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Wherein Lies the Momentum in Aharonov-Bohm
Quantum Interference Experiment—A Classical
Physics Perspective
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Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad - 380 009,
India; ashokkumar.singal@gmail.com

Abstract: In the Aharonov-Bohm setup, a double-slit experiment, coherent beams of electrons passing
through two slits form an interference pattern on the observing screen. However, when a long but
thin solenoid of current is introduced behind the slits between the two electron beams, an extra
phase difference between them appears, as shown by a shift in the interference pattern. This happens
even though there is no magnetic field outside the solenoid, at the location of the beams. This is
known as Aharonov-Bohm effect [1], though the idea was mooted apparently a decade earlier [2],
and the effect sometimes is called Ehrenberg-Siday-Aharonov-Bohm effect. This mysterious effect,
purportedly arises owing to an electromagnetic momentum, attributed to the presence at the location
of either beam, a vector potential due to the solenoid of current even when there exists no magnetic
field outside the solenoid. The first experimental confirmation came soon [3] and It has since been
amply verified using clever experimental setups [4,5], leaving hardly any doubts that the observed
effect is real. However, on the theoretical side the picture is not so clear and a satisfactory physical
explanation of the existence of momentum, at least under the aegis of classical electromagnetism, is
still missing since inception of the idea more than half a century back. It has remained a puzzle, how
just potential, thought to be a mere mathematical tools for calculating electromagnetic field, can give
rise to an electromagnetic momentum in a system, in lieu of field itself. We here show that a subtle
momentum can be seen to lie in the product of the drift velocities of the current carrying charges and
the mass equivalent of their non-localized potential energies in the electric field of the interfering
electrons, which manifests, from a classical point of view, a linear momentum in the system. It is this
hard-to-pinpoint, additional momentum, reflected through an extra phase difference between the
interfering beams of electrons, which exhibits from a classical physics perspective, the presence of an
elusive, long sought-after electromagnetic momentum in the system.

Keywords: Aharonov-Bohm effect; foundations of quantum mechanics; interferometry;
electromagnetic momentum; vector potential

1. Introduction

In the Aharonov-Bohm double-slit experimental setup, a long but thin solenoid of electric current
is introduced between the two slits (Figure 1). At a distance R from the central axis of a long solenoid,
comprising circular loops of current, the magnetic field (in cgs units) is [6]

B =
4π IM

c
ẑ , R < r (1)

B = 0 . R > r (2)

where I is the constant electric current flowing in the solenoid, with M current loops per unit length
along the z-axis, and r is the radius of each circular loop.
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Figure 1. A schematic of the Aharonov-Bohm experimental setup. Coherent beams of electrons, passing
through two slits, S1 and S2, separated along the y-axis, form an interference pattern on the screen.
When a long but thin solenoid of electric current is introduced behind the two slits, midway between
the two beams, an extra phase between the two electron beams appears, as shown by a shift in the
interference pattern. In the region of electron beams, the magnetic field is nil (B = 0) though the vector
potential is finite (A 6= 0).

Thus there is no magnetic field outside the solenoid.
Vector potential, defined at a field point by ∇× A = B, is easily determined for such a long

solenoid of current, using Stokes’ theorem, to get [7]∮
A · dx =

∫
(∇×A) · da =

∫
B · da , (3)

which, from the cylindrical symmetry, possesses a finite component only along the azimuthal direction,
with A = Aφφ̂, having a value at R as

Aφ =
2πRIM

c
R < r (4)

Aφ =
2πr2 IM

cR
R > r (5)
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An electric charge Q, of mass m and moving with a velocity v, and accordingly having a
mechanical momentum pm = mv (we consider here only non-relativistic cases), when passing through
a region with a finite vector potential A, gets associated with it, in addition, an electromagnetic (EM)
momentum

pe =
QA

c
. (6)

This EM momentum is independent of either mass m or velocity v of the charge Q, which may thus
even be stationary. This form of momentum in classical electromagnetism, suggested by Maxwell [8],
has been discussed at some length in the literature [9–12]. From Eq. (6) the momentum would be finite
for a non-zero A at the location of Q outside the solenoid of current, even if the magnetic field B = 0
there. Two equal charges, Q1 and Q2, placed symmetrically on two opposite sides of the solenoid,
and thus having equal and opposite vector potentials, A1, A2 with A1 = −A2 at their locations, will
accordingly, possess equal and opposite EM momentum vectors, Q1A1/c = −Q2A2/c.

In quantum mechanics, the wave function associated with the electric charge Q, because of the
additional EM momentum pe, develops an extra phase shift

ϕ =
1
h̄

∫
pe · dx =

Q
ch̄

∫
A · dx . (7)

Then the two charge beams moving along two different paths, but each having the same start and end
points as the other, will acquire accordingly, a phase difference

∆ϕ =
Q
ch̄

∮
A · dx =

Q
ch̄

∫
B · da =

Q Φ
ch̄

, (8)

which is thus determined by the magnetic flux Φ through the area enclosed between the paths, even
though at the location of either beam the magnetic field is nil. The choice of gauge for A does not affect
∆ϕ [13]. Once Eq. (6), from classical electromagnetism, is accepted to be providing a measure of EM
momentum in the system, everything else seems to follow from quantum mechanics.

Such a phase difference has actually been inferred in the Aharonov-Bohm setup, from an observed
shift in the interference pattern [3–5]. From a physical perspective, however, it is not clear from where
does such a mysterious EM momentum appear, whose presence has been verified experimentally,
implying that there is some interaction between the solenoid and the charge beams even in the absence
of any electromagnetic field at the locations of the beams. This interaction, ostensibly through the
vector potential at the location of either beam, is responsible for EM momenta that get reflected in the
observed quantum mechanical phase shift between two beams. But to date it still remains a mystery
how the solenoid influences the beams in the absence of EM fields at their locations, or how do the
beams interact with the solenoid.

The presence of an EM momentum to have a classical origin in the system has been attempted
for a moving charge [14]. However, according to Eq. (6) one should be able to account for the EM
momentum in the system even for a stationary charge in a classical explanation, which somehow has
not been successful [15]. The literature on both experimental and theoretical fronts is so vast that we
make reference to a recent review article [16]. The failure of an explanation within classical physics
has led to quantum mechanical topological explanation where the Aharonov-Bohm phase of the wave
function of a charged particle depends on the topology of the space it moves in, assuming that the
presence of a solenoid of current makes the configuration space non-simply connected [17–19]. Such
non-locality features of quantum mechanics may have deep philosophical implications [20,21]; classical
explanations of EM momentum are not in vogue in the contemporary literature.
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2. EM momentum of a charge in a vector potential from classical perspective

Since Eq. (6), relating the momentum to the vector potential, has its genesis in classical
electromagnetism, one should be able to resolve the issue of EM momentum, without invoking
quantum effects, within the classical physics itself. A convincing argument that QA/c in some respects
does represent momentum within the classical electromagnetism, comes from the following.

Suppose the electric current I in the solenoid is slowly decreased at a constant rate, Then from
Eq. (5), the vector potential A would decrease too, giving rise, in the absence of a scalar potential, to an
electric field cE = −∂A/∂t. This electric field would exert a force on the stationary Q, changing its
mechanical momentum

dpm

dt
= m

dv
dt

= QE

= −Q
c

dA
dt

= −2πQr2M
c2R

dI
dt

φ̂ , (9)

implying thereby that the mechanical momentum mv of Q increases at the cost of QA/c, with the latter
decreasing for dI/dt < 0. This suggests QA/c to be a form of momentum, called EM momentum pe

of the charge Q, along with conservation of pm + pe = mv + QA/c, called generalized momentum
[22], as

d
dt

[pm + pe] = 0 , (10)

all within classical electromagnetism.
However, to date, it still remains an unresolved enigma where after all could such a ‘mysteriously

hidden’ momentum be residing since there is no obvious net linear motion in the system, especially
when the charge is considered to be stationary. As the term “momentum” conjures up a vision of some
kind of linear motion, a question arises where, after all such motion, if any, is lying in the system?
The only non-random motion ostensibly present in the system is in the drift velocities of the current
carrying charges in the steady current loop. However, a linear momentum cannot be solely due to
the drift velocities, as any such momentum vector integrated over a closed circuit would be zero.
Moreover, from Eq. (6), the momentum in question involves, not just the electric current that gives rise
to A, but also the specification of charge Q and its location (where A is to be evaluated), although any
movement of Q does not enter into picture.

We explore here accordingly, from a classical physics perspective, the mysterious momentum
in the Aharonov-Bohm setup, endeavouring to possibly unravel wherein the momentum lies in the
system. We shall demonstrate here explicitly how an electric charge stationary at a location, where
there may be a finite vector potential A, though no magnetic field, does give rise to EM momentum,
mysteriously latent in the system and which is reflected in the Aharonov-Bohm experiments. Moreover,
as will be seen, the momentum in question is not confined to and localized at some specific location,
like that of charge Q; the non-local characteristic of momentum is evident in such a case even within
the classical physics picture itself.

In the case of N discrete charges qj, with velocity vectors vj, the vector potential A at the location
of the charge Q is computed from the summation

A(x0) =
1
c

N

∑
j=1

qj vj

|xj − x0|
, (11)

where |xj − x0| is the distance of charge qj, moving with velocity vj, from the location x0 of the charge
Q.
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Then we have

QA
c

=
1
c2

N

∑
j=1

Q qj

|xj − x0|
vj . (12)

In order to comprehend the electromagnetic momentum in the system from a physical perspective,
instead of the usual way of looking at it in terms of the vector potential A at the location x0 of the
charge Q, we can interpret Eq. (12) in terms of the scalar potential φj = Q/|xj − x0|, due to Q at the
location xj of charge qj. For that we rewrite Eq.(12) as

QA
c

=
N

∑
j=1

φj qj

c2 vj . (13)

We can use the energy-mass relation, to express the potential energy qj φj of a charge qj, owing to
the presence of charge Q at x0, in terms of its mass equivalent

∆mj =
qj φj

c2 =
1
c2

Q qj

|xj − x0|
. (14)

Then we can write

QA
c

=
N

∑
j=1

∆mj vj , (15)

which can now be readily recognized as an electromagnetic momentum, pe, in the system. It should
be noted that ∆mj here has nothing to do with mass mj of the jth charged particle and that the
electromagnetic momentum pe in Eq. (15) is not sum of the kinetic momentum, Σmj vj, of moving
charged particles. Also it is not possible to localize the potential energy qj φj or the equivalent mass
∆mj at either of the charge locations, x0 or xj. Nor could one pinpoint the electromagnetic momentum
pe at the location x0 of charge Q, one has to instead take a holistic view that the system comprises an
electromagnetic momentum pe, without localizing it, even from a classical physics perspective.

For a continuous distribution of moving charges or a current density j(x) = ρ(x) v(x), the vector
potential A at a field point x0 is determined from the volume integral [6,7,24,25]

A(x0) =
∫ j(x)

c|x− x0|
dτ =

1
c

∫
ρ(x) v(x)
|x− x0|

dτ , (16)

where |x− x0| is the distance from the point x0 of the charge element ρ(x)dτ, moving with a velocity
v(x), here dτ denotes an element of volume.

Then we can write

QA
c

=
1
c2

∫ Q ρ(x) v(x)
|x− x0|

dτ , (17)

Because of the scalar potential φ(x) = Q/|x− x0| at x due to Q, the system comprising a charge density
ρ(x), possesses ρ(x) φ(x) as potential energy per unit volume. Then in the expression

QA
c

=
1
c2

∫
φ(x) ρ(x) v(x)dτ , (18)

we could use the energy-mass relation, to express the potential energy density in terms of its equivalent
mass density, µ(x) = ρ(x)φ(x)/c2, to write

QA
c

=
∫

µ(x) v(x)dτ = pe . (19)
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Here µ(x)v(x) is the momentum density in the system, whose volume integral yields the EM
momentum pe in the system, owing to the presence of charge Q at x0.

3. Electromagnetic momentum of a charge outside a solenoid of current

We want now to examine the EM momentum of a charge outside a solenoid and we shall show
here that Eqs. (17), (18), or equivalently (19), lead to an electromagnetic field momentum, latent in the
system. We should clarify that this EM momentum is different from what sometimes is referred to as
‘hidden momentum’ [30] and which actually is a mechanical momentum present in the system.

A long, thin solenoid, carrying a steady electric current I, can be considered as a superposition of
large number of small planar current loops, each carrying current I, with, say, M loops stacked per
unit length of the solenoid, plus a long straight wire carrying current I along the axis of the solenoid.
Inside the solenoid the magnetic field would still be Bz = 4π IM/c (Eq. (5)). On the outside, however,
there will be an azimuthal field Bφ = 2I/cR due to current I along the axis of the solenoid [6], which
nonetheless, would not affect ∆ϕ (Eq. (8)), since flux Φ enclosed between the two beams will not
change. Therefore we shall henceforth ignore the axial current in the solenoid

A small planar loop carrying a current I around area a of the loop constitutes, irrespective of its
shape, a magnetic dipole m = Ia/c, giving rise to a vector potential [6] A = m× R̂/R2 at R from the
loop. This implies for the charge Q at R, from Eq. (6), an EM momentum

pe =
Q A

c
=

Q m× R̂
cR2 =

(E×m)

c
=

(E× a) I
c2 , (20)

where E = −QR̂/R2 is the electric field due to the charge Q at the location of the small current loop.
Thus Eq. (6), expressing EM momentum due to the vector potential of the current loop at the location
of Q, represents implicitly a mutual interaction of the charge Q and the current loop since from Eq. (20),
the EM momentum vector could as well be considered due to the cross product of electric field E of Q
and magnetic moment m of the current loop. Of course this does not in any way resolve the issue of
momentum in this apparently static system.

Since the current loop may consist of a conducting wire, the electric field of the charge Q will
not extend inside the loop wire, as the induced surface charge density there would tend to cancel
any external static electric field inside the wire, leaving only the perpendicular components at the
surface, to make the loop equipotential. In that case the system, in the absence of mutual interaction of
charge Q and the current loop, may not possess an EM momentum [23], contrary to what would have
been otherwise expected from Eq. (6). However, the EM momentum inferred for the system from the
experimentally observed shift in the fringe patterns [3–5] indicates that there may be something amiss
in the above arguments.

Actually, there is a rather subtle issue involved here as in these experiments there are two coherent
charged beams, emerging simultaneously from slits S1 and S2, assumed to be symmetrically placed on
either side of the thin solenoid or its small current loops. Thus one has to consider the EM momentum
simultaneously for a pair of equal charges, placed symmetrically, on two opposite sides of the current
loop. To be specific, we designate the charges as Q1 from slit S1 and Q2 from S2, lying respectively at
distances R1 and R2, with R2 = −R1, measured from the loop position. Thus, at least to a first order,
the electric fields, say E2 and E1 at the loop and the corresponding scalar potentials across the loop
will be equal and opposite for the two charges, making the loop effectively equipotential, without the
aid of induced surface charges that would otherwise get formed there.

Since the induced surface charge on the conducting coil due to either charge may be nil, the
mutual interaction between the current loop and each charge would still be present, with the resulting
momentum associated with either charge being equal and opposite to that associated with the other
charge, pe2 = −pe1, which show up as a shift in the interference pattern. This can be seen from
the conservation of generalized momentum. Suppose the electric current I in the solenoid is slowly
reduced at some constant rate. Then the induced electric field vector (Eq. (9)) at R1 would exert force
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on Q1, changing its mechanical momentum. Now any such change in the mechanical momentum of a
charge is possible, from the conservation of generalized momentum (Eq. (10)), only at the cost of its
EM momentum, ∆pm1 = −∆pe1, implying the presence of pe1 in the system. Similar is the argument
for pe2 in the case of Q2.

Thus one could proceed with the investigation of EM momentum associated with either charge,
without considering any induced surface charges in the current loop that otherwise might have formed
to cancel the electric fields, thus leaving the mutual interaction between corresponding charge and the
current loop unperturbed.

3.1. Electromagnetic momentum of a charge outside a small current loop

We apply our above results to show, from a physical perspective, that in the presence of an
external charge, a current loop does give rise to an EM momentum. For this, we consider a small
rectangular loop, carrying a steady current, I = jσ = nevdσ, where n is the number density of charges
in the circuit, e is the electric charge of conducting charged particles, vd is their drift velocity and σ is
the cross-section of the current-carrying wire. Then from Eq. (11) or (16), the vector potential A at the
location x0 of Q is determined from the integral over the circuit length

A(x) =
1
c

∮ neσ

|x− x0|
vd dl , (21)

where dl is an element of the circuit, with vd as the drift velocity along the direction of the current at
the location x of the circuit. Then the EM momentum of the system, from Eq. (17), can be written as

pe =
∮ Q neσvd

c2|x− x0|
dl =

∮ vd

c2 d E =
∮

vd dm. (22)

Here dE = Q neσdl/|x− x0| is the electric potential energy of current carrying charges in the volume
element σdl in the presence of charge Q at x0, while dm = dE/(c2) is the equivalent electric mass
element. The momentum in Eq. (22) is not the same as the kinetic momentum,

∮
mnσvd dl, of the

electric current carriers, each supposedly of individual mass m. Such a kinetic momentum of the
electric current carriers for a steady current, in any case, yields a nil value when summed over the
whole current loop (mnσ

∮
vd dl = 0), however,

∮
vd dm over the loop does result in a finite value, as

will be shown below.

3.2. Electromagnetic momentum of charges placed on symmetrically opposite sides a small current loop

We have still to show that the pair of equal charges, Q1 and Q2, placed symmetrically, on two
opposite sides of the current carrying solenoid will give rise to equal and opposite EM momentum in
the system, something not so readily apparent from Eqs. (15), (19) or (22).

Let us consider charge Q1 at a distance R1 along the−y direction, from a small rectangular current
loop (Figure 2). We can calculate the EM momentum of the system by considering pairs of current
elements, each of infinitesimal length dl, placed symmetrically on two opposite sides of the loop. The
drift velocity in the arm DA of the current loop is along x̂ direction and the current element is nearer
to the charge Q1, thus making a higher contribution to the EM momentum which is along x̂ direction,
while the drift velocity in the arm BC is along −x̂ direction and the current element being farther from
Q1, makes a contribution which is relatively lower and is along −x̂ direction. The EM momentum of
the whole system, for a small current loop, with r � R1 (Figure 2), is

pe1 =
Q1 neσ s vd

c2(R1 − r)
x̂− Q1 neσ s vd

c2(R1 + r)
x̂ . (23)
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The first term on the right hand side is the contribution of the current loop from the arm DA while the
second term is from the arm BC, each arm of length s. The contributions from the arms AB and CD to
the EM momentum, being equal and opposite, cancel.

Figure 2. A charge Q1 lies a distance R1 from a small current loop ABCD, carrying a uniform current I.
Two equal current elements, dl, separated by distance 2r, on two opposite sides of the current loop, are
shown.

To a first order (for r/R1 � 1), we get

pe1 =
2Q1 neσ s vd r

c2R2
1

x̂ =
(E1 × a) I

c2 , (24)

where E1 = Q1ŷ/R2
1, is the electric field of the charge Q1 at the location of the small current loop and

a = 2 s× r = 2s r ẑ is the area vector of the current loop. The EM momentum in the system, being
directly proportional to the drift velocity (pe ∝ vd) of current carriers, is thus zero to start with for
vd = 0 (when I = 0) and increases as vd increases with I. It is, however, interesting that a finite linear
momentum exists in the system owing to the presence of charge Q1 outside the current loop, even
when Q1 as well as the current loop are both stationary, and momentum vector, if any, due to current
carrying charges adds to zero over the closed loop (mnσ

∮
vddl = 0).

As for the charge Q2, lying on opposite side of the current loop at distance R2 along the y direction,
the contribution of EM momentum from the arm BC of the current loop will be higher than that of the
arm DA, as a result the net EM momentum will be along −x direction. It will be so even though the
potential energy and the mass equivalent for Q2 is similar as for Q1, the opposite directions of drift
velocities in arms DA and BC will make pe2 = −pe1.

The electric current in the loop could be due to electrons instead of positive charges, essentially
making no difference to any of our arguments. Also, at the locations of charge Q1 or Q2, the electric
field as well as the scalar potential of the lattice of positive ions, is equal and opposite to that of
negative current carrying electrons for an over all charge neutral current loop, however, that does not
cancel the EM momenta pe1 and pe2, arising from the drift velocities of current carrier electrons as the
positive ions, fixed in the lattice, do not move with any drift velocity. There is though no net electric
potential energy in the system due to Q1 or Q2, nonetheless it gives rise to a net EM momentum.

We could replace the rectangular shape of the loop with a polygon comprising a larger number
of sides or in the limit even with a circular loop without changing the final result. In fact, by a side
by side superposition of a sufficiently large number of small rectangular loops, any such shape of the
current loop could be realized. Further, the electric field E now need not necessarily be only in the
plane of the current loop. Equation (24), therefore, is a fairly general result as long as the current loop
is small enough for E to be considered uniform over its extent.
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3.3. An alternate computation of electromagnetic momentum for current loop in electric field of charge

The presence of EM momentum (Eq. (24) in the system, can be worked out in an alternate way,
without starting from Eq. (6). In fact, along with the computation of the EM momentum, one could
even derive Eq. (6) as well, that way.

We consider a small circular loop, ABCD, carrying a constant current I = jσ, with j as the current
density and σ the cross-section of the current-carrying wire. There is an electric field E, uniform over
the dimensions of the current loop (Figure 3). The electric field does work on the current density j at a
rate j · E per unit volume [7,24,25]. Accordingly, on a current element dl of the loop, the electric field
does work at a rate j · E σ dl = I dl · E. In section ABC of the loop, the electric field E is doing positive
work while in section CDA, the work done is negative.

Figure 3. A current loop ABCD is carrying current I. There is an electric field E, uniform over the
current loop. The electric field E does positive work, IE · dl on a current element dl in the arc ABC of
the current loop and an equal and opposite work on a similar current element dl in the arc CDA, the
two current elements separated by a distance S, on two opposite sides of the current loop. This implies
transfer of an infinitesimal electromagnetic energy, between two current elements across the shaded
area da of the circuit, which represents an element of electromagnetic momentum in the system.
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Thus, power is fed through the electric field into the system through the side ABC while a similar
amount of power is being drained off from the side CDA. Effectively, a continuous transfer of electric
energy per unit time is taking place from arm CDA to ABC across the current loop due to the presence
of the electrical field (Figure 3). Even Though in this process there is no net change in the total energy
content of the system, there is nevertheless a linear momentum associated with this energy flux across
the loop from side CDA to ABC.

The electromagnetic momentum can be calculated easily if we consider a pair of current elements
placed symmetrically on two opposite sides of the loop (Figure 3). The power being fed into the circuit
element dl in the side ABC through the electric field is IE · dl, while a similar amount of power is
being drained off from a similar circuit elementdl in the side CDA. Effectively, an energy IE · dl is
being transported per unit time along s, the vector joining the current element in side CDA to that in
ABC, implying a momentum

dP = I(E · dl)
s
c2 = E× da

I
c2 , (25)

where da = s× dl is the element of area vector contained between these two current elements across
the loop. An integration over the entire loop gives the total momentum

Pe =
(E× a) I

c2 =
E×m

c
=

Qm× R̂
R2c

=
QA

c
, (26)

Thus in this way we get not only the EM momentum, which is the same as in Eq. (24), we also derive
Eq. (6).

There are other, similar examples in physics where momentum is present in the system due to
equal and opposite work being done on spatially separated parts of the system, implying a flux of
energy between these spatially separated parts, implying momentum in the system. For instance, a
similar continuous transport of electromagnetic energy per unit time across an electric circuit between
its opposite arms, but with no change in the net energy of the system, has been shown elsewhere
[26] to explain the presence of linear electromagnetic momentum in a stationary system comprising
a pair of crossed electric and magnetic dipoles, where nothing obviously is moving or no temporal
changes are occurring in the system. A perfect fluid under pressure, having a bulk motion even
with non-relativistic velocities has finite momentum proportional to pressure that does work on two
opposite ends of a fluid element giving rise to momentum in the system [27]. There is also an opposite
example where a charged parallel plate capacitor, moving parallel to the plate separation, has finite
electromagnetic energy, but in spite of its motion, has zero electromagnetic momentum in the system
[28,29]. A moving spherical charge distribution, representing a classical electron model, where an
equal and opposite work done by the opposite forces of the leading and trailing hemispheres, gives
rise to an energy flux and thereby an electromagnetic momentum in the system that explains the more
than a century-old famous factor of 4/3 in the electromagnetic momentum of such a system [28,29].

One would normally expect the power difference between arms ABC and CDA to be compensated
by the agency tending to maintain a uniform and steady electric current in the loop, with an equal
amount of mechanical energy transfer rate from arm ABC to CDA in the circuit that itself might entail
a mechanical momentum (sometimes called hidden momentum [30]). However, in the present case,
with equal charges, Q1 and Q2, on opposite sides of the current loop, a constant current in both arms
will be maintained because of their equal and opposite electric fields, E1 and E2. Moreover, the energy
flux from arm CDA to ABC because of Q1 will be compensated by an equal energy flux from arm ABC
to CDA due to Q2. However, as was discussed earlier, associated with individual charges there would
still be present EM momenta, pe1, pe2, source of the phase difference, ∆ϕ, experimentally observed
between the two charge beams.
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Now, we can compute from Eq. (24) the total electromagnetic linear momentum associated with
the charge Q1 and the solenoid of current by summing over Ml current loops of the solenoid, and
using Bz = 4π IM/c inside the solenoid (Eq. (1)), to get

pe1 =
Ml

∑
1

(E1 × a) I
c2 =

∫
(E1 × B)

4πc
dτ , (27)

which is the volume integral of the EM momentum density, (E× B)/4πc over the solenoid. For the
charge Q2, with E2 = −E1, Eq. (27) implies pe2 = −pe1.

The seat of the field momentum (Eq. (27)) might appear to be within the solenoid, however,
one has to take the holistic view that the EM momentum actually lies in the composite system of the
charge plus solenoid, as it has been emphasized [31] that the composite system is represented by one
state. Accordingly the system acts as a whole, giving rise to the momentum, that gets reflected in the
Aharonov-Bohm quantum interference experiment. This non-localized interaction seems to be the
explanation of this intriguing phenomenon from a classical physics perspective. The vector potential
A may be still considered in this case as a convenient, intermediary mathematical step with QA/c
presenting a façade of the mutual electric interaction of the conducting current carriers in the solenoid
and an external charge Q, which gives rise to an EM momentum in the system.
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