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Abstract: G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface
receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ
system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance
in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure
and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These
effects of cholesterol could result in indirect changes by altering the mechanical properties of the
lipid environment or direct changes by binding to specific sites on the protein. There are a number of
studies and reviews on how cholesterol modulates class A GPCRs, however, this area of study is yet
to be explored for class C GPCRs, which are characterized by a large extracellular region and often
form constitutive dimers. This review highlights specific sites of interaction, functions, and structural
dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data
from some typical family members to explain the effects of membrane cholesterol on the structural
features and functions of Class C GPCRs and speculate on their corresponding therapeutic potential.

Keywords: G-protein-coupled-receptors; GPCRs; Membrane protein; Protein-lipid interactions;
Sterols; Cholesterol; Class C GPCRs

1. Introduction

Many recent studies are geared towards deciphering the structures of G-protein coupled receptors
(GPCRs) through several methods, most commonly crystallography and cryogenic electron microscopy
(Cryo-EM). This is simply because a large number of medications are designed to target GPCRs due
to their central role in many biological functions. Some members of GPCRs exist and function as
monomers, especially within the class A GPCRs. However, most GPCRs in a lipid bilayer are not
stand-alone molecules; rather, they function as dimers and oligomers with themselves or other GPCRs,
and with lipids and sterols from the bilayer[1], most notably cholesterol. Most recently, several
determined GPCR structures often existing as dimers, appear to indicate the presence of cholesterol.
A notable example is the 2-adrenergic receptor (2AR), a class A GPCR which has been crystallized
with cholesterol molecules, and a component of the dimer interface consisting of the addition of
post-translational palmitate groups from each protomer[2]. This suggests that in GPCR dimerization,
there are other responsibilities for lipids and sterols besides protein-protein interactions[3]. GPCRs also
thrive within cholesterol-rich membranes, and an insufficient or excessive amount of cholesterol within
the membrane could induce conformational changes in many GPCRs which would result in various
diseases[4]. These effects of cholesterol could result in indirect changes by altering the mechanical
properties of the lipid environment or direct changes by binding to specific sites on the protein[5–7].
There are a number of studies and reviews on how cholesterol modulates class A GPCRs, but this
area of study is yet to be fully explored for class C GPCRs. Recent advances in experimental and
computational power have enabled researchers to investigate the role of lipids in various membranes
and solvable proteins, at the atomic level using molecular dynamics simulation[8–13].

Class C GPCRs comprise about 23 receptors with a unique characterization compared to other
GPCR classes and are responsible for neurotransmitters, glutamate, GABA, sweet and umami
taste, and calcium receptors. They are obligate homo-, (e.g. mGluRs)[14–16] or hetero-, (e.g.
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GABAB) dimers[17–19], and are made up of 3 unique structural elements: a seven-transmembrane
domain which is responsible for allosteric ligand recognition but is uniquely dimeric in the case
of class C GPCRS[20]; an unusually large extracellular venus flytrap domain (VFT) which has a
double-lobed structure with a crevice between them to serve as the orthosteric binding site; and a
cysteine-rich domain (CRD) that links the VFT region to the 7TM region (Figure 1)[21]. However,
some class C GPCRs, like GABAB receptor[22,23], lack the cysteine-rich domain. Due to these
distinct structural features and mandatory dimerization, the class C GPCRs have been the most
complex of the GPCRs in terms of understanding their activation mechanism[24,25]. Structures
of over 20 class C GPCRs have been solved to date, comprising eight metabotropic glutamate
receptors (mGluR1–8), gamma-aminobutyric acid receptors (GABB1 and GABAB2), calcium-sensing
receptor (CaS)[24], retinoic acid-inducible orphan G-protein-coupled receptors (RAIG), taste receptors
(TAS1R1–TAS1R3)[26] and orphan receptors (GPR158, GPR179, GPR156 ). Similarly to other GPCR
structures, some of the determined class C GPCR structures include cholesterol or cholesteryl
hemisuccinate (CHS) during crystallization (Table 1). In contrast, some others include bound
cholesterol acting as ligands to the already determined structures (Table 1). The argument for
cholesterol addition varies from the stabilization of the protein to aiding dimerization. Experimental
analysis and, most recently molecular dynamics simulations[8–12,27] have been used to decipher the
possible role of cholesterol in these protein structures. In this review, we will discuss the relevance and
position of cholesterol molecules in class C GPCR structures and functions.

1.1. Cholesterol-Membrane Interactions

The plasma membrane of eukaryotic cells consists of various lipids displaying high biochemical
variability in both their apolar moiety and their polar head[28]. Sterols are a class of lipids that
are a key component of the plasma membrane and, are characterized by their steroid hydrocarbon
ring structure. One specific sterol, cholesterol, makes up a vital part of the plasma membrane of
eukaryotic cells. Cholesterol is crucial for membrane dynamics and organization and it is also necessary
for viability and cell proliferation. The structural features of cholesterol qualify it to interact with
proteins and other membrane lipids in several different ways through a variety of different interaction
domains[28]. Cholesterol consists of a tetracyclic fused ring skeleton with a single hydroxyl group,
a double bond, and a flexible iso-octyl hydrocarbon sidechain[29] which allows it to take on a wide
array of conformations[28]. The hydroxyl group is said to contribute significantly to the amphiphilic
behavior of cholesterol, causing it to orient in membranes[30]. It is also essential in the hydrogen
bond formation between cholesterol and water, as well as other lipid membranes in the cell. The
hydroxyl group can form two distinct types of hydrogen bonds (acceptor and donor) with a polar
group belonging to either a membrane lipid or a protein. Cholesterol is able to affect the physical
behavior and dynamics of the cell membrane by interacting with membranes rich in sphingolipids
such as lipid “rafts”[31–33], or by being present in the liquid disordered (Ld) phase of membranes
which contain a large number of glycerophospholipids such as phosphatidylcholine[34]. As a result
of this, cholesterol is able to alter the properties and dynamics of proteins in the membrane[29,
35,36]. When bound to cholesterol, some integral membrane proteins could become activated or
inactivated [36–38]. Cholesterol has been known to affect the properties of the membrane directly
or indirectly by modulating the physical properties of the membrane[29,39–42]. In recent times,
there has been considerable interest in cholesterol interaction sites in membrane proteins. Due to
various structural characteristics of membrane proteins, not all proteins will react with cholesterol, and
those that do may do so in different manners or locations[43]. For example, some proteins associate
with cholesterol-rich domains while others have direct interactions with cholesterol through their
transmembrane domains. The more common cholesterol binding sites in membrane proteins include
the cholesterol recognition/interaction amino acid consensus (CRAC)/CARC domain[44], and the
sterol-sensing domain (SSD)[45,46]. All of these listed are structural features in proteins that could
result in preferential involvement with cholesterol. Several studies have shown that protein-cholesterol
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interactions are more common in proteins with sequences comprising of the CRAC motif[47], a short
peptide segment at the tail of a transmembrane helix comprising of 5-13 amino acid residues. The CRAC
motif consists of a well-defined linear sequence of amino acids[28,43,47–51] identified by the following
pattern: a leucine or valine residue, 1-5 non-specific amino acid residues, tyrosine, another 1-5 residues
of any amino acid, and finally a lysine or arginine residue [-L/V-(X)1–5-Y-(X)1–5-R/K-, with (X)1–5
representing between one and five residues of any amino acid] [43,47–49]. HIV-1 transmembrane
protein gp41[47,52] and mammalian seminal plasma protein PDC-109[47,53] are examples of proteins
that have been identified with the CRAC motif recognition site. The major difference between the
CARC and CRAC motif is that one exhibits a preference for the outer membrane leaflet (CARC) while
the mirror sequence (CRAC) is located in the inner membrane leaflet[54,55]. A double CARC-CRAC
motif has been identified within the transmembrane domains of some membrane proteins[54,56];
however, the limiting factor of the CRAC/CARC sequence is that they are based on a linear (1D)
sequence motif, as opposed to cholesterol-binding sites which consist of a three-dimensional (3D)
structure[57]. Additionally, the sterol sensing domain is another significant cholesterol recognition
motif with a larger protein segment and comprises five transmembrane helices. The sterol-sensing
domains usually consist of a tetrapeptide amino acid sequence: tyrosine; isoleucine; tyrosine; and
phenylalanine (YIYF), which has been found to be present in other lipid-raft associated proteins without
the SSD motif[43]. Studies have shown that the presence of the YIYF amino acid sequence alone can
interact with cholesterol-rich domains[43]. Finally, START proteins have also been identified as a
cholesterol binding motif, with the transport of cholesterol molecules being their primary function[58,
59]. Proteins with the START domain are able to transfer lipids between membranes and also interact
with cholesterol[43]. While all of these are cholesterol-binding motifs in membrane proteins, the
CARC-CRAC motif is the major cholesterol interaction site that has been observed in GPCRs.

1.2. GPCR-Cholesterol Interactions

G-protein-coupled receptors are a superfamily of integral membrane proteins in the human
genome, constituting one of the largest classes of clinical drug targets[60–63]. Often distinguished by a
characteristic seven transmembrane helices plus an eighth helix that lies underneath the surface of
the layer, GPCRs depend on a relationship with the lipid membranes in their physical environment
to perform their function[64,65] . As per the phylogenetic investigation, most GPCRs belong to
one of four classes, i.e. A, B, C, and Frizzled. The class-C GPCR family contains metabotropic
glutamate receptors (mGluR), γ-aminobutyric corrosive B receptors, a few taste-detecting receptors
(e.g., TAS1R1), and a Ca2+-detecting receptor (CaS)[66]. One trademark highlight of the class-C
GPCRs is their dimerization, either into homo- or hetero-dimers, which is requisite for their proper
functioning[15]. Cholesterol assumes an essential role in the function of a significant number of GPCR
structures[67]. It does this by binding to many GPCR structures at both canonical and non-canonical
binding sites, consequently altering their ligand binding activity allosterically, which could result in
the activation or inactivation of the protein. As such, cholesterol can influence GPCR dependability,
oligomerization, and ligand proclivity[68]. Two mechanisms have been proposed by which cholesterol
might influence the structure and function of GPCRs: directly, through specific interactions with the
GPCRs; indirectly, by altering the physical properties of the membrane; or perhaps some combination
of the two[47]. Functional implications of cholesterol interactions have been determined for a number
of GPCRs, including rhodopsin, oxytocin, galanin, and serotonin 1A receptors. Recently, several GPCR
structures have been determined through X-ray diffraction and even more through cryo-EM. A large
percentage of these structures have been stabilized by site-specific cholesterol binding, although it
is uncertain if these cholesterol associations are due to recurring cholesterol-binding motifs or if the
experimental technique used determines the method of cholesterol binding. A comprehensive study
by Taghon et al.[69], showed that cholesterol binding in both X-ray and cryo-EM structures is much
the same. They also indicate that about 92% of cholesterol molecules on GPCR surfaces are located
in visible regions that do not require cholesterol-binding motifs[69]. The importance of cholesterol
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in GPCRs structural dynamics has been identified in some GPCR structures, especially within the
class A family. In some cases, CHS has been used to substitute cholesterol in GPCRs: although, the
validity of this replacement has been contested[48,70–72]. The CRAC motif has been established as a
characteristic feature of the serotonin(1A) receptor, the β2-adrenergic receptor, rhodopsin, cannabinoid
(CB1) receptor, etc[47,48,73], indicating that the interaction of cholesterol with GPCRs could be specific
in nature. However, another group of researchers, suggested that the presence of CRAC/CARC motifs
does not automatically prove that cholesterol interacts within those binding motifs[74]. On the flip side,
their impact on class C GPCRs is yet to be fully explored[17]. The significance of cholesterol to GPCR
structures and their functional dynamics is an ongoing question that is yet to be fully elucidated[48].

Table 1. Solved class C GPCR structures with bound cholesterol.

Name PDB ID* # of Choleseterols in TM

mGluR1 4OR2 [17] 6 CLR
mGluR5 7FD8 [16] 2 CHS

GABAB (GABAB) 6WIV [75] 10 CLR
7CUM [76] 16 CLR
7CA3 [76] 3 CLR

Orphan receptor (GPR158) 7SHF [77] 22 CLR
7SHE [77] 22 CLR**

* Data obtained from protein data bank (PDB) database (https://www.rcsb.org). Citations to the PDB structures are
included. ** CLR cholesterol; CHS cholesterol hemisuccinate).

4or2_modelled.pdb

Venus fly-trap 

domain

Cysteine-rich

 domain

Transmembrane 

region

Figure 1. Representation of Class C GPCRs showing the different regions as: VFT (magenta), CRD
(green) and 7TM region (blue)
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2. Significance and Interaction Sites of Cholesterol in Class C GPCRs

2.1. Metabotropic Glutamate Receptors (mGluRs)

Metabotropic glutamate receptors are transmembrane proteins that belong to the family of
GTP-binding proteins named GPCRs[78]. The GPCRs are membrane-bound proteins expressed in
the central nervous system (CNS), and their physiological functions are dependent on their lipid
environment[79]. There are three groups with eight subtypes of mGluRs that are classified based on
G-protein coupling and ligand selectivity[15,80]. Group I consists of mGluR1 and mGluR5 which
are linked to the activation of phospholipase C (PLC) to increase diacylglycerol (DAG) and inositol
triphosphate (IP3), Group II includes mGluR2 and 3[81], Group III comprises of mGluR4, 6, 7 and 8.
These last two groups are linked to the inhibition of adenylyl cyclases (AC)[82,83]. In mammalian cells,
cholesterol is highly concentrated in the plasma membrane but low in the intracellular membrane[84].
Cholesterol affects receptors function by affecting the membrane’s fluidity or interacting with the
receptor’s binding site[85] and, moves freely between the inner and outer leaflets[86]. In lipid rafts,
plasma membrane are rich in cholesterol and sphingolipids within their lipid domains, and the
cholesterol forms specific interactions with GPCRs including mGluR1 and mGluR2. However, the
mechanisms underlying their recruitment to these membrane domains still need to be discovered.
There has been a lasting argument as to why cholesterol is included in the membrane of mGluRs.
While a general consensus agrees that it is strictly due to crystal packing, studies have shown that there
could be additional reasons. Research has shown that cholesterol aids the dimerization of mGluR2
and mGluR5 through interactions with the TM4/TM5 domains and also through the TM1/TM2
domains of mGluR1[87–89]. In mGluRs, investigations from several scientists have suggested specific
interaction sites for mGluR1 and mGluR2[15,90]. A study has revealed the presence of a CRAC motif
in the transmembrane helix 5 domain of mGluR1, which is conserved for all mGluRs. The CRAC
motif located in TM5 plays an important role in supporting mGluR1 recruitment to the lipid raft as a
result of agonist binding[88]. It has been reported that mutations in this motif affect both signaling
and the association of mGluR1 with cholesterol-rich membrane domains[88]. Another group has
experimentally determined that within the transmembrane domain of mGluR1, cholesterol is localized
within the helix I homodimer interface. Intriguingly, this was observed through analyses on the crystal
structure of the transmembrane domain of mGluR1, bound by six cholesterol molecules mediating
the dimer interface, which in this case is mainly composed of the TM1 helices from both protomers
(Figure 2). These cholesterol molecules have been suggested as stabilizing the dimerization of mGluR1
(PDB:4OR2)[17]. In addition, by increasing cholesterol levels, mGluR1 signaling efficiency is enhanced
upon stimulation by an agonist, while by lowering cholesterol levels, Extracellular signal-regulated
kinase-mitogen-activated protein kinase (ERK-MAPK) activation via mGluR1 is inhibited[88,91]. In
this way, lipid rafts and membrane cholesterol act as positive allosteric modulators of the group I
mGluR signaling pathway. Therefore, it is possible to modulate abnormal group I mGluR behavior in
neuropsychiatric conditions (fragile X syndrome and autism) through the use of drugs such as statins
and cyclodextrins, which affect membrane cholesterol levels[88]. Furthermore, the role of cholesterol
has also been considered for class II members of mGluRs. A number of neuropsychiatric conditions,
including depression, Alzheimer’s disease, and Parkinson’s disease, as well as different types of cancer,
have been treated with these same classes of drugs[92–94]. The binding of glutamate to mGluR2 dimers
results in the transmission of a signal across the transmembrane domain of the receptor that prevents
the activity of adenylate cyclase via the Gi/o protein[80]. In a study that utilized molecular dynamics
simulations[95–97], biochemical approaches, and photocrosslinking experiments, the interaction of
cholesterol with mGluR2 was demonstrated across 2 to 5 sites in the transmembrane domain of
mGluR2[80]. It was observed that mGluR2 is modulated by their surrounding lipid environment,
particularly cholesterol, through an unknown mechanism. The CRAC/CARC motif and a cholesterol
consensus motif (CCM) were suggested as cholesterol-binding motifs in GPCRs[28,98]. A central
aromatic amino acid that interacts with sterols is a common characteristic of some of the motifs

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2023                   doi:10.20944/preprints202301.0346.v1

https://doi.org/10.20944/preprints202301.0346.v1


6 of 18

described[80]. A recent study conducted by Bruno et al.,[99] found that the conformational differences
observed in the helical structure of the mGluR2-TM8 domain can be used as an indicator to detect
the presence of cholesterol in metabotropic glutamate receptors and GPCRs. They observed that the
inclusion of higher levels of cholesterol in the membrane stabilizes the transmembrane helix 8 (TM8)
of mGluR2, while a lack of cholesterol results in destabilization of the TM8 domain[99]. However, the
role of cholesterol in the third group of mGluRs remains unknown.

PDB ID: 4OR2 PDB ID: 7FD8

Figure 2. Crystal structures of mGluR1 (grey) and mGluR5 (blue) determined with 6 molecules of
cholesterol (red) and 2 molecules of CHS (magenta) respectively

2.2. GABAB Receptors

In mammals, GABA (γ-Aminobutyric acid) is one of the major inhibitory neurotransmitters. In
order for GABA to exert their effects, it must bind to at least two different receptor classes: GABAA

and GABAB. Approximately 20 to 50% of the brain’s synapses contain GABAA receptors[100]. They
are pentameric receptors belonging to a superfamily of ligand-gated ion channels[101]. GABA acts
as an agonist by binding to the GABAA-benzodiazepine receptor complex, causing conformational
changes and increasing the permeability of the central pore to chloride ions. Consequently, the chloride
flux affects the neurons by hyperpolarizing them, reducing their excitability, and inhibiting their
activity in general[102]. GABAA receptors have faster responses (milliseconds) compared to GABAB

receptors (hundreds of milliseconds)[103–105]. Unlike GABAA, GABAB receptors are members of
class C GPCRs with the typical classification of an N-terminal VFT region; a 7TM domain, and a
C-terminal intracellular domain[106,107]. GABAB receptors function as inhibitor receptors by opening
potassium channels, reducing the activity of adenylate cyclase and calcium channels[108]. There
are few solved structures of GABAB receptors containing cholesterol, deposited on the protein data
bank (Figure 3), and subsequently, there is little knowledge of the effect of membrane cholesterol
on the GABAB receptors. Experimental investigations have shown that cholesterol enrichment and
depletion both decrease GABA potency, resulting in an increase of up to fourfold in EC50[109]. The
structures of GABAB receptors with cholesterol were determined based on ligand type; thus there
was no cholesterol present in the structures which were not bound to ligands. However, for systems
bound to an antagonist, 10 and 16 molecules of cholesterol[75,76] were bound between the protomers
of the transmembrane dimers[67], while 3 cholesterol molecules were attached to the GABAB receptor
bound to a positive allosteric modulator[76] (Figure 3).
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PDB ID: 7CUM PDB ID: 7CA3 PDB ID: 6WIV

Figure 3. Visual representations of solved GABAB receptors (red, orange, grey) bound with 17, 2, and
16 cholesterol molecules respectively within the transmembrane region. The figures here show the
transmembrane region only bound to cholesterol (cholesterol molecules are shown as cyan and green
sticks)

2.3. Taste Receptor

TAS1R1 and TAS1R2 were among the first determined subfamilies of taste-related GPCRs. Prior
to identifying their physiological ligands, they were originally classified as orphan receptors[110].
Subsequently, some scientists identified a member, TAS1R3, through a fusion of molecular biological
and genetic approaches[111]. These three members: TAS1R1-3, code for sweet and umami tastes
and are classified as class C GPCRs. The sweet taste signals are activated by TAS1R2 and TAS1R3
heterodimers, while the umami taste signals are transduced by heterodimers of TAS1R1 and
TAS1R3[112]. Therefore, the class C taste receptors consist of either TAS1R1 or TAS1R2, linked
by a common subunit TAS1R3. Similar to other class C GPCRs, they exist as obligate dimers and
are characterized by a large extracellular N-terminus, which houses the orthosteric ligand-binding
site, while the allosteric binding sites are present in the cysteine-rich domain and/or transmembrane
region[111]. Due to these multiple binding sites, a single taste receptor is able to function for various
stimuli[113]. The sweet taste receptor is able to interact with various compounds at a lower sensitivity,
unlike most GPCRs, which are highly selective to specific high-affinity ligands. Cholesterol has
been shown to regulate GPCR signaling in sweet taste receptors[114,115]. A study showing the
presence of a CRAC motif in T2R4 (a subset of GPCRs responsible for bitter taste receptors[116]),
explains that taste receptors are crucial to cholesterol sensitivity[43] and become more sensitive to
cholesterol through a cellular mechanism[47]. Furthermore, they observe electrostatic interactions
between the 3β-hydroxyl group of cholesterol and the positively charged residue in the cholesterol
binding motif[117,118]. Site-directed mutagenesis and functional assays have been optimized in the
study of putative cholesterol-binding motifs (CRAC and CARC) to determine the mechanism of
cholesterol binding to taste receptors. A comparison of the dynamics of wild-type T2R14 receptors and
mutant T2R14 receptors revealed that the amino acid residues K110, F236, and L239 are required for
the receptor to function appropriately when cholesterol is present. Based on this study, it could be
suggested that cholesterol influences taste receptors by directly interacting with the receptor[119].

2.4. Calcium Sensing Receptor-Related Receptor

As a G-protein-coupled receptor, the calcium-sensing receptor (CaSR) is essential for controlling
calcium homeostasis[120] in humans. CaSR is a Ca2+-sensing protein found on the surface of cells[121],
that exists as an obligate homodimer and belongs to class C GPCRs[122]. Each protomer has a
Ca2+-binding extracellular domain and a seven-transmembrane-helix domain (7TM) that activates
heterotrimeric G-proteins[24]. The classical calcium-sensing receptor is known to be involved in the
pathophysiology of parathyroid and renal-related diseases by sensing calcium ions in extracellular
fluid[113,120]. Increasing receptor sensitivity to Ca2+ as a result of homodimer interactions between
CaS-TM domains is consistent with the role of a positive allosteric modulator in stabilizing the active
conformation. CaS subunits interact with cholesterol molecules near the extra- and intracellular
membranes. Cholesterol-mediated interactions occur in the extracellular domain and involve the
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TM7 elements surrounding the direct TM6 dimer interface. These peripheral dimer interactions
involving TM6 residues are not necessary for forming a TM6-centered homodimer interface. Due to
the separation of the TM6 helices on the intracellular side, cholesterol molecules (CLR4 and CLR6)
mediate nearly all homodimer interactions. However, this is different in the middle of TM6, where two
Ile816 side chains pack against each other and make indirect dimer contacts through cholesterol. Each
substitution of alanine for a different residue and leucine for Phe809 resulted in a significant decrease
in Ca2+ potency and efficiency. The inactivating F809L substitution is another notable mutation
which causes disease[123]. The TM6-TM6 dimer interface is stabilized by cholesterol, which has
been theorized to play a crucial role in receptor activation. Cholesterol depletion has been shown to
negatively impact receptor function by decreasing basal activity and Ca2+ sensitivity. Parathyroid
cells have been found to contain the CaS receptor in their lipid- and cholesterol-rich membranes[124].
A study showed that vascular smooth muscle cells (VSMCs)[125] are expressed in CaSR and can
be altered by cholesterol[126]. They further indicated that plaque stability can be affected due to
CaSR[127] mediating MMP-2 (Matrix metalloproteinase-2) production in the presence of cholesterol
via the phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway[128,129]. In addition, activation
of CaSR in VSMCs increases cell proliferation and survival via the phospholipase C (PLC)-IP3 and
MAPK-ERK1/2 pathways[130].

2.5. Orphan Receptor

Orphan receptors are membrane-bound receptors that mediate communication between cells
and molecules outside the cell; however, they are yet to be thoroughly characterized due to
distinct structural features[131,132]. Despite extensive reorganization efforts, there are hundreds
of receptors within the GPCR family that have yet to be fully identified[133–136], many of which are
olfactory[137] or taste receptors[138]. The orphan nuclear receptor family is a primary classification of
orphan receptors, which are mainly located in the cytosol[139]. To function as transcription factors,
these receptors must first bind to their respective ligands, at which point they undergo a spatial
conformational shift and move to specific regions inside the nucleus. These factors regulate gene
expression in response to various physiological, developmental, and environmental signals[140].
Specific nuclear receptors can also mediate nongenomic effects that are too fast to require changes
in gene transcription. Typically, nuclear receptors will have four distinct functional subunits: ligand
binding domains, DNA binding domains, modulator domains, and hinge regions[141]. Some
examples of orphan nuclear receptors include: the Retinoic acid receptor-related orphan receptors
(RORs), Farnesoid X (FX), Liver X (LX)[142], Pregnane X (PX), Dax1, and the short heterodimeric
partner (Shp) receptors[143]. A subfamily of nuclear receptors consists of the retinoic acid-related
orphan receptors alpha, beta, and gamma (RORα-γ encoded by RORA-C or NR1F1-3)[144]. An
N-terminal domain, a highly conserved DNA-binding domain (DBD) with two C2-C2 zinc finger
motifs, a ligand-binding domain (LBD), and a hinge domain between the DBD and LBD[14] are all
characteristic of RORs[145,146]. ROR response elements (ROREs) are sequences that contain the
RGGTCA consensus and are typically preceded by an A/T-rich sequence, which are recognized by
the DBD of RORs [147]. By binding as monomers to ROREs in the regulatory regions of target genes
and then recruiting co-activators or co-repressors[148], RORs regulate transcription[149]. The role of
RORs as ligand-dependent transcription factors has been noted[150]. Different sterols and synthetic
ligands can bind to RORs and act as agonists or inverse agonists to alter ROR α/γ transcriptional
activity[151]. GPR156, GPR158, GPR179, GPRC5A, GPRC5B, GPRC5C, GPRC5D, and GPRC6 all
make up the orphan receptor of class C GPCRs. Cholesterol and their metabolites, are bioactive lipids
that control many proteins and signaling pathways. ROR and members of the ligand-dependent
nuclear receptor superfamily, have been found to have surprisingly broad binding specificity for a
variety of sterols. Several cholesterol metabolites and intermediates work with RORα and RORγ as
agonists or inverse agonists. Changes in cholesterol homeostasis that affect the amount or type of sterol
metabolites in cells can change the physiological processes that RORs control, such as different immune
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responses and metabolic pathways[148,152]. Recently, two structures of GPR158 which are bound
to cholesterol molecules have been determined[77]. In both initial structures, cholesterol interacts
between the protomers and groves of the transmembrane helix (Figure 4).

PDB ID: 7SHF PDB ID: 7SHE

Figure 4. Visual representations of GPR158 class C orphan receptors (grey and blue) bound with
22 cholesterol molecules each within the transmembrane region. The upper figures show the whole
protein while the lower figures only show the transmembrane region (cholesterol molecules are shown
as violet and red sticks).

3. Conclusions

Through this review and the accompanying table and figures, we have described the interaction
sites of cholesterol in specific receptors of class C GPCR structures. Through the collective study of
class C GPCR structures, we notice that cholesterol is mostly bound between the transmembrane
dimers of the receptors and also within the surrounding groves of the transmembrane helices, which
could explain why it seems to aid dimerization. Furthermore, this review highlights the significance of
cholesterol within specific class C GPCRs. A consideration of several studies revealed that cholesterol
is important for oligomerization, organization, function and dynamics of class C GPCRs. In general,
we see that cholesterol could affect ligand binding, G-protein coupling, and intracellular signaling of
GPCRs. With the possible emergence of more cholesterol-bound GPCRs structures and analyses, we
picture an exciting and enlightening future in the knowledge of cholesterol-GPCR interactions. We
expect that this information will help provide insight into the molecular mechanisms of cholesterol
molecules bound to particular receptors of class C GPCRs.
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The following abbreviations are used in this manuscript:

GPCR G-protein-coupled receptors
CHS Cholesteryl hemisuccinate
CLR Cholesterol
mGluR Metabotropic glutamate receptors
CRAC Cholesterol Recognition/Interaction Amino Acid Consensus (CRAC)
MD(S) Molecular dynamics (simulation)
GABA Gamma-Aminobutyric acid
TAS1R1 Taste 1 receptor member 1
TAS1R2 Taste 1 receptor member 2
TAS1R3 Taste 1 receptor member 3
RORs Retinoid-related orphan receptors
CASR calcium-sensing receptor
TM(D) Transmembrane (domain)
NTD N-terminal domain
VSMCs Vascular smooth muscle cells
PLC phospholipase C
MMP-2 Matrix metalloproteinase-2
ERK Extracellular signal-regulated kinase
MAPK Mitogen-activated protein kinase
AMPK AMP-activated protein kinase
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