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Abstract: The role of fractional calculus in circuit systems has received increased attention in recent 1

years. In order to evaluate the effectiveness of time-domain calculation methods in the analysis of 2

fractional-order piecewise smooth circuit systems, an experimental prototype is developed and the 3

effects of three typical calculation methods in different test scenarios are compared and studied in 4

this paper. It is proved that Oustaloup’s rational approximation method usually overestimates the 5

peak-to-peak current and brings in pulse-voltage phenomenon in piecewise smooth test scenarios, 6

while the results of two iterative recurrence-form numerical methods are in good agreement with the 7

experimental results. The study results are dedicated to provide a reference for efficiently deploying 8

calculation methods in fractional-order piecewise smooth circuit systems. Some quantitative analysis 9

results are concluded in this paper. 10

Keywords: Fractional calculus; piece-wise smooth circuit systems; calculation methods 11

0. Introduction 12

In recent decades, the concepts of fractional calculus and the related techniques have 13

been gaining momentum in circuit system fields [1–3]. It has been confirmed that, exploring 14

the potential fractional-order characteristics of electronic components is helpful for both 15

the condition monitoring of components and the reliability design of circuit systems [7– 16

11]. An increasing body of evidence suggests that fractional-order characteristic is widely 17

distributed in electronic components [4–6], such as ultracapacitors (UCs), lithium batteries, 18

and non-solid electrolytic capacitors. Moreover, introducing fractional-order elements (or 19

constant phase elements, CPEs) to traditional circuit and control systems can enhance the 20

design flexibility [12–14]. 21

In order to better describe the characteristics of circuit systems with fractional-order 22

components, it is of necessity to develop a set of reliable calculation and analysis methods. 23

Basically, the lumped parameter model with fractional-order differential equations is a 24

well-established approach to quantify the characteristics of fractional-order circuit systems, 25

and a number of calculation and analysis works have been proposed for such systems, 26

definition-based methods [15], rational approximation methods [16–18], and numerical 27

methods [19–21], to name but a few. The methods listed above have been applied to the 28

modeling and analysis of a wide variety of fractional-order circuit systems [22–24]. 29

However, to the best of the authors’ knowledge, most existing calculation and analysis 30

methods are applied only to continuous fractional-order circuit systems, but rarely to 31

piecewise smooth ones [25–27]. In practice, the piecewise-smooth characteristic is common 32

in circuit systems, especially for those with semiconductor switching devices, and such 33

characteristic may bring in effects on the accuracy of numerical methods. Therefore, it is 34

worthwhile to compare and evaluate the effectiveness of existing methods in analyzing 35

piecewise smooth fractional-order systems. 36
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In allusion to state-of-the-art, this work tries to unfold the applicability of three typical 37

calculation methods for piecewise smooth fractional-order circuit systems. The rest of 38

the work is organized as follows: test scenarios are established in Section 1, in which a 39

non-solid aluminum electrolytic capacitor is employed in the test bench, since this kind of 40

components have been confirmed to have frequency-related fractional-order characteristics 41

in a wide frequency band [6]. Section III deduces the solutions of the test scenarios by 42

different approaches. Section IV compares and discusses the results of different approaches, 43

while section V concludes the work. 44

1. Test Bench Settings and Mathematical Model 45

1.1. Test Bench Settings 46

In a previous work, it has been confirm that, the electrode surface in the capacitor 47

has an infinite self-similar structure, and the particle distribution law in it has a long-tail 48

effect under the electric field, which is suitable to be described by the fractional equivalent 49

impedance model [6]. The internal structure and fractional-order equivalent impedance 50

circuit in Figure 1:

Figure 1. Internal structure and fractional-order equivalent impedance circuit model of non-solid
aluminum electrolytic capacitors.

51

In the above figure, the symbol C is the nominal capacitance of the capacitor, while 52

the symbol α is an estimated fractional order of 0 to 1, and the symbol RΩ is the equivalent 53

series resistance of the capacitor. Then, a test bench is established in this section, which 54

contains such a capacitor. The schematic of this test bench is displayed is depicted in 55

Figure 2. 56

Figure 2. Schematic of the test bench.
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The design of the test bench refers to the previous work [28], in which a type GPS- 57

3303C 3-channel isolated dc power supply is adopted to provide power, and an oscilloscope 58

is employed to record the data. In the platform, a type STP80NF70 power MOSFET ST is 59

adopted, the gate-source voltage of which is controlled by a driving circuit. As a result, 60

the test bench will work in charging and discharging cycle working mode, so the circuit 61

can be deem as a piecewise smooth circuit system. On the right side of the red dash line 62

in Figure 3, the resistor R1 = 5Ω provides a discharging path for the capacitor, while 63

R2 = 10Ω is mainly used as the current sensing and limiting resistor. The circuit in the box 64

with red background is the fractional-order equivalent circuit of a 10µF Rubycon PX series 65

non-solid aluminum electrolytic capacitor. The voltage and the current of the capacitor 66

are vcap(t) and icap(t), respectively, and two probes of the oscillascope are used to observe 67

them. In addition, the voltage of the equivalent CPE is assumed to be vc(t). A glimpse of 68

the experimental scene is as Figure 3.

Figure 3. A glimpse of the experimental scene.
69

1.2. Mathematical Model 70

The test platform can be regarded as a charge-discharge circuit for the non-solid 71

aluminum electrolytic capacitor. One can find that, there is only one energy-storage 72

component in the platform, so the interferences and errors are minimized compared with 73

the schemes with rational approximation methods or those with magnetic elements. In 74

the following parts, the test platform will be operated in two test scenarios to verify the 75

applicability of different calculation and analysis methods. 76

According to the fractional-order equivalent impedance circuit of the capacitor in 77

Figure 1, the current icap(t) and the voltage vcap(t) of the capacitor satisfy the following 78

relationships, 79
icap(t) = C · dαvc(t)

dtα

vcap(t) = vc(t) + RΩ · C · dαvc(t)
dtα

,

(1)

It is noteworthy that the nominal capacitance C is 10µF in this work, while RΩ and 80

the fractional order α relate to the fractional-order characteristics of the capacitor can be 81

identified by using the method proposed in a previous work [6], and in this work, their 82

values are 0.8852, 1.2629Ω, respectively. 83

In order to validate different methods, we established two groups of test scenarios, 84

the basic and the advanced. In basic test group, we consider two operating modes, the 85

first one is sinusoidal mode, where the power supply is a single phase AC power supply 86

with a pre-determined frequency. The second one is step mode, where a DC power supply 87
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is employed as the source and the power MOSFET ST is turned on at time t = 0 with a 88

constant forward voltage drop Vds(on) = 0.7V. 89

• The state of the sinusoidal mode can be governed by: 90

vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

= vin(t)− Vds(on), (2)

where vin(t) = K · sin(ωt) is a sinusoidal function. K is the predetermined magnitude 91

of the signal, ω = 2π fs is the angular frequency, and fs is the frequency of the 92

sinusoidal function. 93

• The state of the step mode can be governed by: 94

vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

= Vin − Vds(on), (3)

in which Vin is a predetermined constant value. 95

In the first group of test scenarios, the text bench works under continuous mode or 96

step response mode. This group are used to assess the feasibility of different calculation 97

methods. 98

In the second group of test scenario, the power MOSFET ST is controlled by a periodic 99

square waveform with a duty ratio D = 0.5 and a variable frequency fs from 100Hz to 1kHz. 100

The performances of the circuit under test in one steady-state cycle Ts can be governed by: 101

• Charge performance in t ∈ [kTs, kTs + DTs] is: 102

vcap(t) = Vin − Vds(on) − R2 · icap(t), (4)

where k is the k-th switching cycle, Ts is the switching period, and 103

Vin − Vds(on) = vcap(t) + R2 · icap(t)

= vc(t) + (R2 + RΩ) · C · dαvc(t)
dtα

. (5)

• Discharge performance in t ∈ [kTs + DTs, (k + 1)Ts] is: 104

vcap(t) = −(R1 + R2) · icap(t), (6)

and

0 = vcap(t) + (R1 + R2) · icap(t)

= vc(t) + (R1 + R2 + RΩ) · C · dαvc(t)
dtα

. (7)

In the second group of test scenarios, the capacitor of the test bench will be charged 105

and discharged cycle by cycle, thus the circuit under test is a typical piecewise smooth 106

circuit system. 107

One can find that, to reveal the time-domain performances of these two scenarios, the 108

voltage vC should be calculated. However, this voltage is an equivalent quantity of the CPE, 109

thus one cannot probe it directly and has to solve fractional-order differential equations 2 110

to 7, which are all fractional-order differential equations with constant coefficients. Rewrite 111

these equations to the following generalized form: 112

a1i ·
dαx
dtα

+ a0i · x = ui, (8)
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where i = 1, 2, 3, 4, x = vC is the only state variable of the circuit, and the coefficients 113

are: a11 = a12 = a13 = (R2 + RΩ)C, a14 = (R1 + R2 + RΩ)C, a01 = a02 = a03 = a04 = 1, 114

u1 = K · sin(ωt)− Vds(on), u2 = u3 = Vin − Vds(on), and u4 = 0. 115

All the coefficients are predetermined in their own time intervals. Meanwhile, the 116

initial conditions of Equation 8 are continuous in their own domains of definition, hence 117

according to theorem 3.2 of literature [29], fractional-order differential Equation 8 have 118

uniqueness solutions. At this time, the initial values problem of fractional-order differential 119

equations arises. 120

2. Computation Approaches 121

In this section, the principles of some related techniques are introduced first. Then 122

three different approaches will be applied to calculate equations 2 to 7, and the results will 123

be adopted for validation and comparison. The first calculation method is a numerical 124

calculation method, that is the fractional Adams-Bashforth-Moulton typed method (F- 125

ABM) [21]. The second calculation method is based on Grünwald-Letnikov (G-L) definition 126

[15]. To obtain solutions by using the first and the second methods, the stroboscopic map 127

technique should be applied [30]. The third calculation method is Oustaloup’s rational 128

approximation method [16], which will be conducted by using the state-space averaging 129

(SSA) technique [31]. 130

2.1. Preliminaries: Principles of Some Related Techniques 131

2.1.1. Stroboscopic map technique 132

One can always apply most calculation approaches to calculate fractional-order differ- 133

ential equations in continuous cases directly. But in discontinuous cases, or the piecewise 134

smooth case discussed in this work, one may have to face a different situation. For example, 135

the sign function of f (x) = sign(x), which has the value of 1 for all x > 0 and the value of 136

−1 for all x < 0.

Figure 4. A graph of typical sign(x) function.
137

The sign function of f (x) = sign(x) appears in a variety of piecewise smooth fractional 138

systems, which creates the initial value problem at the discontinuous point x = 0, and one 139

needs physically interpret initial conditions at this point. 140

In the step mode of the basic test scenario, the proposed test bench also experiences a 141

similar situation like the sign function. In addition, in the advanced test scenario, the the 142

capacitor experiences a recurrence of charging and discharging behaviors in each switching 143

cycle, thus the test bench will be in continuous state switching. Along with the on- and off 144

operations of the power MOSFET ST , there are a set of discontinuous points. Accordingly, 145

a technique called stroboscopic map should be employed in both analytical and numerical 146

calculations. This technique has been widely adopted in the dynamic analysis of piecewise- 147

smooth systems and switching power converters. By this technique, the dynamic behavior 148

of the test circuit at each switching state Sn will be collected in one switching cycle, that 149
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is, the solution xn of the previous switching state at time tn will be employed as the initial 150

value of the next switching state, thus a cycle-by-cycle calculation can be carried out. The 151

principle of is stroboscopic map technique depicted in Figure 5.

Figure 5. Principle of stroboscopic map technique.
152

2.1.2. State-space averaging (SSA) technique 153

In practice, some methods are difficult to be directly used in the advanced test scenario 154

of this work. In allusion to this, the SSA technique can be exploited, by which the steady- 155

state characteristic analysis can be achieved. By this technology, the average value of vc(t) 156

in one switching cycle can be expressed by: 157

⟨vc⟩Ts
=

1
Ts

∫ t0+Ts

t0

vc(t)dt (9)

Accordingly, in steady-state, when the low-frequency hypothesis and the small ripple 158

hypothesis are satisfied, the test platform in discontinuous case can be governed by the 159

following SSA model: 160

(R2 + RΩ) · C ·
dα⟨vc⟩Ts

dtα
+ ⟨vc⟩Ts

+
[
1 − d(t)

]
· R1 · C ·

dα⟨vc⟩Ts

dtα
= d(t)

[
Vin − Vds(on)

]
, (10)

in which the terms ⟨vc⟩Ts
and d(t) can be decomposed into DC terms Vc and D, AC terms 161

v̂c and d̂ like follows: 162
⟨vc⟩Ts

= Vc + v̂c

d(t) = D + d̂
(11)

2.2. Solutions of the Test Bench 163

2.2.1. Solutions obtained by G-L definition 164

According to G-L definition, the fractional-order derivative of state variable x(t) can 165

be written in the following discrete form [15]: 166

dαx(t)
dtα

≈ 1
hα

t/h

∑
j=0

pα
j xt−jh

=
1
hα

[
xt +

t/h

∑
j=1

pα
j xt−jh

]
, (12)

where h is the predetermined discrete step size and pα
j can be deduced by 167
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pα
0 = 1, pα

j =
(

1 − 1 + α

j

)
pα

j−1. (13)

Introducing Equation 13 into Equation 12 leads to the following recurrence form 168

solution: 169

xt =
1

a1i + hαa0i

[
hαui,t −

t/h

∑
j=1

pα
j xt−jh

]
. (14)

Then one can obtain G-L based solutions of Equation 8 by point-by-point iteration 170

of Equation 14. In addition, the numerical solutions of charging and discharging state in 171

the advanced test scenario will be collected in each switching cycle by the aforementioned 172

stroboscopic map technique. 173

2.2.2. Solutions obtained by F-ABM method 174

In case of −1 ≤ α ≤ 1, according to the definition of F-ABM method [19], the initial 175

value problem of the fractional-order system of Equation 8 can be determined by: 176

x(n + 1) = x(0) +
hα

Γ(2 + α)
f
[
tn+1, xP(n + 1)

]

+
hα

Γ(2 + α)

n

∑
j=0

Aj,n+1 f
[
tj, x(j)

]
, (15)

where the term n is any integer and Aj,n+1 is 177

Aj,n+1 =


= nα+1 − (n − α)(n + 1)α, j = 0
= (n − j + 2)α+1 + (n − j)α+1

−2(n − j + 1)α+1, 1 ≤ j ≤ n
= 1, j = n + 1

(16)

The predictor xP(n + 1) in Equation 15 is 178

xP(n + 1) = x0 +
1

Γ(α)

n

∑
j=0

Bj,n+1 f
[
tj, x(j)

]
, (17)

in which the term Bj,n+1 is 179

Bj,n+1 =
hα

α

[
(n + 1 − j)α − (n − j)α

]
. (18)

Then the numerical solutions of Equation 8 can be obtained by Equation 15. Addi- 180

tionally, the numerical solutions of charging and discharging state in the advanced test 181

scenario will be collected in each switching cycle by the aforementioned stroboscopic map 182

technique. 183

2.2.3. Solutions obtained by Oustaloup’s rational approximation method 184

By Oustaloup’s rational approximation method, a continuous filter can be designed 185

in frequency domain to achieve fractional-order calculus operations approximately. More 186

specifically, by Laplace transform, the fractional-order operation dα

dtα can be transformed to 187

an s-domain term sα, then the frequency domain characteristics of sα can be approximated 188

in the pre-defined frequency interval [ωL, ωH ] by an s-domain rational fraction function 189

dα

dtα
⇒ K

n

∏
i=−n

s + zi
s + pi

, (19)
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where the gain K, zeros zi, and poles pi are 190
K = (0.9 · ωH)

α

zi = −ωL · µ((i+N+0.5−0.5·α)/(2·N+1))

pi = −ωL · µ((k+N+0.5+0.5·α)/(2·N+1)),

(20)

respectively. The coefficient µ is 191

µ =
ωH
ωL

. (21)

Then the numerical solutions of Equation 8 can be obtained by encapsulating Equation 192

19 to a module in MATLAB/Simulink, like those introduced in literature [16–18]. In 193

addition, the Equation 10 of SSA technique should be applied. The block diagrams of the 194

basic test scenario and the advanced test scenario are provided in Figure 6, where the block 195

s−α with red background is encapsulated according to equation 18.

Figure 6. Principle block diagrams: (a) Basic test scenario, (b) Advanced test scenario.
196

3. Results Comparison and Evaluation 197

According to the scenario settings and the related derivation, comparative works are 198

carried out in this section, numerical results are obtained by F-ABM method, G-L definition, 199

and Oustaloup’s method and are collected in groups. In addition, experiment waveforms 200

are provided as reference. 201

3.1. Results of Calculation and Simulation 202

The first group of results are from the basic test scenario, by using the aforementioned 203

three approaches, one can obtain numerical simulation results, as depicted in Figure 7. 204

The second group of results are from the advanced test scenario, simulation results are as 205

Figure 8, In both cases, the blue solid line represents the voltage of power supply, while 206

the red dash-and-dot line corresponds to the results of Oustaloup’s rational approximation 207

method, the black dash line corresponds to the results of G-L definition, and the green solid 208

line corresponds to the results of the F-ABM method. 209
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Figure 7. Comparison of basic test scenarios: (a) sinusoidal case, (b) step case.

Figure 8. Comparison of advanced test scenarios: (a) advanced scenario with fs = 100Hz, (b)
advanced scenario with fs = 200Hz.
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In the above two figures, the sub-graphs with red and blue backgrounds refer to the 210

enlarged parts. 211

In sinusoidal case, It can be seen that, the results of three methods mesh well with 212

each other in steady-state. There is a lag of around 0.5ms between the voltage vc(t) and 213

the voltage of power supply, which is determined by the capacitance C = 10µF and the 214

fractional order α = 0.8852 of the equivalent impedance model of the capacitor. 215

In step case, it can be seen that at the discontinuous point, the peak currents obtained 216

by three methods are almost the same, the value is around 1.0395A. But note that, the results 217

obtained by three methods are slightly different at steady state. In specific, the steady-state 218

voltage calculated by Oustaloup’s method is about 0.1V lower than the results obtained 219

by G-L definition and F-ABM method. In addition, the steady-state current calculated by 220

Oustaloup’s method is about 0.01A higher than the results obtained by G-L definition and 221

F-ABM method. 222

In advanced test scenarios, it can be seen that, the results of three methods mesh 223

well with each other. But note that, there are spikes of the voltages vc(t) and vcap(t) at 224

discontinuous points if one uses Oustaloup’s method. With the acceleration frequency fs of 225

charge-discharge state transition, this spike phenomenon becomes obvious. In addition, 226

the steady-state current icap(t) and the voltage vcap(t) calculated by the three methods are 227

slightly different. With the acceleration frequency fs of charge-discharge state transition, 228

this difference becomes obvious. 229

3.2. Evaluation and discussion 230

In order to further validate the calculation results, experiment waveforms are provided 231

in Figure 9 and Figure 10. 232

Figure 9. Experiment results of basic test scenarios: (a) sinusoidal case, (b) step case.

In Figure 9, the blue solid lines are the voltage v2(t) of the resistor R2. It can be 233

regarded as the sampling for the current icap(t) flowing through the capacitor. The red 234

solid lines correspond to the voltage of power supply, the green solid line corresponds to 235

the voltage vcap(t) of the capacitor. 236

Figure 10. Experiment results of advanced test scenarios: (a) advanced scenario with fs = 100Hz, (b)
advanced scenario with fs = 200Hz.
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It can be found that experimental waveforms are very similar to the theoretical calcu- 237

lation and simulation results. In order to assess the results of calculation, statistical analysis 238

was used to qualify different methods. 239

First of all, we compare the spike current ispike, the averaged steady-state capacitor 240

voltage v̄cap, and the averaged steady-state capacitor current īcap in step case in Table 1. 241

Table 1. Comparison of the spike current ispike, the averaged steady-state capacitor voltage v̄cap, and
the averaged steady-state capacitor current īcap in step case.

v̄cap īcap ispike

G-L definition 11.2894V ≈ 1.29mA 1.0012A
F-ABM 11.3025V ≈ −0.2mA 1.0308A

Oustaloup’s 11.2816V 0.0110A 1.0379A
Experiments 11.5570V ≈ 1mA 0.9869A

From Table 1, it can be seen that the most calculation results of three methods have 242

little deviation from experimental results in step case. However, compared with other 243

results, the averaged current īcap obtained by Oustaloup’s method is too large. This current 244

value is unreasonable, because in both theory and practice, if the electric field applied to 245

the capacitor is constant, the current of the capacitor should be in a trickle state. 246

Then, we compare the calculations results in sinusoidal case and advanced scenarios, 247

and list the peak-to-peak values obtained by different ways in Table 2. 248

Table 2. Comparison of peak-to-peak values of capacitor voltage vcpp and current icpp.

In sinusoidal case In advanced scenario
with fs = 100Hz

In advanced scenario
with fs = 200Hz

G-L definition (0.5851A, 21.9082V) (1.6848A, 11.0712V) (1.6656A, 10.6078V)
F-ABM (0.5908A, 21.9414V) (1.6853A, 10.7952V) (1.6686A, 10.0280V)

Oustaloup’s (0.5514A, 22.3235V) (1.9266A, 11.6760V) (1.9088A, 12.2848V)
Experiments (0.6211A, 21.1210V) (1.6991A, 11.6547V) (1.6624A, 11.3748V)

From Table 2, it can be seen that the calculation results of three methods have little 249

deviation from experimental results in sinusoidal case, it means that three methods are 250

applicable for continuous situations. 251

However, compared with other results, the peak-to-peak current ipp obtained by 252

Oustaloup’s method is larger in advanced scenarios. In addition, one can observe pulse 253

voltage signals at some edge time points in the simulation results obtained by Oustaloup’s 254

method, which cannot be observed in both experiments and the results of other two 255

methods. In principle, this pulse voltage phenomenon mainly occur at on- and off operation 256

edges of the power MOSFET ST . At these time points, the test circuit switches between 257

charging and discharging states, just like the high-level and low-level signals of the sign 258

function in Figure 6 undergo periodic switching. As a result, the state equation of the 259

test circuit switches between Equation 5 and Equation 7, and the test bench is a typical 260

piecewise smooth circuit system. 261

Basically, the expressions of most frequency-domain rational approximation methods 262

are the approximation of the amplitude-frequency or phase-frequency characteristics of 263

ideal fractional calculus operators in a predetermined frequency band, and usually con- 264

sidering the situation of continuously differentiable. However, at the boundary points 265

of piecewise smooth scenarios, the state equation of the test bench is discontinuous and 266

non-derivable. Therefore, the approximation results of rational approximation method 267

are not that effective. This pulse-voltage phenomena can also be explained by the Fourier 268

transform of a step function. 269
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4. Conclusions 270

This paper compares the effectiveness of G-L definition based method, F-ABM method, 271

and Oustaloup’s rational approximation method for fractional-order piecewise smooth 272

circuit systems. A test platform for verification is developed, in which a fractional-order 273

component, a non-solid electrolytic capacitor, is adopted. The test platform can be oper- 274

ated under basic and advanced test scenarios. The basic scenario contains a continuous 275

sinusoidal case and a step case, while the advanced scenario is the periodic charging and 276

discharging operation of the capacitor. 277

Three computational methods work well in basic test scenarios, especially in sinusoidal 278

case, which indicates that these methods are effective in continuous situations. However, 279

in step case, the averaged current obtained by Oustaloup’s method is too large. In ad- 280

vanced scenarios, the waveforms obtained by three methods are similar to experimental 281

results. Two iterative numerical calculation methods, G-L definition method and F-ABM 282

method, perform well in fs = 100Hz and fs = 200Hz advanced scenarios, the deviation 283

between their calculation results and the experimental results is small. However, applying 284

Oustaloup’s method in advanced scenarios leads to large calculation deviations. Moreover, 285

if one employs Oustaloup’s method in advanced scenarios, there is pulse-voltage phe- 286

nomenon when the circuit changes from charging state to discharging state, which cannot 287

be observed in both experiments and the results of two iterative numerical calculation 288

methods. The comparison and experimental verification results show that, G-L definition 289

based method and F-ABM method are effective for fractional-order piecewise smooth 290

circuit systems. The results provided by this research will provide more confidence for 291

understanding the dynamics of real-world systems governed by fractional calculus. 292
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