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Article 

Symbolic Parametric Representation of the Area and 
the Second Moments of Area of Periodic B‐Spline 
Cross‐Sections 
Martin Denk * Michael Jäger, and Sandro Wartzack 

Engineering Design, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg, 91058 Erlangen, Germany 
*  Correspondence: denk@mfk.fau.de 

Abstract:  The  calculation  of  moments  of  area  is  one  of  the  most  fundamental  aspects  of  engineering 
mechanics for calculating the properties of beams or for the determination of invariants in different kind of 
geometries. While  a  variety  of  shapes  such  as  circles,  rectangles,  ellipses  or  their  combinations  can  be 
described  symbolically,  such  symbolic  expressions  are missing  for  freeform  cross‐sections.  In  particular, 
periodic B‐spline cross‐sections are suitable for an alternative beam cross‐section, e.g. for the representation 
of  topology optimization  results.  In  this work,  therefore, a symbolic description of  the moments of area of 
various parametric representations of such B‐splines is computed. The expressions found are then compared 
with alternative computational methods and checked for validity. The resulting equations show a simple way 
for fast conceptual computation of such moments of area of periodic B‐splines. 

Keywords: B‐spline; cross‐section; beam; moments of area; parametric; symbolic; moments; area 
 

1. Introduction 

In engineering mechanics, there are idealized 1D models such as rods or beams as well as 2D 
models such as shells and plates. In particular, the beam represents a high abstraction of a 3D body 
consisting of a curve and a cross‐section. These cross‐sections usually consist of the composition of 
different  2D  geometric  objects  such  as  circles,  ellipses,  rectangles  or  triangles  [1],  leading  for 
example to cross‐sections such as for example, U, T, H, I, or tube sections. Structural optimization 
for such wireframe structures can be applied to the element stiffness matrix of a beam by changing 
the moments of area [2,3], or accounting parameters for specific types of cross‐sections [4,5]. While 
such  cross‐sections  are  typically  found  in  frame  structures  such  as  cars,  buses,  or  bridges,  the 
results  of  a  topology  optimization  tend  to  result  in  root‐shaped  geometric  freeform  bodies  [2]. 
Visually,  the results provided by  topology optimization considering plate or volumetric elements 
lead often to organic shapes [6], which can be interpreted as beams with circular or elliptical cross‐
sections  [7,8].  Alternatively,  freeform  surfaces  can  be  selected  manually  [9,10]  or  estimated 
automatically [11,12] for such optimization results. 

Freeform curves  in particular offer  the advantage of high shape variation and are especially 
well suited for the reconstruction of organic models. Such a free‐form cross‐section consists of a so‐
called  control polygon  [13], with which  the  spline  can  be  adjusted  and  controlled. A  significant 
advantage  is that such cross‐sections can be used to derive a frame structure consisting of several 
beams to a closed freeform surface model. These control polygons of the individual beams can be 
linked  to  form  a  comprehensive  control mesh  [14].  In  contrast  to  the unification  of  cylinders  or 
spheres by means of constructive solid geometry, this results in a continuous surface. Furthermore 
such  control  polygon  can  be  parametrized  and  further  applied  for  shape  reconstruction  and 
wireframe optimization [14]. So, it is highly desirable to investigate the geometric properties of such 
B‐splines defined by a parametric representation. 
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1.1. Motivation 

The  advantage  of CSG  derived  from  circular  and  elliptical  cross‐sections  is  the  parametric 
representation of the curve as well as the moments of area, which are necessary for the evaluation 
of the bending stiffness as well as for FE simulations. For free‐form cross‐sections, the calculation of 
the moments  is usually done  in a  large number of numerically  treated point  coordinates, where 
they are determined via a boundary  integral.  In a  recent publication  [14],  instead of a numerical 
calculation approach, a parametric formula was derived analytically, e.g. for the area of a triangle 
and rectangle control polygon. Figure 1 shows the example of a bar with Cartesian coordinates and 
with a parametric of the control polygon of a B‐spline. 

 
Figure 1. B‐spline beam: cross‐section and centerline beam, Cartesian coordinates of control points, 
parametric coordinates of contour points. 

However,  since  in  [14]  only  a  triangle  and  a  rectangle  and  a  numerical  estimation  of  the 
coefficients of the second moments of area is carried out, a parametric description of the moments 
of  area  is  analyzed  in  the  context  of  this work. On  the  one  hand,  the  zero‐  and  second‐order 
moments of area are determined analytically, and on the other hand, in addition to the triangle and 
rectangle, various control polygons  such as  the moments of area of a parallelogram, a  trapeze, a 
symmetric pentagon and a symmetric hexagon control polygon are derived.  

In  addition  to  the determination  of  the  equations  for  the moments,  an  extensive  validation 
strategy is presented. First, the formulas are checked against correlations of valid cross‐sections, so 
that, for example, the cross‐sectional area must always be greater than 0. Then, the free‐form curves 
are converted into polygons by an appropriate choice of control points and compared with results 
from the literature using a triangle and a rectangle as examples. Finally, a numerical comparison of 
the moments of area is performed with alternative calculation methods of moments of polygons as 
well as 2D binary  images. This validation can be used  to ensure  the validity of  the automatically 
calculated formulas.  

In the following, properties and the methods for the determination of the moments of area of 
periodic splines are described. Then, alternative methods for calculating moments of polygons and 
images are explained. Finally, essential parameters of moments are described. 

1.2. State of the Art 

There are several different kinds of splines such as Overhauser spline [15,16] or alternatively 
called Catmull‐Rom‐spline  [17], B‐splines  [18] or Bezier‐splines  [19]. These different  spline  types 
may differ in properties such as the convex hull criterion or the type of continuity [20]. The convex 
hull criterion describes the property that, given a convex control polygon, the resulting spline  lies 
within  that  control polygon. While B‐splines provide 𝐶ଶcontinuity  and  the  convex hull  criterion, 
Bezier curves only guarantee 𝐶ଵ continuity and the convex hull criterion [20]. Catmull‐Rom‐splines 
are  only 𝐶ଵ continuous  and  violate  the  convex  hull  criterion  [20].  The  Catmull‐Rom‐spline  and 
Bezier‐spline offer in contrast to B‐splines the advantage that the control points are located on the 
curve. Due to the convex criterion and the 𝐶ଶcontiniuty this article focuses on B‐splines.  

The calculation of moments of freeform curves has been treated in several of publications [21–
23]. The calculation is carried out via the boundary integral along the spline using Greens Theorem 
in order to be able to calculate the moments of area directly [21,22]. This boundary integral can be 
traced back to a summation of the individual points including weighting factors. The authors of [21] 
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compared their equations using the several B‐splines to approximate to the ellipse against the exact 
moments of area. While the authors of [21,22] considered the calculation on 2D shapes, the authors 
of [24] calculated the moment of inertia for 3D shapes of freeform surfaces instead. Such moments 
of  area  particular  for  splines  are  often  used  for  shape  matching  [25,26]  due  to  the  invariant 
properties. 

However, since this summation has a large number of coefficients, a more compact parametric 
description is often desirable. The authors of [14] were able to find an exact parametric description 
of  triangles  and  rectangles  for  the  value  of  the  cross‐sectional  area  in  whose  formula  was 
subsequently  used  for  the  truss  optimization  as  well  as  the  3D  reconstruction.  In  this  work, 
analogous to [14], such a compact description shall be found for different control polygons, but also 
for different  types of  splines.  In  contrast  to  [14],  a  complete  analytical description of  the  second 
order of moments area as well as the transfer to control polygons consisting of a parallelogram, a 
trapeze, a symmetric pentagon and a symmetric hexagon is guaranteed.  

In  addition  to  the  numerical  calculation  of  spline  cross‐sections,  alternative  geometric 
representations  such as a polygon or an  image can also be used. The moments of binary  images 
were investigated several article such as [27,28]. By summing up the single pixels to a rectangle, the 
area  can  be  calculated  and  considering  Steinerʹs  theorem  and  the  center  of  area,  the  second 
moments of area can be calculated with 𝐴ூ௠௚ ൌ෍ 1௜∈஻ ;    𝑆௫಺೘೒ ൌ෍𝑦௜  1²௜∈஻ ;  𝑆௬಺೘೒ ൌ෍𝑥௜  1²௜∈஻  

𝐼௫಺೘೒ ൌ෍൬ 1

12
൅ ሺ𝑦௦ െ 𝑦௜ሻଶ൰௜∈஻ ;   𝐼௬಺೘೒ ൌ෍ 1

12
൅ ሺ𝑥௦ െ 𝑥௜ሻଶ௜∈஻ ;    𝐼௫௬಺೘೒ൌ െ෍ሺ𝑦௦ െ 𝑦௜ሻሺ𝑥௦ െ 𝑥௜ሻ௜∈஻ . 

ሺ1ሻ 
[27]. For polygonal cross‐sections, the moments of area with respect to the center of area can be 

determined with  𝐼௫ು೚೗೤ ൌ 1

12
෍ሺ𝑦௜ଶ ൅ 𝑦௜𝑦௜ାଵ ൅ 𝑦௜ାଵଶ ሻ 𝑎௜௡
௜  

𝐼௬ು೚೗೤ ൌ 1

12
෍ሺ𝑥௜ଶ ൅ 𝑥௜𝑥௜ାଵ ൅ 𝑥௜ାଵଶ ሻ𝑎௜௡
௜  

𝐼௫௬ು೚೗೤ ൌ െ 1

24
෍ሺ𝑥௜𝑦௜ାଵ ൅ 2𝑥௜𝑦௜ ൅ 2𝑥௜ାଵ𝑦௜ାଵ ൅ 𝑥௜ାଵ𝑦௜ሻ𝑎௜௡
௜  𝑎௜ ൌ 𝑥௜𝑦௜ାଵ െ 𝑥௜ାଵ𝑦௜ 

 
 
  ሺ2ሻ 

[29,30]. Typically, cross‐sections can be converted from algebraic curves to images or polygons 
directly.  Therefore,  it  is  reasonable  to  cross‐validate  the  new  equations  to  the  alternative 
representations  using  equation  (1)  and  equation  (2). While  the  equations  of  the  polygon  cross‐
section  are  determined  by  a  boundary  integration,  the  equations  for  the  binary  image  were 
determined by an area  integration. While  these numerical approximation of  the moments of area 
can be computed quite fast, the main advantage of parametric cross‐sections is their interpretability 
and direct use  in algebraic equations. For example,  the beam  stiffness matrix  can be  constructed 
directly using the parametric spline description, which can be further optimized [14].  

2. Materials and Methods 

In order to determine the formulas for the moments,  the description of a periodic B‐spline  is 
first  explained  in more  detail.  Then,  based  on  the  publication  [21],  the  approach  to  derive  the 
formulas  for  the  analytical  moments  is  presented.  Finally,  a  suitable  experimental  setup  is 
presented to automatically test the formulas numerically against alternative calculation methods as 
well  as  against  general  correlations  of  valid  cross‐sections. A  tensor  product  spline  describes  a 
family of curves that can be represented with 𝑷ሺ𝑡ሻ ൌ 𝑻𝑴𝑪,  ሺ3ሻ 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2023                   doi:10.20944/preprints202301.0287.v1

https://doi.org/10.20944/preprints202301.0287.v1


  4 

 

[20,31],  where 𝑷ሺ𝑡ሻ  describes  the  curve, 𝑻  the  monomial  basis, 𝑪  the  control  points  of  the 
spline,  and 𝑴 the  geometry matrix  [20].  In  the  case  of  a  cubic  B‐spline,  the  relationship  for  a 
segment can be described as follows 

𝑷௜ሺ𝑡ሻ ൌ ൬𝑥ሺ𝑡ሻ𝑦ሺ𝑡ሻ൰ ൌ ሾ𝑡ଷ 𝑡ଶ 𝑡 1ሿ 1

6
൦െ1 3 െ3 1

3 െ6 3 0െ3 0 3 0
1 4 1 0

൪ ሾ𝒄௜ିଵ 𝒄௜  𝒄௜ାଵ 𝒄௜ାଶሿ்    ሺ4ሻ 
where 𝒄௜  is  the  individual  control  points  and 𝑡  is  the  parameterization  along  the  spline  of  the 
monomial basis. Figure 2 shows  for a  triangular control polygon  the computation of  the B‐spline 
using different sequences of control points. A periodic B‐spline can be obtained by  repeating  the 
first two control points. If the individual control points are repeated in the sequence itself, a sharper 
spline is obtained. Repeating twice gives the control polygon as a contour 

 

Figure  2. Variation of  the number of  control points: B‐spline  segment,  two  segments, periodic B‐
spline, sharped B‐spline, polygon. 

In  this work, we  restrict ourselves  to periodic splines since  they only  lead  to a closed cross‐
section. For the first validation, the moments of area of the control polygon by repeating the control 
points must match with  the moments  of  area  of  a  directly  computed  polygon  in  equation  (2). 
Therefore,  the moment  formulas  of  a  rectangle  or  triangle must match  those  from  the  approach 
with the B‐spline. 

2.1. Moments of Area of a Periodic B‐Spline 

Different control polygons can be parameterized  for  the calculation of  the moments of area. 
Figure 3 shows a variation of different control polygons with the parameters used in each case. 

 
Figure 3. Parametrization of  the  control polygon:  triangle,  rectangle, parallelogram, quadrilateral, 
trapeze, symmetric pentagon, symmetric hexagon. 

For  the moments  of  splines,  the  authors  [21,22]  used  a  boundary  integral  along  the  tensor 
product  spline with 𝑁 control points and  the  respective  coordinates 𝑋௡,𝑌௡ to  calculate  the area of 
such a spline with  

𝐴 ൌ෍෍෍𝐶௟௠𝑋௜ା௟ିଶ𝑌௜ା௠ିଶସ
௠

ସ
௟

ே
௜ୀ଴  

  ሺ5ሻ 
where the coefficients 𝐶௟௠ can be calculated by summing the geometry matrix with 𝐶௟௠ ൌ෍෍𝑀௝௟𝑀௞௠ሺ4 െ 𝑘ሻ

8 െ 𝑗 െ 𝑘ଷ
௞ୀଵ

ସ
௝ୀଵ . 

  ሺ6ሻ 
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[21]. Analogously, the first and second order moments were determined in [21] with 𝑆௫ ൌ െ1

2
෍෍෍෍𝐶௟௠௡𝑌௜ା௟ିଶ𝑌௜ା௠ିଶ𝑋௜ା௢ିଶସ

௡ୀଵ
ସ

௠ୀଵ
ସ
௟ୀଵ

ே
௜ୀ଴  

  ሺ7ሻ 
𝑆௬ ൌ 1

2
෍෍෍෍𝐶௟௠௡ 𝑋௜ା௟ିଶ𝑋௜ା௠ିଶ𝑋௜ା௡ିଶ𝑌௜ା௢ିଶସ

௡ୀଵ
ସ

௠ୀଵ
ସ
௟ୀଵ

ே
௜ୀ଴  

  ሺ8ሻ 
𝐼௫ ൌ െ1

3
෍෍෍෍෍𝐶௟௠௡௢𝑌௜ା௟ିଶ𝑌௜ା௠ିଶ𝑌௜ା௡ିଶ𝑋௜ା௢ିଶସ

௢ୀଵ
ସ

௡ୀଵ
ସ

௠ୀଵ
ସ
௟ୀଵ

ே
௜ୀ଴  

  ሺ9ሻ 
𝐼௬ ൌ 1

3
෍෍෍෍෍𝐶௟௠௡௢ 𝑋௜ା௟ିଶ𝑋௜ା௠ିଶ𝑋௜ା௡ିଶ𝑌௜ା௢ିଶସ

௢ୀଵ
ସ

௡ୀଵ
ସ

௠ୀଵ
ସ
௟ୀଵ

ே
௜ୀ଴  

 ሺ10ሻ 
𝐼௬௭ ൌ െ 1

2
෍෍෍෍෍𝐶௟௠௡௢ 𝑋௜ା௟ିଶ𝑋௜ା௠ିଶ𝑌௜ା௡ିଶ𝑌௜ା௢ିଶସ

௢ୀଵ
ସ

௡ୀଵ
ସ

௠ୀଵ
ସ
௟ୀଵ

ே
௜ୀ଴  

 ሺ11ሻ 
with the coefficients 𝐶௟௠௡ and 𝐶௟௠௡௢  𝐶௟௠௡ ൌ෍෍෍𝑀௝௟𝑀௞௠𝑀௥௡ሺ4െ 𝑟ሻ

12 െ 𝑗 െ 𝑘 െ 𝑟ଷ
௥ୀଵ

ସ
௞ୀଵ

ସ
௝ୀଵ  

 

 ሺ12ሻ 
𝐶௟௠௡௢ ൌ෍෍෍෍𝑀௝௟𝑀௞௠𝑀௥௡𝑀௦௢ሺ4െ 𝑠ሻ

16 െ 𝑗 െ 𝑘 െ 𝑟 െ 𝑠ଷ
௦ୀଵ

ସ
௥ୀଵ

ସ
௞ୀଵ

ସ
௝ୀଵ  

 

 ሺ13ሻ 
[21]. With  the  help  of  these  equations’  parametric  descriptions  of  the  control  polygons  can  be 
generated. In the following, the parametrization is determined schematically for a triangular control 
polygon. 

2.2. Parametric Representation of the B‐Spline of a Triangle 

Based on the parametric in Figure 3, the area can now be determined. For a B‐spline the area 
can be calculated as follows 𝐴 ൌ 1

36
൤െ 9

20
 𝑐ℎ െ 15

2
ℎ𝑝 െ 9

10
𝑐ℎ െ 1

2
ℎ𝑝 ൅ 1

20
ℎ𝑝 െ 19

10
𝑐ℎ ൅ 71

20
𝑐ℎ െ 1

20
ℎ𝑝 ൅ 1

2
ℎ𝑝 ൅ 183

20
𝑐ℎ ൅ 15

2
ℎ𝑝൨   

resulting in the expression similar to [14] to  𝐴 ൌ 21 𝑐 ℎ
80

.  ሺ14ሻ 
Analogously, the first and second order moments of area with respect to the coordinate origin 

can be calculated with  𝑆௫ሺ଴,଴ሻ ൌ 7 𝑐 ℎଶ
80

  𝑆௬ሺ଴,଴ሻ ൌ 7
𝑐ଶℎ
80

൅  7 𝑐 ℎ 𝑝
80

 𝐼௫௫ሺ଴,଴ሻ ൌ 15769 𝑐 ℎଷ
443520

 𝐼௬௬ሺ଴,଴ሻ ൌ  15769
𝑐ଷℎ

443520
൅  23039 𝑐ଶℎ 𝑝

443520
൅  15769 𝑐 ℎ 𝑝ଶ

443520
 𝐼௫௬ሺ଴,଴ሻ ൌ െ23039

𝑐ଶℎଶ
887040

െ  15769 𝑐 ℎଶ𝑝
443520

. 

From  the  first moments  of  area,  the  center  of  area  of  the  spline  cross‐section  can  now  be 
calculated with  𝑥௦ ൌ 𝑆௬𝐴 ൌ 𝑐

3
൅ 𝑝

3
 𝑦௦ ൌ 𝑆௫𝐴 ൌ ℎ/3. 
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Using the center of area, the second order moments can now be referenced to the center of area 
with   𝐼஻,௫௫ ൌ 𝐼஻,௫௫ሺ଴,଴ሻ െ 𝑦௦ଶ𝐴 ൌ  

2833

443520
𝑐ℎଷ 

 

ሺ15ሻ 
𝐼஻ ൌ 𝐼஻,௬௬ሺ଴,଴ሻ െ 𝑥௦ଶ𝐴 ൌ  

2833

443520
𝑐 ℎሺ𝑐ଶ െ  𝑐 𝑝 ൅  𝑝ଶሻ 

 

ሺ16ሻ 
𝐼஻,௫௬ ൌ 𝐼஻,௫௬ሺ଴,଴ሻ ൅ 𝑥௦𝑦௦𝐴 ൌ 2833 𝑐 ℎଶሺ𝑐 െ  2 𝑝ሻ

887040
. 

 

ሺ17ሻ 
It is noticeable that the structure of the moments of the B‐spline differs from that of a triangle 

only  in  the  coefficients  (see  also  Table  1).  To  check  the  validity  of  the  formulas  found  for  the 
moments, it is necessary to compare them with alternative calculation methods and to check valid 
cross‐section properties. 

2.3. Comparision of with Polygon Cross‐Sections 

By repeating the control points, the B‐spline formula can be used to accurately reproduce the 
shape of a polygon. If the parametric formula is derived from this, the moment of area formula of 
for  example  a  rectangle  or  a  triangle  is  obtained  in  Table  1.  The  following  Table  shows  the 
determination of the moments via the B‐spline formula, the use of the polygon directly via equation 
(2) and the formula from [1].  

Table 1. Comparison of  the moments of area equation of  the  control polygon using equation  the 
equations for the B‐spline, the equations of a polygon (2) and equations from the literature. 

  B‐Spline Triangle Poly  Polygon Triangle  Literature [1] 𝐴  𝑐 ℎ
2
  𝑐 ℎ

2
  𝑐 ℎ

2
 𝐼௫  𝑐 ℎଷ

36
  𝑐 ℎଷ

36
  𝑐 ℎଷ

36
 𝐼௬  𝑐 ℎ 𝑐ଶ െ  𝑐 𝑝 ൅  𝑝ଶ

36
  𝑐 ℎ 𝑐ଶ െ  𝑐 𝑝 ൅  𝑝ଶ

36
  𝑐 ℎ 𝑐ଶ െ  𝑐 𝑝 ൅  𝑝ଶ

36
 𝐼௫௬  𝑐 ℎଶሺ𝑐 െ  2 𝑝ሻ

72
  𝑐 ℎଶሺ𝑐 െ  2 𝑝ሻ

72
  𝑐 ℎଶሺ𝑐 െ  2 𝑝ሻ

72
 𝑥௦,𝑦௦  ൬𝑐

3
൅ 𝑝

3
,
ℎ
3
൰  ൬𝑐

3
൅ 𝑝

3
,
ℎ
3
൰  ൬𝑐

3
൅ 𝑝

3
,
ℎ
3
൰ 

 
B‐Spline Rectangle Poly 

Polygon Rectangle Literature [1] 𝐴 𝑏ℎ 𝑏ℎ 𝑏ℎ 𝐼௫ 𝑏 ℎଷ
12

 𝑏 ℎଷ
12

  𝑏 ℎଷ
12

 𝐼௬ 𝑏ଷℎ
12

 
𝑏ଷℎ
12

 
𝑏ଷℎ
12

 𝐼௫௬ 
0 0 0 𝑥௦,𝑦௦ ൬𝑏

2
,
ℎ
2
൰ ൬𝑏

2
,
ℎ
2
൰ ൬𝑏

2
,
ℎ
2
൰ 

The  comparison with  the  Table  shows  an  agreement  of  the  calculation methods with  the 
literature. Thus,  it can be seen  that at  least  if  the control points  (polygon) are repeated  twice,  the 
results from the literature can be determined directly.  

2.4. Numerical Comparision Framework 
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To ensure the validity of the formulas with a high degree of accuracy, they must be validated 
with alternative  calculation methods and by checking  the  Jordan curve  theorem and valid cross‐
section  properties.  Figure  4  now  shows  the  steps  involved  in  the  automatic  validation  of  the 
equations  for  the  cross‐sections.  First,  a  tensor  product  spline  is  defined.  This  curve  is  then 
converted into a discrete polygon and the control polygon points. From the control polygon points, 
the parametric equation is derived and the numerical results of the moments are then compared to 
the moments of the polygon as well as the moments from a binary image. 

 
Figure 4. Framework for the validation of the symbolic equations of the moments of area. 

In addition, for each formula it is checked whether it is a valid cross‐section or a curve in terms 
of a Jordan curve. 

2.4.1. Spline Cross‐Section with Valid Cross‐Section Property 

A valid cross‐section has a positive cross‐sectional area and positive principal axis moments 
(eigenvalues), so that all combinations of parameters must fulfill 𝐴 ൐ 0 ∧  𝐼ଵ ൐ 0   ∧ 𝐼ଶ ൐ 0.  ሺ18ሻ 

Principal moments can be computed with 𝐼ଵ,ଶ ൌ 𝐼௬ ൅ 𝐼௭
2

േඨ൬𝐼௬ െ 𝐼௭
2

൰ଶ ൅ 𝐼௬௭ଶ ൐ 0. 

However, since  this expression can be very complex,  it  is  first necessary  to  find a simplified 
criterion  for valid cross‐sections.  It  is sufficient  to state  that  the smaller principal moment of area 
given by  𝐼ଶ ൌ 𝐼௬ ൅ 𝐼௭

2
െඨ൬𝐼௬ െ 𝐼௭

2
൰ଶ ൅ 𝐼௬௭ଶ ൐ 0 

has to be greater than zero. This leads to  𝐼௬ ൅ 𝐼௭
2

൐ ඨ൬𝐼௬ െ 𝐼௭
2

൰ଶ ൅ 𝐼௬௭ଶ  𝐼௬ଶ ൅ 2𝐼௬𝐼௭ ൅ 𝐼௭ଶ ൐ 𝐼௬ଶ െ 2𝐼௬𝐼௭ ൅ 𝐼௭²൅ 4𝐼௬௭ଶ  𝐼௬𝐼௭ ൐ 𝐼௬௭ଶ . 
Therefore, for all parameter combinations a valid cross‐section has to fulfill 𝐴 ൐ 0     ∧     𝐼௬𝐼௭ െ 𝐼௬௭ଶ ൐ 0.  ሺ19ሻ 
In addition to the relationship between the moments of area for valid cross‐sections, it is also 

necessary to compare the formula found with various alternative calculation methods. 

2.4.2. Spline Cross‐Section as Valid Jordan‐Curve 

Tensor Product Spline (TPS) 
Cross‐Section

RasterizationPolygonization
B‐Spline 

Control Points

Binary Image
Moments of 

Area 

Polygon 
Moments of 

Area 

Symbolic TPS 
Moments of 

Area 

Comparison

𝐼௬𝐼௭ ൐ 𝐼௬௭ଶ𝐴 ൐ 0
Polygon 

Intersection

Is Valid 
Cross‐Section

Is Valid Jordan‐
Curve 
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For validation,  the spline  is converted  into a polygon and  into a 2D binary  image. Then  the 
moments can be calculated in different ways for the particular spline. Figure 4 shows three different 
B‐splines, their polygon (red‐green) and a binary image of the cross‐section. 

 
Figure 5. Tensor product spline cross‐section (B‐spline) and its polygon and binary image. 

The Comparison of the equation (1) and equation (2) is used to check the accuracy and validity. 
As the number of segments along the polygon line is increased, the accuracy of the moments of area 
estimate also increases. The comparison with the formula of the binary image serves to ensure the 
validity of  the  curve  found,  so  that no  Jordan  curves are detected. Figure 5  shows a non‐Jordan 
curve by swapping the order of the nodes. While such a cross‐section can be estimated with some 
accuracy using the binary image, the boundary integration approach using the polygon approach as 
well as the chosen formula derived for the B‐spline leads to incorrect results (e.g. area=0 here). 

To achieve a high degree of  coverage,  it  is necessary  to  compare  the approach with a  large 
number of possible polygon  and binary  image  cross‐sections. For  each parameterization, a Latin 
hypercube sampling is chosen by generating a large number of cross‐sections. Then, the mean error 
and  the  variance  of  the  error  are  chosen  as  evaluation  criteria  in  comparison  to  the  alternative 
computational methods. For this purpose, the respective relative errors are determined as follows. 

2.4.3. Spline Cross‐Section Numerically Compared to Polygon and Image Cross‐Section 

To validate each formula, the moments from the derived polygon cross‐section and the image 𝐴ூ௠௚,௉௢௟௬, 𝐼௫ூ௠௚,௉௢௟௬, 𝐼௬ூ௠௚,௉௢௟௬, 𝐼௫௬ூ௠௚,௉௢௟௬ are  compared with  the moments  of  the  B‐spline  formula 𝐴்௉ௌ, 𝐼௫்௉ௌ, 𝐼௬்௉ௌ, 𝐼௫௬்௉ௌ. Thereby the relative errors 𝜖஺ ൌ ฬ𝐴ூ௠௚,௉௢௟௬ െ 𝐴்௉ௌ𝐴்௉ௌ ฬ  ሺ20ሻ 
𝜖ூೣ ൌ ቤ𝐼௫ூ௠௚,௉௢௟௬ െ 𝐼௫்௉ௌ𝐴்௉ௌ ቤ  ሺ21ሻ 
𝜖ூ೤ ൌ ቤ𝐼௬ூ௠௚,௉௢௟௬ െ 𝐼௬்௉ௌ𝐼௬்௉ௌ ቤ 

 

ሺ22ሻ 
𝜖ூೣ೤ ൌ ቤ𝐼௫௬ூ௠௚,௉௢௟௬ െ 𝐼௫௬்௉ௌ𝐼௫௬்௉ௌ ቤ 

 

ሺ23ሻ 
of a  large number of  combinations of  the  control polygons  can be  compared. Possible geometric 
values can be selected in the range of the geometric space, for example for a triangle between 𝑐 ∈ ሾ0,∞ሾ, ℎ ∈ ሾ0,∞ሾ,𝑝 ∈ ሾ0,∞ሾ. 

Thus, each individual geometric variable and  its influence can be checked directly. However, 
since an evaluation up to ∞ is not possible, a limiting parameter of the respective geometric variable 
of 100.0 is chosen. For each case, 100 samples are generated using Latin Hypercube Sampling.  

3. Results 
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Based on  the described strategy  for  the parameterization as well as  for  the evaluation of  the 
found formulas, it is necessary in the following to design different parametric control points for the 
tensor product splines. From these parametric control point coordinates the respective moments are 
then calculated automatically and analytically.  In  this work,  the moments of a general  triangle, a 
rectangle, a trapeze, a parallelogram, an isosceles pentagon and an isosceles hexagonal honeycomb 
are considered, since for these parametric quantities a suitable simple expression, which can still be 
presented on a few lines. 

For the evaluation of these moments of area, the approach from 2.4 is chosen. To ensure Jordan 
curve theorem, the parametric is restricted so that only valid Jordan curves as cross‐section results.  

3.1. Moments of Area Parametrization of a Triangle Control Polygon 

Figure 6 shows  three examples of different B‐spline curves based on  the variation of control 
points over a  triangle. For  the polygon 𝑃ଷ,  three points are evaluated  for each curve segment via 
equation  (4).  For  the  gridded  cross‐section 𝐼 ,  the  underlying  polygon was  rasterized with  8x8 
pixels. Since  the  triangle  itself  is always a convex polygon,  the curve also  lies within  the selected 
polygon. The value of the area must therefore be smaller than that of the triangle itself. 

 
Figure 6. Triangle B‐spline cross‐section and its polygon and binary image. 

Table 2 shows the formulas for calculating the moments of area and relative errors compared 
to a polygon with 100 segments, a polygon with 10 segments per spline segment, an image 𝐼ଵଶ଼ with 
a grid size of 128x128 pixels, and an image 𝐼ଵ଺ with a grid size of 16x16 pixels.  

Table 2. Equations for the parametric control polygon for the triangle and its numerical error. 

  Equation 
Error 
[%]  𝑃ଵ଴଴  𝑃ଵ଴  𝐼ଵଶ଼  𝐼ଵ଺ 𝐴 

21 𝑐 ℎ
80

  𝜖஺ഥ  
0,007  0,879  1,922  11,951 𝐼௫  2833 𝑐 ℎଷ

443520
 

𝜎²ሺ𝜖஺ሻ 
0,000  0,000  0,168  4,990 𝐼௬ 

2833 𝑐 ℎ 𝑐ଶ െ  𝑐 𝑝 ൅  𝑝ଶ
443520

 
𝜖ூೣതതതത 

0,015  1,776  4,299  19,075 𝐼௫௬ 
2833 𝑐 ℎଶሺ𝑐 െ  2 𝑝ሻ

887040
  𝜎²൫𝜖ூೣ൯ 

0,000  0,000  0,810  5,377 𝑥௦, 𝑦௦  ൬𝑐
3
൅ 𝑝

3
,
ℎ
3
൰  𝜖ூ೤തതതത 

0,015  1,776  3,247  18,471 𝐼௫𝐼௬ െ 𝐼௫௬ଶ   8025889
𝑐ସℎସ

262279987200
  𝜎² ቀ𝜖ூ೤ቁ 

0,000  0,000  0,291  5,914 
          𝜖ூೣ೤തതതതത  0,015  1,776  5,046  25,759 
          𝜎² ቀ𝜖ூೣ೤ቁ  0,000  0,000  1,575  6,264 

Equation (19) shows always values greater than zero for the geometric parameters of 𝑐, ℎ. Thus, 
the essential properties for a valid cross‐section are guaranteed for positive geometric parameters. 
The relative error from the calculation shows an average relative error of 0.015% for 𝑃ଵ଴଴. This error 
increases  when  fewer  segments  per  spline  𝑃ଵ଴  are  used.  The  errors  for  binary  images  are 
significantly  higher  compared  to  the  polygon  approach.  Furthermore,  if  a  16x16  pixel  grid  is 
chosen, an error of 25.7% can occur for the second order moment of area. 
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The  relative errors  show good agreement between  the different calculation methods, so  that 
the  formulas  from Table 1 can be assumed  to be correct.  In particular,  the small error  for a high 
resolution of the spline as polygon 𝑃ଵ଴଴ shows good agreement. 

3.2. Moments of Area Parametrization of a Quadrilateral Control Polygon Area 

For a quadrangular control polygon,  the cross‐sectional area of  the B‐spline can be generally 
expressed as follows  𝐴 ൌ െ61 𝑎 ℎ

180
൅  61 𝑏 ℎ

180
൅  61 𝑐 𝑑

180
 

 

ሺ24ሻ 
according to the parametrization covered in Figure 3. However, the parameterization of the general 
quadrilateral can lead to the violation of the Jordan curve theorem, so that the curve can intersects 
itself. This can lead to a negative cross‐sectional area, so that more appropriate boundary conditions 
for  the dependencies of  the parameters of  the  control polygon has  to be  considered  for a  robust 
application.  In  the  following,  the  quadrilateral  is  constructed  as  a  rectangle,  trapeze  and 
parallelogram. 

3.2.1. Moments of Area Parametrization of a Rectangle Control Polygon 

Figure  7  shows  the  variation  of  a  rectangular  control  polygon,  a  derived  polygonal  cross‐
section  and  a  binary  image. Due  to  the  chosen  parameterization,  only  positive  and  valid  cross‐
sections can be realized compared to the general quadrilateral.  

 

Figure 7. Rectangle B‐spline cross‐section and its polygon and binary image. 

Table 3 shows the equations for the moments of area of the rectangular control polygon as well 
as  the numerical errors. Analogous  to  the  triangle, a high accuracy of  the  relative errors  is again 
shown in comparison to the polygonal approach. Likewise, it can be seen that equation (19)  leads 
exclusively to positive values. The moment of area of 𝐼௫௬ leads to a value of 0, due to the symmetric 
shape of the control polygon. 

Table 3. Equations for the parametric control polygon for the rectangle and its relative error. 

  Equation  Error 
[%]  𝑃ଵ଴଴  𝑃ଵ଴  𝐼ଵଶ଼  𝐼ଵ଺ 𝐴 

61 𝑏 ℎ
90

  𝜖஺ഥ  
0,004  0,505  2,674  13,488 𝐼௫  27371 𝑏 ℎଷ

748440
 

𝜎²ሺ𝜖஺ሻ 
0,000  0,000  1,110  5,877 𝐼௬ 

27371
𝑏ଷℎ

748440
 

𝜖ூೣതതതത 
0,008  1,009  3,858  16,736 𝐼௫௬  0  𝜎²൫𝜖ூೣ൯  0,000  0,000  1,473  6,440 𝑥௦, 𝑦௦  ൬𝑏

2
,
ℎ
2
൰  𝜖ூ೤തതതത 

0,008  1,009  3,687  17,262 𝐼௫𝐼௬ െ 𝐼௫௬ଶ   749171641
𝑏ସℎସ

560162433600
  𝜎² ቀ𝜖ூ೤ቁ 

0,000  0,000  1,248  5,963 

3.2.2. Moments of Area Parametrization of a Parallelogram Control Polygon 
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Figure 8 shows the variation of a B‐spline using a parallelogram control polygon,  its derived 
polygon  cross‐section  and  a  rasterized  image  cross‐section. Due  to  the  chosen parameterization, 
only positive and valid cross‐sections can be realized compared to the general quadrilateral.  

 
Figure 8. B‐spline cross‐section and its polygon and binary image representation. 

Table 4 shows the results for the moments of area of the control polygon as a parallelogram as 
well as the numerical errors. Analogous to the triangle, a high accuracy of the relative errors is also 
shown here  in comparison  to  the polygonal approach. Likewise,  it can be seen  that equation  (19) 
leads exclusively  to positive values. The moment of area 𝐼௫௬ is 0 for the parallelogram with 𝑝 ൌ 0, 
which represents a rectangle. Otherwise, this leads to values unequal to 0 due to the asymmetry of 
the cross‐section. 

Table 4. Equations for the parametric control polygon for the triangle and its numerical error. 

  Equation 
Error 
[%]  𝑃ଵ଴଴  𝑃ଵ଴  𝐼ଵଶ଼  𝐼ଵ଺ 𝐴 

61 𝑎 ℎ
90
  𝜖஺ഥ  

0,004 0,505 2,218 12,118 𝐼௫  27371 𝑏 ℎଷ
748440

 
𝜎²ሺ𝜖஺ሻ 

0,000 0,000 1,075 4,609 𝐼௬ 
27371 𝑏 ℎ 𝑏ଶ ൅  𝑝ଶ

748440
 

𝜖ூೣതതതത 
0,008 1,009 3,831 19,453 𝐼௫௬  െ27371 𝑏 ℎଶ𝑝

748440
 

𝜎²൫𝜖ூೣ ൯ 
0,000 0,000 1,489 5,294 𝑥௦,𝑦௦  ൬𝑏

2
൅ 𝑝

2
,
ℎ
2
൰  𝜖ூ೤തതതത 

0,008 1,009 3,463 20,586 
 𝐼௫𝐼௬ െ 𝐼௫௬ଶ  749171641

𝑏ସℎସ
560162433600

𝜎² ቀ𝜖ூ೤ቁ 
0,000 0,000 1,298 5,750 

          𝜖ூೣ೤തതതതത  0,008 1,009 4,474 30,458 
          𝜎² ቀ𝜖ூೣ೤ቁ0,000 0,000 1,920 9,431 

3.2.3. Moments of Area Parametrization of a Trapeze Control Polygon 

Figure 9 shows the variation of a trapeze control polygon for a B‐spline cross‐section, a derived 
polygon cross‐section and its binary image cross‐section. Due to the chosen parameterization, only 
positive and valid cross‐sections can be realized compared to the general quadrilateral.  

 
Figure 9. Trapeze B‐spline cross‐section and its polygon and binary image. 

For the validity of the trapezoids according to equation (19) the following relation  is positive 
and therefore valid 𝐼௫𝐼௬ െ 𝐼௫௬ଶ ൌ hସሺ75371706005 bସ ൅  564591208444 bଷp ሻ

820077802790400
൅ 

 
hସሺ1525810647880 bଶpଶ ൅  2258364833776 b pଷ ൅  1205947296080 pସሻ

820077802790400
 

 ሺ25ሻ 
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for each possible parameter combination. Table 5 shows the results for the moments of area of the 
control  polygon  as  a  trapeze  as well  as  the  numerical  errors. Analogous  to  the  triangle,  a  high 
accuracy of the relative errors is also shown in comparison to the polygonal approach. The moment 𝐼௫௬ is consistently zero due to the symmetry. For the parameter 𝑝 ൌ ௕ଶ the relation of the rectangle is 
obtained 

Table 5. Equations for the parametric control polygon for the rectangle and its relative error. 

  Equation 
Error 
[%]  𝑃ଵ଴଴  𝑃ଵ଴  𝐼ଵଶ଼  𝐼ଵ଺ 𝐴 

61 ℎ 𝑏 ൅  2 𝑝
180

  𝜖஺ഥ  
0,004  0,505  0,915  9,991 𝐼௫  ℎଷሺ4412605 𝑏ଶ ൅  22420724 𝑏 𝑝 ൅  17650420 𝑝ଶሻ

273929040 ሺ𝑏 ൅  2 𝑝ሻ  
𝜎²ሺ𝜖஺ሻ 

0,000  0,000  0,013  3,937 𝐼௬  ℎ 17081 𝑏ଷ ൅  75322 𝑏ଶ𝑝 ൅  150644 𝑏 𝑝ଶ ൅  136648 𝑝ଷ
2993760

 
𝜖ூೣതതതത 

0,008  0,961  2,180  15,232 𝐼௫௬  0  𝜎²൫𝜖ூೣ൯  0,000  0,000  0,132  4,967 𝑥௦,𝑦௦  ൬𝑏
2

;  ℎ 461 𝑏 ൅  1274 𝑝
1098 ሺ𝑏 ൅  2 𝑝ሻ൰  𝜖ூ೤തതതത 

0,009  1,097  1,385  13,110 𝐼௫𝐼௬ െ 𝐼௫௬ଶ   ሺ25ሻ  𝜎² ቀ𝜖ூ೤ቁ 
0,000  0,000  0,002  4,336 

In an analogous way, further quadrilaterals can now be parameterized and their formulas for 
the moments of area can be derived. In the following, the calculation of the moments of area of a 
parametric pentagon as well as a hexagon is performed. 

3.3. Moments of Area Parametrization of a Symmetric Pentagon Control Polygon 

Figure  10  shows  the  variation  of  a  symmetrical,  pentagonal  control  polygon  for  a  B‐spline 
cross‐section, its polygonal representation and its rasterized image. 

 

Figure 10. Pentagon B‐spline cross‐section and its polygon and binary image. 

For the validity of the pentagon according to equation (19) the following relation  𝐼௫𝐼௬ െ 𝐼௫௬ଶ ൌ hସሺ82305438169 bଶ ൅  212310520756 b p ൅  120438027736 pଶሻ
 ሺ169 b ൅  218 pሻ ∙ 

  ሺ1527254 bଷ ൅  5667223 bଶp ൅  7684452 b pଶ ൅  3712596 pଷሻ
963658637770752000

 
 

 ሺ26ሻ 
leads  to  only  positive  values.  Table  6  shows  the  results  for  the moments  of  area  of  the  control 
polygon as a  symmetric pentagon as well as  the numerical errors. Analogous  to  the  triangle,  the 
relative errors also show a high accuracy compared to the polygonal approach. The moment 𝐼௫௬ is 
consistently zero due to the symmetry.  

Table 6. Equations for the parametric control polygon for the rectangle and its relative error. 

  Equation 
Error 
[%]  𝑃ଵ଴଴ 𝑃ଵ଴ 𝐼ଵଶ଼  𝐼ଵ଺ 𝐴  ℎ 169 𝑏 ൅  218 𝑝

288
  𝜖஺ഥ  

0,0 0,3 2,4 14,8
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03  32  38  52 𝐼௫  ℎଷሺ82305438169 𝑏ଶ ൅  212310520756 𝑏 𝑝 ൅  120438027736 𝑝ଶሻ
20118067200 ሺ169 𝑏 ൅  218 𝑝ሻ  

𝜎²ሺ𝜖஺ሻ0,0
00 

0,0

00 
1,2

98 
6,76

6 𝐼௬  ℎ 1527254 𝑏ଷ ൅  5667223 𝑏ଶ𝑝 ൅  7684452 𝑏 𝑝ଶ ൅  3712596 𝑝ଷ
47900160

 
𝜖ூೣതതതത  0,0

05 
0,6

43 
4,2

20 
19,3

37 𝐼௫௬ 
0 

𝜎²൫𝜖ூೣ 0,0

00 
0,0

00 
1,4

54 
7,03

9 𝑥௦ ,𝑦௦  ൬𝑏
2

;  ℎ 167189 𝑏 ൅  254368 𝑝
2520 ሺ169 𝑏 ൅  218 𝑝ሻ൰  𝜖ூ೤തതതത  0,0

06 
0,6

90 
2,2

91 
17,6

53 𝐼௫𝐼௬ െ 𝐼௫௬ଶ   ሺ26ሻ  𝜎² ቀ𝜖ூ೤0,0
00 

0,0

00 
1,2

76 
7,54

1 

Finally, the parameterization for a hexagon can now be specified analogously. 

3.4. Moments of Area Parametrization of a Symmetric Hexagonal Control Polygon 

Figure  11  shows  the  variation  of  a  symmetrical, pentagonal,  control polygon  for  a B‐spline 
cross‐section, its polygon cross‐section and its binary image cross‐section. 

 
Figure 11. Hexagonal B‐spline cross‐section and its polygon and binary image. 

𝐼௫𝐼௬ െ 𝐼௫௬ଶ ൌ hସሺ1267299 b ൅  927031 pሻ
143401583001600

∙ 
  ሺ354311 bଷ ൅  1131397 bଶp ൅  1267299 b pଶ ൅  490213 pଷሻ 

 

 ሺ27ሻ 
Table 7. Equations for the parametric control polygon for the rectangle and its relative error. 

  Equation 
Error 
[%]  𝑃ଵ଴଴ 𝑃ଵ଴  𝐼ଵଶ଼  𝐼ଵ଺ 𝐴 

301 ℎ 𝑏 ൅  𝑝
360

 
𝜖஺ഥ   0,00

2 
0,22

5 
1,12

8 
15,1

93 𝐼௫  ℎଷሺ1267299 𝑏 ൅  927031 𝑝ሻ
23950080

 
𝜎²ሺ𝜖஺ሻ0,00

0 
0,00

0 
0,08

1 
7,61

0 𝐼௬  ℎ 354311 𝑏ଷ ൅  1131397 𝑏ଶ𝑝 ൅  1267299 𝑏 𝑝ଶ ൅
5987520

𝜖ூೣതതതത  0,00

3 
0,39

8 
2,40

5 
20,9

43 𝐼௫௬ 
0 

𝜎²൫𝜖ூೣ൯0,00
0 

0,00

0 
0,41

9 
8,30

2 𝑥௦ ,𝑦௦  ൬𝑏
2

,
ℎ
2
൰  𝜖ூ೤തതതത  0,00

4 
0,51

1 
1,03

7 
15,8

14 𝐼௫𝐼௬ െ 𝐼௫௬ଶ   ሺ27ሻ  𝜎² ቀ𝜖ூ೤0,00
0 

0,00

0 
0,03

7 
7,62

7 

4. Discussion 

The  final  formulas  show a very good  suitability  for  the design and determination of beams 
with  free‐form  cross‐sections.  In  particular,  the  comparison  of  the  formulas  with  alternative 
calculation methods suggests a high validity. 

One point of criticism could be the chosen parameterization of the control polygons. While the 
triangle was still covered for arbitrary shapes, there are already restrictions for the moment of area 
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for  a  quadrilateral  due  to  the  complexity  of  the  perpetual  expressions.  The  same  is  true  for 
pentagons and hexagons. Only a restriction of the parametric allows simpler expressions e.g. for a 
parallelogram as well as a  trapeze. However,  this simplification can be  improved  to achieve high 
shape coverage with a suitable set of variables. For example, the parametric of the positive lengths 
of the symmetric hexagon yields exclusively convex polygons, so this unfavorable choice implicitly 
excludes a large number of alternative symmetric hexagons. 

While  the numerical  formula  for determining  the moments of area  is easy  to  implement and 
universally  applicable,  the  symbolic  expressions  lead  to  the  restriction  of  the  cross‐sectional 
geometry. However, due to the numerical accuracy of such  formulas, erroneous moments of area 
cannot be absolutely guaranteed, unlike  the analytical  formula. The  symbolic expressions  can be 
used completely up  to  the  limit  ranges,  so  that also a  consideration of  the  convergence behavior 
towards infinity is possible. Especially in the case of optimization, cross‐section values close to zero 
can occur, where a numerical approximation can lead do misleading results. 

The validation  framework exhibits high robustness and reliability, so that symbolic  formulas 
can be  tested directly. However,  for  future work,  estimation over  a polygon  consisting of many 
segments  is  usually  sufficient.  Unlike  the  polygon  and  the  B‐spline,  the  binary  image  and 
evaluation  step  is based on an area  integral  rather  than a boundary  integral and  is  therefore not 
directly comparable. 

In  summary,  however,  a  large  number  of  expressions  are  shown  which  can  be  used  to 
determine moments of area of such freeform curves in the simplest way. These can now be used for 
aspects of structural optimization, but also for reconstruction analogous to [14]. In contrast to [14], 
however, a fully analytical function of the beam stiffness matrix can be realized, so that geometric 
values close to zero can be accurately captured. 

5. Conclusions 

This work  has  dealt with  the derivation  of  analytical  formulas  for  the moments  of  area  of 
periodic  B‐splines.  The  position  of  the  control  points  was  mapped  parametrically  and  then 
embedded in the boundary integral for the calculation of the moments of area of splines. In contrast 
to common methods for numerical determination of such moments of area, a symbolic calculation 
with integer numerator and denominator was considered. This integer calculation leads to an exact 
determination of the cross‐sectional area and the second moments of area of such periodic B‐spline 
cross‐sections.  

While in [14] only the cross‐sectional area was determined analytically, in this work mainly a 
symbolic description  for  the  second moments of  area  could be obtained. Especially  in  structural 
optimization,  cross‐section  parameters  close  to  zero  can  be  determined,  for  which  an  exact 
calculation of the moments is necessary. 

The  obtained  expressions  can  now  be  used  for  various  applications  in  the  field  of 
reconstruction, design as well as verification calculations. Likewise, further control polygons can be 
parameterized using the approach described above. 
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