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Abstract

In a randomly moving particle swarm with fixed kinetic energy, the particle speeds

follow the Maxwell distribution. In a certain period, the moving directions of particles

in a sub-particle swarm may aggregate. Thus, the movements of the particles have the

characteristics of biased stochastic movement. Regarding the biased particle swarm

formed by a series of randomly moving particles (with a uniform average velocity c)

with a greater probability of moving in a certain direction and the same probability of

moving in other directions, there is a certain group velocity u in this direction, while

the diffusion rate in other directions is slower than that of unbiased moving particles

with the same average speed c. Moreover, the degree of slowing follows the Lorentz-

like factor
√
c2 − u2

c
. In this article, the characteristics of this kind of biased random

process are deduced starting from a biased random walk by using probability theory, 

and the expression of the Ito equation is provided. This article is expected to provide a 

reference to understand the nature of the special relativity effect.
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Introduction

Most random phenomena in nature are biased,1 and so is random motion. Regarding a ran-

dom moving particle swarm, the motion characteristics of its sub-particle swarm are usually

biased. Among these biased random motions, several special motion processes deserve our

special attention. These special motions include particles that have a greater probability

of moving in a certain direction and the same probability of moving in other directions;2

particles that have greater probabilities of moving in the directions toward a point and the

same probability of moving in other directions;3 and biased random processes of particles

that can produce rotation.4 The study of this kind of phenomenon generally starts with the

simplest biased random walk.

Biased-randomized processes are currently popular research.5 Different biased character-

istics will produce different forms of random processes. For example:

dx(t) = vStdt+ σStdw(t), (1)

where w(t) is a Brownian motion process. In Eq. 1, when the drift (v) and diffusion (σ)

terms grow synchronously according to St, geometric Brownian motion will be produced.

There will be fractional Brownian motion when particles follow the motion law in Eq. 2.

dx(t) = vdt+ σ

!
s2h + t2h − |t− s|2h

2
dw(t), (2)

where h is the Hurst index; and s and t denote the different times. In addition, there

are another simpler cases in which particles with the same jumping speed have a greater

probability of moving in a certain direction and the same probability of moving in other

directions. This is a common phenomenon in physics. In a system with fixed kinetic energy,

we believe that the distribution of the particle speed is not easy to change, and the directions

of motions can easily change. In the system in which the motion law of particles follows Eq.

2
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3:

dx(t) = vdt+ σdw(t), (3)

the kinetic energy of the system will increase with an increasing drift term σ. It is obvious

that such a system does not reflect real scenarios. In contrast, when the drift term v increases,

it may be a better solution to reduce the diffusion term σ accordingly. However, such

concerns of this situation are often ignored. There are some quantitative relationships when

these concerns are denoted with biased stochastic processes: the diffusion rate of biased

stochastic processes of particles with determined jump speed is slower than that of unbiased

random walk with the same jump speed. The degree of slowing down is determined by the

Lorentz-like factor (it is a function of the particle swarm velocity in this direction, and the

group velocity is a function of the biased random probability of particles in this direction).

This kind of problem is similar to the problem that the particle speed or time slows down

in a moving frame in special relativity. Although these problems have been ignored for a

long time, this is a very important issue, that can provide an understanding of the essence

behind the special relativity effect. Some researchers6–9 demonstrated the diffusion process

(random walk) with a special relativistic effect. However, it is the diffusion or random walk

of particles when their speed is affected by the special relativity effect. The case involved

here is that the particle velocity is determined, and the particle velocity or diffusion in the

biased random particle swarm formed by them is restricted by the Lorentz factor. They are

not the same kind of problem.

Our previous work1 proved the special-relativity-like effect of this kind of biased random

motion based on the uniform speed (the speed of each particle is c) of randomly moving

particles. Starting from a random walk, this article proved that this kind of biased ran-

dom motion still has a special-relativity-like effect based on particles whose speeds follow a

Maxwell distribution and whose average speeds are equal. Furthermore, the corresponding

3
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Ito process equation is also given, and the motion process of related examples is simulated.

This article will provide clues for further understanding the relationship between stochastic

processes and the special relativity effect.

Results and Discussion

Biased Random Walk

There are different situations for biased random walk. We will only discuss that the moving

probability of particles in one of the 6 directions in 3-dimensional space is p and in the other 5

directions is
1− p

5
(where

1

6
< p < 1. Another interesting situation occurs when 0 < p <

1

6
;

however, this will not be studied here). If the jumping speed of particles is c, then the group

velocity of all particles is

u =
6p− 1

5
c. (4)

This is equivalent to the form {X(t), Y (t), Z(t), t ∈ T}, where X(t), Y (t) and Z(t) are 1-

dimensional random walks with a jump speed of
c√
3
. We established a 3-dimensional rect-

angular coordinate system and set its (1, 1, 1) direction parallel to the direction of group

velocity u. Thus, the 1-dimensional random walk model on the x-axis of the three equivalent

coordinate axes is

Px,bia =

"
#######$

#######%

1 + u/c

2
, n > 0,

1− u/c

2
, n < 0,

0, otherwise,

(5)

4
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where n ∈ N. The corresponding unbiased 1-dimensional random walk model on the x-axis

of three equivalent coordinate axes is

Px,unbia =

"
#######$

#######%

1

2
, n > 0,

1

2
, n < 0,

0, otherwise,

(6)

where n ∈ N. The relative standard deviation of each axis is

σbia

σunbia

= −12

25
(p− 1)(3p+ 2). (7)

The norm of the 3-dimensional random walk vector formed by X(t), Y (t) and Z(t) follows the

discrete Maxwell distribution. The average speed of this 3-dimensional vector is proportional

to the standard deviation of its component vectors on three coordinate axes.2 Therefore, the

moving speed of the biased 3-dimensional random walk is
√
c2 − u2

c
of that in the unbiased

case. The biased case is obviously a process of slowing down. However, regarding the

continuous time stochastic process, it is not easy to prove it in this way. We can transpose

to the following strategy.

Motion Law of the Stochastic Process of Randomly Moving Particles

Following the Maxwell Distribution

When the speeds of particles in particle swarm A follow Maxwell distribution with an average

value of c, the expression of the scale parameter of this Maxwell distribution is
1

2

&
π

2
c. We

can divide the particles in A into sub-particle groups Ai with velocity vectors terminating

on a series of spheres with radius ri (i = 1, 2, 3, · · · ) according to the speeds, and the velocity

vector terminals of particles in Ai are uniformly distributed on the sphere with radius ri.

The numbers of particles in particle swarm A on these spheres follow a Maxwell distribution

5
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according to r (when the scale parameter is
1

2

&
π

2
c, r = c). Therefore, the case1 in

which the particle speeds are strictly c can be regarded as a special case when ri = c. The

motion characteristics of a series of particles with velocity vector terminals on the sphere

with radius ri (i = 1, 2, 3, · · · ) are gathered together, which is the motion characteristics of

particles whose speeds follow a Maxwell distribution. The numbers of particles in A and

Ai are large and uniformly distributed. When a subgroup A of the parent particle swarm

following a Maxwell distribution moving along the z-axis (the reference frame is based on

the parent particle swarm) with an average speed of u, it is equivalent to each sub-particle

group Ai (i = 1, 2, 3, · · · ) moves along the z-axis with the speed
ri u

c
.

If r follows Maxwell distribution with scale parameter λ, ar follows Maxwell distribution

with scale parameter aλ, and the mean value of the Maxwell distribution is linear relationship

with the scale parameter. Then, the speed of all particles in particle swarm A follow a

Maxwell distribution with the mean value u on the z-axis, and the standard deviations

σi (i = 1, 2, 3, · · · ) of the mixed distributions of all sphere layers also follow a Maxwell

distribution. For the case on the x- or y-axis, we can regard the particles in Ai as a particle

swarm possessing a mixed distribution with weight w =
c+ u

2c
. According to the method

similar to my previous work,1 it can be proved that the ratio of the standard deviation of

the mixed distribution on the x- or y-axis to that of the unbiased moving particle on that

axis satisfies the relationship
√
c2 − u2

c
, and the ratio of the standard deviation on the z-axis

also satisfies this relationship (see Part 2 of the Supplementary Information for the detailed

Mathematica code).

Ito Equation of Biased Stochastic Processes

The above results are written in the form of the Ito equation

dx(t) = vdt+ σ
√
1− v2 dw(t), (8)

6
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where v is the drift speed; w(t) is a Brownian motion process; and σ is its standard deviation.

Then, the slice distribution of Eq. 8 is

e

(x− tv)2

2σ2t(v2 − 1)
√
2πσ

'
t(1− v2)

. (9)

Moreover, the forward equation of Eq. 8 is

∂p(x, t)

∂t
=

σ2(1− v2)

2

∂2p(x, t)

∂x2
− v

∂p(x, t)

∂x
, (10)

where p(x, t) is the probability of a particle at position x and time t. This is also a drift-

diffusion (or advection-diffusion) equation. Only the diffusion coefficient of this equation is

limited by the advection term.

This result (3-dimensional biased Brownian motion) can be simulated by 3 1-dimensional

Brownian motions {X(t), Y (t), Z(t), t ∈ T}. Here, the trajectories of 500 particles randomly

moving for 50 s with a time step of 0.1 s are presented in Fig. 1. There is no significant

difference from the situation that is unbiased and not affected by the special-relativity-like

effect.

Conclusions

Regarding a particle swarm formed by a series of randomly moving particles (with uniform

average speed c) with a greater probability of moving in a certain direction and the same

probability of moving in other directions, there is a certain group velocity u in this direction,

while the diffusion rate in other directions is slower than that of unbiased moving particles

with the same average velocity c. Moreover, the degree of slowing follows the Lorentz-like

factor. In this article, the relationship between the special-relativity-like effect and the biased

stochastic process of randomly moving particles is explained in detail, and the Ito equation

7
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Figure 1: Simulation results of the trajectories of 500 particles randomly moving for 50 s
(v = 0.6 and σ = 1).

of such a process is given.
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Appendix:
In[!]:=

Supplementary Information
(Mathematica v13.1.0 code of TraditionalForm)

In[!]:=

Biased Stochastic Process of Randomly Moving Particles with Constant 
Average Velocity

Tao Guo*

Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sci-
ences, 501 Haike Road, Shanghai 201210, China
E-mail: guotao@simm.ac.cn
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NOTE:
1. The "Euclid Math One" regular and bold fonts are needed to display the contents correctly in this 
Notebook.
2. If there is no special case, the Mathematica code starts with gray "In[!] :=" and is bold by default 
according to Mathematica's rules.

Part 1. Necessary Calculation Processes

In[!]:= Simplify
VarianceRandomWalkProcess

1+ 6 p-1

5

2
,
1- 6 p-1

5

2
[t]

VarianceRandomWalkProcess 1
2
[t]



Out[!]= -
12

25
3 p2 - p - 2

In[!]:= Simplify
c2 - 

6 p-1
5
c
2

c

2

, Assumptions -> c > 0

Out[!]= -
12

25
3 p2 - p - 2

Part 2��Process of Obtaining the Lorentz Factor for Randomly Moving Particles 
with Speed Following Maxwell Distribution

In[!]:= PDF[TransformedDistribution[a r, {r+MaxwellDistribution[λ]}], x]

Out[!]=

2

π
x2 ⅇ

-
x2

2 a2 λ2

a3 λ3
x > 0

0 True

In[!]:= PDF[MaxwellDistribution[a λ], x]

Out[!]=

2

π
x2 ⅇ

-
x2

2 a2 λ2

a3 λ3
x > 0

0 True

In[!]:= Mean[MaxwellDistribution[λ]]

Out[!]= 2
2

π
λ

For the case on the x- or y-axis, we can regard the particles in Ai as a particle swarm possessing a 

mixed distribution with weight w = c + u
2 c  (this code takes approximately 36 seconds).
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In[!]:= .= TransformedDistributionr Cos[θ] Sin[ArcCos[η]], θ +UniformDistribution[{-π, π}],

η +UniformDistribution[{-1, 1}], r+MaxwellDistribution
1

2

π

2
c;

.1 = TransformedDistributionr Cos[θ] Sin[ArcCos[η]], θ +UniformDistribution[{-π, π}],

η +UniformDistribution
u

c
, 1, r+MaxwellDistribution

1

2

π

2
c;

.2 = TransformedDistributionr Cos[θ] Sin[ArcCos[η]], θ +UniformDistribution[{-π, π}],

η +UniformDistribution-1,
u

c
, r+MaxwellDistribution

1

2

π

2
c;

w =
c + u

2 c
;

.12 =MixtureDistribution[{w, 1 - w}, {.1, .2}];
σu = Simplify[StandardDeviation[.12], Assumptions→ 0 < u < c]

Out[!]=
1

2

π

2
c2 - u2

In[!]:= Simplify[σu /StandardDeviation[.], Assumptions→ 0 < u < c]

Out[!]=
c2 - u2

c

When c = 10 and u = 6, the distribution of *12 on the x- or y-axes is like this (this code takes approxi-
mately 18 seconds):

In[!]:= c = 10;
u = 6;
data =RandomVariate[.12, 30 000 000];
.0 = SmoothKernelDistribution[data, {"Adaptive", Automatic, Automatic}];
s2 = Plot[PDF[.0, x], {x, -20, 20}, PlotRange→ {{-21, 21}, {0, 0.091}},

PlotStyle→ {Blue, Thickness→ 0.004}, AxesLabel→ {HoldForm[Speed], HoldForm[Probability Density]},
AxesStyle→Directive[Black, Thickness→ 0.0018], TicksStyle→Directive[Black, Thickness→ 0.0014],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 15]]

Out[!]=

-20 -10 0 10 20
Speed

0.02

0.04

0.06

0.08

Probability Density

Figure S1 | Simulated probability density of the mixed distribution *12 when r = c = 10 and u = 6.

For the case on the z-axis:
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In[!]:= w =
c + u

2 c
;

.3 = TruncatedDistributionr
u

c
, r, UniformDistribution[{-r, r}];

.4 = TruncatedDistribution-r, r
u

c
, UniformDistribution[{-r, r}];

.34 =MixtureDistribution[{w, 1 - w}, {.3, .4}];

SimplifyStandardDeviation[.34], Assumptions→ r > r
u

c
> 0

Out[!]=

r 1 - u2

c2

3

In[!]:= StandardDeviation[UniformDistribution[{-r, r}]]

Out[!]=
r

3

In[!]:= .mz = TransformedDistribution
r 1 - u2

c2

3
, r+MaxwellDistribution

1

2

π

2
c;

.z = TransformedDistribution
r

3
, r+MaxwellDistribution

1

2

π

2
c;

Simplify[Mean[.mz]/Mean[.z], Assumptions→ c > 0]

Out[!]= 1 -
u2

c2

Part 3��Calculation Process about Ito Equation
In[!]:= Clear[v]

proc = ItoProcessⅆx[t] ⩵ v ⅆ t + 1 - v2 σ ⅆw[t], x[t], {x, 0}, t, w+WienerProcess[];
PDF[proc[t], x] // Simplify

PDFWienerProcessv, 1 - v2 σ[t], x // Simplify

SliceDistributionWienerProcessv, 1 - v2 σ, t

Out[!]=
ⅇ

(x-t v)2

2 σ2 t v2-1

2 π σ2 (-t) v2 - 1

Out[!]=
ⅇ

(x-t v)2

2 σ2 t v2-1

2 π σ t 1 - v2

Out[!]= NormalDistributiont v, σ t 1 - v2 
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In[!]:= proc = ItoProcessⅆx[t] ⩵ v ⅆ t + 1 - v2 σ ⅆw[t], x[t], {x, 0}, t, w+WienerProcess[];
proc["KolmogorovForwardEquation"] // TraditionalForm

Out[!]//TraditionalForm=

p.
0,1(x, t) 2

1

2

∂2 1 - v2 σ2 p. (x, t)

∂ x ∂ x
-

∂v p. (x, t)

∂ x

Part 4. Figures Used in the Main Text
NOTE: To run these codes correctly, the contents in "MyDirection = **" in the next cell should be 
modified. It is similar to MyDirection = "/Users/yourdirection/". Then, run it (Shift+Enter) 
beforehand.

In[!]:= MyDirection = "/Users/gotall/Library/Mobile
Documents/com~apple~CloudDocs/SPaper/Normal Paper/conti/zhengshi/LaTeX/";

Protect[MyDirection];
Off[General::wrsym];

###################### Figure1##############################

In[!]:= v = 0.6;
σ = 1;

proc =WienerProcessv, 1 - v2 σ;
SeedRandom[123];
sample = Table[RandomFunction[proc, {0, 50, 0.1}, 3]["ValueList"]>, {500}];
figure1 =Graphics3D@Table[{ColorData["SolarColors"][RandomReal[]], Line@sample〚i〛}, {i, 500}];
Export[MyDirection <> "figure1.png", figure1, Background→None, ImageResolution→ 700];

###################### Figure1##############################
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