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Abstract: In a particle swarm with a fixed kinetic energy, the constituent particles move randomly

and their velocity magnitudes follow a Maxwell distribution characterized by specific parameters.

Within a certain time frame, particles in a sub-swarm may exhibit a bias in their movement direction.

Thus, the particles may exhibit a special characteristic (biased random motion), where the group

velocity in a particular direction remains constant u. For this biased particle swarm, composed

of randomly moving particles with a fixed average speed c, particles have a higher probability of

moving in a specific direction. Conversely, their likelihood of moving in all other directions is equally

reduced. This study starts from the perspective of biased random walks and using Mathematica

software proves that the diffusion rate of particles (in the reference frame Ru observed from R0)

in all directions is slower than that of an unbiased particle swarm with the same average speed c.

Specifically, the degree of reduction is determined by the Lorentz-like factor

√
c2 − u2

c
. Lastly, we

present the Itô equation for this biased random motion and provide associated verification examples.

This study aims to serve as a reference for comprehending the underlying principles of the special

relativity effect.

Keywords: biased random process; randomly moving particles; special relativity effect; lorentz-like

factor

Introduction

Most random phenomena in nature exhibit characteristics of bias1. This includes random motion,

as such phenomena tend not to occur in a strictly neutral or uniform manner. In a group composed

of randomly moving particles, the motions of particles in its sub-groups tend to be biased. Among

these biased random motions, several distinct motion processes warrant particular attention. These

special motions include particles with a higher probability of movement in a specific direction, while

maintaining an equivalent yet lower probability of movement in other directions2; particles with greater

probabilities of movement toward a point, while maintaining an equivalent yet lower probability

of movement in other directions3; and biased random processes of particles capable of generating

rotation4. The study of such phenomena typically begins with the simplest biased random processes.

Biased random processes, akin to the first scenario previously described, have been the subject of

extensive research[5]. The nature of the bias can shape the form of the expression for a random process.

For example:

dx(t) = uStdt + σStdw(t), (1)

where w(t) denotes a Brownian motion process. In Eq. 1, when the drift (u) and diffusion (σ) terms

grow synchronously according to St, geometric Brownian motion will be produced. There will be

fractional Brownian motion when particles follow the motion law in Eq. 2.

dx(t) = θ[u − x(t)]dt + σdw(t), (2)
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where θ is the regression speed. Additionally, there is a simpler scenario where particles with the

same jump speed have a higher probability of moving in a specific direction and equal probabilities

of moving in other directions. This is a common biased phenomenon in physics. In a system with

constant kinetic energy, it is generally challenging to alter the distribution of particle speeds, while the

directions of motion can change more readily. When describing such systems using Eq. 3

dx(t) = udt + σdw(t), (3)

the system’s kinetic energy will increase as the drift term u increases. It is obvious that such an

equation does not reflect real scenarios. In contrast, when the drift term u increases, it may be

a better solution to reduce the diffusion term σ accordingly. Unfortunately, there is currently no

clear quantitative relationship available. This article will delve into this issue in detail and derive a

quantitative relationship of Lorentz-like factor between the drift (u) and diffusion (σ) terms. This kind

of problem is similar to the problem that the particle speed or time slows down in a moving frame

in special relativity. Some researchers6–9 demonstrated the diffusion process (random walk) with a

special relativistic effect. However, it is the diffusion or random walk of particles when their speed is

affected by the special relativity effect. The case involved in this study is that the particle velocity is

determined, and the diffusion in the biased random particle swarm formed by them is restricted by

the Lorentz-like factor. They are not the same kind of problem.

In my previous research2, I demonstrated the special relativistic-like effect of biased random

motion when particles move at a uniform speed of c. This article extends that work by considering

particles whose speeds follow a Maxwell distribution with equal average speed c. I establish that

such biased random motion retains its special relativistic-like effect. Additionally, I present the

corresponding Itô equations and simulate the motion of related examples. My findings offer insights

into the intricate relationship between biased random processes and the special relativity effect.

Results and Discussion

Biased Random Walk

In order to elucidate the relationship between the drift and diffusion terms, this study commences

with an examination of random walks. Among various biased random walk scenarios, we specifically

focus on a situation where the probability of a particle moving in one of the six possible directions in a

3-dimensional space is denoted as p, while the probability in the remaining five directions is given by
1 − p

5
, subject to the condition

1

6
< p < 1. Although the case when 0 < p <

1

6
presents an intriguing

scenario, it falls outside the purview of this study. Given a particle’s jump speed as c, the collective or

group velocity of all particles can be described by the equation:

u =
6p − 1

5
c. (4)

This can be expressed equivalently in the form {X1(t), X2(t), X3(t), t ∈ T}, where X1(t), X2(t) and

X3(t) represent 1-dimensional random walks with a jump speed of
c√
3

. We introduce a 3-dimensional

rectangular coordinate system, aligning its (1, 1, 1) direction parallel to the group velocity u.
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Consequently, the 1-dimensional random walk model along the xi-axis, which is one of the three

equivalent coordinate axes, is given by:

Px,bia =



























1 + u/c

2
, n > 0,

1 − u/c

2
, n < 0,

0, otherwise,

(5)

where n ∈ N. The corresponding unbiased 1-dimensional random walk model on the xi-axis among

the three equivalent coordinate axes is

Px,unbia =



























1

2
, n > 0,

1

2
, n < 0,

0, otherwise,

(6)

where n ∈ N. The relative standard deviation of the two 1-dimensional random walk processes along

the two equivalent xi-axes is

σbia

σunbia
= −12

25
(p − 1)(3p + 2). (7)

Consider the 3-dimensional random walk vectors, representing velocities, formed by X1(t), X2(t)

and X3(t) over a unit time interval. Their magnitudes follow the discrete Maxwell distribution, and

the average magnitude is proportional to the standard deviation of any component vector along the

equivalent axes2. Consequently, the average velocity magnitude of the biased 3-dimensional random

walk is

√
c2 − u2

c
times that of its unbiased counterpart, with u defined in Eq. 4 (see Part 1 of the

Supplementary Information for the detailed Mathematica code). Evidently, the biased case represents a

decelerative process. This also illuminates the relationship between the drift term and the attenuation

rate of diffusion in a continuous process with constant energy from an alternative perspective. For

a more rigorous depiction of this relationship in continuous time, further proofs are warranted. Yet,

directly proving this for a continuous-time stochastic process poses challenges. We can transpose to

the following strategy.

Continuous Biased Random Process

When particles in swarm A possess speeds governed by a Maxwell distribution with a mean

of c, the associated scale parameter for this distribution is
1

2

√

π

2
c. Particles in A can be categorized

into subgroups Ai, based on their speeds, where each subgroup’s velocity vectors terminate on a

series of spheres of radius ri (i = 1, 2, 3, · · · ). The endpoints of these vectors for particles in Ai are

uniformly distributed over the sphere with radius ri. The number of particles in A distributed across

these spheres follows a Maxwell distribution with respect to r, with the scale parameter
1

2

√

π

2
c and

mean radius r = c. Hence, the scenario where particle speeds are uniformly c can be viewed as a

specialized case (ri = c). The collective motion characteristics of particles whose velocity vectors

terminate on spheres of radius ri embody the motion traits of particles with speeds dictated by the

Maxwell distribution. The particle counts in both A and Ai are substantial, with a uniform distribution.

When a subgroup A of the parent particle swarm—where the magnitudes of the particle velocities

follow a Maxwell distribution—moves along the z-axis (with a reference frame based on the parent
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particle swarm) at an average speed of u, it is equivalent to each sub-particle group Ai (i = 1, 2, 3, · · · )

moving along the z-axis with an average speed of
ri u

c
.

Let R follow a Maxwell distribution with a scale parameter λ. Then aR will follow a Maxwell

distribution with a scale parameter aλ. Specifically, along the z-axis, all the component speeds ui

in particle swarm Ai, given by ui =
ri u

c
(where i = 1, 2, 3, · · · ), follow a Maxwell distribution with

a mean value of u. Moreover, the standard deviations σi =
ri

√
1 − u2/c2
√

3
(where i = 1, 2, 3, · · · ) of

the mixed distributions (we can regard the particles in Ai as a particle swarm possessing a mixed

distribution with weight w =
c + u

2c
) across all spherical layers also conform to a Maxwell distribution.

For the case along the x- or y-axis, the particles in Ai can also be viewed as a particle swarm possessing

a mixed distribution with weight w =
c + u

2c
. Adopting a method analogous to that in my previous

work2, it can be demonstrated that the ratio of the standard deviation of the mixed distribution along

the x- or y-axis to that of the unbiased moving particle on the same axis satisfies the relationship√
c2 − u2

c
, and the ratio of the standard deviation along the z-axis also satisfies this relationship (see

Part 2 of the Supplementary Information for the detailed Mathematica code).

Itô Equation of Biased Random Processes

The above results indicate that for particles possessing a group velocity of u and with speeds

following the Maxwell distribution, their speeds within Ru exhibit a deceleration characterized by a

Lorentz-like factor. Despite this change in speed, their distributions still follow the Maxwell distribution

within Ru. This behavior permits their motion to be described by the following Itô equation when

viewed from R0. It should be noted that the definitions of R0 and Ru align with those presented in

my previous study2.



























dx1(t) = u1dt + σ

√
c2 − u2

c
dw1(t),

dx2(t) = u2dt + σ

√
c2 − u2

c
dw2(t),

dx3(t) = u3dt + σ

√
c2 − u2

c
dw3(t),

(8)

where u1, u2 and u3 are the drift speeds and
√

u1
2 + u2

2 + u3
2 = u; c is the average speed of particles;

w1(t), w2(t) and w3(t) are Brownian motion processes; and σ is their standard deviation. Then, the

slice distribution of Eq. 8 is

c3 e
−

c2(xi − tui)
2

2σ2t(c2 − u2)

2
√

2π
3
2 σ3t

3
2 (c2 − u2)

3
2

, (9)

where i takes the values 1, 2 and 3, in accordance with the Einstein summation convention. This means

that (xi − tui)
2 is equivalent to ∑

3
1(xi − tui)

2. Moreover, the forward equation of Eq. 8 is

∂p(x, t)

∂t
=

σ2(c2 − u2)

2c2
∇2 p(x, t)− ui

∂p(x, t)

∂xi
, (10)

where p(x, t) is the probability of a particle at position x(x1, x2, x3) and time t. This is also a

drift-diffusion (or advection-diffusion) equation. Only the diffusion coefficient of this equation is

limited by the advection term.
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This result (3-dimensional biased Brownian motion) can be simulated by three 1-dimensional

biased Brownian motions {X1(t), X2(t), X3(t), t ∈ T}. Fig. 1 depicts the trajectories of 300 particles

simulated to move randomly over 10 s with a time step of 0.01 s. The randomly moving particles are

subject to scenarios with group speeds of 6 (Figure 1a) and 0 (Figure 1b), respectively. Analyzing the

diffusion effects, there appears to be no significant difference when compared to an unbiased scenario

unaffected by the relativistic-like effect. Further, when considering diffusion velocity, scenarios with a

notable group speed show a reduced rate of diffusion.

Figure 1. Simulation results of the trajectories of 300 particles randomly moving for 10 s (c = 10, u = 6

and σ = 2). a, group speed of u. b, group speed of 0.

Conclusions

For a particle swarm composed of particles with a fixed energy, assumed to be in reference frame

R0, the magnitudes of the particle velocities follow a Maxwell distribution with parameter
1

2

√

π

2
c,

yielding an average speed of c. When a sub-swarm of particles (assumed to be in reference frame

Ru), exhibits a higher probability of motion in a specific direction and equal yet lower probabilities

in other directions (with the group velocity of this sub-swarm denoted as u), as observed from R0,

the velocities of particles within this sub-swarm decelerate, adhering to a pattern determined by the

Lorentz-like factor

√
c2 − u2

c
. Consequently, the biased motion of such particles can be described by a

set of Itô equations (Eq. 8). Both the time slice distribution and the forward equation for these biased

particles differ from those in the reference frame R0.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org Mathematica code for necessary calculation process and graphics. The following file is
available free of charge.
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