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Abstract: Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides
in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include
genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal
and human acute toxic events and, in the long term, by associations between cyanobacteria and
neurodegenerative diseases. One of the implicated mechanisms includes a misincorporation of cyanobacterial
non-proteogenic amino acids leading to mistranslation and protein misfolding. A better understanding of the
interaction between the cyanopeptide metabolism and the nervous system will be crucial to target or to prevent
pathogenic response.
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1. Introduction

Cyanobacteria are photosynthetic gram-negative bacterial common inhabitants of diverse
aquatic freshwater, marine, and terrestrial environments. They are ancient prokaryotic life forms on
Earth having photosynthesis which contributed oxygen to our atmosphere over 3.5 billion years ago,
and can survive in different, sometimes frequently changing environmental conditions. Cyanotoxin
production is considered to be an ancient trade exceeding 2.5 billion years of age [1].

The ability of cyanobacteria to produce cyanotoxins and their ubiquity in freshwater ecosystems
with increasing demands upon water resources require better detection and a more comprehensive
understanding of the cyanobacterial distribution and its impact on animals and humans. Although
cyanobacterial cell numbers change seasonally, the toxins can persist in water for several months,
extending low-dose exposure [2]. Aquatic organisms (e.g., grazers/herbivores, fish, mammals) may
consume aquatic plants with high concentrations of cyanotoxins, and trophic transfer may happen to
higher-order organisms though, for some toxins, biodilution, and not biomagnification may be a
predominant process in the food webs [3]. The detectable presence of cyanobacterial toxins in animal
tissues has been found to be associated with mass mortalities of animals, including cows, dogs, and
sea mammals [4-12], birds [13], and some human cases [14,15]. The terrestrial vertebrates affected by
cyanotoxins are more diverse than was thought before [16,17]. Moreover, cyanotoxins demonstrate
sublethal effects, including growth inhibition in zooplankton and aquatic plants, macroinvertebrates,
and aquatic plants [18].

The predicted climate changes favor increased water temperatures, anthropogenic nutrient
loadings, and freshwater cyanobacterial frequency, duration, and size of algal blooms [19-21]. The
cyanobacterial abundance has increased disproportionally relative to other phytoplankton since 1945
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[22]. Though our knowledge about cyanotoxins mostly comes from temperate and tropic areas, Arctic
regions undergo the most pronounced and rapid climate changes, and high-latitude lakes support
cyanobacteria blooming and cyanotoxins production [23]. Moreover, the occurrence and intensity of
near-surface phytoplankton harmful algal blooms (HABs) have been increasing across the world
[24,25] due to the eutrophication or nutrient enrichment of water bodies [26,27]. The potential
presence of low doses of cyanobacterial toxins in drinking water is likely to be a continuing problem.

2. Cyanobacterial Toxins

Cyanobacteria produce a variety of toxins. Traditionally, they are divided based on functional
properties into main groups: hepatotoxins, neurotoxins, dermatotoxins, and cytotoxins.
Lipopolysaccharides (components of the cyanobacteria cell wall), due to their toxic effects, are
classified as a separate group called — endotoxins [21,28]. The toxins found in cyanoHABs include
microcystins and nodularins, and neurotoxins such as anatoxins (anatoxin-a, homoanatoxin-a,
guanitoxin), ciguatoxins, saxitoxins, $-methylamino-L-alanine (BMAA) and its isomers (24-
diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG) [21]. More than 80 cyanobacteria
species are known to be toxigenic, and assays for the detection and toxicity of cyanotoxins continue
to develop.

The major source of cyanotoxins for humans is drinking water. However, guidelines for water
quality monitoring are limited to microcystins [29] and very few neurotoxins. Furthermore,
cyanobacteria may be present in fields used for livestock grazing or can be fed to livestock directly
[30-33], which aggregates in cow’s milk [34,35] or bird eggs and increase human exposure [36]. There
is an urgent need to detect other cyanobacterial toxins in drinking water and food and to understand
how they are involved in the pathogenesis of chronic diseases such as neurodegenerative disorders.

Many cyanobacterial toxins still have to be discovered. For major toxins groups, new variants
can be found and characterized. Thus, a structural variant of anatoxin-a, dihydro-anatoxin-a has been
recently identified in many samples of benthic cyanobacteria, even exceeding the abundance of
anatoxin-a [37]. Vacuolar spongiform myelopathy has recently been linked to aetokthonotoxin
(AETX) from epiphytic cyanobacterium Aetokhonos hydrillicola that is growing in man-made water
bodies of the southeastern United States [38]. This finding warrants further research into the potential
toxins produced by epiphytic and benthic cyanobacteria species.

2.1. Microcystins (MC) Family

A full structural chemical analysis of MCs was achieved in the 1980s through a combination of
spectroscopy, nuclear magnetic resonance, mass spectrometry, and amino acid analysis and
demonstrated that the chemical structure of microcystins consists of a cyclic heptapeptide with two
variable and five relatively conservative amino acids biosynthesized non-ribosomally via an MC
synthetase gene cluster [39]. A universal nomenclature system was suggested based on the positions
of amino acid residues 2 and 4 (denoted as X and Z in the original structure of microcystin i,
microcystin -XZ) [40]. By 2019 the identification of at least 279 different MC congeners was reported
in the literature [39].

Between cyanobacterial toxins, MCs are the most diverse group and the best described, though
MC-LR and MC-RR—are the only two widely researched. Minority MC congeners demonstrate
different toxicokinetic and toxicodynamic features [41]. Variations in vivo toxicity between MC
congeners can be attributed to the differences in their uptake by organic anion transporting
polypeptides (OATP) transport versus serine/threonine protein phosphatases (PP) 1 and 2a inhibition
[42]. The toxicity of MCs depends on variations in their chemical structure and ranges over six orders
of magnitude [43].

MC toxicity affects not only the liver but also the brain [44] and other organs. Multiple neurotoxic
effects of MC-LR were demonstrated using multiple biological models, including birds, fishes, and
mammals [45-47]. For example, using murine brain cell line as a model, congener-dependent
pronounced neurodegenerative effects were identified (MC-LF>>MC-LW>MC-LR) [48].
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2.2. BMAA (B-N-methylamino-I-alanine) and Isomers

BMAA is a non-proteogenic amino acid produced by all known groups of free-living and
symbiotic cyanobacteria [49]. The isomeric forms of BMAA, such as 2,4-diaminobutyric acid (2,4-
DAB) and N-(2-aminoethyl) glycine (AEG), can also be found in different species of cyanobacteria,
including Anabaena, Leptolyngbya sp., Oscillatoria sp., Merismopedia sp., and Microcystis aeruginosa [50].
The isomers are detected in nature along with BMAA but are less studied. BMAA isomers are
neurotoxic [51]. Recent research using larval zebrafish as a biological model identified 2,4 DAB as a
more potent neurotoxin than AEG and BMAA [52].

BMAA has been shown to contribute to protein misfolding, enzyme inhibition, and
neuroinflammation [53]. BMAA toxic effects were found to be related to the misincorporation of
serine in multiple human proteins [54,55] which can lead to the formation of inclusion bodies in
neurons [56]. Since some serine sites, such as tau serine residue 422 have been identified of key
importance in neuropathologies [57], misincorporation in such sites can be particularly detrimental.
Even a low level of misincorporation rate (1 per 10,000 codons) can lead to neurodegeneration in a
rodent model [58]. Several groups found in their in vitro and in vivo studies that BMAA leads to the
overexpression TDP-43 (TAR DNA-binding protein 43) encoded by the TARDBP gene [59-61].

Most animal models” BMAA studies were concentrated on investigating BMAA effects in the
brain and other organs. Using mice Xie and co-authors reported that less than 1% of total BMAA from
adult mice plasma was taken in the brain [62], i.e.,, BBB is not easily permeable for BMAA. The
mechanism of neurotoxicity may involve a direct action on the NMDA receptor, activation of
glutamate receptor 5, and induction of oxidative stress.

Recently, Han and co-authors [63] found that BMAA can serve as a substrate for human
alanyltRNA synthetase (AlaRS), avoiding the intrinsic editing activity of AlaRS, acting as a
competitive inhibitor, and comprising the editing ability of AlaRS. Terminally differentiated cells,
such as neurons, are particularly susceptible to mistranslation and accumulation and forming of
misfolded and aggregated proteins [58,64].

2.3 Other Cyanobacterial Neurotoxins

Traditional neurotoxins from cyanobacteria with acute effects include alkaloid or
organophosphorus compounds such as (a) anatoxin-a and homologs which affect nicotinic
acetylcholine alkaloid toxins and muscarinic acetylcholine receptors [65,66]; (b) saxitoxins can be
produced by both dinoflagellates and by cyanobacteria from several genera including
Aphanizomenon, Cylindrospermopsis and Dolichospermum; (c) guanitoxins which are similar in structure
to organophosphates and able to irreversibly inhibit acetylcholinesterase [67]; their presence was also
found in desert assemblages [68,69]. Cylindrospermopsin toxin- another frequent finding during fish
kills is a highly biologically active alkaloid consisting of a tricyclic guanidine moiety combined with
hydroxymethyluracil [70] interferes with cellular metabolism and causes hepatotoxic and genotoxic
effects, as well as neurotoxic effects [71]. There are an increasing number of research on different
groups of cyanotoxins from cyanobacteria genera—Nostacales (Nostoc, Hapalosiphon, Fischerella,
Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix,
Nodularia, Stigonema, Calothrix, Cylindrospermum, and Desmonostoc species) and others [72].

It is known that cyanobacteria are capable of producing different toxins which can be present
during the same HABs [73]. It is not clear, however, how the environmental factors regulate the
abundance of different MC congeners and isoforms of other toxins in a bloom [39]. In natural lake
cyanobacteria, species composition can be complex, and cyanotoxins can be represented by a
structural variety of toxins and cyanopeptides. Thus, BMAA can co-occur with its isomers (2-DAB
and AEG) and have synergistic neurotoxic effects, as demonstrated in in vitro cell line experiments
[74]. Moreover, the joint presence of MC-LR and BMAA leads to their interaction in vivo and to the
neurotoxic effect enhancement [75]. The development of methods allowing for the assessment of
multiple toxins during algal blooms is needed [76].
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2.4. Cyanopeptides

The majority of cyanobacterial secondary metabolites are peptides or include peptidic
substructures. Cyanopeptides are non-ribosomal peptides rich with posttranslational modifications
and non-proteinogenic amino acids and consist of linear, cyclic or multicyclic molecules with basic,
depsipeptidic, or lipopeptidic structures. More than 500 cyanopeptides range from app. 300 to 2000
Da have been structurally identified by 2019 [77]. Natural selection did not minimize the pool of
peptides but favors the production of a wide array of different peptide structures. The biosynthetic
non-ribosomal pathways of peptide synthesis are evolutionarily ancient and precede synthetic
pathways of higher plants and animals. During HABs, cyanobacteria produce a tremendous amount
of diverse cyanopeptides; however, their ecological significance is unclear. They can happen at
surface waters in the same nanomolar concentration as MCs, exhibit toxicity towards grazers in the
same micromolar range as MCs, and their production is synchronized with Microcystis sp. While the
abundance of MCs can be monitored successfully, more studies on cyanopeptides appearance and
persistence during blooms [77,78] and their potential for chronic toxicity are needed. The bioactive
compounds produced by cyanobacteria are not limited by peptides and also include alkaloids,
cyclophanes, terpenes, lactones, etc. Cyanobacterial compounds have a broad bioactive spectrum,
with many acting as serine protease inhibitors, trypsin and chymotrypsin inhibitors, and anti-cancer
compounds, capable of modulating infectious diseases [79].

2.5. Chromnic Effects of Cyanobacterial Toxins

The epidemiological studies of human health impacts of chronic cyanobacterial toxins exposure
are nascent. They have been associated with neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) [80-84]. Clusters of
ALS and ALS-like diseases have been reported in relation to cyanobacteria in Guam, France, Japan,
New Hampshire, and Wisconsin (summarized in Table 1). The slow onset of neurodegenerative
diseases (time distance between exposure and possible outcome) and problems with the assessment
of environmental exposure interfere with our understanding of the role and significance of
cyanotoxins in neurodegenerative diseases.

Table 1. ALS/PD clusters related to environmental factors and cyanobacteria.

Toxic Food
ALS/PD Wat
Location  Period ater or Dietary Key Findings Reference

Cases  Quality Components

1945 Cycad toxic effect;
Guam 492 MnT Cycad flour Biochemical and neuropathologic [85]

1969 abnormalities in ALS/PD diagnosed locals
Cyecad flour,
flying foxes; Accumulation of cycad neurotoxins
Guam  1940s-60s - - food (BMAA, cycasin) in flying foxes; [86]
containing  Flying foxes consumption - ALS-PDC
phytotoxins
Similar genotypic composition of
Guam and Chamorros on all the Mariana Islands but
other 1956— 39 ) ) different [87]
Mariana 1980 mortality rates of ALS/PD on Saipan than
Islands on Guam;
Environmental factors of ALS > genetic
BMAA in tissues from frontal cortex;
~ Cyecad flour, BMA A-containing food relates to
g;jga - 23 ?@EZ flying foxes ALS/PDC; 88,89]

(for Guam) HABs - cyanobacterial contamination
water supplies >BMAA biomagnification
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Western 1950s—

New Guinea 1984 Ca, Mg 2 - Environmental factors of ALS > genetic [90]
Kii - Ca, Mg, Na, Low mineral content in water supplies
Peninsula, 1961 KHCOg3, Cl - possibly leads to ND; > ALS - Mitogawa [91]
Japan 1 area
KII . L
Peninsula, 1972 40 Mnt ) Possible association of Mn to ALS. [92]
Japan
Skaraborg, 1973- 70 ) ) Cluster of MND in Skaraborg; (93]
Sweden 1984  males Agricultural occupation - MND risk.
ngnlj;\lflers, 1975 Polychlorinated biphenyl
. . 6 - fish Contaminated fish consumption - ALS [94]
Wisconsin, 1983 .
USA risk.
1975— ALS cluster in south-eastern France;
France 1999 18 - - Infections or environmental factors of ALS  [95]
> genetic.
1980— 16 ALS clusters;
Italy 2001 634 - - Low efficiency in detoxification systems; [96]
Environmental factors of ALS (toxins)
. 1985— Two ALS clusters;

Finland 1995 576  Fb, Cd, Zn? ) Environmental factors of ALS. 571
Enfield, NH, 1990— HABs: Fish, High P'xLS incidence near LakE{ Mascoma;
northeastern 278 . Chronic exposure to cyanotoxins - ALS; [82]

2007 BMAA, MC shellfish . . . .
USA Combined impact of multiple cyanotoxins.
48 ALS cases in Persian Gulf war veterans
. linked to
Iref;iizdl 12909 011_ 48 BMAA - desert.’s C?ust contains BMA'A; [98-100]
Aerosolization of cyanobacteria =
inhalation of dust - BMAA exposure
Southern ALS cluster in Thau lagoon; Association

France, 1994 HABs: . with

Hérault 2009 381 BMAA shellfish high concentrations of BMAA in mussels (101}

district and oysters

Northern 11 clusters of ALS grouped in 4 regions;
New 1997- 688 HABs, ) Location of ALS cases are close to water [102]
England, 2009 [CH3Hg]+ bodies where HABs occurs;
USA Environmental factors - ALS risk
Northern
EnNgf:;’l 0 o 0 HaBs - HABs -> water-quality > ALSrisk ~ [103]
USA
Northern Mapping cyanobacterial HABs for
New 1999- HABs: . .
England, 2009 - BMAA - northern NETN England lakfes, Cyanotoxins  [84]
USA increase ALS risk.
High concentrations of BMAA and DAB
Western _ ) HABs: fish were found in the Lake Mascoma fish; (83]
NH, USA BMAA BMAA, DAB, AEG in the air filters;
ALS linked to BMAA.
2003— HABs: Nine ALS clusters;
France o1 72 BMaAA ALS linked to BMAA. [104]
2005— HABs: HABs exposure > ND occurrence;
South Korea - BMAA and - HABs - long-term impacts on human [105]
2017
other health
1996 The highest incidence of ALS - Marie-
Guadeloupe 2011 63 - - Galante island; [106]

Environmental factor(s) > ALS risk
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6
Northern
and 2002- 95 i dietary Private wells using = ALS riskT; [107]
Southern 2012 supplements  Amino acid supplements - ALS risk
Italy
Annapolis, HABs: High concentrations of BMAA in the crabs
Maryland, 2013 3 BMAA blue crab originated Chesapeake Bay [108]
USA HABs exposure - ALS occurrence

The link between BMAA and neurodegenerative diseases is yet to be further elucidated. Several
studies have reported the presence of BMAA post-mortem in the brain tissues of patients who die
from ALS/PD [89,109]. However, in ALS/Alzheimer’s disease [110], and other studies were not able
to identify BMAA presence [111,112]. The ALS/PD neurodegenerative disorder, formerly
hyperendemic in Guam-USA, Kii-Japan, and Papua-Indonesia associated with several cycad food
toxins, including BMAA [113], has now been identified in both aquatic and terrestrial eco-systems in
North America [82,83], The Baltic Sea [114], France [101], Sweden [115], Peru [116], and Qatar [117];
and is produced by several different cyanobacteria [49], diatoms [118], and dinoflagellates [119].

Residential exposure to environmental pollutants may play an essential role in the etiology of
ALS, which is supported by non-random distribution by addresses of ALS patients [120].

2.6. Stability of Cyanotoxins

Many cyanotoxins possessing cyclic peptide structure are resistant to chemical degradation
[121], highly stable, and may persist in aquatic ecosystems for weeks and months [2,122]. Thus, MCs
can be retained in mussels (Mytilus californians) for up to eight weeks [123]. The high stability of MCs,
cylindrospermopsin [124,125], and other cyanotoxins over a wide range of pH and temperature might
have significant consequences for aquatic ecosystems and contribute to bioaccumulation of toxins to
higher levels of food chains. These peptides are synthesized non-ribosomally and may contain non-
proteinogenic amino acids [126-128].

Toxins undergoing attenuation via photodegradation may vary depending on the type of toxin,
HABs timing, and environmental conditions [129]. Though cyanotoxins are resistant to chemical
degradation, recent advances in molecular microbial communities research have found that toxic
cyanoHABs favor the specific members of bacterioplankton with degrading abilities towards
cyanotoxins [130,131]. The strains of the bacterial genera Sphingomonas (majority of MC-degrading
bacteria), Rhodococcus, Brevibacterium, Burkholderia, Mycobacterium, Pseudomonas, Novosphyngobium
and others can degrade MCs in time scale from hours to days [132-134]. The genomes of some MCs-
degrading bacteria are sequenced [135,136], and mlr gene cluster have been implicated in playing a
prominent role in the sequential hydrolysis of MCs peptide bonds [137,138].

Similar to MCs, cylindrospermopsin toxin can also be degraded by bacteria isolated from
cyanobacterial blooms (Bacillus sp., Aeromonas sp.) [139,140] and by some probiotic bacteria [141]. Not
only bacteria but fungi demonstrate algicidal activities such as Trichoderma citrinoviride degrading
MCs [142]. Furthermore, Mohamed and co-authors [143] summarized data on six fungal species with
biodegrading activities against MCs. Between zooplankton grazers, metazoans, such as Daphnia and
Cyclops, are also susceptible to cyanotoxins [144,145]. Protozoa, on the other hand, are highly
resistant to cyanotoxins and demonstrate great potential in controlling harmful cyanobacteria and
improving phytoplankton composition in eutrophic waters [146,147].

2.7. Data gaps in Cyanotoxins Analytical Methods

Analytical techniques (selectivity and sensitivity, fraction analysis, quality control) play a critical
role in assessing the cyanotoxins effects [148,149]. There are significant data gaps in analytical
methods, including (a) the absence of all the relevant standards [150]; (b) the need for validated
methodologies for cyanotoxins outside the water samples: (c) the need for standardization of
cyanotoxins in multi-center monitoring programs [151]; (d) the need for new technologies allowing
simultaneous identification of as many toxins as possible; (e) and the need to improve robustness and
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a detection limit of detection methods Another critical challenge is analyze cyanotoxins faster and
feasible in situ [152]. Unsuitable analytical methods may partly explain the lack of consensus over
the widespread presence of some cyanotoxins (BMAA) in aquatic ecosystems [153].

Recently, high-resolution mass spectrometry (HRMS/MS) has become more available for
researchers. Current methods rely on defined cyanotoxins and cyanopeptides targets and are
generally inappropriate for detecting and identifying of emerging novel compounds. The recent
approach of the non-targeted analysis of pollutants and toxins in water focus on a comprehensive
workflow for the acquisition and treatment of the data generated after liquid chromatography
coupled with high-resolution mass spectrometry (LC-HRMS) analysis [154-157]. So-called suspect
screening identifies novel compounds, including cyanotoxins and cyanopeptides based on the exact
mass (m/z), presence of one or more charge states (z=1, 2, etc.), expected isotope pattern and common
adducts) as well as secondary fragmentation (MS2) even without reference chemicals [158-161].

Since 1957, when the first MC was detected, many methods have been developed to analyze
environmental samples for cyanotoxins [162]. Nowadays, the number of studied cyanotoxins and
analytical methods for their qualitative and quantitative detections have increased. Detection
approaches vary in terms of accuracy, sensitivity, and specificity. The most commonly used
techniques for cyanotoxins detection are enzyme-linked immunosorbent assays (ELISA), protein
phosphatase inhibition assay (PPIA), molecular assays - polymerase chain reaction (PCR), and
quantitative real-time PCR (qPCR) for toxins producing genotypes for cyanobacteria identification,
liquid chromatography (LC) and high-performance liquid chromatography (HPLC) combined with
different detectors. Among these, liquid chromatography-mass spectrometry (LC-MS) takes a special
place because it identifies the target cyanotoxins with high accuracy at a significantly low detection
level [163,164]. Moreover, despite the structural diversity of cyanotoxins, LC-MS allows for
determining groups of toxins simultaneously. That is one extra advantage of using this detection
technique integrated with bioassays and molecular assays in complex environmental samples for
complete water quality assessment [165,166].

Table 2. Chemical detection methods for cyanotoxins in water samples.

Detection Sensivity

Ne Cyanotoxins Techniques LOD LOQ Reference
1. MC-LR and 2 congeners UHPLC-MS/MS  0.02-0.04 ng/mL - [167]
MC-LR and 11 congeners UHPLC-MS/MS - 0.2 ug/L [168]
MC-LR and 4 congeners 0.005-0.0817 pg/L  0.005-0.0817ug/L
Nodularin 0.0048 pg/L 0.0048 ug/L
3. LC-MS/MS 169
Anatoxin-a / 0.0001 pg/L 0.0004 ug/L [169]
Cylindrospermopsin 0.0001 pg/L 0.0004 ug/L
BMAA .02 L . L
4. UHPLC-MsMs D02 P8/H 0.05 pg/u [170]
2,4-DAB 0.04 pg/uL 0.13 pg/uL
MC-LR and 7 congeners - 0.04-0.5 pg/L
Anatoxin-a - 0.02 ug/L
Cylmdl;)spfr?;i;m (and B 0.01-0.02 pg/L
5. oo aey LC-MS/MS [171]
Saxitoxins (4 congeners), GTX
(5 congeners),
- 12 ug/L
decarbamoylgonyautoxin, N- 0 g/
sulfogonyautoxins-1 and -2
0.01+0.01-0.19+0.2  0.04+0.04-0.64+0.65
MC-LR and 11
6. anc 1L CONgEners  ppLc-ms/Ms ug/L ug/L [172]
Nodularin 0.04+0.02 ug/L.  0.13 +£0.06 pg/L
7. MC-LR and 2 congeners HPLC-UV/PDA 3—4 pg/L 9-13 pg/L [173]
8. MC-LR and 2 congeners HPLC-HRMS 0.002 pg/L — [174]
Anatoxin-a, 0.004 ng/mL 0.01 ng/mL
9. Cylindrospermopsin HILIC-MS/MS 0.07 ng/mL 0.23 ng/mL [175]

Saxitoxin 0.01 ng/mL 0.04 ng/mL
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MC-LR and 4 congeners

RPLC- MS/MS

0.02-0.08 ng/mL

doi:10.20944/preprints202301.0357.v1

0.07-0.28 ng/mL

Nodularin 0.05 ng/mL 0.18 ng/mL
MC-LR and 5 congeners - 0.046-0.052 pg/L
10. Nodularin UHPLC-MS/MS - 0.049 pg/L [176]
Cylindrospermopsin - 0.052 pg/L
BMAA 5ng/L 10 ng/L
DAB 3ng/L 5ng/L
11. AEG UHPLC-HRMS 2ng/L 5ng/L [177]
BAMA 5ng/L 10 ng/L
MC-LR and 5 congeners 0.0003-0.0009 pg/L -
12. Cylindrospermopsin HPLC-MS/MS 0.0005 pg/L - [178]
Saxitoxin, deSTX 0.0009-0.0013 pg/L -
13. BMAA LC-MS/MS 10 ng/L - [179]
MC-LR and 5 congeners 0.04-0.8 pg/L 0.1-2.3 pg/L
Nodularin 0.3 ug/L 0.9 pg/L
14 Anatoxin-a LC-MS/MS 0.27 ug/L 0.81 ug/L [180]
Cylindrospermopsin 0.14 pg/L 0.4 pug/L
15. MC-LR and 2 congeners HPLC-DAD 0.08-0.15 ug/1 — [181]
MC-LR and 11 congeners 0.001-0.007 ug/L  0.003-0.020 ug/L
Nodularin 0.002 pg/L 0.006 pg/L
16. Anatoxin-a LE-MS/MS 0.001 ug/L 0.003 ug/L [182]
Cylindrospermopsin 0.001 pg/L 0.003 pg/L
MCs 0.005 pg/L -
Anatoxin-a 0.02 pg/L -
17. Cylindrospermopsin UPLC-MS/MS 0.02 ug/L - [183]
Saxitoxin 0.8 ug/L -
BMAA 0.03 pg/L -
18. BMAA LC-MS/MS 0.030 pg/L 0.096 pg/L [184]
MC-LR and 11 congeners 5-37 ng/L 15-130 ng/L
19, Anatoxin-a on-line SPE — 15-18 ng/L 50-60 ng/L [185]
Homoanatoxin-a UHPLC-HRMS 11-12 ng/L 3040 ng/L
Cylindrospermopsin 41-53 ng/L 130-170 ng/L
20. MC-LR and 1 congener HPLC-DAD 0.2-0.3 pg/L - [186]
Anatoxin-a 1.1 ng/L 25 ng/L
1. C}.llinfirospermopsin UHPLC-MS/MS 10.9 ng/L 21.7 ng/L [187]
Saxitoxins (4 congeners) 3.5-9 ng/L 7.1-26.9 ng/L
GTX (7 congeners) 18.5-54.5 ng/L 42.2-227.6 ng/L
MC-LR and 7 congeners 0.1 pug/L 0.5 ug/L
22 Nodularin UHPLC-MS/MS 0.1 ug/L 0.5 ug/L [164]
23. MC-LR and 2 congeners UHPLC-MS/MS 0.1 ug/L 24 pg/L [188]
24. Cylindrospermopsin UHPLC-MS/MS 0.029 pg/L 0.091 ug/L [189]
25.  Saxitoxins (4 congeners) }(;?LIIISQHS&S 0.72 3.9 ng/L 2.4-13ng/L [190]
MC-LR and 1 congener 0.0012-0.0021 pg/L  0.004-0.007 pg/L
Nodularin 0.0021 pg/L 0.007 pg/L
Anatoxin-a 0.03 pg/L 0.1 pug/L
26. Cylindrospermopsin }Eaf{fénﬁgﬁs 0.0012 pg/L 0.004 ug/L [191]
BMAA 0.015 pg/L 0.05 pg/L
DAB 0.009 pg/L 0.03 pg/L
AEG 0.006 ug/L 0.02 pg/L
BMAA 2.8 ng/mL -
27. DAB LC-MS/MS 1.7 ng/ml, B [192]
BMAA 10 ng/L -
0. BAMA on-line SPE- 10 ng/L - [153]
DAB UHPLC-HRMS 10 ng/L -
AEG 5ng/L -
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BMA - 2.5 ug/L
29. AEG UHPLC-MS/MS - 2.5 ug/L [193]
DABA - 5 ug/L
UHPLC-MS/MS

30. MC-LR and 7 congeners 0.02-0.2 pg/L 0.05-0.5 pg/L [194]

(ESI)
LOD—limit of detection; LOQ-—limit of quantification; UHPLC—ultra high-performance liquid

chromatography; HILIC-MS/MS—hydrophilic interaction liquid chromatography-tandem mass spectrometry;
RPLC-MS/MS—reverse phase chromatography tandem mass spectrometry; UV/PDA —ultraviolet/photodiode
array detection, DAD—diode array detector; ESI—electrospray ionization; SPE—solid phase extraction;
BAMA — (3-amino-N-methylalanine; GTX —gonyautoxins; dcSTX —decarbamoylsaxitoxin.

As separation instruments, HPLC and UHPLC are usually used. UHPLC, is faster due to the
higher pressure applied, and the online SPE-procedure provides reduced sample time processing
[2,181]. HPLC-UV/PDA [173], HPLC-DAD [186] have less LOD values (34 ug/L, 0.2-0.3 ug/L,
respectively) for MCs than LC-MS/MS where minimum LOD values vary within 0.0003-0.1 pg/L
[164,178,188]. Concerning other cyanotoxins, MS detection techniques also provide relatively low
values of LOD and LOQ. The LC-MS method requires expensive instruments and thorough sample
preparation, which makes it a time-consuming procedure. That limits LC-MS techniques' application
as ubiquitous [195]. Nevertheless, this method remains preferable for precise quantitative analysis of
cyanotoxins in water samples.

3. Toxin Exposure Pathways

Major cyanotoxins exposure routes include ingestion through drinking water or dermal contact
with recreational waters [196], also through food, and inhalation since cyanotoxins were identified in
aerosols generated by HABs [197]. Historically, cyanoHABs were considered a public health threat
to freshwater lakes, rivers, and reservoirs. However, freshwater-sourced MCs can accumulate in
marine mollusks in concentrations 100-fold greater than in surrounding water [10,123].

3.1. Transport of Cyanotoxins in Freshwater and Marine Systems

Recent studies demonstrated that cyanotoxins could persist during transport into estuarine and
marine waters and can directly affect marine ecosystems [10,123,198-200]. MCs and other toxins
produced by freshwater cyanobacteria can enter the marine ecosystem via freshwater channels and
outflows [12]. This changes HABs management approach, requiring monitoring of multiple toxins
across the freshwater-to-marine continuum and including cyanotoxins in marine and estuarine
monitoring [201].

3.2. Toxin exposure pathways: Oral (Drinking water)

When drinking water is impacted by cyanobacterial toxins resulting from HABs and not treated
adequately to reduce the cyanotoxin levels, it can cause serious effects on the entire region [197].

The causes of cyanobacteria proliferation in urban environments are mainly the disposal of
untreated domestic sewage in water reservoirs and surface runoff water from soils. In analyzing
sewage disposal systems in the main cities of Kazakhstan—Almaty and Astana, the efficiency of
biogenic compounds removal remains unsatisfactory, reaching only 30-40%. This eutrophication is
due to the increase of nutrients, such as phosphorus and nitrogen, arising from human action,
representing a serious risk to the health of living beings and drastically reducing water quality. To
cope with this problem, the possibility of intensifying nitrogen and phosphorus removal using zeolite
as a biofilm carrier in an activated sludge tank is examined [202].

3.3. Toxin Exposure Pathways: Oral (Food)

Food is an important source of cyanotoxin exposure [203]. Worryingly, exposure of crop plants
to cyanotoxins through irrigation was already demonstrated [204-206]. For centuries some species of
Nostoc—the symbiotic colonial cyanobacteria N. flagelliforme, N. commune, and N. sphaeroides —
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have been wild-harvested and consumed as a part of the traditional diet by indigenous people in
different countries, including Peru, China, Ecquador, Mexico, Fiji, Filippines, Mongolia [209,210].

Chronic dietary exposure to BMAA present in the traditional Chamorro diet was associated with
the formation of both [3-amyloid deposits and neurofibrils tangles (NFT) found in brain tissues of
Chamorros who died with ALS/ Parkinson's dementia complex (ALS/PD). BMAA occurs not only as
a free amino acid at different levels of the trophic chain (cyanobacteria Nostoc sp., root symbioses,
cycad seeds, flying foxes, and brain tissues of Chamorro people who passed away from ALS/PD) but
can also be released by acid hydrolysis increasing in concentrations 10- to 240-fold [207]. Vervet
monkeys fed for only six months with BMAA-dosed fruit developed B-amyloid deposits and NFT in
the brain. Increasing the amount of L-serine in the vervets diet reduced the density of NFT and the
risk of neurodegenerative pathological brain findings [56]. Recently, Downing and co-authors [208]
revealed that human liver hepatocyte and intestinal epithelial cultures could not metabolize BMAA,
demonstrating that BMAA detoxication is impossible and BMAA will likely accumulate in these cells
[53].

3.4. Toxin Exposure Pathways: Air (Aerosolization)

The algae can be dispersed by air [211], and aerosol can be created from algae during HABs
[212]. The increase in the salinity of freshwater streams is likely to influence the abundance and
diversity of aerosolized bacteria [213]. The cyanotoxins may be transported in aerosols from lakes
with high concentrations of toxigenic cyanobacteria [214-217]. Recent findings with rat models
confirmed that BMAA exposure was insufficient in producing gross toxic effects; however, it still
leaves the possibility of lifelong exposure via inhalation [218].

MC-LR exposure in the existing rodent models increases lung infiltration with granulocytes
[219,220] and increases proinflammatory cytokine expression [221,222]. Recently, Breidenbach and
co-authors [223] reported that human airway epithelium response to MC-LR is represented by
proinflammatory phenotype, including chemokines.

The aerosolization of cyanobacteria was proposed as a risk factor for ALS [100]. Aerial link of
exposure was investigated with ALS/PD. BMAA and its isomers (DAB and AEG) were measured in
air filters around lake Mascoma [83]. Moreover, Facciponte and co-authors [224] found that humans
routinely inhale aerosolized cyanobacteria. Using PCR, authors identified cyanobacteria at high
frequencies in the upper respiratory tract (93.20%) and central airway (79.31%). They concluded that
cyanobacteria exposure might be a prevalent and chronic phenomenon and not necessarily restricted
to water bodies.

Autoradiographic imaging in mice showed a distinct localization of radioactivity in olfactory
mucosa and bulb following intranasal instillation of radiolabelled BMAA, confirming a direct transfer
of BMAA via olfactory pathways to mice brain circumventing the blood-brain barrier [225].

3.6. Natural Model of Toxin Exposure

The complexity of neurodegenerative diseases requires a deep understanding of the disease
biology and makes it challenging to develop a model of cyanotoxin exposure close to
neurodegenerative findings in humans due to the species-specific variations in the phosphorylation
and cleavage of the tau protein [226]. Natural animal models should recapitulate two major features
of human neurodegenerative diseases: Af3 deposition and NFT formation. Chronic low BMAA
concentrations induce neurodegenerative changes in non-human primates [56,227]. BMAA can
bioaccumulate in marine apex predators such as dolphins and sharks, and in humans [207,228,229].
It was detected in the brains of stranded dolphins with pathological hallmarks of AD at
concentrations higher than those found post-mortem in individuals with ALS and AD [230]. Chronic
low BMAA concentrations induce neurodegenerative changes in non-human primates [56,227].
There are increased numbers of 3-amyloid+ and dystrophic neurites in the auditory cortex compared
to the visual cortex and brainstem [230].
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3.7. Cyanotoxins and Infections

BMAA can facilitate most of the mechanisms related to neurodegeneration [231]. Thus, Lobner
and co-authors [232] demonstrated that BMAA at the concentration range of 10-100 umol potentiates
neurotoxicity induced by amyloid-3 and NMDA.

STX doubled the quantity of ZIKV-induced neural cell death in progenitor areas of human brain
organoids, while the chronic ingestion of water contaminated with STX before and during gestation
caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6] mice. These
results raise a public health concern regarding the consequences of arbovirus outbreaks in areas with
droughts and/or frequent freshwater cyanobacterial blooms [233].

The outbreak of Zika syndrome coincided with a major drought in the region between 2012 and
2016. Characteristic of dry seasons, the concentration of nutrients from untreated effluents and lower
volume of water, and an increase in atmospheric temperature allow greater blooming of
cyanobacteria. Consequently, the concentration of cyanotoxins, such as saxitoxins, increases. This led
authors to formulate the hypothesis that cyanobacteria in the water supply would be a causal cofactor
of zika-associated microcephaly.

4. Mechanisms of Brain Toxicity

Well-studied neurotoxins of algal origin are alkaloids saxitoxins (STXs) that have been identified
in dinoflagellates and several cyanobacterial genera, including Anabaena, Aphanizomaenon,
Planktothrix, Cylindrospermopsis, and Scytonema [234,235]. STXs are represented by more than 50
structural analogs commonly known as paralytic shellfish toxins (PSTs). They block the passage of
sodium across a biological membrane and interfere with potassium and calcium-mediated ion
channels [72].

While the pathophysiology of some toxins (STXs, anatoxins, etc.) are relatively well studied,
others, such as ciguatera, are not clear. Recently, the neurotoxic effects of cyanopeptides attracted
more attention [77,236-238]. Some cyanopeptides exhibit anti-proliferative effects on tubulin and
microtubules essential for neurons. Thus, the anti-proliferative toxic cyclodepsipeptides
cryptophycins are 100-1000 fold compared with paclitaxel and vinblastin [236]. Further research
needs to improve analytical methods and assess potentially toxic cyanopeptides.

4.1. Neurodevelopmental Effects

The link between neurodegeneration and neonatal BMAA exposure, dose-dependent neuronal
loss, beta-amyloid deposition, and behavioral deficits was recently demonstrated in a rat model [239].
Autoradiographic imaging confirmed transplacental research of radiolabelled BMAA and specific
uptake in mouse fetal [240]. Furthermore, in neonatal rats, the free BMAA concentration was higher
in the neonatal brain than in peripheral tissues such as the thymus, pancreas, and spleen, except for
the liver. The level of protein-associated BMAA was significantly higher in the hippocampus than in
other brain regions [241]. The BMAA exposure to neural stem cells decreased neurite outgrowth, and
a number of neurites in neural stem cells (NSC) [242]. The authors conclude that BMAA acts as a
developmental toxin. BMAA can negatively impact NSC homeostasis, increasing susceptibility to
neurodegenerative disease later in life [242]. Perinatal exposure in mice, even with low doses of
BMAA, leads to neurobehavioral disturbances during the postnatal period and adulthood [243].

4.2. Blood-Brain Barrier (BBB)

The blood-brain barrier and the blood-CSF barrier separate CNS from blood and include the
endothelial lining of the brain capillaries associated with astrocytes, pericytes, and neurons. The
pericytes and astrocytes are closely associated with the endothelial cells and are required for capillary
maturation (pericytes) and the maintenance of the permeability-barrier functions (astrocytes). The
basement membrane (contains laminin, proteoglycans, fibronectin, collagen IV, nidogen, and
entactin) and is essential for blood-barrier differentiation. BBB separates neurons from the
circulating blood and maintains the internal chemical composition of the brain "milieu" responsible
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for the proper functioning of neuronal circuits, neurogenesis, angiogenesis, synaptic transmission,
etc. BBB breakdown due to disruption of the tight junctions may result in synaptic and neuronal
dysfunction and contribute to neurodegenerative disorders such as ALS, Alzheimer's disease,
Parkinson's disease, and multiple sclerosis [244].

Berntzon and co-authors found BMAA in the CSF of a patient with ALS and some controls,
though they did not confirm a prevalence of BMAA findings in ALS patients [109]. Significant
amounts of BMAA were found in brain tissues of american ALS and Alzheimer’s disease patients,
confirming the ability of BMAA to cross the BBB [110]. Alternative findings regarding AD patients
were reported by Meneely and co-authors [112]. The other possible route of entry to the CNS is
through the olfactory epithelium and the nasal passage or via the blood. The cyanobacterial
neurotoxin BMAA can be directly transferred through olfactory pathways circumventing the BBB in
mice and directly affecting olfactory neurons [225].

Microcystin-LR (MC-LR) has been confirmed to cause blood-brain barrier disruption and enter
the brain tissue, resulting in non-negligible toxic effects. However, the neurotoxicity of MC-LR is
mainly unknown. This study revealed that MC-LR disrupted the function of the ubiquitin-
proteasome system in neurons, which inhibited the degradation of a-synuclein (a-syn), leading to its
release from neurons for transport into microglia. a-Syn is the main component of Lewy bodies,
which has been identified as one of the main pathological features of Parkinson’s disease (PD). In
vitro, we observed that a-syn mediated by MC-LR activated HMC3 cells and polarized them towards
M1 type. In addition, we confirmed that a-syn was transported into HMC3 cells through TLR4
receptors and activated the NLRP3 inflammasome, which in turn enhanced the maturation and
release of IL-18 and IL-1f3 [245].

4.3. Glia

Microglial activation and neuroinflammation are common to many neurodegenerative diseases.
Glial cells, including microglia, have long been suspected of playing a role in Alzheimer’s disease but
only because of their ability to react to neuronal dysfunctions (e.g., amyloid and Tau aggregates).
This neurocentric view, which considered glial cells as secondary, has been challenged recently by
the results of genetic association studies identifying genetic loci associated with the risk of
Alzheimer’s that are associated with genes preferentially or exclusively expressed in glial cells [246].

The research on cyanopeptides effects on glia is limited. Chiu and co-authors [247,248]
demonstrated a gliotoxicity of BMAA using the olfactory ensheathing cell as in vitro model. A study
conducted by Bubic and co-workers [249] showed that depsipeptide planktopeptin and
anabaenopeptins impair the metabolic activities of normal human astrocytes via membrane
perforation, oxidative stress, and changes in mitochondrial metabolism. Later, Mello and co-authors
showed cytotoxic effects of BMAA and MC-LR on primary astrocytes isolated from mixed adult brain
cell cultures [250], and Soto, with co-workers, demonstrated damaging BMAA effects on Muller’s
glial cells [251]. Both glial cells and neurons can to uptake and accumulate BMAA, as demonstrated
using a specific, polyclonal antibody against BMAA [252].

The role of dysfunctional astrocytes in the pathogenesis of ALS and other neurodegenerative
diseases indicates that astrocytes may be targeted with strategies for their revival. These strategies
may include direct intervention on astrocytes with modulatory medicines, exosomes and miRNA-
based therapies, or their replacement.

5. Cyanotoxins, Cyanopeptides and Neurodegenerative Diseases

A central dogma of age-related neurodegenerative diseases claims that the accumulation and
propagation of aggregated proteins cause neurodegeneration [253]. Recently, a mechanism that does
not involve a specific neuropathogenic protein but is mediated by error-prone translation leading to
stochastic near-cognate missense substitutions was suggested. Drummond and Wilke proposed in
2008 that tolerance to translation errors of certain proteins provides a new mechanism to explain their
propensity to misfold pathologically. Mistranslation destabilizes the proteome by leading to
misfolding and accumulation in the cells of potentially toxic protein aggregates [58,254]. The finding
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that translational error increases with age in some biological models (Drosophila) [255] may suggest
the possibility that the rate of translation leading to aging-related proteostasis failure may be a key
event in early ND diseases [256]. The mistranslating cells exhibit severely inhibited protein synthesis
and formation of protein aggregates in the cellular ND model [257]. Aminoacyl-tRNA synthetases
(AARSs) catalyze covalent binding tRNA with their cognate amino acids and are 2-3 orders of
magnitude more selective than other amino acid-utilizing [258].

Hundreds of non-proteinogenic amino acids produced by cyanobacteria include BMAA and
can, in principle, enter human protein synthesis through foods and drinking water. Earlier studies
support the ability of BMAA to be incorporated into the proteins [54,259]. It has been suggested that
BMAA is misincorporated at serine codons during protein synthesis [54]. However, recently Han and
co-authors [63] demonstrated that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS)
but a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by
escaping from the intrinsic AlaRS proofreading activity. Furthermore, BMAA inhibits the cognate
amino acid activation, the editing functions of AlaRS, and the deacylation activity of HsAlaRS on Ser-
tRNAAla [63]. The AlaRS possess canonical and non-canonical cellular functions and are
predominantly linked to neurodegenerative disorders in human and mouse models [260].
Furthermore, using transcriptomic analysis, Wang and co-authors [261] confirmed that BMAA could
alter the expression of major genes encoding components related to translation in prokaryotes
(diazotrophic algae Anabaena). The ability of BMAA to affect protein hemostasis can be
evolutionarily ancient and initially directed to inhibit the growth of neighboring microalgae. The
inhibition of cell growth and progression in the cell cycle of eukaryotic cells was demonstrated in in
vitro experiments [262]. The production of cyclic peptides, including non-proteinogenic amino acids,
leads to the lysis of cyanobacteria and may be an effective control mechanism of cyanobacterial
density during algal blooms [126].

6. Conclusions

The structural variety of cyanotoxins and cyanopeptides is produced during cyanobacterial
blooms. Many structural aspects of key metabolites involved in the cyanotoxins pathways have yet
to be elucidated. However, it is becoming clear that non-proteinogenic amino acids, free-existing or
initially a part of cyanopeptides, may affect protein hemostasis and lead to mistranslation and
misfolding of proteins in eukaryotic cells, building a link to neurodegenerative diseases
development. There are many aspects pertaining to the regulation, role, and function of these
compounds that also require the development of novel detection approaches. This knowledge may
be harnessed to identify novel biomarkers for neurodegenerative diseases and new targets for
interventions.
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