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Abstract: The calculation of moments of area is one of the most fundamental aspects of engineering
mechanics for calculating the properties of beams or for the determination of invariants in different kind of
geometries. While a variety of shapes such as circles, rectangles, ellipses or their combinations can be
described symbolically, such symbolic expressions are missing for freeform cross-sections. In particular,
periodic B-spline cross-sections are suitable for an alternative beam cross-section, e.g. for the representation
of topology optimization results. In this work, therefore, a symbolic description of the moments of area of
various parametric representations of such B-splines is computed. The expressions found are then compared
with alternative computational methods and checked for validity. The resulting equations show a simple way
for fast conceptual computation of such moments of area of periodic B-splines.
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1. Introduction

In engineering mechanics, there are idealized 1D models such as rods or beams as well as 2D
models such as shells and plates. In particular, the beam represents a high abstraction of a 3D body
consisting of a curve and a cross-section. These cross-sections usually consist of the composition of
different 2D geometric objects such as circles, ellipses, rectangles or triangles [1], leading for
example to cross-sections such as for example, U, T, H, I, or tube sections. Structural optimization
for such wireframe structures can be applied to the element stiffness matrix of a beam by changing
the moments of area [2,3], or accounting parameters for specific types of cross-sections [4,5]. While
such cross-sections are typically found in frame structures such as cars, buses, or bridges, the
results of a topology optimization tend to result in root-shaped geometric freeform bodies [2].
Visually, the results provided by topology optimization considering plate or volumetric elements
lead often to organic shapes [6], which can be interpreted as beams with circular or elliptical cross-
sections [7,8]. Alternatively, freeform surfaces can be selected manually [9,10] or estimated
automatically [11,12] for such optimization results.

Freeform curves in particular offer the advantage of high shape variation and are especially
well suited for the reconstruction of organic models. Such a free-form cross-section consists of a so-
called control polygon [13], with which the spline can be adjusted and controlled. A significant
advantage is that such cross-sections can be used to derive a frame structure consisting of several
beams to a closed freeform surface model. These control polygons of the individual beams can be
linked to form a comprehensive control mesh [14]. In contrast to the unification of cylinders or
spheres by means of constructive solid geometry, this results in a continuous surface. Furthermore
such control polygon can be parametrized and further applied for shape reconstruction and
wireframe optimization [14]. So, it is highly desirable to investigate the geometric properties of such
B-splines defined by a parametric representation.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1.1. Motivation

The advantage of CSG derived from circular and elliptical cross-sections is the parametric
representation of the curve as well as the moments of area, which are necessary for the evaluation
of the bending stiffness as well as for FE simulations. For free-form cross-sections, the calculation of
the moments is usually done in a large number of numerically treated point coordinates, where
they are determined via a boundary integral. In a recent publication [14], instead of a numerical
calculation approach, a parametric formula was derived analytically, e.g. for the area of a triangle
and rectangle control polygon. Figure 1 shows the example of a bar with Cartesian coordinates and
with a parametric of the control polygon of a B-spline.

B-Spline Beam Cartesian Control Points Parametric Control Points
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Figure 1. B-spline beam: cross-section and centerline beam, Cartesian coordinates of control points,
parametric coordinates of contour points.

However, since in [14] only a triangle and a rectangle and a numerical estimation of the
coefficients of the second moments of area is carried out, a parametric description of the moments
of area is analyzed in the context of this work. On the one hand, the zero- and second-order
moments of area are determined analytically, and on the other hand, in addition to the triangle and
rectangle, various control polygons such as the moments of area of a parallelogram, a trapeze, a
symmetric pentagon and a symmetric hexagon control polygon are derived.

In addition to the determination of the equations for the moments, an extensive validation
strategy is presented. First, the formulas are checked against correlations of valid cross-sections, so
that, for example, the cross-sectional area must always be greater than 0. Then, the free-form curves
are converted into polygons by an appropriate choice of control points and compared with results
from the literature using a triangle and a rectangle as examples. Finally, a numerical comparison of
the moments of area is performed with alternative calculation methods of moments of polygons as
well as 2D binary images. This validation can be used to ensure the validity of the automatically
calculated formulas.

In the following, properties and the methods for the determination of the moments of area of
periodic splines are described. Then, alternative methods for calculating moments of polygons and
images are explained. Finally, essential parameters of moments are described.

1.2. State of the Art

There are several different kinds of splines such as Overhauser spline [15,16] or alternatively
called Catmull-Rom-spline [17], B-splines [18] or Bezier-splines [19]. These different spline types
may differ in properties such as the convex hull criterion or the type of continuity [20]. The convex
hull criterion describes the property that, given a convex control polygon, the resulting spline lies
within that control polygon. While B-splines provide C Zcontinuity and the convex hull criterion,
Bezier curves only guarantee C* continuity and the convex hull criterion [20]. Catmull-Rom-splines
are only C* continuous and violate the convex hull criterion [20]. The Catmull-Rom-spline and
Bezier-spline offer in contrast to B-splines the advantage that the control points are located on the
curve. Due to the convex criterion and the CZcontiniuty this article focuses on B-splines.

The calculation of moments of freeform curves has been treated in several of publications [21-
23]. The calculation is carried out via the boundary integral along the spline using Greens Theorem
in order to be able to calculate the moments of area directly [21,22]. This boundary integral can be
traced back to a summation of the individual points including weighting factors. The authors of [21]
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compared their equations using the several B-splines to approximate to the ellipse against the exact
moments of area. While the authors of [21,22] considered the calculation on 2D shapes, the authors
of [24] calculated the moment of inertia for 3D shapes of freeform surfaces instead. Such moments
of area particular for splines are often used for shape matching [25,26] due to the invariant
properties.

However, since this summation has a large number of coefficients, a more compact parametric
description is often desirable. The authors of [14] were able to find an exact parametric description
of triangles and rectangles for the value of the cross-sectional area in whose formula was
subsequently used for the truss optimization as well as the 3D reconstruction. In this work,
analogous to [14], such a compact description shall be found for different control polygons, but also
for different types of splines. In contrast to [14], a complete analytical description of the second
order of moments area as well as the transfer to control polygons consisting of a parallelogram, a
trapeze, a symmetric pentagon and a symmetric hexagon is guaranteed.

In addition to the numerical calculation of spline cross-sections, alternative geometric
representations such as a polygon or an image can also be used. The moments of binary images
were investigated several article such as [27,28]. By summing up the single pixels to a rectangle, the
area can be calculated and considering Steiner's theorem and the center of area, the second
moments of area can be calculated with

Apmg = Z 15 Sy, = Zyi 12; 5, = in 12

ieB ieB ieB
1 2 1 2
lemg = Z <E + s —w) ); Iy,mg = ZE + (x5 — x)%; Ixylmg D
ieB ieB
= =D 05 =¥t =%
i€EB
[27]. For polygonal cross-sections, the moments of area with respect to the center of area can be
determined with

n
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7

i = XiYiv1 — Xi+1Vi

[29,30]. Typically, cross-sections can be converted from algebraic curves to images or polygons
directly. Therefore, it is reasonable to cross-validate the new equations to the alternative
representations using equation (1) and equation (2). While the equations of the polygon cross-
section are determined by a boundary integration, the equations for the binary image were
determined by an area integration. While these numerical approximation of the moments of area
can be computed quite fast, the main advantage of parametric cross-sections is their interpretability
and direct use in algebraic equations. For example, the beam stiffness matrix can be constructed
directly using the parametric spline description, which can be further optimized [14].

2. Materials and Methods

In order to determine the formulas for the moments, the description of a periodic B-spline is
first explained in more detail. Then, based on the publication [21], the approach to derive the
formulas for the analytical moments is presented. Finally, a suitable experimental setup is
presented to automatically test the formulas numerically against alternative calculation methods as
well as against general correlations of valid cross-sections. A tensor product spline describes a
family of curves that can be represented with

P(t) =TMC, 3)
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[20,31], where P(t) describes the curve, T the monomial basis, C the control points of the
spline, and M the geometry matrix [20]. In the case of a cubic B-spline, the relationship for a
segment can be described as follows

-1 3 -3 1
x(t 113 -6 3 0

Pi(t) = (yEt%) =[t3t?¢ Uells o 3 ofle-1€iCin Cisa]” “4)
1 4 1 0

where c; is the individual control points and t is the parameterization along the spline of the
monomial basis. Figure 2 shows for a triangular control polygon the computation of the B-spline
using different sequences of control points. A periodic B-spline can be obtained by repeating the
first two control points. If the individual control points are repeated in the sequence itself, a sharper
spline is obtained. Repeating twice gives the control polygon as a contour

Segment 7ment 2 Segments Periodic One Time Repeated Two Times Repeated
Q
/ \ / \ / \ A Polygon \
c; le1 0304 [€1, €5, €3,€1,€5] T ey, €5 05,€4, €5, c3] [c1, €1.¢5. 05 [c1 €41,€4,Cy,Cy, Cy,
€3,€3,€1,€4] €3,€3,€3,€1,Cq ]

Figure 2. Variation of the number of control points: B-spline segment, two segments, periodic B-
spline, sharped B-spline, polygon.

In this work, we restrict ourselves to periodic splines since they only lead to a closed cross-
section. For the first validation, the moments of area of the control polygon by repeating the control
points must match with the moments of area of a directly computed polygon in equation (2).
Therefore, the moment formulas of a rectangle or triangle must match those from the approach
with the B-spline.

2.1. Moments of Area of a Periodic B-Spline

Different control polygons can be parameterized for the calculation of the moments of area.
Figure 3 shows a variation of different control polygons with the parameters used in each case.

Triangle Rectangle Paralellogram Quadrilateral Trapeze Sym. Pentagon Sym. Hexagon

Figure 3. Parametrization of the control polygon: triangle, rectangle, parallelogram, quadrilateral,

trapeze, symmetric pentagon, symmetric hexagon.

For the moments of splines, the authors [21,22] used a boundary integral along the tensor
product spline with N control points and the respective coordinates X, Y, to calculate the area of
such a spline with

N 4 4
)
A=Y CiniviaYoemo2
i I m
where the coefficients C,,, can be calculated by summing the geometry matrix with
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[21]. Analogously, the first and second order moments were determined in [21] with
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[21]. With the help of these equations’ parametric descriptions of the control polygons can be
generated. In the following, the parametrization is determined schematically for a triangular control

polygon.
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2.2. Parametric Representation of the B-Spline of a Triangle

Based on the parametric in Figure 3, the area can now be determined. For a B-spline the area

can be calculated as follows

A_l[ 9 h 15h 9 b 1h +1h 19 h+71 h 1h +1h +18 h+15h
“36l 20 T 2P T 0 2P T 20 P T 0 T20 20 P T2 P T 20 T 2P
resulting in the expression similar to [14] to
h
A=21c— (14)

80’
Analogously, the first and second order moments of area with respect to the coordinate origin

can be calculated with

5)50'0) =7 c%
C3h1,§§’;°’ = 15769 c44%520 .
ly” = 15769 s + 23039;%443520 15709 ¢h a0
I,E(;'O) - _23039857—240 — 15769 CMFS%'

From the first moments of area, the center of area of the spline cross-section can now be

calculated with
c
=—+

w3

Xg =

3
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Using the center of area, the second order moments can now be referenced to the center of area
with
2833
_ 71(0,0) _ 15
lpir = Ipae — YA = g’ )

2833
190 _ 42 ch(c? = cp + p?) (16)

Byy ~ 4T 443520

Ig =

h*(c — 2p) (17)
_ 7(0,0) _
Igxy = IB‘xy + x;y,A = 2833 ¢ 887040

It is noticeable that the structure of the moments of the B-spline differs from that of a triangle
only in the coefficients (see also Table 1). To check the validity of the formulas found for the
moments, it is necessary to compare them with alternative calculation methods and to check valid
cross-section properties.

2.3. Comparision of with Polygon Cross-Sections

By repeating the control points, the B-spline formula can be used to accurately reproduce the
shape of a polygon. If the parametric formula is derived from this, the moment of area formula of
for example a rectangle or a triangle is obtained in Table 1. The following Table shows the
determination of the moments via the B-spline formula, the use of the polygon directly via equation
(2) and the formula from [1].

Table 1. Comparison of the moments of area equation of the control polygon using equation the
equations for the B-spline, the equations of a polygon (2) and equations from the literature.

B-Spline Triangle Poly Polygon Triangle Literature [1]
1 h h h
5 5 5
Ix h3 h3 h3
‘36 ‘36 ‘36
L, c?—cp + p? c?—cp + p? c2—cp + p?
¢ 36 ¢ 36 ¢ 36
Ly h?(c — 2p) h?(c — 2p) h?(c — 2p)
72 72 72
X5, Ys c.p E) (5 4 E) (5 P E)
(3+3'3 3+3'3 3+3'3
B-Spline Rectangle Poly Polygon Rectangle Literature [1]
A bh bh bh
I h3 h3 h3
* b— b— b—
12 12 12
I, b3h b3h b3h
12 12 12
I
Xy 0 0 0
Xs) Vs

22

22

2

The comparison with the Table shows an agreement of the calculation methods with the
literature. Thus, it can be seen that at least if the control points (polygon) are repeated twice, the
results from the literature can be determined directly.

2.4. Numerical Comparision Framework
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To ensure the validity of the formulas with a high degree of accuracy, they must be validated
with alternative calculation methods and by checking the Jordan curve theorem and valid cross-
section properties. Figure 4 now shows the steps involved in the automatic validation of the
equations for the cross-sections. First, a tensor product spline is defined. This curve is then
converted into a discrete polygon and the control polygon points. From the control polygon points,
the parametric equation is derived and the numerical results of the moments are then compared to
the moments of the polygon as well as the moments from a binary image.

9

Tensor Product Spline (TPS)
Cross-Section

v v
Polygonization | Rasterization IE-Grglifue
V8 Control Points
v Vv ¥ v
Polygon Binary Image Symbolic TPS 2
InIt);)l}Ze;gc(t);n Moments of Moments of Moments of > LIz > Iy,
Area Area Area A>0
l | | ] l
v
Is Valid Jordan- > Comparison Is Valid
Curve - P Cross-Section

5

Figure 4. Framework for the validation of the symbolic equations of the moments of area.

In addition, for each formula it is checked whether it is a valid cross-section or a curve in terms
of a Jordan curve.

2.4.1. Spline Cross-Section with Valid Cross-Section Property

A valid cross-section has a positive cross-sectional area and positive principal axis moments
(eigenvalues), so that all combinations of parameters must fulfill
A>0ANL >0 Al >0.
Principal moments can be computed with

(18)

L +1
11,2= y2 &

2
+ (Iy > IZ) +12,> 0.

However, since this expression can be very complex, it is first necessary to find a simplified
criterion for valid cross-sections. It is sufficient to state that the smaller principal moment of area
given by
2

+13,>0

I _1y+Iz (Iy—lz)
2T 2

has to be greater than zero. This leads to

2
I, ;—IZ S (Iy . IZ) + 13212
I3+ 210, + 12 > I} = 21,1, + 1, + 41,
L1, > IZ,.
Therefore, for all parameter combinations a valid cross-section has to fulfill
A>0 A LI,—1},>0. (19)

In addition to the relationship between the moments of area for valid cross-sections, it is also

necessary to compare the formula found with various alternative calculation methods.

2.4.2. Spline Cross-Section as Valid Jordan-Curve
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For validation, the spline is converted into a polygon and into a 2D binary image. Then the
moments can be calculated in different ways for the particular spline. Figure 4 shows three different
B-splines, their polygon (red-green) and a binary image of the cross-section.

Three Control Points Four Control Points Four Control Points

(Non- Jordan Curve)

Binary Image

Spline
[ o
4 i
T
1
[ [ P ° ° Ll
Polygon

Figure 5. Tensor product spline cross-section (B-spline) and its polygon and binary image.

The Comparison of the equation (1) and equation (2) is used to check the accuracy and validity.
As the number of segments along the polygon line is increased, the accuracy of the moments of area
estimate also increases. The comparison with the formula of the binary image serves to ensure the
validity of the curve found, so that no Jordan curves are detected. Figure 5 shows a non-Jordan
curve by swapping the order of the nodes. While such a cross-section can be estimated with some
accuracy using the binary image, the boundary integration approach using the polygon approach as
well as the chosen formula derived for the B-spline leads to incorrect results (e.g. area=0 here).

To achieve a high degree of coverage, it is necessary to compare the approach with a large
number of possible polygon and binary image cross-sections. For each parameterization, a Latin
hypercube sampling is chosen by generating a large number of cross-sections. Then, the mean error
and the variance of the error are chosen as evaluation criteria in comparison to the alternative
computational methods. For this purpose, the respective relative errors are determined as follows.

2.4.3. Spline Cross-Section Numerically Compared to Polygon and Image Cross-Section

To validate each formula, the moments from the derived polygon cross-section and the image

Apmg,potys Ly g, Poly’ Iylmg,Poly' Ixylmg,Poly are compared with the moments of the B-spline formula

Arps, L ppg Ly o by s Thereby the relative errors

€, = AImg,Poly - ATPS (20)
4 Arps

€ = lemg,Poly - IxTPS (21)
& Arps

6 = IJ’ Img,Poly 13’ TPS (22)
v Iy TPS

_ I"ylmg,Poly ~ Ly pps 23

Elxy - I
xXYrps

of a large number of combinations of the control polygons can be compared. Possible geometric
values can be selected in the range of the geometric space, for example for a triangle between

¢ € [0,00[,h € [0,00[,p € [0, o0].

Thus, each individual geometric variable and its influence can be checked directly. However,
since an evaluation up to < is not possible, a limiting parameter of the respective geometric variable
of 100.0 is chosen. For each case, 100 samples are generated using Latin Hypercube Sampling.

3. Results
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Based on the described strategy for the parameterization as well as for the evaluation of the
found formulas, it is necessary in the following to design different parametric control points for the
tensor product splines. From these parametric control point coordinates the respective moments are
then calculated automatically and analytically. In this work, the moments of a general triangle, a
rectangle, a trapeze, a parallelogram, an isosceles pentagon and an isosceles hexagonal honeycomb
are considered, since for these parametric quantities a suitable simple expression, which can still be
presented on a few lines.

For the evaluation of these moments of area, the approach from 2.4 is chosen. To ensure Jordan
curve theorem, the parametric is restricted so that only valid Jordan curves as cross-section results.

3.1. Moments of Area Parametrization of a Triangle Control Polygon

Figure 6 shows three examples of different B-spline curves based on the variation of control
points over a triangle. For the polygon P;, three points are evaluated for each curve segment via
equation (4). For the gridded cross-section I, the underlying polygon was rasterized with 8x8
pixels. Since the triangle itself is always a convex polygon, the curve also lies within the selected
polygon. The value of the area must therefore be smaller than that of the triangle itself.

2 c=1,p=075h=15 4, c=1p=20h=25 4y c¢=1Lp=01Lh=05

Figure 6. Triangle B-spline cross-section and its polygon and binary image.

Table 2 shows the formulas for calculating the moments of area and relative errors compared
to a polygon with 100 segments, a polygon with 10 segments per spline segment, an image I, with
a grid size of 128x128 pixels, and an image I;¢ with a grid size of 16x16 pixels.

Table 2. Equations for the parametric control polygon for the triangle and its numerical error.

. Error
Equatlon o, P100 PlO 1128 116
[%]
A 2102 &
30 0,007 0,879 1,922 11,951
L, h3 0%(€4)
28332—443520 ] 0,000 0,000 0,168 4,990
I c“—cp+p €.
y x
2833 ch— =0 0,015 1,776 4,299 19,075
Ixy 2833 hz(c - ZP) O'Z(Elx)
887040 0,000 0,000 0,810 5377
Xsr Vs £+B ﬁ q
373’3 0,015 1,776 3,247 18,471
c*h* (e
- I
Ll —I%, 8025889262279987200 (y) 0,000 0,000 0,291 5,914
€., 0015 1,776 5046 25759
0?(er,) 0,000 0,000 1,575 6264

Equation (19) shows always values greater than zero for the geometric parameters of c, h. Thus,
the essential properties for a valid cross-section are guaranteed for positive geometric parameters.
The relative error from the calculation shows an average relative error of 0.015% for P;y,. This error
increases when fewer segments per spline P;, are used. The errors for binary images are
significantly higher compared to the polygon approach. Furthermore, if a 16x16 pixel grid is
chosen, an error of 25.7% can occur for the second order moment of area.
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The relative errors show good agreement between the different calculation methods, so that
the formulas from Table 1 can be assumed to be correct. In particular, the small error for a high
resolution of the spline as polygon P;, shows good agreement.

3.2. Moments of Area Parametrization of a Quadrilateral Control Polygon Area

For a quadrangular control polygon, the cross-sectional area of the B-spline can be generally
expressed as follows
h h d (24)
A=-6la—=+ 61b—=+ 61lc—=
“Tgo " ' "180 " ' “1g0
according to the parametrization covered in Figure 3. However, the parameterization of the general
quadrilateral can lead to the violation of the Jordan curve theorem, so that the curve can intersects
itself. This can lead to a negative cross-sectional area, so that more appropriate boundary conditions
for the dependencies of the parameters of the control polygon has to be considered for a robust
application. In the following, the quadrilateral is constructed as a rectangle, trapeze and
parallelogram.

3.2.1. Moments of Area Parametrization of a Rectangle Control Polygon

Figure 7 shows the variation of a rectangular control polygon, a derived polygonal cross-
section and a binary image. Due to the chosen parameterization, only positive and valid cross-
sections can be realized compared to the general quadrilateral.

| Y J
L] L] am
mmmm ==. . .
: £ (-
M) -+
e~e
L‘ b=1h=15 b b=1h=25 ;1 b=1h=05

Figure 7. Rectangle B-spline cross-section and its polygon and binary image.

Table 3 shows the equations for the moments of area of the rectangular control polygon as well
as the numerical errors. Analogous to the triangle, a high accuracy of the relative errors is again
shown in comparison to the polygonal approach. Likewise, it can be seen that equation (19) leads
exclusively to positive values. The moment of area of I, leads to a value of 0, due to the symmetric
shape of the control polygon.

Table 3. Equations for the parametric control polygon for the rectangle and its relative error.

. Error
Equation (%] oo Pl le
A -
4 61bo= “ 0004 0505 2,674 13488
90 ’] ’ 7] ’
I h? a*(ea)
27371 b s 0,000 0,000 1,110 5,877
I b3h €,
27371270 0,008 1,009 3,858 16,736
Ly 0 o*(e,) 0,000 0,000 1,473 6,440
Xs) Vs (é ﬁ) q
2’2 0,008 1,009 3,687 17,262
b*h* o?(e
I
Ll —12, 749171641 oo 600 (<) 0,000 0,000 1,248 5,963

3.2.2. Moments of Area Parametrization of a Parallelogram Control Polygon
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Figure 8 shows the variation of a B-spline using a parallelogram control polygon, its derived
polygon cross-section and a rasterized image cross-section. Due to the chosen parameterization,
only positive and valid cross-sections can be realized compared to the general quadrilateral.

a o

4 b=1p=075h=15 4  b=1p=20h=25 4 b=1p=01,h=05

Figure 8. B-spline cross-section and its polygon and binary image representation.

Table 4 shows the results for the moments of area of the control polygon as a parallelogram as
well as the numerical errors. Analogous to the triangle, a high accuracy of the relative errors is also
shown here in comparison to the polygonal approach. Likewise, it can be seen that equation (19)
leads exclusively to positive values. The moment of area I, is 0 for the parallelogram with p = 0,
which represents a rectangle. Otherwise, this leads to values unequal to 0 due to the asymmetry of
the cross-section.

Table 4. Equations for the parametric control polygon for the triangle and its numerical error.

) Error
Equation [%] Pioo Pro lizs le
A h é
6lagy * " 0,0040,5052,21812,118
I 3 o*(ea)
27371 b et 0,0000,0001,075 4,609
L, b? + p? €
27371 b h—os 0,0081,0093,83119,453
Ixy 273 b th O'Z(Elx)
—27371b 2270 0,0000,0001,489 5,294
Xsr Vs (é + B ﬁ) a
2722 0,0081,0093,46320,586
bt |2 (e
e — I
Lk, — 12,749 T e 433600 ( y) 0,0000,0001,298 5,750
€, 0,0081,0094,47430,458
0 (€1, )0,0000,0001,920 9,431

3.2.3. Moments of Area Parametrization of a Trapeze Control Polygon

Figure 9 shows the variation of a trapeze control polygon for a B-spline cross-section, a derived
polygon cross-section and its binary image cross-section. Due to the chosen parameterization, only
positive and valid cross-sections can be realized compared to the general quadrilateral.

AR, OO

4x b=1,p=075h=15 dx  b=1p=20h=25 ¥y b=1,p=0.1h=05

Figure 9. Trapeze B-spline cross-section and its polygon and binary image.

For the validity of the trapezoids according to equation (19) the following relation is positive
and therefore valid
h*(75371706005 b* + 564591208444 b3p)
820077802790400 + (25)

Lo, — 12, =

h*(1525810647880 b?p? + 2258364833776 b p* + 1205947296080 p*)
820077802790400
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for each possible parameter combination. Table 5 shows the results for the moments of area of the
control polygon as a trapeze as well as the numerical errors. Analogous to the triangle, a high
accuracy of the relative errors is also shown in comparison to the polygonal approach. The moment

L,y is consistently zero due to the symmetry. For the parameter p = g the relation of the rectangle is
obtained

Table 5. Equations for the parametric control polygon for the rectangle and its relative error.

. Error
Equation o Pioo Piy Ii2g L6
[%]
b + 2 =
4 61h-— =L “ 10004 0505 | 0,915 | 9,991
180 , , , ,
I, h3(4412605 b% + 22420724 bp + 17650420 p2) | 0%(e,)
273929040 (b + 2p) 0,000| 0,000 | 0,013 | 3,937
I, 17081 b® + 75322 b%p + 150644 b p? + 136648p° | &
h 2993760 0,008| 0,961 | 2,180 |15,232
Ly 0 o”(e,.)|0,000| 0,000 | 0,132 | 4,967
Xo) Ve b 461b + 1274p &,
(2‘ 1098 (b + 2p)) 0,009| 1,097 | 1,385 | 13,110
o’ g
Ll —I%, (25) ( 7 ) 0,000| 0,000 | 0,002 | 4,336

In an analogous way, further quadrilaterals can now be parameterized and their formulas for
the moments of area can be derived. In the following, the calculation of the moments of area of a
parametric pentagon as well as a hexagon is performed.

3.3. Moments of Area Parametrization of a Symmetric Pentagon Control Polygon

Figure 10 shows the variation of a symmetrical, pentagonal control polygon for a B-spline
cross-section, its polygonal representation and its rasterized image.

(O

4x b=1p=075h=15 Sx b=1,p=20h=25 Sx b=1,p=01h=05
Figure 10. Pentagon B-spline cross-section and its polygon and binary image.

For the validity of the pentagon according to equation (19) the following relation
h*(82305438169 b? + 212310520756 bp + 120438027736 p?)

LI, — 1%, =
(169b + 218p) (26)

(1527254 b3 + 5667223 b?p + 7684452 b p? + 3712596 p3)
963658637770752000

leads to only positive values. Table 6 shows the results for the moments of area of the control
polygon as a symmetric pentagon as well as the numerical errors. Analogous to the triangle, the
relative errors also show a high accuracy compared to the polygonal approach. The moment I, is
consistently zero due to the symmetry.

Table 6. Equations for the parametric control polygon for the rectangle and its relative error.

. Error
Equation [%] 100| Pro {l128| 116
A h169b + 218p &
288 0,0(0,3(2,4(14,8
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0332|3852
L h3(82305438169 b% + 212310520756 bp + 120438027736 p?) |6%(€4)0,0|0,0(1,2|6,76
20118067200 (169 b + 218 p) 00/00|98| 6
I, h1527254 b3 + 5667223 b%p + 7684452 b p? + 3712596 p* €, |0,0/0,6/4,2(19,3
47900160 05|43 |20 37
Ly 0 0°(€,[0,0{0,0/1,4|7,03
00/00|54| 9
X, Vs (é 167189 b + 254368 p) q 0,0/0,6(2,2(17,6
2’ 72520 (169b + 218p) 0690|9153
o2 (¢,/00/0,0|1,2|7,54
L1, — I3, (26) ( Too|oo|76| 1

Finally, the parameterization for a hexagon can now be specified analogously.

3.4. Moments of Area Parametrization of a Symmetric Hexagonal Control Polygon

Figure 11 shows the variation of a symmetrical, pentagonal, control polygon for a B-spline
cross-section, its polygon cross-section and its binary image cross-section.

> & O O S oy am

4 b=1p=075h=15 4  b=1p=20h=25 4 b=1p=01h=05
Figure 11. Hexagonal B-spline cross-section and its polygon and binary image.

h*(1267299b + 927031 p)
143401583001600 27)

LI, — 1% =

(354311 b3 + 1131397 b%p + 1267299 b p? + 490213 p*)

Table 7. Equations for the parametric control polygon for the rectangle and its relative error.

. Error
Equation o/ 1 [Proo| P10 |T128] 16
[%]
A b+p € 10,000,22|1,12|15,1
30Lh 360 2|5|8]093
1, h3(1267299 b + 927031 p) 0 (€,4)0,00/0,00(0,08| 7,61
23950080 0j]06j1]0
1, h354311 b3+ 1131397 b%p + 1267299 b p* +| €, [0,00[0,392,40|20,9
5987520 318|543
Ly 0 o*(€,/0,000,0000,41| 8,30
0/0]|9] 2
Xs) Vs (Q ﬁ) €, [0,000,51(1,03|15,8
2'2 411|714
o2 (€,/0,000,0000,03 7,62
LI, — 12, @7 (5 0jo|7]|7

4. Discussion

The final formulas show a very good suitability for the design and determination of beams
with free-form cross-sections. In particular, the comparison of the formulas with alternative
calculation methods suggests a high validity.

One point of criticism could be the chosen parameterization of the control polygons. While the
triangle was still covered for arbitrary shapes, there are already restrictions for the moment of area
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for a quadrilateral due to the complexity of the perpetual expressions. The same is true for
pentagons and hexagons. Only a restriction of the parametric allows simpler expressions e.g. for a
parallelogram as well as a trapeze. However, this simplification can be improved to achieve high
shape coverage with a suitable set of variables. For example, the parametric of the positive lengths
of the symmetric hexagon yields exclusively convex polygons, so this unfavorable choice implicitly
excludes a large number of alternative symmetric hexagons.

While the numerical formula for determining the moments of area is easy to implement and
universally applicable, the symbolic expressions lead to the restriction of the cross-sectional
geometry. However, due to the numerical accuracy of such formulas, erroneous moments of area
cannot be absolutely guaranteed, unlike the analytical formula. The symbolic expressions can be
used completely up to the limit ranges, so that also a consideration of the convergence behavior
towards infinity is possible. Especially in the case of optimization, cross-section values close to zero
can occur, where a numerical approximation can lead do misleading results.

The validation framework exhibits high robustness and reliability, so that symbolic formulas
can be tested directly. However, for future work, estimation over a polygon consisting of many
segments is usually sufficient. Unlike the polygon and the B-spline, the binary image and
evaluation step is based on an area integral rather than a boundary integral and is therefore not
directly comparable.

In summary, however, a large number of expressions are shown which can be used to
determine moments of area of such freeform curves in the simplest way. These can now be used for
aspects of structural optimization, but also for reconstruction analogous to [14]. In contrast to [14],
however, a fully analytical function of the beam stiffness matrix can be realized, so that geometric
values close to zero can be accurately captured.

5. Conclusions

This work has dealt with the derivation of analytical formulas for the moments of area of
periodic B-splines. The position of the control points was mapped parametrically and then
embedded in the boundary integral for the calculation of the moments of area of splines. In contrast
to common methods for numerical determination of such moments of area, a symbolic calculation
with integer numerator and denominator was considered. This integer calculation leads to an exact
determination of the cross-sectional area and the second moments of area of such periodic B-spline
cross-sections.

While in [14] only the cross-sectional area was determined analytically, in this work mainly a
symbolic description for the second moments of area could be obtained. Especially in structural
optimization, cross-section parameters close to zero can be determined, for which an exact
calculation of the moments is necessary.

The obtained expressions can now be used for various applications in the field of
reconstruction, design as well as verification calculations. Likewise, further control polygons can be
parameterized using the approach described above.
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