keywords "Human Machine Interface", "Sonomyography", "Ultra-
sound", "Upper Limb Prosthesis", "Artificial Intelligence" and "Non-Invasive Sensors" was
used to search for articles. Sixty-one articles were found, of which 59 were used in this
review, and the two discarded articles were found to not be relevant.

For the first time in 2006, the SMG method as a novel HMI technique was presented.
In the past 16 years, different groups have tried to study the potential of US to be utilized
in controlling upper limb prostheses. To review the different feature extraction methods
and machine learning algorithms to control a robotic hand using three distinct US modes
and evaluate the progression of accuracy and reliability of SMG as a HMI method, 16
articles published by different groups were utilized.

The original research publications as well as review articles published in English be-
tween the years 2004 and 2022 were considered for inclusion in this article. However, case
reports, editorials, and commentaries were among the types of publications that did not
meet the requirements to be reviewed in this article.

3. Sonomyography (SMG)

The use of ultrasonic technology in sensor implementation for identifying finger mo-
tions in prosthetic applications has been researched over the last ten years. A ground-
breaking study by Zheng et al. investigated whether ultrasound imaging of the forearm
might be used to control a powered prosthesis, and the term ‘sonomyography’ (SMG) was
coined by the group [34]. Ultrasound signals have recently garnered the interest of re-
searchers in the area of HMIs because they can collect information from both superficial
and deep muscles and so provide more comprehensive information than other techniques
[35]. Due to the great spatiotemporal resolution and specificity of ultrasound measure-
ments of muscle deformation, researchers have been able to infer fine volitional motor
activities such as finger motions and dexterous control of robotic hands [36, 37]. To retain
performance, a prosthesis that responds to the user's physiological signals must be fast to
respond. sEMG, EEG, and other intuitive interfaces are capable of detecting neuromuscu-
lar signals prior to the beginning of motion; therefore, they are predicted to appear before
the motion itself [38-40]. However, ultrasound imaging can detect skeletal muscle kine-
matic and kinetic characteristics [41], which indicate the continued creation of cross
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bridges during motor unit recruitment and prior to the generation of muscular force [39,
42], and these changes occur during sarcomere shortening, when muscle force exceeds
segment inertial forces, and before the beginning of joint motion [39]. It is important to
note that the changes in kinetic and kinematic ultrasonography properties of muscles oc-
cur prior to joint motion. As a result, prosthetic hands will be able to respond more quickly
in the present and future.

3.1. Ultrasound modes used in SMG

Real-time dynamic images of muscle activities can be provided by US imaging sys-
tems. There are five different types of ultrasound modes, and each of them generates dif-
ferent information, but only some of them are applicable for use in controlling artificial
robotic hands. The most popular ultrasound modes utilized in prosthesis control are A-
mode, B-mode, and M-mode.

1) A-mode SMG: One of the most basic types of US is A-mode, which offers data in
one dimension in the form of a graph in which the y axis indicates information about echo
amplitude and the x axis represents time, similar to the way that EMG signals indicate
muscle activity.

In 2008, Guo et al. [43] introduced a novel HMI method called one-dimensional son-
omyography (1D SMG) as a viable alternative to EMG for assessing the muscle activities
and controlling protheses. In this study, nine healthy volunteers were asked to perform
different types of hand and wrist movements. During these experiments, different data
were collected, such as joint angles, EMG signals of forearm muscles, and muscle activities
collected from A-mode Ultrasound. The results of their study showed that the 1D SMG
technique can be reliable and has the potential to be used for controlling one-degree-of-
freedom bionic hands.

A study by Guo et al. [44] was carried out in order to assess and compare the per-
formance of one-dimensional A-mode SMG and sEMG signals while following guided
patterns of wrist extension. They also looked at the possibility of using the 1D SMG to
control bionic hands. They invited 16 healthy right-handed participants to conduct a va-
riety of wrist motions with a variety of guided waveforms at a variety of movement
speeds for their experiment. During wrist motions, a 1D SMG transducer with a sSEMG
electrode was connected to the forearm of participants, making it possible for them to
record and capture the activity of the participants’ forearm muscle groups. Root mean
squares (RMS) were computed from the extensor carpi radialis after normalizing the sig-
nals obtained from the SMG and sEMG after they had been collected and normalized,
respectively. When comparing the abilities of SMG and sEMG to follow guiding wave-
form patterns, the paired t test was utilized to make the comparison. In addition, one-way
analysis of variance (ANOVA) was utilized to determine the differences in SMG perfor-
mance at different movement speeds. For sinusoidal, square, and triangular guiding
waveforms, the mean RMS tracking errors of SMG were found to be between 13.6% and
21.5%, whereas sEMG was found to be between 24% and 30.7%. The results of a paired t
experiment revealed that the RMS errors of SMG tracking were much lower than those of
sEMG tracking.

When Guo and her colleagues [45] successfully tested A-mode US on healthy partic-
ipants, they used the same procedure on an amputee (Figure 1A). Participants in the study
were instructed to extend their phantom wrist in order to control the prosthetic hand. Her
research found a correlation between muscle thickness and wrist extension angle with a
correlation coefficient of 0.94. Furthermore, the relationship between wrist angle and mus-
cle thickness was studied, and they calculated the mean ratio of angle deformation, which
was around 0.13%.

As a continuous part of their research, Chen et al. [46] investigated whether it is fea-
sible to control a prosthetic hand with one degree of freedom using muscle thickness var-
iations recorded by a one-degree-of-freedom SMG. With varying patterns and movement
speeds, nine right-handed healthy individuals were instructed to operate a prosthetic
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hand with their wrist motions and match the visual input with the target track. The open-
ing position of the prosthesis was controlled by SMG signals from the subject's extensor
carpi radialis muscle. A prosthesis opening position was measured using an electronic
goniometer in this investigation. The tracking error between the opening position of the
prosthetic hand and the target track was computed in order to evaluate the performance
of the controlling system. This study's findings indicated that the SMG control's mean
RMS tracking errors ranged from 9.6% to 19.4% while moving at various speeds.

In a study published in 2013, Guo et al. [47] further employed three different machine
learning approaches to estimate the angle of the wrist using a one-dimensional A-mode
ultrasonic transducer, and the results were promising. During the experiment, nine
healthy volunteers were instructed to execute wrist extension exercises at speeds of 15,
22.5, and 30 cycles per minute, while an A-mode ultrasound transducer recorded data
from the participants' forearm muscles (Figure 1B-C).

lectrogoniometer

1

Figure 1. A: The original image of the experimental setting, conducted by Guo and her colleagues
in 2010. A-mode SMG setting for collecting SMG and EMG signals from a residual forearm for con-
trolling a prosthesis to compare their performances, with the screen showing the A-mode ultra-
sound signal (lower half) and the guiding signal for muscle contraction (upper half). B: The place-
ment of the electro goniometer and sensors on healthy volunteers. C: Placing A-mode small trans-
ducer (with a diameter of 7 mm) in between sEMG electrodes to collect both EMG and SMG signals
from extensor carpi radialis muscle, simultaneously [47].

Because of the ability of US transducers to detect morphological changes in deep
muscles and tendons, Yang et al. [48] presented a US-driven HMI as a viable alternative
to sEMG for dexterous motion identification. Four A-mode piezoelectric ceramic trans-
ducers were built for their study. A custom-made armband was constructed to fix the four
transducers while capturing the activity of the flexor digitorum superficialis (FDS), flexor
digitorum profundus (FDP), flexor pollicis longus (FPL), extensor digitorum communis
(EDC), and extensor pollicis longus (EPL), which all play a critical part in finger move-
ments, including flexion and combined finger motions. Participants were asked to make
11 different hand gestures and hold such gestures for 3 to 5 seconds throughout the offline
trial. Due to the fact that the raw echo signals obtained from the A-mode ultrasound trans-
ducer are constantly distorted by scattering noises and attenuation in tissues, signal pro-
cessing was accomplished using temporal gain compensation (TGC), Gaussian filtering,
Hilbert transform, and log compression [49].

In 2020 Yang et al. [50] suggested subclass discriminant analysis (SDA) and principal
component analysis (PCA) to simultaneously predict wrist rotation (pronation/supina-
tion) and finger motions using wearable 1D SMG system. They carried out trials both of-
fline and online. In offline studies, eight tiny A-mode ultrasound transducers were
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mounted onto the hands of eight healthy volunteers, and the forearm muscles were cap-
tured using the transducers. In their study, the wrist rotations and eight kinds of finger
motions (rest, fist, index point, fine pinch, tripod grasp, key grip, peace sign, and hang
loose) were investigated. However, in the online test, a customized graphical user inter-
face (GUI) was employed to conduct a tracking task in order to validate the simultaneous
wrist and hand control. The results of this study showed that it was possible to classify
the finger gestures and wrist rotation simultaneously using the SDA machine learning
algorithm with an accuracy of around 99.89% and 95.2%, respectively.

In 2020, Engdahl et al. [51] proposed a unique wearable low-power SMG system for
controlling a prosthetic hand. The proposed SMG system was comprised of four single-
element transducers that were driven by a 7.4 V battery and operated at a constant fre-
quency. In their investigation, a portable ultrasound transducer was fixed to the hands of
five healthy participants in order to obtain muscle activity data. The data collected from
participants were used to train an Al model in order to classify different finger move-
ments. The results of this study showed that, using their proposed method, it was possible
to classify nine different finger movements with an accuracy of around 95%.

2) B-mode SMG: B-mode, or 2D mode, provides a cross-sectional image of tissues or
organs and is one of the most popular US modes used in a wide range of medical appli-
cations. In B-mode US, organs and tissues show up as points of different brightness in 2D
greyscale images made from the echoes. B-mode ultrasound can provide a real-time image
of muscles under contraction.

Zheng et al. [34] for the first time studied the potential of a portable B-mode ultra-
sound scanner for evaluation of the dimensional change of muscles and control of pros-
thetic hands. In their study six healthy volunteers and three amputee participants were
asked to perform wrist flexion and extension in order to capture the activities of forearm
muscles (Figure 2). The morphological deformation of forearm muscles during activities
was effectively identified and linearly linked with wrist angle. The mean ratio of wrist
angle to percentage of forearm muscle contraction was evaluated in normal participants.
When the three amputee participants engaged their residual forearm muscles, the SMG
signals from their residual forearms were likewise recognized and recorded satisfactorily.
They discovered that SMG may be used to regulate and monitor musculoskeletal disor-
ders as a consequence of their research.

1em| 0

3.2
cm

2003Mar15 14:37

Amputee
subject #1

Figure 2. Collecting SMG signals from an amputee subject using a B-mode SMG system [34]. (a) the
experimental setup; (b) a typical B-mode image of the residual limb.

a

A study by Shi et al. [52] analysed the possibility of real-time control of a prosthetic
hand with one degree of freedom utilizing muscle thickness fluctuations recorded by a
US probe. They investigated the feasibility of controlling a prosthetic hand utilizing the
extensor carpi radialis thickness deformation and found that a 1-DOF prosthetic hand can
be controlled by only one muscle of the forearm using the SMG technique.
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Shi et al. [53] employed B-mode ultrasound imaging to capture muscle activity dur-
ing a finger’s flexion and extension. Artificial intelligence was then utilized to determine
which fingers had been bent in various directions. All of the information was handled
offline. A total of 750 sets of US pictures were obtained, with images from each group
selected from forearm muscles during finger flexion and extension.

Ortenzi et al. [17] reported the use of ultrasound as a hand prosthesis HMI. Using a
portable ultrasonic scanner equipped with a linear transducer, US pictures were captured
and processed in the B-mode (2D imaging) in order to show the transverse section of the
forearm underneath the transducer as a greyscale image. In the testing, the US transducer
remained in position on the wrist thanks to an elastic band attached to a special plastic
cradle. Specifically, this was done in order to limit the amount of motion artefacts that
would arise. Specifically, the goal of this research was to evaluate the categorization of ten
various hand postures and grab forces.

Employing a computationally efficient approach to distinguish between compli-
cated hand movements, Akhlaghi and colleagues [54] presented a real-time controlling
system in relation to stroke rehabilitation, basic research into motor control biomechanics
and artificial robotic limb control to analyse the feasibility of using 2D-mode US as a ro-
bust muscle computer interface and evaluate the possible therapeutic applications. They
used a B-mode ultrasound transducer to evaluate the possibility of the classification of
complex hand gestures and dexterous finger movements. In their study, dynamic ultra-
sound pictures of six healthy volunteers” forearm muscles were provided and these data
were evaluated to map muscle activity based on the muscle deformation during diverse
hand movements.

In 2017, McIntosh et al. [55] looked at how suitable different forearm mounting posi-
tions (transverse, longitudinal, diagonal, wrist, and posterior) were for a wearable ultra-
sound device. This is because the location of a device has a big impact on how comfortable
itis and how well it works. In their study, in order to fix the B-mode US transducer on the
participants' arms, they designed a fixture manufactured by a 3D printer and strap. The
gloves also had flexible sensors sewn into them so that they could measure the precise
angle of each finger's flexion.

In a 2019 study, Akhlaghi et al. [56] evaluated the impact of employing a sparse set
of ultrasound scanlines in order to find the best location on the forearm for capturing the
maximal deformation of the primary forearm muscles during finger motions as well as
classifying different types of hand gestures and finger movements. Five subjects were
asked to make four different hand movements in order to see how the FDS, FDP, and FPL
muscles worked.

In 2021, Fernandes et al. [57] developed a wearable HMI that made use of 2D ultra-
sonic sensors and non-focused ultrasound. The ultrasound radiofrequency (RF) signals
were captured using a B-mode linear array ultrasound probe while five healthy volun-
teers performed individual finger flexions. To intentionally diminish the lateral resolution
of the ultrasound data, RF waves were averaged into fewer lateral columns. For full reso-
lution, the first and third quartiles of classification accuracy were found to be between
80% and 92%. Using the suggested feature extraction approach with discrete wavelet
transform, averaging into four RF signals might obtain a median classification accuracy
of 87%. According to the results of their study, the authors mentioned that low-resolution
images can have the same level of accuracy as high-resolution images.

3) M-mode SMG: An M-mode scan, also known as a motion mode scan, uses a series
of A-mode scan signals, normally by selecting one line in B-mode imaging, to depict tissue
motion over time. Using the M-mode, it is possible to estimate the velocity of individual
organ structures. In comparison to the B and A modes, the motion mode US scans at a
greater frequency and provides more comprehensive information about the tissue.

Li et al. [35] conducted a study to determine the possibility of using M-mode ultra-
sound to detect wrist and finger movements. They compared M-mode and B-mode ultra-
sonography performance in the classification of 13 wrist and finger movements. A total of
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13 movements were performed on eight healthy participants. Stable ultrasound data were
collected by placing an ultrasound probe on an arm with a custom-made transducer
holder. In order to cover the muscles of the forearm that are responsible for finger flexion
and extension, the transducer was positioned at about half way along the forearm'’s
length. During the same procedure, to ensure that the comparison was fair, the M-mode
and B-mode ultrasound signals were both collected from the forearm. As a consequence
of their investigation, M-mode SMG transducers were shown to be as accurate as B-mode
SMG signals in detecting wrist and finger movements as well as distinguishing between
diverse hand gestures, and they may be employed in HMIs.

3.2. Muscle location and probe fixation

It is vital to note that the position and location of the probe are critical in order to
have greater control over robotic hands. The main muscles which perform different types
of finger flexion are the FDS, FDP, and FPL muscles. However, to perform different wrist
movements the pronator teres, flexor carpi radialis, flexor carpi ulnaris, palmaris longus
and pronater quadratus are involved (Figure 3).

A: Superficial muscle group B: Deep muscle group

1. Pronator teres 1. Flexor digitorum profundus
2. Flexor carpi radialis 2. Flexor pollicis longus

3. Palmaris longus 3. Pronater quadratus

4. Flexor carpi ulnaris
5. Flexor digitorum superficialis

Figure 3. [llustration of the main forearm flexor muscles [58]

Hence, the placing of sensors to collect these muscle activities with better and more
reliable control over the robot is important. After collecting data from healthy volunteers,
Akhlaghi et al. [56] discovered that muscular distortion was significant in the 30-50% of
forearm length from the elbow and that this region is the best place to record muscle
movements for controlling robots. However, after testing various locations and fixing po-
sitions on a range of healthy individuals, McIntosh et al. [55] discovered that the wrist
region is the most effective place for classifying discrete motions. Furthermore, they ob-
served that the diagonal position is the most effective position for collecting data for iden-
tifying discrete gestures, whereas the diagonal and transverse positions are the most ef-
fective for predicting finger angles (Figure 4).
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il

Transverse Longitudinal Diagonal Wrist Poster:or

Figure 4. A comparison of the ultrasound probe's various hand mounting positions, along with the
related picture [55]

3.3. Feature extraction algotithm

To classify the finger movements and different hand gestures, it is important to use
different types of algorithms to extract features from signals or images captured by US
transducers because machine learning algorithms cannot process all the information. It is
worth mentioning that using a machine learning algorithm without extracting features
can classify different hand gestures, but the accuracy would be significantly less.

Shi et al. [53] captured the forearm muscle activities and controlled a hand prosthesis
with B-mode ultrasound, and Al was used to classify the finger movements. Before using
collected data to train their Al, a deformation field was constructed to extract features
from the data after registering the ultrasound image pair with the demons registration
algorithm for each group. Valerio Ortenzi [17] used the SMG technique as a valid HMI
method to control a robotic hand. In order to classify ten different hand gestures and grasp
forces, visual characteristics such as Regions of Interest gradients and Histogram of Ori-
ented Gradient (HOG) features were extracted from the collected images, and these fea-
tures were used to train three machine learning algorithms.

The activity pattern was generated using an image processing method developed by
Akhlaghi et al. [54]. MATLAB (MathWorks, Natick, MA, USA) was used to extract the
activity patterns for each kind of hand movement from the B-mode ultrasound picture
frames. Pixel-wise differences were determined and then averaged across a time span to
identify the spatial distribution of intensity variations that corresponded to the muscle
activity in each sequential frame of each series (raw activity pattern). A hand motion was
mapped to a single activity pattern using this method. On the basis of the global thresh-
olding level and decimal block size, the raw activity pattern was then transformed into a
binary image. This database was then used to train the Nearest Neighbour classification
algorithm.

MclIntosh et al. [55] collected data from the forearm muscles of subjects in order to
evaluate the effect of probe position on the control of a hand prosthesis. They utilized a B-
mode US transducer to capture the muscle activities of volunteers. Before using the col-
lected data to train their Al, the optical flow between the first frame of the new session
and the base frame of the training set was estimated. The flow was then averaged to gen-
erate a 2D translation and to reduce mistakes caused by US displacement, which might
result in differing anatomical characteristics. Following that, modification was made to
the current video in order to better match the training and sample characteristics.

In the study conducted by Yang et al. [48], before using the collected data to train the
machine learning model, the feature extraction process was carried out using segmenta-
tion and linear fitting to increase the accuracy of classification. Inspired by Castellini and
colleagues [59, 60], first-order spatial features were used to guide the feature extraction
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procedure. After selecting an evenly spaced grid of interest spots in the ultrasound pic-
ture, plane fitting was used to identify the spatial first-order features. Nevertheless, in
their technique, the plane fitting was turned into linear fitting [61]. It was because of this
change that the approach could be used for one-dimensional ultrasonic data.

Yang et al. [50] in 2020 classified and detected simultaneous wrist and finger move-
ments using SDA and PCA algorithms. To train their AI model, the characteristics of the
data collected from participants were extracted using the Tree Bagger function and the
Random Forest method was used to evaluate the significance of characteristics. After that,
two kinds of statistically significant characteristics were concatenated together for further
analysis.

Fernandes et al. [57] used the LDA method to classify finger movements using B-
mode SMG. To make the classification more reliable and accurate, the authors used two
different methodologies to extract characteristics from the data collected from volunteers.
First, using the discrete wavelet transform (DWT) approach, the average RF signals were
pre-processed prior to being used in the second method. In the next step, the mean ab-
sorption value (MAYV) of the detail coefficient at various levels, as determined by the DWT
approach, was determined. The second technique involves calculating a linear function
over segmented portions of the envelope along the depth using linear regression (LR). It
was decided to utilize the slopes and intercepts of the predicted linear function as spatial
characteristics in this study.

Li et al. [35] compared the productivity of B and M mode ultrasound transducers in
relation to controlling an artificial robotic hand. In their study, they collected data from
participants and then the features from signals collected from an M-mode probe were ex-
tracted using a linear fitting approach, while the features from pictures captured with a
B-mode transducer were extracted using a static ultrasound image method. These features
were used for training the SVM algorithm.

3.4. Artificial intelligence in classification

To have dexterous and precise control over prostheses, different deep learning and
machine learning algorithms have been developed to classify different hand gestures and
intended movements using SMG with high accuracy.

To control a prosthetic device in real time, Shi et al. [52] looked at the sum of absolute
differences (SAD), the two-dimensional logarithmic search (TDL), the cross-correlation
(CC) method, and algorithms like SAD and TDL in conjunction with streaming single-
instruction multiple-data extensions (SSE). They utilized a block-matching method to
measure the muscle deformation during contraction. To compare TDL with and without
SSE, the findings revealed good execution efficiency, with a mean correlation coefficient
of about 0.99, a mean standard root-mean-square error of less than 0.75, and a mean rela-
tive root-mean-square error of less than 8.0%. Tests have shown that a prosthetic hand can
be controlled by only one muscle position, which allows for proprioception of muscle ten-
sion. They mentioned that SMG is good at controlling prosthetic hands, allowing them to
open and close proportionally and quickly.

In order to capture muscle activity in a finger’s flexion and extension and evaluate
the potential of using an ultrasound device in HMI, Shi et al. [53] employed B-mode ul-
trasound imaging. The deformation field was used to extract features, which were then
input into the SVM classifier for the identification of finger movements. The experimental
results revealed that the overall mean recognition accuracy was around 94%, indicating
that this method has high accuracy and reliability. They assert that the suggested ap-
proach might be utilized in place of surface electromyography for determining which fin-
gers move in distinct ways.

Guo and her colleagues [47] conducted a study and asked nine healthy volunteers to
perform different wrist extensions; meanwhile, an A-mode portable probe was used to
capture the activities of the extensor carpi radialis muscle. An SVM, radial basis function
artificial neural network (RBFANN), and back propagation artificial neural network (BP
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ANN) were trained by data collected from extension exercises at 22.5 cycles per minute,
and the rest of the data were used for cross-validation. For the purpose of evaluating the
accuracy of the predictions made by the Al models utilized in their research, correlation
coefficients and relative root mean square error (RMSE) were calculated. The findings re-
vealed that the SVM method is the most accurate in predicting the wrist angle, with an
RMSE of 13% and a correlation coefficient of 0.975%.

In 2015, Ortenzi et al. [17] proposed an advanced HMI method using US devices. In
their study, data were collected from three healthy participants using B-mode ultrasound
in order to train a machine learning algorithm to classify different hand gestures. The first
dataset included US pictures of six hand postures and four functional grasps, each with
just one degree of grip force. The second dataset was used to evaluate the capacity to rec-
ognize various degrees of force for each kind of grip. In order to classify photos from the
five datasets, an LDA classifier, a Naive Bayes classifier, and a Decision Tree classifier
were used, among other methods. The LDA classifier trained with features extracted by
HOGs outperformed the others and achieved 80% success in categorizing 10 pos-
tures/grasps and 60% success in classifying functional grasps with varied degrees of grip
force in an experiment involving three intact human volunteers.

In order to classify complex hand gestures and dexterous finger movements,
Akhlaghi et al. [54] collected the forearm muscle activities in different hand gestures in
conjunction with wrist pronation. Using the activity patterns collected during the training
phase, a database of potential hand movements was created, and the nearest neighbour
classifier was used to categorize the various activity patterns using the database. The fea-
ture vectors in closest neighbour classification were created using two-dimensional activ-
ity pattern pictures, and the distance metric in a classification algorithm was determined
by the cross-correlation coefficient between two patterns. For each participant, a database
of activity patterns corresponding to various hand gestures was created during the train-
ing portion of the study. It was discovered that during the testing phase, unique activity
patterns were categorized using the database, with an average classification accuracy of
91%. A virtual hand could be controlled in real time using an image-based control system
that had an accuracy of 92% on average.

McIntosh et al. [55] collected data from participants’ forearm muscles in order to clas-
sify 10 different hand gestures using US. In order to identify the finger positions or esti-
mate finger angles, two machine learning algorithms were used. However, because ma-
chine learning algorithms cannot process all of the information, an optical flow was used
to classify discrete gestures, and a first-order surface was used to detect finger angle. SVM
and MLP algorithms were used to classify the different gestures and finger flexing in dif-
ferent joints. The results of this study showed that finger flexion and extension for per-
forming 10 different hand gestures were classified after using image processing and neu-
ral networks with an accuracy of above 98%. They also found out that the MLP algorithm
had a slight advantage over the SVM method in every location. After analyzing the data
collected from finger flexion and extension in different joints, they mentioned that it is
possible to classify the flexion and extension of each finger in different joints with an ac-
curacy of 97.4%.

In an experiment reported by Yang et al. [48], in order to classify and identify the
finger movements using wearable 1D SMG system, the muscle activity of participants
during the performance of 11 different hand gestures was collected. Then the data were
used to train LDA and SVM algorithms to classify hand movements. It was decided to use
a five-fold cross-validation method. All the information was gathered in one database,
which was then separated into five sections randomly and evenly distributed among
them. One of the five components was designated as a testing set, while the other four
were designated as training sets. The trial findings indicated that the accuracy of offline
recognition was up to 98.83% = 0.79%. The completion percentage of real-time motions
was 95.4% + 8.7%, and the time required to choose an online move was 0.243 s +0.127 s.
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In order to classify the finger movements, Akhlaghi et al. [56] used a B-mode ultra-
sound probe to capture the main forearm muscles” activities. In addition, three different
scanline reductions were used to limit the scanlines of the US. The data, after being col-
lected and limited, were used to train a Nearest Neighbour algorithm to classify different
finger movements and different hand gestures. Using the complete 128 scanline picture,
the classification accuracy was 94.6%, while using four equally spaced scanlines, the clas-
sification accuracy averaged at 94.5%. On the other hand, there was no significant differ-
ence in the ability to categorize items when the best scanlines were selected using fisher
criteria (FC) and mutual information (MI). They also suggested that instead of using the
whole imaging array, a select subset of ultrasonic scanlines may be employed, which
would not result in a reduction in classification accuracy for multiple degrees of freedom.
Wearable sonomyography muscle computer interfaces (MClIs) may also benefit from se-
lecting a restricted number of transducer parts to decrease computation, instrumentation,
and battery use.

To detect finger movements and wrist rotation simultaneously, Yang et al. [50] col-
lected data from muscle activities during different finger movements with wrist rotation.
Before using the collected data in the training of machine learning algorithms, different
techniques were used to extract the features. The simultaneous wrist rotation and finger
motions were predicted using an SDA technique and a PCA approach. The results indi-
cated that SDA is capable of accurately classifying both finger movements and wrist rota-
tions in the presence of dynamic wrist rotations. Using three subclasses to categorize wrist
rotations, it is possible to properly classify around 99% of finger movements and 93% of
wrist rotations. They also discovered that the wrist rotation angle is linearly related to the
first principal component (PC1) of the chosen ultrasonography characteristics, independ-
ent of the finger motions being used. With just two minutes of user training, it was possi-
ble to achieve wrist tracking precision (R2) of 0.954 and finger gesture categorization ac-
curacy (96.5%) with the PC1.

Fernandes et al. [57] developed a wearable SMG technology to classify and categorize
finger flexion and extension. In their study, 2D-mode US was used to collect five subjects’
muscle activities during finger movements. Before the LDA method was employed to cat-
egorize the finger motions, a feature selection process was carried out. The number of
spatial and temporal characteristics that were extracted was reduced as a result of this
procedure. This aids in the differentiation of various forms of finger flexion. An accuracy
of 80-92% (full resolution) was achieved in the first and third quarters of 10 separate arm
trials. Using the suggested feature extraction approach in conjunction with discrete wave-
let transform, they demonstrated that classification accuracy may be improved by as much
as 87% by averaging four radio frequency signals. According to the findings of their re-
search, reduced resolutions may achieve high accuracy levels that are comparable to those
of full resolution. Furthermore, they carried out pilot research employing a multichannel
single-element ultrasound system using flexible wearable ultrasonic sensors (WUSs) that
utilize non-focused ultrasound. Three WUSs were connected to one subject's forearm, and
ultrasonic RF signals were recorded while the person flexed his or her fingers individu-
ally. Using WUS sensors, the researchers discovered that they could accurately categorize
finger movement with an accuracy of about 98%, with F1 scores ranging between 95% and
98%.

Li et al. [35] collected the muscle activities of participants using M-mode ultrasound.
The data acquired were utilized to train SVM and BP ANNs, which were then used to
categorize the movements of the wrist and hands. The SVM classifier had an average clas-
sification accuracy (CA) of 98.83% for M-mode and 98.77% for B-mode across the eight
subjects” 13 movements. Regarding the BP classifier, the average CA of M-mode and B-
mode was around 98.7% * 0.99% and 98.76% * 0.91%, respectively, according to the re-
sults. CAs did not vary between M-mode and B-mode (p > 0.05). Aside from that, M-mode
seems to have potential dominance in feature analysis. Their findings indicate that M-
mode ultrasonography may be used to detect wrist and finger motions in addition to other
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applications. The results of their study also show that M-mode ultrasound can be used in
HMIL

Table 1 presents a summary of the different machine learning algorithms, feature
extraction methods, and modes of ultrasound devices used to classify different types of
finger movements and hand gestures since 2006.

Table 1. Summary of the methods and results of the SMG controlling system used in the past 16

years
Authors  Year Ultrasound Feature extrac- Machine Subjects Location Targeted Probe Fixation Results
Mode tion method  learning muscles mounting methods
algorithm position
Zheng et 2006 B-Mode N/A N/A 6 healthy Forearm ECR Posterior N/A The normal participants had a ratio of
al. [34] and 3 am- 7.2+3.7% between wrist angle and
putee vol- forearm muscle percentage distortion.
unteers This ratio exhibited an intraclass corre-
lation coefficient (ICC) of 0.868 be-
tween the three times it was tested.
Guoetal. 2008  A-Mode N/A N/A  9healthy Forearm ECR NA Custom- A mean correlation value of r = 0.91
[43] partici- maid holder for nine individuals was found based
pants on the findings of a linear regression
study linking muscle deformation to
wrist extension angle. A correlation
between wrist angle and muscle distor-
tion was also investigated. The total
mean ratio of deformation to angle was
0.130%/°.
Guoetal. 2009  A-Mode N/A N/A 16 healthy Forearm ECR NA  Custom-de- The root mean square tracking errors
[44] right- signed  between SMG and EMG were meas-
handed holder  ured, and the results showed that the
partici- SMG had a lower error in comparison
pants with EMG. The mean RMS tracking
error of SMG and EMG under three
different waveform patterns ranged be-
tween 17-18.9 and 24.7-30.3 respec-
tively.
Chenetal. 2010  A-Mode N/A N/A 9right-  Forearm ECR NA  Custom-de- SMG control's mean RMS tracking er-
[46] handed signed  rors were 12.8% & 3.2% and 14.8% &
healthy in- holder 4.6% for sinusoid and square tracks,
dividuals respectively, at various movement
speeds.
Shietal. 2010 B-Mode N/A N/A 7 healthy Forearm ECR NA Custom-  There was excellent execution effi-
[52] partici- made ciency for the TDL algorithm, with
pants bracket  and without streaming single-instruc-

tion multiple-data extensions, with a
mean correlation coefficient of about
0.99. In this technique, the mean stand-
ard root-mean-square error was less
than 0.75%, and the mean relative
root-mean-square was less than 8.0%
when compared to the cross-correla-
tion algorithm baseline.

Shietal. 2012 B-Mode Deformation ~ SVM 6 healthy Forearm ECU, EDM, Posterior Custom- A mean F value of 0.94+0.02 indicates

[53] field generated volunteers ED, and maid holder a high degree of accuracy and depend-
by the demons EPL ability for the proposed approach,
algorithm which classifies finger flexion move-

ments with an average accuracy of
roughly 94%, with the best accuracy
for the thumb (97%) and the lowest ac-
curacy for the ring finger (92%).

Guoetal. 2013  A-Mode N/A SVM, 9healthy Forearm ECR NA N/A The SVM algorithm, with a CC of

[47] RBFANN volunteers around 0.98 and a RMSE of around
and BP 13%, had excellent potential in the pre-

ANN diction of wrist angle in comparison

with the RBFANN and BP ANN.
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Ortenzi et 2015 B-Mode  Regions of In- LDA, Na- 3 able bod- Forearm  Extrinsic Transverse Custom- The LDA classifier had the highest ac-

al. [17] terest gradients ive Bayes ied volun- forearm made plastic curacy and could categorize 10 pos-
and HOG  classifier  teers muscles cradle tures/grasps with 80% success, and

and Deci- could classify the functional grasps

sion Trees with varied degrees of grip force with

an accuracy of 60%.
Akhlaghi 2015 B-Mode Customized Nearest 6 healthy Forearm FDS, FDP Transverse Custom de- In offline classification, 15 different
et al. [54] image pro-  Neighbor volunteers and FPL sign cuff hand motions with an accuracy of
cessing around 91.2% were categorized. How-
ever, in real-time control of a virtual
prosthetic hand, the accuracy of classi-
fication was 92%.

Mclintosh 2017 B-Mode Optical flow MLP and 2 healthy Wristand FCR, FDS, Trans- 3D printed Both machine learning algorithms

et al. [55] SVM  volunteers Forearm FPL, FDP verse, lon-  fixture could classify 10 discrete hand ges-
and FCU gitudinal, tures with an accuracy of more than
diagonal, 98%. In contrast to SVM, MLP had a
wrist and minor advantage.
posterior

Yang etal. 2018  A-Mode  Segmentation LDAand Eight  Forearm FDP, FPL, NA custom-  Finger movements were classified with

[48] and linear fit-  SVM healthy EDC, EPL made arm- an accuracy of around 98%.
ting partici- and flexor band
pants digitorum
sublimis
Akhlaghi 2019 B-Mode N/A Nearest 5 able bod- Forearm FDS, FDP Transverse Custom de- The 5 different hand gestures were cat-
etal. [56] Neighbor ied sub- and FPL sign cuff  egorized with an accuracy of 94.6%
jects with 128 scanlines and 94.5% with 4

scanlines that were evenly spaced.

Yangetal. 2020 A-Mode Random Forest SDA and 8 healthy Forearm FCU, FCR, NA  customized The finger motions and wrist rotation

[50] technique with  PCA  volunteers FDP, FDS, armband  simultaneously using the SDA ma-
the help of the FPL, APL, chine learning algorithm were classi-

Tree Bagger EPL, EPB, fied with an accuracy of around

function ECU, ECR 99.89% and 95.2%, respectively.

and ECD
Engdahl et 2020  A-Mode N/A N/A  5healthy Forearm NA NA Custom- 9 different finger movements with an
al. [51] partici- made wear- accuracy of around 95% were classi-
pants able band fied.

Fernandes 2021 B-Mode DWTandLR LDA  5healthy Forearm NA Wrist N/A Classification accuracy ranged from
et al. [57] partici- 80% to 92% at full resolution. How-
pants ever, at low resolution, the accuracy

improved to an average of 87% after

using the proposed feature extraction
method with discrete wavelet trans-
form, which was considered good
enough for classification purposes.

Lietal. 2022 M-Modeand Linearfitting SVMand 8healthy Forearm FCR, FDS, Transverse custom- The accuracy of the SVM classifier to

[35] B-Mode approach  BP ANN  partici- FPL, FDP, made trans- classify 13 motions was 98.83+1.03%
pants ED, EPL ducer holder and 98.77+1.02% for M-mode and B-
and ECU mode, respectively. However, the ac-

curacy of the BP ANN classifier was
98.70+0.99% for M-mode and
98.76+0.91% for B-mode.

The following abbreviations are used in the table: Not available (N/A); histogram of Oriented gra-
dients (HOG); discrete wavelet transform (DWT); linear regression (LR); support vector machine
(SVM); radial basis function artificial neural network (RBFANN); back propagation artificial neural
network (BP ANN); linear discriminant analysis (LDA); multilayer perceptron (MLP); subclass dis-
criminant analysis (SDA); principal component analysis (PCA); correlation coefficients (CC); root
mean square error (RMSE); root mean square (RMS); sonomyography (SMG); electromyography
(EMG); two-dimensional logarithmic (TDL); extensor carpi radialis (ECR); extensor carpi ulnaris
(ECU); extensor digiti minimi (EDM); extensor digitorum (ED); extensor pollicis longus (EPL); flexor
digitorum superficialis (FDS); flexor digitorum Profundus (FDP); flexor pollicis longus (FPL); ex-
tensor digitorum communis (EDC); extensor pollicis longus (EPL); abductor pollicis longus (APL);
extensor pollicis brevis (EPB).
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4. Discussion

This In this paper, we conducted a review of the research works using sonomyogra-
phy (SMG,) for controlling upper limb prostheses during the last 16 years, since it was first
proposed in 2006 [32]. In this technique, different hand gestures can be classified based on
the images or signals captured by the US probe to control the prosthesis with multiple
degrees of freedom. Because ultrasound imaging can provide information about both su-
perficial and deep muscle activities, this HMI method has a lot of potentials for controlling
prostheses with more degrees of freedom. To classify hand gestures for controlling robots,
various machine learning algorithms and deep learning methods are needed. However,
machine learning algorithms are not able to process all the information collected from US
transducers. Hence, different transfer learning models have been proposed to extract the
characteristics of the collected data and use these features to train the model. The results
of this review showed that the most popular algorithms used to categorize the different
hand gestures with an accuracy of about 95% from the data collected by US devices are
SVM, RBFANN, BP ANN, LDA, K-NN, MLP, SDA, and PCA.

To control a prosthesis using SMG, three different US imaging modes are utilized,
namely A-mode, B-mode, and M-mode. The result of this review paper shows that the
accuracy of the SMG method with three modes can be good enough to be used for con-
trolling prostheses. The A-mode US system uses very tiny transducers; thus, it can make
the system very compact and US transducers can be integrated with EMG electrodes.
However, because the detailed activities of neighbouring muscles can be detected in B-
mode ultrasound, the reliability of using this US mode may be higher than others. More-
over, the precision can be increased by utilizing different machine learning algorithms in
combination with distinct feature extraction methods.

Despite the fact that recent studies have demonstrated the feasibility of using US
transducers to control robotic hands, this method has some limitations. Because this
method can detect residual muscle activity, it is only appropriate for prostheses in people
with a transradial hand amputation level or lower. Moreover, current ultrasound imaging
systems are bulky and power-hungry, which makes the prosthesis large and heavy. Fur-
thermore, ultrasound gels or gel pads were used in the published studies for acoustic cou-
pling; thus, the subject’s skin was exposed to moisture for a long period of time, which
may have the potential to cause skin problems.

According to this review, the following areas should be further explored and devel-
oped for a wider application of SMG for both prothesis control as well as functional mus-
cle assessment [62]. Firstly, it is necessary to develop a wearable ultrasound imaging sys-
tem that can be worn by the subject or installed together with their prothesis with dimen-
sions that are sufficiently compact. Recently, a wearable ultrasound data collection device
for muscle functional assessment has already been demonstrated [61]. Therefore, research
works can be focused on further reducing the dimension of the ultrasound system, the
footprint of the transducer, as well as the power consumption of the system. Secondly, it
is very important to solve the acoustic coupling between the skin and ultrasound trans-
ducer for practical application of SMG for prothesis control, as the subject may wear their
prosthesis for a long time every day. The traditional ultrasound gel or gel pad, which is
designed for a short period of use, may not be suitable for this application. Recently, it has
been demonstrated that some biocompatible materials can serve as coupling medium for
long-term ultrasound imaging of the human body [63]. Similar materials can be used for
the future study of SMG prothesis control. Thirdly, all the research works published so
far have used a computer to process the ultrasound signal, some in real time and some
offline. While it has been demonstrated that real-time signal or image processing, which
is required for real-time prosthesis control, is feasible, it requires a high-end computer.
For practical use of SMG control for protheses, such signal or image processing must be
integrated into a compact and low-power consuming microprocessor, which should be
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ultimately installed into the prosthesis for daily activity. Thus, the improvement of effi-
ciency and speed of signal or image processing algorithm should be an important future
direction. Last but not least, SMG provides information about different muscles and with
multiple transducers arranged at various locations, we are able to collect images of mus-
cles involved in complicated hand actions. Thus, it is possible to provide more degrees of
freedom for prosthesis control, using more advanced algorithms, such as various deep
learning methods.

5. Conclusions

According to the review of SMG conducted in this paper, we conclude that SMG has
great potential as a novel HMI method for controlling prostheses. It has been clearly
demonstrated that SMG signals collected in A-mode, B-mode, and M-mode ultrasound
imaging can be used for controlling prostheses effectively. Various machine learning
methods have been successfully used to extract control signals from SMG to control pros-
theses with multiple degrees of freedom by classifying different hand gestures and finger
movements. SMG for prosthesis control is becoming a more mature technique since it was
first proposed in 2006. Since ultrasound can inherently detect both deep and superficial
muscle movements as well as neighbouring muscle activities, SMG has great potential for
controlling advanced prostheses with multiple degrees of freedom. With the further im-
provement of SMG systems by reducing the dimension and cost and increasing the accu-
racy and battery life, and solving the acoustic coupling issue, SMG has potential to become
a popular HMI method in the future.
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