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Abstract: Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides 
in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include 
genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal 
and human acute toxic events and, in the long term, by associations between cyanobacteria and 
neurodegenerative diseases. One of the implicated mechanisms includes a misincorporation of cyanobacterial 
non-proteogenic amino acids leading to mistranslation and protein misfolding. A better understanding of the 
interaction between the cyanopeptide metabolism and the nervous system will be crucial to target or to prevent 
pathogenic response.  

Keywords: cyanotoxins; cyanobacteria; harmful algae bloom; neurodegenerative disease; 
microcystin; BMAA; non-proteogenic amino acids; mistranslation; amyotrophic lateral sclerosis; 
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1. Introduction 

Cyanobacteria are photosynthetic gram-negative bacterial common inhabitants of diverse 
aquatic freshwater, marine, and terrestrial environments. They are ancient prokaryotic life forms on 
Earth having photosynthesis which contributed oxygen to our atmosphere over 3.5 billion years ago, 
and can survive in different, sometimes frequently changing environmental conditions. Cyanotoxin 
production is considered to be an ancient trade exceeding 2.5 billion years of age [1]. 

The ability of cyanobacteria to produce cyanotoxins and their ubiquity in freshwater ecosystems 
with increasing demands upon water resources require better detection and a more comprehensive 
understanding of the cyanobacterial distribution and its impact on animals and humans. Although 
cyanobacterial cell numbers change seasonally, the toxins can persist in water for several months, 
extending low-dose exposure [2]. Aquatic organisms (e.g., grazers/herbivores, fish, mammals) may 
consume aquatic plants with high concentrations of cyanotoxins, and trophic transfer may happen to 
higher-order organisms though, for some toxins, biodilution, and not biomagnification may be a 
predominant process in the food webs [3]. The detectable presence of cyanobacterial toxins in animal 
tissues has been found to be associated with mass mortalities of animals, including cows, dogs, and 
sea mammals [4–12], birds [13], and some human cases [14,15]. The terrestrial vertebrates affected by 
cyanotoxins are more diverse than was thought before [16,17]. Moreover, cyanotoxins demonstrate 
sublethal effects, including growth inhibition in zooplankton and aquatic plants, macroinvertebrates, 
and aquatic plants [18]. 

The predicted climate changes favor increased water temperatures, anthropogenic nutrient 
loadings, and freshwater cyanobacterial frequency, duration, and size of algal blooms [19–21]. The 
cyanobacterial abundance has increased disproportionally relative to other phytoplankton since 1945 
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[22]. Though our knowledge about cyanotoxins mostly comes from temperate and tropic areas, Arctic 
regions undergo the most pronounced and rapid climate changes, and high-latitude lakes support 
cyanobacteria blooming and cyanotoxins production [23]. Moreover, the occurrence and intensity of 
near-surface phytoplankton harmful algal blooms (HABs) have been increasing across the world 
[24,25] due to the eutrophication or nutrient enrichment of water bodies [26,27]. The potential 
presence of low doses of cyanobacterial toxins in drinking water is likely to be a continuing problem.  

2. Cyanobacterial Toxins 

Cyanobacteria produce a variety of toxins. Traditionally, they are divided based on functional 
properties into main groups: hepatotoxins, neurotoxins, dermatotoxins, and cytotoxins. 
Lipopolysaccharides (components of the cyanobacteria cell wall), due to their toxic effects, are 
classified as a separate group called – endotoxins [21,28]. The toxins found in cyanoHABs include 
microcystins and nodularins, and neurotoxins such as anatoxins (anatoxin-a, homoanatoxin-a, 
guanitoxin), ciguatoxins, saxitoxins, ß-methylamino-L-alanine (BMAA) and its isomers (2,4-
diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG) [21]. More than 80 cyanobacteria 
species are known to be toxigenic, and assays for the detection and toxicity of cyanotoxins continue 
to develop.  

The major source of cyanotoxins for humans is drinking water. However, guidelines for water 
quality monitoring are limited to microcystins [29] and very few neurotoxins. Furthermore, 
cyanobacteria may be present in fields used for livestock grazing or can be fed to livestock directly 
[30–33], which aggregates in cow’s milk [34,35] or bird eggs and increase human exposure [36]. There 
is an urgent need to detect other cyanobacterial toxins in drinking water and food and to understand 
how they are involved in the pathogenesis of chronic diseases such as neurodegenerative disorders.  

Many cyanobacterial toxins still have to be discovered. For major toxins groups, new variants 
can be found and characterized. Thus, a structural variant of anatoxin-a, dihydro-anatoxin-a has been 
recently identified in many samples of benthic cyanobacteria, even exceeding the abundance of 
anatoxin-a [37]. Vacuolar spongiform myelopathy has recently been linked to aetokthonotoxin 
(AETX) from epiphytic cyanobacterium Aetokhonos hydrillicola that is growing in man-made water 
bodies of the southeastern United States [38]. This finding warrants further research into the potential 
toxins produced by epiphytic and benthic cyanobacteria species.  

2.1. Microcystins (MC) Family  

A full structural chemical analysis of MCs was achieved in the 1980s through a combination of 
spectroscopy, nuclear magnetic resonance, mass spectrometry, and amino acid analysis and 
demonstrated that the chemical structure of microcystins consists of a cyclic heptapeptide with two 
variable and five relatively conservative amino acids biosynthesized non-ribosomally via an MC 
synthetase gene cluster [39]. A universal nomenclature system was suggested based on the positions 
of amino acid residues 2 and 4 (denoted as X and Z in the original structure of microcystin i,e, 
microcystin -XZ) [40]. By 2019 the identification of at least 279 different MC congeners was reported 
in the literature [39]. 

Between cyanobacterial toxins, MCs are the most diverse group and the best described, though 
MC-LR and MC-RR—are the only two widely researched. Minority MC congeners demonstrate 
different toxicokinetic and toxicodynamic features [41]. Variations in vivo toxicity between MC 
congeners can be attributed to the differences in their uptake by organic anion transporting 
polypeptides (OATP) transport versus serine/threonine protein phosphatases (PP) 1 and 2a inhibition 
[42]. The toxicity of MCs depends on variations in their chemical structure and ranges over six orders 
of magnitude [43].  

MC toxicity affects not only the liver but also the brain [44] and other organs. Multiple neurotoxic 
effects of MC-LR were demonstrated using multiple biological models, including birds, fishes, and 
mammals [45–47]. For example, using murine brain cell line as a model, congener-dependent 
pronounced neurodegenerative effects were identified (MC-LF>>MC-LW>MC-LR) [48].  
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2.2. BMAA (β-N-methylamino-l-alanine) and Isomers 

BMAA is a non-proteogenic amino acid produced by all known groups of free-living and 
symbiotic cyanobacteria [49]. The isomeric forms of BMAA, such as 2,4-diaminobutyric acid (2,4-
DAB) and N-(2-aminoethyl) glycine (AEG), can also be found in different species of cyanobacteria, 
including Anabaena, Leptolyngbya sp., Oscillatoria sp., Merismopedia sp., and Microcystis aeruginosa [50]. 
The isomers are detected in nature along with BMAA but are less studied. BMAA isomers are 
neurotoxic [51]. Recent research using larval zebrafish as a biological model identified 2,4 DAB as a 
more potent neurotoxin than AEG and BMAA [52]. 

BMAA has been shown to contribute to protein misfolding, enzyme inhibition, and 
neuroinflammation [53]. BMAA toxic effects were found to be related to the misincorporation of 
serine in multiple human proteins [54,55] which can lead to the formation of inclusion bodies in 
neurons [56]. Since some serine sites, such as tau serine residue 422 have been identified of key 
importance in neuropathologies [57], misincorporation in such sites can be particularly detrimental. 
Even a low level of misincorporation rate (1 per 10,000 codons) can lead to neurodegeneration in a 
rodent model [58]. Several groups found in their in vitro and in vivo studies that BMAA leads to the 
overexpression TDP-43 (TAR DNA-binding protein 43) encoded by the TARDBP gene [59–61]. 

Most animal models’ BMAA studies were concentrated on investigating BMAA effects in the 
brain and other organs. Using mice Xie and co-authors reported that less than 1% of total BMAA from 
adult mice plasma was taken in the brain [62], i.e., BBB is not easily permeable for BMAA. The 
mechanism of neurotoxicity may involve a direct action on the NMDA receptor, activation of 
glutamate receptor 5, and induction of oxidative stress. 

Recently, Han and co-authors [63] found that BMAA can serve as a substrate for human 
alanyltRNA synthetase (AlaRS), avoiding the intrinsic editing activity of AlaRS, acting as a 
competitive inhibitor, and comprising the editing ability of AlaRS. Terminally differentiated cells, 
such as neurons, are particularly susceptible to mistranslation and accumulation and forming of 
misfolded and aggregated proteins [58,64]. 

2.3 Other Cyanobacterial Neurotoxins  

Traditional neurotoxins from cyanobacteria with acute effects include alkaloid or 
organophosphorus compounds such as (a) anatoxin-a and homologs which affect nicotinic 
acetylcholine alkaloid toxins and muscarinic acetylcholine receptors [65,66]; (b) saxitoxins can be 
produced by both dinoflagellates and by cyanobacteria from several genera including 
Aphanizomenon, Cylindrospermopsis and Dolichospermum; (c) guanitoxins which are similar in structure 
to organophosphates and able to irreversibly inhibit acetylcholinesterase [67]; their presence was also 
found in desert assemblages [68,69]. Cylindrospermopsin toxin- another frequent finding during fish 
kills is a highly biologically active alkaloid consisting of a tricyclic guanidine moiety combined with 
hydroxymethyluracil [70] interferes with cellular metabolism and causes hepatotoxic and genotoxic 
effects, as well as neurotoxic effects [71]. There are an increasing number of research on different 
groups of cyanotoxins from cyanobacteria genera—Nostacales (Nostoc, Hapalosiphon, Fischerella, 
Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, 
Nodularia, Stigonema, Calothrix, Cylindrospermum, and Desmonostoc species) and others [72].  

It is known that cyanobacteria are capable of producing different toxins which can be present 
during the same HABs [73]. It is not clear, however, how the environmental factors regulate the 
abundance of different MC congeners and isoforms of other toxins in a bloom [39]. In natural lake 
cyanobacteria, species composition can be complex, and cyanotoxins can be represented by a 
structural variety of toxins and cyanopeptides. Thus, BMAA can co-occur with its isomers (2-DAB 
and AEG) and have synergistic neurotoxic effects, as demonstrated in in vitro cell line experiments 
[74]. Moreover, the joint presence of MC-LR and BMAA leads to their interaction in vivo and to the 
neurotoxic effect enhancement [75]. The development of methods allowing for the assessment of 
multiple toxins during algal blooms is needed [76]. 
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2.4. Cyanopeptides  

The majority of cyanobacterial secondary metabolites are peptides or include peptidic 
substructures. Cyanopeptides are non-ribosomal peptides rich with posttranslational modifications 
and non-proteinogenic amino acids and consist of linear, cyclic or multicyclic molecules with basic, 
depsipeptidic, or lipopeptidic structures. More than 500 cyanopeptides range from app. 300 to 2000 
Da have been structurally identified by 2019 [77]. Natural selection did not minimize the pool of 
peptides but favors the production of a wide array of different peptide structures. The biosynthetic 
non-ribosomal pathways of peptide synthesis are evolutionarily ancient and precede synthetic 
pathways of higher plants and animals. During HABs, cyanobacteria produce a tremendous amount 
of diverse cyanopeptides; however, their ecological significance is unclear. They can happen at 
surface waters in the same nanomolar concentration as MCs, exhibit toxicity towards grazers in the 
same micromolar range as MCs, and their production is synchronized with Microcystis sp. While the 
abundance of MCs can be monitored successfully, more studies on cyanopeptides appearance and 
persistence during blooms [77,78] and their potential for chronic toxicity are needed. The bioactive 
compounds produced by cyanobacteria are not limited by peptides and also include alkaloids, 
cyclophanes, terpenes, lactones, etc. Cyanobacterial compounds have a broad bioactive spectrum, 
with many acting as serine protease inhibitors, trypsin and chymotrypsin inhibitors, and anti-cancer 
compounds, capable of modulating infectious diseases [79].  

2.5. Chronic Effects of Cyanobacterial Toxins 

The epidemiological studies of human health impacts of chronic cyanobacterial toxins exposure 
are nascent. They have been associated with neurodegenerative diseases, including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) [80–84]. Clusters of 
ALS and ALS-like diseases have been reported in relation to cyanobacteria in Guam, France, Japan, 
New Hampshire, and Wisconsin (summarized in Table 1). The slow onset of neurodegenerative 
diseases (time distance between exposure and possible outcome) and problems with the assessment 
of environmental exposure interfere with our understanding of the role and significance of 
cyanotoxins in neurodegenerative diseases. 

Table 1. ALS/PD clusters related to environmental factors and cyanobacteria. 

Location Period 
ALS/PD 

Cases 

Water 

Quality 

Toxic Food 

or Dietary 

Components 

Key Findings Reference 

Guam 
1945–
1969 

492 Mn↑ Cycad flour 
Cycad toxic effect; 

Biochemical and neuropathologic 
abnormalities in ALS/PD diagnosed locals 

[85] 

Guam 1940s–60s - - 

Cycad flour, 
flying foxes; 

food 
containing 

phytotoxins 

Accumulation of cycad neurotoxins 
(BMAA, cycasin) in flying foxes; 

Flying foxes consumption  ALS-PDC 
[86] 

Guam and 
other 

Mariana 
Islands 

1956–
1980 

39 - - 

Similar genotypic composition of 
Chamorros on all the Mariana Islands but 

different 
mortality rates of ALS/PD on Saipan than 

on Guam; 
Environmental factors of ALS > genetic 

[87] 

Guam, 
Canada 

– 23 
HABs: 
BMAA 

Cycad flour, 
flying foxes 
(for Guam) 

BMAA in tissues from frontal cortex; 
BMAA-containing food relates to 

ALS/PDC; 
HABs  cyanobacterial contamination 

water supplies BMAA biomagnification 

[88,89] 
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Western 
New Guinea 

1950s–
1984 

- Ca, Mg ↓ - Environmental factors of ALS > genetic [90] 

Kii 
Peninsula, 

Japan 
1961 

>4 
 

Ca, Mg, Na, 
KHCO3, Cl 

↓ 
- 

Low mineral content in water supplies 
possibly leads to ND; > ALS - Mitogawa 

area 
[91] 

KII 
Peninsula, 

Japan 
1972 40 Mn↑ - 

Possible association of Mn to ALS.         
 

[92] 

Skaraborg, 
Sweden 

1973–
1984 

70 
males 

- - 
Cluster of MND in Skaraborg; 

Agricultural occupation  MND risk. 
[93] 

Two Rivers, 
Small 

Wisconsin, 
USA 

1975–
1983 

6 - fish 
Polychlorinated biphenyl  

Contaminated fish consumption  ALS 
risk. 

[94] 

France 
1975–
1999 

18 - - 
ALS cluster in south-eastern France; 

Infections or environmental factors of ALS 
> genetic.  

[95] 

Italy 
1980–
2001 

634 - - 
16 ALS clusters; 

Low efficiency in detoxification systems; 
Environmental factors of ALS (toxins) 

[96] 

Finland 
1985–
1995 

576 Pb, Cd, Zn↑ - 
Two ALS clusters; 

Environmental factors of ALS. 
[97] 

Enfield, NH, 
northeastern 

USA 

1990–
2007 

278 
HABs: 

BMAA, MC 
Fish, 

shellfish 

High ALS incidence near Lake Mascoma; 
Chronic exposure to cyanotoxins  ALS; 

Combined impact of multiple cyanotoxins. 
[82] 

Iraq, Saudi 
Arabia 

1991–
2001 

48 
 

BMAA 
- 

48 ALS cases in Persian Gulf war veterans 
linked to 

desert’s crust contains BMAA; 
Aerosolization of cyanobacteria  

inhalation of dust  BMAA exposure 

[98–100] 

Southern 
France, 
Hérault 
district 

1994–
2009 

381 
HABs: 
BMAA 

shellfish 

ALS cluster in Thau lagoon; Association 
with 

high concentrations of BMAA in mussels 
and oysters 

[101] 

Northern 
New 

England, 
USA 

1997–
2009 

688 
HABs, 

[CH3Hg]+ 
- 

11 clusters of ALS grouped in 4 regions; 
Location of ALS cases are close to water 

bodies where HABs occurs; 
Environmental factors  ALS risk 

[102] 

Northern 
New 

England, 
USA 

1997–
2009 

>800 
 

HABs - HABs  water-quality  ALS risk [103] 

Northern 
New 

England, 
USA 

1999–
2009 

- 
HABs: 
BMAA 

- 
Mapping cyanobacterial HABs for 

northern New England lakes; Cyanotoxins 
increase ALS risk. 

[84] 

Western 
NH, USA 

– - 
HABs: 
BMAA 

fish 

High concentrations of BMAA and DAB 
were found in the Lake Mascoma fish; 

BMAA, DAB, AEG in the air filters; 
ALS linked to BMAA. 

[83] 

France 
2003–
2011 

72 
HABs: 
BMAA 

 
Nine ALS clusters; 

ALS linked to BMAA. 
[104] 

South Korea 
2005–
2017 

- 
HABs: 

BMAA and 
other 

- 
HABs exposure  ND occurrence; 

HABs  long-term impacts on human 
health 

[105] 

Guadeloupe 
1996–
2011 

63 - - 
The highest incidence of ALS - Marie-

Galante island; 
Environmental factor(s)  ALS risk  

[106] 
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Northern 
and 

Southern 
Italy 

2002–
2012 

95 - 
dietary 

supplements 
Private wells using  ALS risk↑; 

Amino acid supplements  ALS risk 
[107] 

Annapolis, 
Maryland, 

USA 
2013 3 

HABs: 
BMAA 

blue crab 
High concentrations of BMAA in the crabs 

originated Chesapeake Bay  
HABs exposure  ALS occurrence 

[108] 

The link between BMAA and neurodegenerative diseases is yet to be further elucidated. Several 
studies have reported the presence of BMAA post-mortem in the brain tissues of patients who die 
from ALS/PD [89,109]. However, in ALS/Alzheimer’s disease [110], and other studies were not able 
to identify BMAA presence [111,112]. The ALS/PD neurodegenerative disorder, formerly 
hyperendemic in Guam-USA, Kii-Japan, and Papua-Indonesia associated with several cycad food 
toxins, including BMAA [113], has now been identified in both aquatic and terrestrial eco-systems in 
North America [82,83], The Baltic Sea [114], France [101], Sweden [115], Peru [116], and Qatar [117]; 
and is produced by several different cyanobacteria [49], diatoms [118], and dinoflagellates [119]. 

Residential exposure to environmental pollutants may play an essential role in the etiology of 
ALS, which is supported by non-random distribution by addresses of ALS patients [120]. 

2.6. Stability of Cyanotoxins 

Many cyanotoxins possessing cyclic peptide structure are resistant to chemical degradation 
[121], highly stable, and may persist in aquatic ecosystems for weeks and months [2,122]. Thus, MCs 
can be retained in mussels (Mytilus californians) for up to eight weeks [123]. The high stability of MCs, 
cylindrospermopsin [124,125], and other cyanotoxins over a wide range of pH and temperature might 
have significant consequences for aquatic ecosystems and contribute to bioaccumulation of toxins to 
higher levels of food chains. These peptides are synthesized non-ribosomally and may contain non-
proteinogenic amino acids [126–128]. 

Toxins undergoing attenuation via photodegradation may vary depending on the type of toxin, 
HABs timing, and environmental conditions [129]. Though cyanotoxins are resistant to chemical 
degradation, recent advances in molecular microbial communities research have found that toxic 
cyanoHABs favor the specific members of bacterioplankton with degrading abilities towards 
cyanotoxins [130,131]. The strains of the bacterial genera Sphingomonas (majority of MC-degrading 
bacteria), Rhodococcus, Brevibacterium, Burkholderia, Mycobacterium, Pseudomonas, Novosphyngobium 
and others can degrade MCs in time scale from hours to days [132–134]. The genomes of some MCs-
degrading bacteria are sequenced [135,136], and mlr gene cluster have been implicated in playing a 
prominent role in the sequential hydrolysis of MCs peptide bonds [137,138]. 

Similar to MCs, cylindrospermopsin toxin can also be degraded by bacteria isolated from 
cyanobacterial blooms (Bacillus sp., Aeromonas sp.) [139,140] and by some probiotic bacteria [141]. Not 
only bacteria but fungi demonstrate algicidal activities such as Trichoderma citrinoviride degrading 
MCs [142]. Furthermore, Mohamed and co-authors [143] summarized data on six fungal species with 
biodegrading activities against MCs. Between zooplankton grazers, metazoans, such as Daphnia and 
Cyclops, are also susceptible to cyanotoxins [144,145]. Protozoa, on the other hand, are highly 
resistant to cyanotoxins and demonstrate great potential in controlling harmful cyanobacteria and 
improving phytoplankton composition in eutrophic waters [146,147]. 

2.7. Data gaps in Cyanotoxins Analytical Methods 

Analytical techniques (selectivity and sensitivity, fraction analysis, quality control) play a critical 
role in assessing the cyanotoxins effects [148,149]. There are significant data gaps in analytical 
methods, including (a) the absence of all the relevant standards [150]; (b) the need for validated 
methodologies for cyanotoxins outside the water samples: (c) the need for standardization of 
cyanotoxins in multi-center monitoring programs [151]; (d) the need for new technologies allowing 
simultaneous identification of as many toxins as possible; (e) and the need to improve robustness and 
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a detection limit of detection methods Another critical challenge is analyze cyanotoxins faster and 
feasible in situ [152]. Unsuitable analytical methods may partly explain the lack of consensus over 
the widespread presence of some cyanotoxins (BMAA) in aquatic ecosystems [153]. 

Recently, high-resolution mass spectrometry (HRMS/MS) has become more available for 
researchers. Current methods rely on defined cyanotoxins and cyanopeptides targets and are 
generally inappropriate for detecting and identifying of emerging novel compounds. The recent 
approach of the non-targeted analysis of pollutants and toxins in water focus on a comprehensive 
workflow for the acquisition and treatment of the data generated after liquid chromatography 
coupled with high-resolution mass spectrometry (LC-HRMS) analysis [154–157]. So-called suspect 
screening identifies novel compounds, including cyanotoxins and cyanopeptides based on the exact 
mass (m/z), presence of one or more charge states (z = 1, 2, etc.), expected isotope pattern and common 
adducts) as well as secondary fragmentation (MS2) even without reference chemicals [158–161]. 

Since 1957, when the first MC was detected, many methods have been developed to analyze 
environmental samples for cyanotoxins [162]. Nowadays, the number of studied cyanotoxins and 
analytical methods for their qualitative and quantitative detections have increased. Detection 
approaches vary in terms of accuracy, sensitivity, and specificity. The most commonly used 
techniques for cyanotoxins detection are enzyme-linked immunosorbent assays (ELISA), protein 
phosphatase inhibition assay (PPIA), molecular assays - polymerase chain reaction (PCR), and 
quantitative real-time PCR (qPCR) for toxins producing genotypes for cyanobacteria identification, 
liquid chromatography (LC) and high-performance liquid chromatography (HPLC) combined with 
different detectors. Among these, liquid chromatography-mass spectrometry (LC-MS) takes a special 
place because it identifies the target cyanotoxins with high accuracy at a significantly low detection 
level [163,164]. Moreover, despite the structural diversity of cyanotoxins, LC-MS allows for 
determining groups of toxins simultaneously. That is one extra advantage of using this detection 
technique integrated with bioassays and molecular assays in complex environmental samples for 
complete water quality assessment [165,166]. 

Table 2. Chemical detection methods for cyanotoxins in water samples. 

№ Cyanotoxins 
Detection 

Techniques 

Sensivity 
Reference 

LOD LOQ 

1. MC-LR and 2 congeners UHPLC-MS/MS 0.02–0.04 ng/mL – [167] 
2. MC-LR and 11 congeners UHPLC-MS/MS – 0.2 µg/L [168] 

3. 

MC-LR and 4 congeners 

LC-MS/MS 

0.005–0.0817 µg/L 0.005– 0.0817µg/L 

[169] 
Nodularin 0.0048 µg/L 0.0048 µg/L 
Anatoxin-a 0.0001 µg/L 0.0004 µg/L 

Cylindrospermopsin 0.0001 µg/L 0.0004 µg/L 

4. 
BMAA 

UHPLC-MS/MS 
0.02 pg/µL 0.05 pg/µL 

[170] 
2,4-DAB 0.04 pg/µL 0.13 pg/µL 

5. 

MC-LR and 7 congeners 

LC-MS/MS 

– 0.04–0.5 µg/L 

[171] 

Anatoxin-a – 0.02 µg/L 
Cylindrospermopsin (and 

deoxyCYN) 
– 0.01 –0.02 µg/L 

Saxitoxins (4 congeners), GTX 
(5 congeners), 

decarbamoylgonyautoxin, N-
sulfogonyautoxins-1 and -2 

– 0.1–2 µg/L 

6. 
MC-LR and 11 congeners 

HPLC-MS/MS 
0.01±0.01–0.19±0.2 

µg/L 
0.04±0.04–0.64±0.65 

µg/L [172] 
Nodularin 0.04 ± 0.02 µg/L 0.13 ± 0.06 µg/L 

7. MC-LR and 2 congeners HPLC-UV/PDA 3–4 µg/L 9–13 µg/L [173] 
8. MC-LR and 2 congeners HPLC-HRMS 0.002 µg/L – [174] 

9. 
Anatoxin-a, 

HILIC-MS/MS 
0.004 ng/mL 0.01 ng/mL 

[175] Cylindrospermopsin 0.07 ng/mL 0.23 ng/mL 
Saxitoxin 0.01 ng/mL 0.04 ng/mL 
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MC-LR and 4 congeners 
RPLC- MS/MS 

0.02–0.08 ng/mL 0.07–0.28 ng/mL 
Nodularin 0.05 ng/mL 0.18 ng/mL 

10. 
MC-LR and 5 congeners 

UHPLC-MS/MS 
– 0.046–0.052 µg/L 

[176] Nodularin – 0.049 µg/L 
Cylindrospermopsin – 0.052 µg/L 

11. 

BMAA 

UHPLC-HRMS 

5 ng/L 10 ng/L 

[177] 
DAB 3 ng/L 5 ng/L 
AEG 2 ng/L 5 ng/L 

BAMA 5 ng/L 10 ng/L 

12. 
MC-LR and 5 congeners 

HPLC-MS/MS 
0.0003–0.0009 µg/L – 

[178] Cylindrospermopsin 0.0005 µg/L – 
Saxitoxin, dcSTX 0.0009–0.0013 µg/L – 

13. BMAA LC-MS/MS 10 ng/L – [179] 

14. 

MC-LR and 5 congeners 

LC-MS/MS 

0.04–0.8 µg/L 0.1–2.3 µg/L 

[180] 
Nodularin 0.3 µg/L 0.9 µg/L 
Anatoxin-a 0.27 µg/L 0.81 µg/L 

Cylindrospermopsin 0.14 µg/L 0.4 µg/L 
15. MC-LR and 2 congeners HPLC-DAD 0.08–0.15 µg/l – [181] 

16. 

MC-LR and 11 congeners 

LC-MS/MS 

0.001–0.007 µg/L 0.003–0.020 µg/L 

[182] 
Nodularin 0.002 µg/L 0.006 µg/L 
Anatoxin-a 0.001 µg/L 0.003 µg/L 

Cylindrospermopsin 0.001 µg/L 0.003 µg/L 

17. 

MCs 

UPLC-MS/MS 

0.005 µg/L – 

[183] 
Anatoxin-a 0.02 µg/L – 

Cylindrospermopsin 0.02 µg/L – 
Saxitoxin 0.8 µg/L – 
BMAA 0.03 µg/L – 

18. BMAA LC-MS/MS 0.030 µg/L 0.096 µg/L [184] 

19. 

MC-LR and 11 congeners 
on-line SPE – 

UHPLC-HRMS 

5–37 ng/L 15–130 ng/L 

[185] 
Anatoxin-a 15–18 ng/L 50–60 ng/L 

Homoanatoxin-a 11–12 ng/L 30–40 ng/L 
Cylindrospermopsin 41–53 ng/L 130–170 ng/L 

20. MC-LR and 1 congener HPLC-DAD 0.2–0.3 µg/L – [186] 

21. 

Anatoxin-a 

UHPLC-MS/MS 

1.1 ng/L 2.5   ng/L 

[187] 
Cylindrospermopsin 10.9 ng/L 21.7 ng/L 

Saxitoxins (4 congeners) 3.5–9 ng/L 7.1–26.9 ng/L 
GTX (7 congeners) 18.5–54.5 ng/L 42.2–227.6 ng/L 

22. 
MC-LR and 7 congeners 

UHPLC-MS/MS 
0.1 µg/L 0.5 µg/L 

[164] 
Nodularin 0.1 µg/L 0.5 µg/L 

23. MC-LR and 2 congeners UHPLC-MS/MS 0.1 µg/L 24 µg/L [188] 
24. Cylindrospermopsin UHPLC-MS/MS 0.029 µg/L 0.091 µg/L [189] 

25. Saxitoxins (4 congeners) 
on-line SPE–

HILIC-HRMS 
0.72 –3.9 ng/L 2.4–13 ng/L [190] 

26. 

MC-LR and 1 congener 

tandem-SPE-
HILIC-MS/MS 

0.0012–0.0021 µg/L 0.004–0.007 µg/L 

[191] 

Nodularin 0.0021 µg/L 0.007 µg/L 
Anatoxin-a 0.03 µg/L 0.1 µg/L 

Cylindrospermopsin 0.0012 µg/L 0.004 µg/L 
BMAA 0.015 µg/L 0.05 µg/L 
DAB 0.009 µg/L 0.03 µg/L 
AEG 0.006 µg/L 0.02 µg/L 

27. 
BMAA 

LC-MS/MS 
2.8 ng/mL – 

[192] 
DAB 1.7 ng/mL – 

28. 

BMAA 
on-line SPE-

UHPLC-HRMS 

10 ng/L – 

[153] 
BAMA 10 ng/L – 
DAB 10 ng/L – 
AEG 5 ng/L – 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2023                   doi:10.20944/preprints202301.0357.v1

https://doi.org/10.20944/preprints202301.0357.v1


 9 

 

29. 
BMA 

UHPLC-MS/MS 
– 2.5 µg/L 

[193] AEG – 2.5 µg/L 
DABA – 5 µg/L 

30. MC-LR and 7 congeners 
UHPLC-MS/MS 

(ESI) 
0.02–0.2 µg/L 0.05–0.5 µg/L [194] 

LOD—limit of detection; LOQ—limit of quantification; UHPLC—ultra high-performance liquid 
chromatography; HILIC-MS/MS—hydrophilic interaction liquid chromatography-tandem mass spectrometry; 
RPLC-MS/MS—reverse phase chromatography tandem mass spectrometry; UV/PDA—ultraviolet/photodiode 
array detection; DAD—diode array detector; ESI—electrospray ionization; SPE—solid phase extraction; 
BAMA—β-amino-N-methylalanine; GTX—gonyautoxins; dcSTX—decarbamoylsaxitoxin. 

As separation instruments, HPLC and UHPLC are usually used. UHPLC, is faster due to the 
higher pressure applied, and the online SPE-procedure provides reduced sample time processing 
[2,181]. HPLC-UV/PDA [173], HPLC-DAD [186] have less LOD values (3–4 µg/L, 0.2–0.3 µg/L, 
respectively) for MCs than LC-MS/MS where minimum LOD values vary within 0.0003–0.1 µg/L 
[164,178,188]. Concerning other cyanotoxins, MS detection techniques also provide relatively low 
values of LOD and LOQ. The LC-MS method requires expensive instruments and thorough sample 
preparation, which makes it a time-consuming procedure. That limits LC-MS techniques' application 
as ubiquitous [195]. Nevertheless, this method remains preferable for precise quantitative analysis of 
cyanotoxins in water samples.  

3. Toxin Exposure Pathways 

Major cyanotoxins exposure routes include ingestion through drinking water or dermal contact 
with recreational waters [196], also through food, and inhalation since cyanotoxins were identified in 
aerosols generated by HABs [197]. Historically, cyanoHABs were considered a public health threat 
to freshwater lakes, rivers, and reservoirs. However, freshwater-sourced MCs can accumulate in 
marine mollusks in concentrations 100-fold greater than in surrounding water [10,123].  

3.1. Transport of Cyanotoxins in Freshwater and Marine Systems 

Recent studies demonstrated that cyanotoxins could persist during transport into estuarine and 
marine waters and can directly affect marine ecosystems [10,123,198–200]. MCs and other toxins 
produced by freshwater cyanobacteria can enter the marine ecosystem via freshwater channels and 
outflows [12]. This changes HABs management approach, requiring monitoring of multiple toxins 
across the freshwater-to-marine continuum and including cyanotoxins in marine and estuarine 
monitoring [201].  

3.2. Toxin exposure pathways: Oral (Drinking water) 

When drinking water is impacted by cyanobacterial toxins resulting from HABs and not treated 
adequately to reduce the cyanotoxin levels, it can cause serious effects on the entire region [197]. 

The causes of cyanobacteria proliferation in urban environments are mainly the disposal of 
untreated domestic sewage in water reservoirs and surface runoff water from soils. In analyzing 
sewage disposal systems in the main cities of Kazakhstan—Almaty and Astana, the efficiency of 
biogenic compounds removal remains unsatisfactory, reaching only 30–40%. This eutrophication is 
due to the increase of nutrients, such as phosphorus and nitrogen, arising from human action, 
representing a serious risk to the health of living beings and drastically reducing water quality. To 
cope with this problem, the possibility of intensifying nitrogen and phosphorus removal using zeolite 
as a biofilm carrier in an activated sludge tank is examined [202].  

3.3. Toxin Exposure Pathways: Oral (Food) 

Food is an important source of cyanotoxin exposure [203]. Worryingly, exposure of crop plants 
to cyanotoxins through irrigation was already demonstrated [204–206]. For centuries some species of 
Nostoc—the symbiotic colonial cyanobacteria N. flagelliforme, N. commune, and N. sphaeroides – 
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have been wild-harvested and consumed as a part of the traditional diet by indigenous people in 
different countries, including Peru, China, Ecquador, Mexico, Fiji, Filippines, Mongolia [209,210]. 

Chronic dietary exposure to BMAA present in the traditional Chamorro diet was associated with 
the formation of both β-amyloid deposits and neurofibrils tangles (NFT) found in brain tissues of 
Chamorros who died with ALS/ Parkinson's dementia complex (ALS/PD). BMAA occurs not only as 
a free amino acid at different levels of the trophic chain (cyanobacteria Nostoc sp., root symbioses, 
cycad seeds, flying foxes, and brain tissues of Chamorro people who passed away from ALS/PD) but 
can also be released by acid hydrolysis increasing in concentrations 10- to 240-fold [207]. Vervet 
monkeys fed for only six months with BMAA-dosed fruit developed β-amyloid deposits and NFT in 
the brain. Increasing the amount of L-serine in the vervets diet reduced the density of NFT and the 
risk of neurodegenerative pathological brain findings [56]. Recently, Downing and co-authors [208] 
revealed that human liver hepatocyte and intestinal epithelial cultures could not metabolize BMAA, 
demonstrating that BMAA detoxication is impossible and BMAA will likely accumulate in these cells 
[53]. 

3.4. Toxin Exposure Pathways: Air (Aerosolization) 

The algae can be dispersed by air [211], and aerosol can be created from algae during HABs 
[212]. The increase in the salinity of freshwater streams is likely to influence the abundance and 
diversity of aerosolized bacteria [213]. The cyanotoxins may be transported in aerosols from lakes 
with high concentrations of toxigenic cyanobacteria [214–217]. Recent findings with rat models 
confirmed that BMAA exposure was insufficient in producing gross toxic effects; however, it still 
leaves the possibility of lifelong exposure via inhalation [218].  

MC-LR exposure in the existing rodent models increases lung infiltration with granulocytes 
[219,220] and increases proinflammatory cytokine expression [221,222]. Recently, Breidenbach and 
co-authors [223] reported that human airway epithelium response to MC-LR is represented by 
proinflammatory phenotype, including chemokines.  

The aerosolization of cyanobacteria was proposed as a risk factor for ALS [100]. Aerial link of 
exposure was investigated with ALS/PD. BMAA and its isomers (DAB and AEG) were measured in 
air filters around lake Mascoma [83]. Moreover, Facciponte and co-authors [224] found that humans 
routinely inhale aerosolized cyanobacteria. Using PCR, authors identified cyanobacteria at high 
frequencies in the upper respiratory tract (93.20%) and central airway (79.31%). They concluded that 
cyanobacteria exposure might be a prevalent and chronic phenomenon and not necessarily restricted 
to water bodies. 

Autoradiographic imaging in mice showed a distinct localization of radioactivity in olfactory 
mucosa and bulb following intranasal instillation of radiolabelled BMAA, confirming a direct transfer 
of BMAA via olfactory pathways to mice brain circumventing the blood-brain barrier [225].  

3.6. Natural Model of Toxin Exposure 

The complexity of neurodegenerative diseases requires a deep understanding of the disease 
biology and makes it challenging to develop a model of cyanotoxin exposure close to 
neurodegenerative findings in humans due to the species-specific variations in the phosphorylation 
and cleavage of the tau protein [226]. Natural animal models should recapitulate two major features 
of human neurodegenerative diseases: Aβ deposition and NFT formation. Chronic low BMAA 
concentrations induce neurodegenerative changes in non-human primates [56,227]. BMAA can 
bioaccumulate in marine apex predators such as dolphins and sharks, and in humans [207,228,229]. 
It was detected in the brains of stranded dolphins with pathological hallmarks of AD at 
concentrations higher than those found post-mortem in individuals with ALS and AD [230]. Chronic 
low BMAA concentrations induce neurodegenerative changes in non-human primates [56,227]. 
There are increased numbers of β-amyloid+ and dystrophic neurites in the auditory cortex compared 
to the visual cortex and brainstem [230]. 
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3.7. Cyanotoxins and Infections 

BMAA can facilitate most of the mechanisms related to neurodegeneration [231]. Thus, Lobner 
and co-authors [232] demonstrated that BMAA at the concentration range of 10–100 µmol potentiates 
neurotoxicity induced by amyloid-β and NMDA. 

STX doubled the quantity of ZIKV-induced neural cell death in progenitor areas of human brain 
organoids, while the chronic ingestion of water contaminated with STX before and during gestation 
caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6J mice. These 
results raise a public health concern regarding the consequences of arbovirus outbreaks in areas with 
droughts and/or frequent freshwater cyanobacterial blooms [233]. 

The outbreak of Zika syndrome coincided with a major drought in the region between 2012 and 
2016. Characteristic of dry seasons, the concentration of nutrients from untreated effluents and lower 
volume of water, and an increase in atmospheric temperature allow greater blooming of 
cyanobacteria. Consequently, the concentration of cyanotoxins, such as saxitoxins, increases. This led 
authors to formulate the hypothesis that cyanobacteria in the water supply would be a causal cofactor 
of zika-associated microcephaly.  

4. Mechanisms of Brain Toxicity 

Well-studied neurotoxins of algal origin are alkaloids saxitoxins (STXs) that have been identified 
in dinoflagellates and several cyanobacterial genera, including Anabaena, Aphanizomaenon, 
Planktothrix, Cylindrospermopsis, and Scytonema [234,235]. STXs are represented by more than 50 
structural analogs commonly known as paralytic shellfish toxins (PSTs). They block the passage of 
sodium across a biological membrane and interfere with potassium and calcium-mediated ion 
channels [72]. 

While the pathophysiology of some toxins (STXs, anatoxins, etc.) are relatively well studied, 
others, such as ciguatera, are not clear. Recently, the neurotoxic effects of cyanopeptides attracted 
more attention [77,236–238]. Some cyanopeptides exhibit anti-proliferative effects on tubulin and 
microtubules essential for neurons. Thus, the anti-proliferative toxic cyclodepsipeptides 
cryptophycins are 100–1000 fold compared with paclitaxel and vinblastin [236]. Further research 
needs to improve analytical methods and assess potentially toxic cyanopeptides.  

4.1. Neurodevelopmental Effects  

The link between neurodegeneration and neonatal BMAA exposure, dose-dependent neuronal 
loss, beta-amyloid deposition, and behavioral deficits was recently demonstrated in a rat model [239]. 
Autoradiographic imaging confirmed transplacental research of radiolabelled BMAA and specific 
uptake in mouse fetal [240]. Furthermore, in neonatal rats, the free BMAA concentration was higher 
in the neonatal brain than in peripheral tissues such as the thymus, pancreas, and spleen, except for 
the liver. The level of protein-associated BMAA was significantly higher in the hippocampus than in 
other brain regions [241]. The BMAA exposure to neural stem cells decreased neurite outgrowth, and 
a number of neurites in neural stem cells (NSC) [242]. The authors conclude that BMAA acts as a 
developmental toxin. BMAA can negatively impact NSC homeostasis, increasing susceptibility to 
neurodegenerative disease later in life [242]. Perinatal exposure in mice, even with low doses of 
BMAA, leads to neurobehavioral disturbances during the postnatal period and adulthood [243]. 

4.2. Blood-Brain Barrier (BBB) 

The blood-brain barrier and the blood-CSF barrier separate CNS from blood and include the 
endothelial lining of the brain capillaries associated with astrocytes, pericytes, and neurons. The 
pericytes and astrocytes are closely associated with the endothelial cells and are required for capillary 
maturation (pericytes) and the maintenance of the permeability-barrier functions (astrocytes). The 
basement membrane (contains laminin, proteoglycans, fibronectin, collagen IV, nidogen, and 
entactin) and is essential for  blood-barrier differentiation. BBB separates neurons from the 
circulating blood and maintains the internal chemical composition of the brain "milieu" responsible 
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for the proper functioning of neuronal circuits, neurogenesis, angiogenesis, synaptic transmission, 
etc. BBB breakdown due to disruption of the tight junctions may result in synaptic and neuronal 
dysfunction and contribute to neurodegenerative disorders such as ALS, Alzheimer's disease, 
Parkinson's disease, and multiple sclerosis [244].  

Berntzon and co-authors found BMAA in the CSF of a patient with ALS and some controls, 
though they did not confirm a prevalence of BMAA findings in ALS patients [109]. Significant 
amounts of BMAA were found in brain tissues of american ALS and Alzheimer’s disease patients, 
confirming the ability of BMAA to cross the BBB [110]. Alternative findings regarding AD patients 
were reported by Meneely and co-authors [112]. The other possible route of entry to the CNS is 
through the olfactory epithelium and the nasal passage or via the blood. The cyanobacterial 
neurotoxin BMAA can be directly transferred through olfactory pathways circumventing the BBB in 
mice and directly affecting olfactory neurons [225]. 

Microcystin-LR (MC-LR) has been confirmed to cause blood-brain barrier disruption and enter 
the brain tissue, resulting in non-negligible toxic effects. However, the neurotoxicity of MC-LR is 
mainly unknown. This study revealed that MC-LR disrupted the function of the ubiquitin-
proteasome system in neurons, which inhibited the degradation of α-synuclein (α-syn), leading to its 
release from neurons for transport into microglia. α-Syn is the main component of Lewy bodies, 
which has been identified as one of the main pathological features of Parkinson’s disease (PD). In 
vitro, we observed that α-syn mediated by MC-LR activated HMC3 cells and polarized them towards 
M1 type. In addition, we confirmed that α-syn was transported into HMC3 cells through TLR4 
receptors and activated the NLRP3 inflammasome, which in turn enhanced the maturation and 
release of IL-18 and IL-1β [245]. 

4.3. Glia 

Microglial activation and neuroinflammation are common to many neurodegenerative diseases. 
Glial cells, including microglia, have long been suspected of playing a role in Alzheimer’s disease but 
only because of their ability to react to neuronal dysfunctions (e.g., amyloid and Tau aggregates). 
This neurocentric view, which considered glial cells as secondary, has been challenged recently by 
the results of genetic association studies identifying genetic loci associated with the risk of 
Alzheimer’s that are associated with genes preferentially or exclusively expressed in glial cells [246].  

The research on cyanopeptides effects on glia is limited. Chiu and co-authors [247,248] 
demonstrated a gliotoxicity of BMAA using the olfactory ensheathing cell as in vitro model. A study 
conducted by Bubic and co-workers [249] showed that depsipeptide planktopeptin and 
anabaenopeptins impair the metabolic activities of normal human astrocytes via membrane 
perforation, oxidative stress, and changes in mitochondrial metabolism. Later, Mello and co-authors 
showed cytotoxic effects of BMAA and MC-LR on primary astrocytes isolated from mixed adult brain 
cell cultures [250], and Soto, with co-workers, demonstrated damaging BMAA effects on Muller’s 
glial cells [251]. Both glial cells and neurons can to uptake and accumulate BMAA, as demonstrated 
using a specific, polyclonal antibody against BMAA [252].  

The role of dysfunctional astrocytes in the pathogenesis of ALS and other neurodegenerative 
diseases indicates that astrocytes may be targeted with strategies for their revival. These strategies 
may include direct intervention on astrocytes with modulatory medicines, exosomes and miRNA-
based therapies, or their replacement.  

5. Cyanotoxins, Cyanopeptides and Neurodegenerative Diseases 

A central dogma of age-related neurodegenerative diseases claims that the accumulation and 
propagation of aggregated proteins cause neurodegeneration [253]. Recently, a mechanism that does 
not involve a specific neuropathogenic protein but is mediated by error-prone translation leading to 
stochastic near-cognate missense substitutions was suggested. Drummond and Wilke proposed in 
2008 that tolerance to translation errors of certain proteins provides a new mechanism to explain their 
propensity to misfold pathologically. Mistranslation destabilizes the proteome by leading to 
misfolding and accumulation in the cells of potentially toxic protein aggregates [58,254]. The finding 
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that translational error increases with age in some biological models (Drosophila) [255] may suggest 
the possibility that the rate of translation leading to  aging-related proteostasis failure may be a key 
event in early ND diseases [256]. The mistranslating cells exhibit severely inhibited protein synthesis 
and formation of protein aggregates in the cellular ND model [257]. Aminoacyl-tRNA synthetases 
(AARSs) catalyze covalent binding tRNA with their cognate amino acids and are 2–3 orders of 
magnitude more selective than other amino acid-utilizing [258].  

Hundreds of non-proteinogenic amino acids produced by cyanobacteria include BMAA and 
can, in principle, enter human protein synthesis through foods and drinking water. Earlier studies 
support the ability of BMAA to be incorporated into the proteins [54,259]. It has been suggested that 
BMAA is misincorporated at serine codons during protein synthesis [54]. However, recently Han and 
co-authors [63] demonstrated that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS) 
but a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by 
escaping from the intrinsic AlaRS proofreading activity. Furthermore, BMAA inhibits the cognate 
amino acid activation, the editing functions of AlaRS, and the deacylation activity of HsAlaRS on Ser-
tRNAAla [63]. The AlaRS possess canonical and non-canonical cellular functions and are 
predominantly linked to neurodegenerative disorders in human and mouse models [260]. 
Furthermore, using transcriptomic analysis, Wang and co-authors [261] confirmed that BMAA could 
alter the expression of major genes encoding components related to translation in prokaryotes 
(diazotrophic algae Anabaena). The ability of BMAA to affect protein hemostasis can be 
evolutionarily ancient and initially directed to inhibit the growth of neighboring microalgae. The 
inhibition of cell growth and progression in the cell cycle of eukaryotic cells was demonstrated in in 
vitro experiments [262]. The production of cyclic peptides, including non-proteinogenic amino acids, 
leads to the lysis of cyanobacteria and may be an effective control mechanism of cyanobacterial 
density during algal blooms [126]. 

6. Conclusions 

The structural variety of cyanotoxins and cyanopeptides is produced during cyanobacterial 
blooms. Many structural aspects of key metabolites involved in the cyanotoxins pathways have yet 
to be elucidated. However, it is becoming clear that non-proteinogenic amino acids, free-existing or 
initially a part of cyanopeptides, may affect protein hemostasis and lead to mistranslation and 
misfolding of proteins in eukaryotic cells, building a link to neurodegenerative diseases 
development. There are many aspects pertaining to the regulation, role, and function of these 
compounds that also require the development of novel detection approaches. This knowledge may 
be harnessed to identify novel biomarkers for neurodegenerative diseases and new targets for 
interventions.  
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