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Abstract: Milk is a complex liquid, and the concentrations of many of its components are under 1

genetic control. Many genes and pathways are known to regulate milk compositon, and the purpose 2

of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes 3

can elucidate these pathways. The main body of this review focusses primarily on QTL discovered 4

in cattle (Bos taurus) as a model species for lactation biology, with occasional references to other 5

ruminant species, and some comparisons with human milk composition are also presented. The 6

following section describes a range of techniques that can be used to help identify the causative genes 7

underlying QTL when the underlying mechanism involves the regulation of gene expression. As 8

genotype and phenotype data bases continue to grow and diversify, new QTL will continue to be 9

discovered, and, although proving the causality of underlying genes and variants remains difficult, 10

these new data sets will further enhance our understanding of lactation biology. 11

Keywords: mammary biology; mammogenesis; lactation; lactogenesis; quantitative trait loci 12

1. Introduction 13

The composition of milk is complex, featuring an emulsion of fat globules and a 14

colloidal dispersion of casein micelles in an aqueous solution of lactose (and other carbohy- 15

drates), whey proteins, and minerals. Although milk from different species contains the 16

same basic constituents, their proportions can vary greatly. In cattle, the typically average 17

percentages (g/100 g) of fat, caseins, whey proteins, and lactose are 3.9%, 2.6%, 0.6% and 18

4.6% respectively; in humans, the corresponding percentages are 4.5%, 0.4%, 0.5% and 7.1% 19

[1]. Even more extreme differences can be seen in other species, with some seal species, for 20

example, expressing little to no lactose, resulting in highly concentrated milk showing fat 21

percentages of 50% [2]. 22

Less extreme differences in milk composition are also visible within species. In many 23

cases, the differences in composition among individuals are under partial genetic con- 24

trol. Regions of the genome where the genotypes of genetic variants are associated with 25

phenotypes such as milk composition are known as quantitative trait loci (QTL). When 26

they can be identified, the causative genes underlying these QTL can help elucidate the 27

pathways involved in milk production. The aim of this review is to describe some of the 28

major pathways required for milk production in terms of the QTL and genes that have 29

helped to identify them, as well as to note some of the methods that can be used to identify 30

causative genes underlying QTL. This will focus primarily on cattle (Bos taurus) as a model 31

species; however, some comparisons with human milk composition are also presented. 32

2. QTL for major pathways involved in milk production 33

Many QTL have been observed for both milk yield and milk composition traits. The 34

genes attributed to these QTL have a variety of functions. Some, such as the hormones 35

prolactin and growth hormone, and their associated signalling pathways, are involved in 36

mammogenesis: the development of the mammary gland during puberty and pregnancy. 37

Other pathways, such as fat and protein synthesis, and ion channels, are involved directly 38
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in milk production. The following sections list some of the pathways involved in mammo- 39

genesis and lactation, as identified by QTL for milk production where the candidate causal 40

gene sits within those pathways. 41

2.1. Milk proteins 42

QTL have been mapped to many milk proteins, i.e., those expressed directly into 43

milk. In cattle, the largest proportion of milk protein content (80% [3]) consists of the 44

four casein proteins, encoded by a cluster of genes mapping to BTA6: CSN1S1, encoding 45

αS1-casein, CSN1S2 for αS2-casein, CSN2 for β-casein, and CSN3 for κ-casein. The casein 46

proteins aggregate into miscelles in the milk, sequestering calcium phosphate as a nutrient 47

source for the neonate. κ-casein seems to be particularly important for successful lactation, 48

as knockout mice deficient in κ-casein fail to lactate, due to destabilisation of the casein 49

miscelles [4]. Like β-lactoglobulin, the various casein proteins all show a range of coding 50

variants, although, with the exception of CSN1S1*G [5], these have not been intrinsically 51

linked to lower rates of gene expression like the β-lactoglobulin B variants discussed above. 52

However, there is evidence that the SNP responsible for the A2 variant of β-casein is 53

associated with both milk yield and protein yield [6], and QTL for milk protein phenotypes 54

have also been detected at this locus in other studies [7,8]. These QTL can overlap with, but 55

are not in linkage disequilibrium with, other nearby QTL assigned to the GC gene [7,9,10]: 56

this gene encodes the protein Group-Specific Component (Vitamin D Binding), and maps 57

around one megabase from the casein gene cluster. Outside the mammary gland, casein 58

expression in human CD14+ monocytes has been observed to upregulate expression of of 59

the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1β 60

(IL-1β), and IL-6 via the p38-MAPK pathway [11,12]. This suggests a possible role for 61

caseins in regulating the innate immune response in the neonate intestine following milk 62

consumption. 63

The major whey protein in cattle, accounting for around 50% of whey protein [3] 64

and 10% of total protein, is β-lactoglobulin, encoded by the gene PAEP on BTA11. A 65

QTL has been detected mapping to this gene, with pleiotropic effects on milk fat yield, 66

protein yield, and volume [7,13]. Other studies looking at individual milk proteins have also 67

shown that genetic variants associated with low β-lactoglobulin concentrations yield higher 68

concentrations of α-, β-, and κ-caseins [14]. Variation in milk β-lactoglobulin concentrations 69

are primarily driven by differences between the A and B protein variants [15,16], with 70

the B variant showing lower expression than the A variant. Other variants mapping 71

within the B variant background, such as B∗ [17] and B′ [18], cause further reductions in β- 72

lactoglobulin expression. Milk with low β-lactoglobulin concentrations has potential uses in 73

infant formula (as human milk lacks this protein), and the associated higher concentrations 74

of caseins would also be expected to provide better properties for cheese making. 75

The dominant whey protein in humans, and second in cattle (18.5% of total whey 76

protein [3]), is α-lactalbumin, encoded by the gene LALBA on BTA5. QTL associated with 77

milk protein concentration have been identified at this locus in several dairy populations 78

and breeds [19–22]. The α-lactalbumin protein also comprises a regulatory subunit of 79

lactose synthase complex, so it is no surprise that a QTL for milk lactose concentration has 80

also been identified at this locus [23]. The importance of this is shown in α-lactalbumin 81

knockout mice, which produce highly viscous milk, with otherwise normal fat and protein 82

composition, that cannot be extracted by the pups from the mammary gland [24]. It has 83

been shown in vitro that multimeric α-lactalbumin is cytotoxic to stem cells and transformed 84

cell lines [25], suggesting that α-lactalbumin may also have a protective function in either 85

the mammary gland or neotate digestive system. 86

Another whey protein is the iron-binding antimicrobial protein Lactoferrin, encoded 87

by the LTF gene on BTA22. In cattle, this protein exists in bovine milk at low but variable 88

concentrations (average 115.4 µg/mL in [26] but ranging from 31.8 to 485.6), but reaches 89

much higher concentrations in human milk at around 2 g/L in mature milk [27]. Interest- 90

ingly, another antimicrobial protein, lysozyme, which is present at lower levels in human 91
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milk [3], is also relatively depleted in cattle [28], with concentrations of lysozyme in Bovidae 92

reported to be as low as 1/1000th of other mammalian species [29]. Although lactoferrin 93

expression can be induced by mastitic infection [30] it is also under partial genetic control 94

[31], and genetic variants affecting expression have been identified at the LTF locus [32]. 95

QTL at this locus have also been associated with casein number and lactose concentration 96

[33]. 97

A third antibacterial protein present in milk is lactoperoxidase, encoded by the LPO 98

gene on BTA19. In contrast to lysozyme and lactoferrin, lactoperoxidase activity has been 99

observed at around 20× higher in bovine milk compared to that of humans [34]. A trans- 100

eQTL for LPO, overlapping a QTL for milk protein concentration, has been identified on 101

BTA20 at the locus of the C6 and C7 genes [35]: these two genes encode proteins that 102

comprise part of the complement pathway in the innate immune system, suggesting that 103

lactoperoxidase may be co-regulated with with this system. 104

2.2. Fat synthesis pathways 105

Fat is one of the major components of milk, forming membrane-bound droplets 106

known as milk fat globules (MFG), mostly in the form of triglycerides. MFG membranes 107

also contain a range of proteins, such as butyrophilin, adipophilin, mucin, lactadherin, 108

lactoferrin, and xanthine oxidase [36]. Two of these, butyrophilin (BTN1A1 ) and xanthine 109

oxidase (XOR ), are required for enveloping the MFGs with the apical cell membrane and 110

therefore for secretion of the MFG into milk [37]. Heterozygous knockout mice for XOR 111

are unable to maintain lactation [38]. Many of the QTL for fat yield or milk concentration 112

in cattle map to genes encoding fat synthesis or metabolic enzymes. One of the most 113

prominent QTL detected in cattle [39] for milk volume, fat, and protein phenotypes in cattle 114

maps to the DGAT1 locus on BTA14 [40]. This gene encodes the enzyme diacylglycerol O- 115

acyltransferase 1, responsible for the final stage triglyceride fat synthesis [41]. The causative 116

variant for this QTL is a non-conservative lysine to alanine substitution at position 232 117

[40]; more recently, this same variant has been shown to cause an expression QTL for 118

the DGAT1 gene by disrupting an exon splice enhancer, which in turn alters the splicing 119

efficiency of several introns in the transcript [42]. Another enzyme sitting earlier in the 120

same trigyceride synthesis pathway is glycerol-3-phosphate acyltransferase 4, encoded by 121

the GPAT4 gene (formerly known as AGPAT6 ) on BTA27. Like DGAT1, a highly pleiotropic 122

QTL has been detected at this locus for many milk phenotypes, including volume, fat, 123

protein, and lactose traits [43]. The enzyme lipin 1 sits in a related pathway, catalysing the 124

conversion of phosphatidate into diacylglycerol, as well as functioning as a tanscriptional 125

coactivator for genes involved in fatty acid oxidation [44]. QTL for milk protein and casein 126

concentrations [33], as well as milk yield [45], have been detected at the LPIN1 locus, which 127

encodes this enzyme, on BTA11 in cattle. 128

Before they can be assembled into triglycerides, fatty acids first need to be obtained 129

either from the diet or from de novo synthesis. Several genes involved in this latter pathway 130

have also shown QTL for milk-related phenotypes. The rate-limiting step in fatty acid 131

synthesis is the carboxylation of acetyl-CoA to malonyl-CoA, catalysed by the enzyme 132

Acetyl-CoA carboxylase (ACC). The alpha form of this enzyme is encoded by the gene 133

ACACA on BTA19, and QTL for fatty acid composition [46] and somatic cell score (a proxy 134

phenotype for mastitis) [33] have been mapped to this locus. Another important enzyme in 135

the fatty acid synthesis pathway is fatty acid synthase (FAS), encoded by the gene FASN 136

on BTA19, dimers of which are responsible for synthesising the saturated C16 fatty acid 137

palmitic acid from acetyl-CoA and malonyl-CoA [47]. QTL attributed to this gene have 138

been identified for milk fat yield [7], fat concentration [8,48], and fatty acid composition 139

[49] in cattle. 140

The fatty acid synthase gene will produce only saturated fatty acids. To generate 141

monounsaturated or polyunsaturated fatty acids, desaturase enzymes are required. One 142

cluster of fatty acid desaturase genes on BTA29 includes the two gene FADS1 and FADS2 ; 143

these enzymes are responsible for the final, rate-limiting step in omega-3 and -6 fatty acid 144
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synthesis [50,51]. Variants mapping in cattle to these two genes have been associated 145

with concentrations of a range of polyunsaturated fatty acids in milk [52], and similar 146

associations are also observed in human milk [53,54]. A third desaturase enzyme involved 147

in fatty acid synthesis is stearoyl-CoA desaturase, encoded by the gene SCD on BTA26 148

and responsible for oxidising the C16 and C18 saturated fatty acid compounds palmitoyl- 149

and stearoyl-CoA into the monounsaturated compounds palmitoleoyl- and oleoyl-CoA 150

respectively [55]. This enzyme is also important in regulating metabolism: knockout mice, 151

as well as exhibiting lower levels of tissue triglycerides and low-density lipoproteins [56], 152

also show an increase in insulin signalling and glucose uptake in muscle tissue [57]. In 153

cattle, a QTL assigned to SCD has been identified for milk fat yield [7,48]. 154

2.3. Hormones and signalling 155

Hormones, and the receptors and signalling pathways they activate, are important 156

in most if not all biological functions, and milk production is no exception. For example, 157

knocking out the SCD gene discussed in the previous section leads to an increase in 158

tyrosine phosphorylation of the insulin receptor, with downstream effects on the PI3K-Akt 159

signalling pathway, leading to increased levels of the glucose transporter GLUT4 in the 160

plasma membrane and increased glucose uptake in muscle [57]. These knockout mice 161

also showed lower levels of the hormone leptin, which is involved in regulating energy 162

intake and partitioning. In cattle, leptin (encoded by the gene LEP on BTA4) has been 163

associated with both milk yield and feed intake [58]. No milk phenotype QTL have been 164

reported for the leptin receptor (LEPR on BTA3), though an association has been reported 165

with body size [59]. In both humans [60] and mice [61], leptin resistance is associated 166

with obesity. Another gene associated with obesity [62] is FTO, encoding the enzyme 167

FTO alpha-ketoglutarate dependent dioxygenase. This enzyme is involved in DNA repair; 168

specifically, it demethylates 3-methylthymidine [63]. It can also demethylate bases in RNA, 169

including 3-methyluracil and 6-methyladenosine [64]. Via this latter mechanism, FTO can 170

inhibit adipogenesis by demethylating cyclin A2 and cyclin-dependent kinase 2 mRNA, 171

reducing expression of these genes and thereby prolonging the cell cycle [65]. In cattle, 172

variants at the FTO locus on BTA18 have been associated with milk fat yield [66]. 173

One hormone of particular importance for lactation is prolactin, a peptide hormone 174

secreted by the anterior pituitary gland. In cattle, this peptide is encoded by the PRL gene 175

on BTA23. The importance of this hormone in cattle was underlined by the discovery of a 176

dominant missense mutation that caused, among other phenotypes, a failure to lactate [67]. 177

Prolactin promotes development of the mammary gland during pregnancy in conjunction 178

with progesterone to generate ductal branching and alveolar buds [68]. Prolactin is detected 179

by cells using prolactin receptor (PRLR ; BTA20) and acts via the PRLR/JAK2/STAT5 180

signalling pathway to promote mammary gland development and milk protein expression 181

[69], as well as inducing expression of the enzyme UDP-glucose pyrophosphorylase 2 182

(UGP2 ) and the transporter UDP-galactose transporter 2 (SLC35A2 ), thereby promoting 183

the synthesis of lactose [70]. In parallel, prolactin receptor also acts via the PI3K/Akt 184

pathway to downregulate repressors of PRLR/JAK2/STAT5 signalling [71], with Akt1 185

also upregulating fat synthesis and glucose uptake into the cell for lactose production 186

[72,73]. More recently, it has been shown that Akt signalling induces developing mammary 187

epithelial cells to express prolactin, which in turn acts in an autocrine manner via STAT5 to 188

cause terminal differentiation of the mammary epithelium [69,74]. Given the importance of 189

these pathways, it is not surprising that QTL for milk yield have been widely identified 190

at the PRLR locus [33,75,76], as well as for somatic cell score [76]. Likewise, many studies 191

have reported milk related QTL at the STAT5 locus on BTA19 (genes STAT5A and STAT5B ) 192

[7,22,23,49,77]. 193

Beyond the leptin and prolactin pathways, other hormones have also been linked 194

to lactogenesis. One example is growth hormone, also known as somatotropin, which 195

comprises part of the same family of protein hormones as prolactin [78]. Growth hormone 196

acts in the lactating animal to partition nutrients and energy towards the mammary gland 197
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[79], though to be mediated by increased serum insulin-like growth factor (IGF-1) levels 198

[80]. In the cow, growth hormone is encoded by the gene GH1 on BTA19, and its receptor, 199

encoded by GHR, maps to BTA20. Both the GH1 locus [33], and especially the GHR locus 200

[8,58,81–83], have been associated with milk, fat, and protein yield phenotypes in a range 201

of cattle populations. 202

Another important family of signalling molecules is the interleukin family of cytokines, 203

a group of primarily immunomodulatory proteins that operate in a paracrine or autocrine 204

manner to affect cell growth and differentiation during immune responses [84]. The gene 205

CSF2RB on BTA5 encodes the β-chain of GM-CSF (alos known as CSF2) receptor, and also 206

forms a common subunit with the receptors for interleukin-3 (IL-3) and IL-5. QTL for milk, 207

fat, and protein volume, as well as fat and protein concentrations, have been identified at 208

this locus [7,20,85,86], with CSF2RB suggested as the most likely candidate causative gene, 209

although the neighbouring genes NCF4 [85,86] and TST [8] have also been put forward 210

as candidates. The GM-CSF receptor operates via the JAK/STAT signalling pathway, 211

specifically, JAK2 and STAT5 [84], the same pathway as used by prolactin signalling. 212

In contrast to STAT5, which is linked to increased milk protein and lactose expression, 213

STAT3 has been identified as a mediator of involution and apoptosis in the mammary 214

gland [87], primarily activated by the cytokine leukaemia inhibitory factor (LIF) [88,89]. 215

STAT3 is also involved in leptin signalling, interacting with the long form of the leptin 216

receptor [90]. Mice where either STAT3 or LIF are knocked out show delayed involution 217

and reduced levels of apoptosis [88], raising the possibility of improving efficiency in dairy 218

herds, especially those milking once-a-day, by breeding for animals lacking one or more of 219

these genes. It is difficult to assign QTL unambiguously to the STAT3 locus, as it maps on 220

BTA directly between the two STAT5 genes STAT5A and STAT5B. Yet another STAT protein, 221

STAT1, is believed to be involved in the development of the mammary gland [91]. A QTL 222

mapping to the STAT1 locus on BTA2 has been associated with milk, fat, and protein yield 223

[91]. 224

One group of proteins that is upregulated by the JAK/STAT pathway is the suppres- 225

sors of cytokine signalling (SOCS) gene family [92]. Proteins in this family down-regulate 226

JAK/STAT-mediated signalling. For example, SOCS1 expression is induced by prolactin 227

signalling, and in turn binds to JAK2, inhibiting its association with STAT5 and dampening 228

signal transmission [68,93]. SOCS2 negatively regulates GH signalling, with knockout 229

mice showing increased weight and skeletal dimensions [94]. Because SOCS proteins 230

ultimately downregulate milk protein expression via prolactin and growth hormone sig- 231

nalling pathways, there is the potential that knocking the genes coding them out could 232

improve lactation phenotypes in dairy animals. For example, mice with homozygous Socs1 233

knockout genotypes show enhanced alveolar development [93], and a point mutation in 234

the ovine Socs2 gene has been associated with higher milk production in dairy sheep, albeit 235

with increased susceptibility to mastitis [95]. In cattle, several different SOCS genes have 236

been associated with milk volume, fat, and protein phenotypes [92]. 237

2.4. Transporters and ion channels 238

Another important mechanism affecting milk production involves trans-membrane 239

transport and ion channels. All major milk components need to either be produced within 240

the mammary epithelial cells or transported across them from the blood, and in both cases 241

need to cross the apical membrane into the lumen. While some small molecules like urea 242

can simply diffuse across the membrane, in most cases either passive or active transport 243

channels are required. 244

The volume of water excreted into the milk is driven by osmotic pressure, in turn 245

created by exporting lactose and ions across the cell membrane against their concentration 246

gradients. This means that QTL for milk phenotypes frequently map to genes encoding 247

transporters. One important group is the sugar transporters. The gene SLC37A1 (on 248

BTA1) encodes a glucose-6-phosphate : inorganic phosphate antiporter [96], responsible 249

for importing glucose into the cell, and QTL for milk volume have been detected at this 250
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locus in several populations [20,85,97]. Another glucose transporter, SWEET1, is encoded 251

by the gene SLC50A1 on BTA3. SWEET1 has been observed in the Golgi in mammary cells, 252

and is possibly responsible for importing glucose into the Golgi for lactose synthesis [98]. 253

QTL for lactose concentration [23] and protein concentration [85] have been identified near 254

this gene, though the latter QTL has been assigned to GBA1, which encodes the lysosomal 255

protein glucosylceramidase beta 1. Other glucose transporters have also been implicated in 256

milk production, such as GLUT1 (SLC2A1 on BTA3) [99], the Na+/glucose co-transporter 257

SGLT1 (SLC5A1 on BTA17) [100], and GLUT12 (SLC2A12 on BTA9) [100]. 258

While the mammary epithelial cells are using osmotic pressure to secrete milk, it 259

is important that they maintain their own cell volumes correctly. One mechanism by 260

which they can do this is using voltage-regulated anion channels (VRACs), which help 261

regulate cell volume by exporting Cl− ions, as well as small organic anions such as taurine 262

[101,102]. VRACs are comprised of heteromers of leucine-rich repeat containing 8 (LRRC8) 263

proteins A to E, encoded by the genes LRRC8A–LRRC8E. In cattle, the locus on BTA3 264

containing LRRC8B–LRRC8D has been associated with milk lactose concentration [23,77], 265

with LRRC8C suggested as the likely causative gene on the basis of gene expression data. 266

Interestingly, LRRC8C has been associated with adipocyte differentiation (under the name 267

fad158 ) [103], and is also present in the membranes of MFGs [104], suggesting it may also 268

have a role in the storage or export of fat. 269

As stated above, it is important that water be able to move across the cell membrane 270

to osmotic balance as milk is expressed. However, the lipid bilayer of the cell membrane 271

is impermeable to water, requiring channels to facilitate the crossing. These channels are 272

provided by aquaporin proteins (AQPs). At least seven aquaporins are expressed in the 273

mammary gland [105,106], where they are believed to play a role in gland development, 274

and in transporting water to the lactating gland for milk synthesis and secretion. For 275

example, AQP1 is expressed in the capillary endothelial cells, and may be involved in 276

oestrogen-mediated angiogenesis in the developing mammary gland [107], while AQP5 is 277

expressed in mammary epithelial cells, and the protein pores are moved from the cytoplasm 278

to the apical cell membrane under the regulation of prolactin [108], suggesting a role in 279

milk production. Genetic effects mapping to aquaporin genes have been reported, such as a 280

study in sheep [109] that mapped QTL for milk fat and protein concentrations to a window 281

on OAR3 that contains the genes AQP2, AQP5, and AQP6, albeit alongside LALBA, which 282

also presents a strong candidate causal gene for milk-related traits. 283

Another important class of transporter is the potassium channel, a type of widely 284

expressed ion channel found in the majority of cell types. A number of different families of 285

potassium channel have been identified. The largest family, the voltage-gated potassium 286

channels (Kv, reviewed in [110]), responds to voltage changes in the cell’s membrane 287

potential. One channel, Kv3.3 is encoded by the gene KCNC3 on BTA18, has been associated 288

with milk yield in cattle [22]. Another QTL for both milk volume and fat yield maps to the 289

gene KCNS2, encoding Kv9.2, on BTA14 [83]. A third gene in the same family, KCNH4, 290

encodes the channel Kv12.3, and is a potential candidate for a lactose concentration QTL on 291

BTA19 [23], although the QTL also encompasses the genes STAT3, STAT5A, and STAT5B, 292

which are also candidates. A second large family is the potassium inwardly rectifying 293

channel family (Kir, reviewed in [111]), comprising lipid-gated channels that are activated 294

by phosphatidylinositol 4,5-bisphosphate (PIP2). In cattle, a locus on BTA19 has been 295

associated with QTL for fat and protein concentrations [22], lactose concentration [23,77], 296

and milk yield [7]. This locus contains two genes encoding Kir channels: KCNJ2 (Kir2.1) and 297

KCNJ16 (Kir5.1), and both genes have been proposed as candidate causatives underlying 298

the QTL. A third, smaller, family of channels is the two-pore-domain potassium channels 299

(K2P), known as leak channels [112]. A QTL for milk fat, protein, and volume has been 300

identified on BTA26 at the locus of the KCNK18 gene, encoding the potassium channel 301

K2P18.1 [83]. A fourth family is the calcium- and sodium-activated potassium channels 302

[113], of which the most well-known member is KCa1.1, also known as BK. The activity of 303
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KCa1.1 is modulated by auxiliary β and γ subunits [114,115], including γ1, encoded by the 304

gene LRRC26 on BTA11, where a QTL for fat concentration has been detected [22]. 305

The channels discussed so far are limited to moving solutes along an existing con- 306

centration gradient. Another class of transporter requires energy in the form of ATP to 307

concentrate solutes to establish a gradient or membrane potential. Many of these belong to 308

the ATP binding cassette family (ABC). One important example from this family is ATP 309

binding cassette subfamily G member 2 (ABCG2 ). Initially identified as a xenobiotic drug 310

transporter [116], ABCG2 also functions as a riboflavin transporter into the milk [117] and a 311

urate transporter in the kidneys [118]. QTL for several milk phenotypes have been mapped 312

to the ABCG2 locus on BTA6, including milk yield [7,20,83,119], fat and protein concentra- 313

tion [8,77,119], lactose concentration [23,77] and αS1-CN concentration [97]. The causative 314

variant at this QTL is generally believed to be a tyrosine to serine substitution (Y581S), 315

identified by Cohen-Zinder et al. [119]; however the adjacent gene SPP1, encoding the 316

protein osteopontin (involved in bone remodelling), has also been proposed as a candidate 317

[120,121]. A second member of the ABC family is SUR2 (encoded by ABCC9 on BTA5), 318

which forms a component of the ATP-sensitive potassium channel KATP, alongside SUR1 319

(ABCC8 ) and the inward rectifying channels Kir6.1 (KCNJ8 ) and Kir6.2 (KCNJ11 ) [122], 320

with the exact composition varying by tissue [123]. The channel is inhibited by ATP and 321

activated by MgADP. The KATP transporter is important for glucose level sensing to control 322

insulin release in pancreatic beta cells [124]: at low glucose levels, ATP levels are low and 323

ADP levels raised, so the channel is open, while at high glucose levels, ATP closes the 324

channel. This polarises the plasma membrane, a change that is detected by voltage-gated 325

calcium channels, which then open, causing calcium to enter the cell and trigger the release 326

of insulin. In cattle, a QTL for milk fat yield has been identified at the ABCC9 locus [22,82]. 327

A third ATP-binding transporter is the calcium transporter SERCA2, encoded by the gene 328

ATP2A2 on BTA17. This transporter pumps Ca2+ from the cytosol into the endoplasmic 329

reticulum, whence it can be exported into milk [125]. A QTL at this locus has been detected 330

for milk and protein yield, as well as for milk calcium [35]. 331

Another ion transporter, showing widely reported associations with milk phenotypes, 332

is inorganic pyrophosphate transport regulator, encoded by the gene ANKH on BTA20. 333

The ANKH transporter controls extracellular mineralisation by regulating the levels of 334

inorganic pyrophosphate in the extracellular matrix. In humans and mice, mutations in 335

this transporter have been associated with arthritis and bone growth disorders linked 336

to tissue calcification [126,127]. This transporter has previously been assumed to be a 337

pyrophosphate transporter; however, recent work has shown that the channel in fact trans- 338

ports ATP, and that the production of extracellular pyrophosphate from ATP requires the 339

enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) [128]. In cattle, 340

QTL mapping to the ANKH locus have been identified for milk yield [7,20], milk lactose 341

concentration [23,77], and α-lactalbumin concentration [97]. Another recent study [129] 342

discovered that the ANK protein cycles between the plasma membrane and trans-Golgi 343

network using clathrin-coated vesicles mediated by clathrin adaptors AP1 and AP2. The 344

phosphatidylinositol binding clathrin assembly protein also interacts with AP2 [130], bind- 345

ing to the signalling molecule phosphatidylinositol and recruiting the AP2 complex to 346

form clathrin-coated pits. This protein is encoded by the gene PICALM on BTA29, and is 347

associated with QTL for αS1-CN [97] and lactose concentration [23,77]. 348

3. Identifying candidate causative genes 349

The previous section may have given the impression that identifying the causative 350

genes or even variants underlying QTL is easy. However, in many cases, there will be 351

either no obvious candidate genes under the QTL, possibly because the causative variant 352

sits in a long-range regulatory element for a distant gene. In other cases, there may be 353

many potential candidate genes, with different selection methods highlighting different 354

candidates. For example, the window from 42.2 to 42.5 Mbp on BTA19 envelopes several 355

candidate genes for milk phenotypes. A 2015 study by Raven et al. [85] highlighted the 356
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genes GHDC, STAT5A, and STAT5B on the basis of differential expression and enrichment 357

of significant variants, and proposed STAT5A as causative on the basis of knockout studies 358

in mice. In contrast, later work by our group [23,77] used eQTL data and missense variants 359

in strong LD with the top QTL variant to highlight the genes DHX58, GHDC, KAT2A, 360

KCNH4, STAT5A, and STAT5B, with the two STAT5 genes again proposed as the most 361

likely candidates. As discussed above, potassium channels such as that encoded by KCNH4 362

have been associated with milk at a number of loci, while the histone deacetylase and 363

transcription activator KAT2A2 is also a possible candidate, based on the high levels of 364

gene expression required in the lactating mammary gland. It is possible that multiple QTL 365

are segregating at this locus, and therefore that more than one gene is causative. 366

Another region with two strong candidate causal genes maps between 15.3 and 367

15.6 Mbp on BTA3. At this locus, Raven et al. [85] identified a QTL for milk protein 368

concentration, and proposed the epithelial mucin gene MUC1 as the best candidate. The 369

mucin 1 protein coded by this gene is considered a “metabolic master regulator” [131], 370

regulating tyrosine-kinase signalling and the expression of metabolic genes. Work by our 371

group [23,77] as identified a QTL for milk lactose concentration at the same locus, and 372

proposed the gene SLC50A1, encoding a sugar transporter. Again, it is possible that these 373

are two separate QTL, and that both genes are causative for the corresponding phenotypes; 374

however, another possibility is that the QTL is pleiotropic, and only one QTL is present 375

controlling both phenotypes. Distinguishing between these two possibilities is difficult or 376

impossible using purely statistical or bioinformatic means, and additional experiments are 377

likely to be required. 378

3.1. Molecular phenotypes 379

Widely used phenotypes such as fat or protein are effectively aggregating signals from 380

a large number of milk components: individual fatty acids and other lipids for fat, and a 381

number of casein and whey proteins for protein, for example. It is likely that these different 382

components are not all under the same genetic regulation, and some correlations may even 383

be negative. For example, Stoop et al [132] observed genetic correlations of as low as −0.84 384

between milk fatty acid measures (C14:0 and C16:0), as well as correlations over 0.9. This 385

suggests that using finer composition measures, such as individual fatty acids or proteins, 386

should give cleaner, and possibly a larger number of, genetic signals compared to complex 387

phenotypes such as fat or protein. This approach has been successfully applied to use milk 388

minerals and individual protein measurements to identify novel QTL and to highlight 389

SLC37A1 as involved in lactation [35]. These phenotypes can be considered “molecular”, 390

as measurements for a single molecule, for example using gas or liquid chromatography 391

with mass spectroscopy, are providing the phenotype. 392

Molecular phenotypes in milk are often measured using Fourier-transform mid- 393

infrared spectroscopy, as this method is commonly used for commercial herd testing, 394

and is cheaper than to perform on a large scale than spectroscopy. This method uses the 395

absorbance of around 900 different frequencies of infrared light (known as wavenumbers), 396

then uses these values in a model to predict the phenotypes of interest. In commercial 397

herd testing, the predicted phenotypes are typically fat, protein, and lactose concentrations; 398

however, models have been developed for a range of other phenotypes, such as individ- 399

ual fatty acids [133] and proteins [134], as well as phenotypes more remote to milk such 400

as methane production [135] and fertility [136]. However, because FT-MIR phenotypes 401

are predicted rather than measured, their utility for QTL discovery can be variable. For 402

example, our recent work [137] showed that both HPLC measured and FT-MIR predicted 403

phenotypes could detect significant cis-QTL for α-casein, κ-casein, and β-lactoglobulin. 404

However, FT-MIR was unable to identify the highly significant cis-QTL for lactoferrin that 405

was identified using HPLC, and identified a QTL at the locus of the fat synthesis gene 406

DGAT1 for α-casein; this latter may be due to signal crossover from fat, which is highly 407

correlated with protein in milk. This form of crossover, if present, would complicate the 408

task of identifying pleiotropy. 409
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In addition to predicting concentrations of milk components, it is also possible to 410

use the individual wavenumber data itself as phenotypes [77]: different wavenumbers 411

represent different chemical bonds that absorb MIR light at the corresponding frequen- 412

cies, so wavenumber phenotypes are effectively measuring the concentrations in milk of 413

compounds that contain specific chemical bonds. Wavenumber phenotypes have been 414

shown to detect stronger and more numerous genetic signals compared to the predicted 415

phenotypes such as fat and protein [77]. 416

Examining the expression level of each gene in a relevant tissue sample provides 417

an alternative to measuring or estimating protein concentrations. In milk, for example, 418

expression levels of the genes encoding milk proteins in the lactating mammary epithelial 419

tissue can give a proxy measurement for milk proteins. Traditionally, this could be done 420

using techniques such as qPCR or expression microarrays; more recently, using RNA 421

sequencing (RNA-seq) to sequence and count (relatively) mRNA molecules has become 422

common. Because RNA-seq captures data for every expressed gene, it is possible to search 423

for expression QTL (eQTL), as well as allele-specific expression (ASE), for every gene, 424

including those not expressed in the milk, such as fat synthesis enzymes and hormone 425

receptors. The presence of a QTL for a given gene can provide evidence to the causality (or 426

otherwise) of the gene at an overlapping QTL: when the QTL is caused by an underlying 427

eQTL, we expect that the causal variant or variants will be strongly associated with both the 428

QTL and eQTL, with associations for other variants decaying away in proportion to linkage 429

disequilibrium with the causal variants. This pattern can be identified by examining the 430

correlations across variants between the QTL and eQTL variant effects [138] or p-values 431

(on a logarithmic scale) [23,43], or correlations between local genomic estimated breeding 432

values (GEBVs) and gene expression [139]. Other methods used to associate eQTL with 433

GWAS results include Transcriptome-Wide Association Scan (TWAS) [140], Mendelian 434

Randomisation [141,142] and Bayesian colocalisation methods [139,143]. 435

Molecular phenotypes and their QTL have assisted in highlighting candidate causative 436

genes in cases where no obvious candidates existed. For example, the gene MGST1 on BTA5 437

encodes microsomal glutathione S-transferase 1, belonging to a family of detoxification 438

enzymes [144], with no obvious role in milk production. Nevertheless, QTL for milk traits 439

mapping to this locus have been reported in many different studies [20,85,97,145,146], 440

with the neighbouring gene EPS8 (Epidermal growth factor receptor kinase substrate 8) 441

sometimes proposed as a candidate. However, gene expression data from lactating bovine 442

mammary tissue have shown that the milk QTL at this locus co-segregate with an eQTL 443

for MGST1, whereas EPS8 is barely expressed in this tissue. Similarly, a QTL for milk 444

fat percentage on the distal end of BTA11 has been linked to the gene encoding the ABO 445

blood group, also named ABO (alpha 1-3-N-acetylgalactosaminyltransferase and alpha 446

1-3-galactosyltransferase), using RNA-seq data to show that a splice donor site mutation 447

causes aberrant splicing of the ABO transcript. in turn causing an eQTL that co-segregates 448

with the fat percentage QTL [77]. 449

3.2. Chromatin structure phenotypes 450

Chromatin is the name given to the compound comprising DNA wound around 451

nucleosomes, themselves composed of histone proteins. The three-dimensional folded 452

structure of chromatin can have an important impact on gene expression. On a proximal 453

scale, the structure of the chromatin region surrounding a gene can be in open or closed 454

configurations, with the former providing access for transcription factors and RNA poly- 455

merase components to reach the promoter region and trigger gene expression, while the 456

latter, closed, configuration blocks expression. Variants sitting within an open chromatin 457

region in the appropriate cell type are more likely to have a regulatory impact on gene 458

expression [138], and therefore are more likely to present good candidate causal variants 459

for a given trait, compared to other non-coding variants. 460

One method commonly used to study chromatin state is chromatin immunoprecipi- 461

tation (ChIP) [147], which can be used to identify transcription factor binding sites or 462
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histone modifications. Histone proteins feature long tails, and a wide variety of post- 463

translational modifications can be made to these tails to alter the chromatin state. For 464

example, the modifications H3K4me2 (histone 3, lysine 4 dimethylation), H3K4Me3, and 465

K3K27ac (lysine 27 acetylation) are associated with open chromatin in active promoters 466

and enhancers, while closed, repressed regions can be marked by H3K9me2 or H3K27me3 467

[148]. More recent versions of ChIP, using DNA sequencing techniques to target the whole 468

genome in a single experiment, include ChIP-seq [149,150] and CUT&RUN-seq [151]. 469

Recent work [138] has identified cis-QTL for ChIP-seq phenotypes, and demonstrated that 470

these QTL frequently exhibit strong correlation with nearby eQTL, and that eQTL tag 471

variants are significantly enriched within ChIP-seq identified open chromatin windows; 472

this illustrates the utility of of this type of data for understanding regulatory variation in 473

the genome. 474

Open chromatin is accessible to transcription factors and other proteins required 475

for gene expression. However, it is also more accessible than other regions to nuclease 476

enzymes, and this fact is used in another approach to identifying open chromatin re- 477

gions. One commonly-used nuclease is DNase 1, which can be used in conjunction with 478

high-throughput sequencing in the technique DNase-seq [152]. The hypersensitivity sites 479

identified using this technique highlight the positions of regulatory elements such as 480

promoters, silencers, and enhancers. A similar technique, using the enzyme micrococcal 481

nuclease, is called MNase-seq [153,154], and identifies the positions of nucleosomes. As 482

nucleosomes are scarcer in open chromatin, these data give an inverse signal to hypersensi- 483

tivity sites identified by DNase-seq. A more recent technique called Assay for Transposase 484

Accessible Chromatin (ATAC-seq) [155] uses a modified hyperactive transposase enzyme 485

Tn5 to fragment and load sequencing adaptors to open chromatin regions. ATAC-seq 486

typically requires fewer cells and less time to perform compared to DNase-seq, although 487

single-cell protocols have now been developed for both methods [156,157]. 488

On a larger scale, the 3D folded structure allows distal enhancer and silencer elements 489

to enter close contact with the gene to perform their respective functions on gene expression 490

[158]. Identifying this structure allows linkages between genes and distal regulatory 491

elements to be identified. These sorts of long-range interactions can be studied using 492

chromasome conformation capture (3C) [159], and related methods such as 3C-on-chip (4C) 493

[160] and 3C carbon copy (5C) [161]. These older techniques can study only small parts of 494

the genome. The more recent technique Hi-C [162] could originally study the structure of 495

the whole genome only at low resolution (≈ 1Mbp), but later refinements of the method 496

[163,164] have allowed for improved resolution and signal-to-noise ratios. 497

3.3. From candidate genes to causative variants 498

The results of GWAS and similar experiments are typically genomic intervals contain- 499

ing several associated variants that are in strong LD with one another. Although candidate 500

causal genes may be selected using known pathways, gene expression data, or chromatin 501

structure as discussed above, for some applications it is useful or necessary to known the 502

causal variant underlying the QTL. These applications include improving the accuracy of 503

genomic selection, performing genetic testing, or creating gene-edited animals [165]. How- 504

ever, identifying the causal variant using purely statistical or bioinformatics approaches is 505

typically not possible, as variants in strong LD can not be distinguished from one other 506

statistically. 507

In some cases, variant annotation (using tools such as SnpEff [166] or Ensembl’s 508

Variant Effect Predictor [167]) can highlight missense or nonsense mutations that will make 509

stronger candidates [39], but many QTL are driven by regulatory effects rather than coding 510

ones. This means that other tools will be needed to resolve QTL with underlying regulatory 511

effects. One commonly used technique for discovering cis-regulatory elements (CREs) is 512

transcription factor binding site (TFBS) prediction. Several tools have been developed for 513

this, generally using information from databases containing binding site motifs for large 514

numbers of transcription factors, such as TRANSFAC [168] and JASPAR [169]. A second 515
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approach to investigating regulatory effects is to use a reporter assay, where the effects of 516

putative promoter variants can be tested against the expression of a reporter gene such as 517

GFP. This method has recently been scaled up to test thousands of variants simultaneously 518

using a massively parallel reporter assay (MPRA) [170]. A third method is to use CRISPR- 519

Cas9 or other gene editing technologies to test putative regulatory sequences, either by 520

deleting them using NHEJ, or by editing in alleles of interest using HDR, then observing the 521

resulting effect on gene expression, often using single-cell RNA-seq. Methods incorporating 522

CRISPR include Perturb-seq [171], CROP-seq [172], and HCR-Flowfish [173]. 523

4. Conclusions 524

Over the last twenty years since the seminal work of Grisart et al [40] showed that 525

the DGAT1 gene underlies the large milk QTL on BTA14, a large number of milk related 526

QTL have been identified in cattle, with candidate causative genes proposed for many 527

of them. In coming years, we can expect that sequence-resolution data sets will continue 528

both to grow, and to diversify to include additional breeds from around the world. These 529

larger, more diverse, data sets will likely empower the discovery of many novel QTL. 530

Although proving the causality of genes and variants underlying these QTL will likely 531

remain difficult, the use of molecular phenotypes, massively parallel reporter assays, and 532

CRISPR will extend the list of proven causatives. This new information should provide 533

greater insight into the genes and pathways underlying the initiation and maintenance of 534

lactation in mammals. 535
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The following abbreviations are used in this manuscript: 542

543

BTA Bos taurus chromosome
CRISPR Clustered regularly interspaced short palindromic repeats
eQTL Expression quantitative trait locus
FT-MIR Fourier-transform mid-infrared
GM-CSF Granulocyte-macrophage colony-stimulating factor
HDR Homology-directed repair
HPLC High-performance liquid chromatography
IL Interleukin
LD Linkage disequilibrium
Mbp Million base pairs
MFG Milk fat globules
MPRA Massively parallel reporter assay
NHEJ Non-homologous end joining
OAR Ovis aries chromosome
qPCR Quantitative polymerase chain reaction
QTL Quantitative trait locus
TFBS Transcription factor binding site
TWAS Transcriptome-Wide association scan
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