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Abstract: Following the central dogma of molecular biology, gene expression heterogeneity can aid 

in predicting and explaining the wide variety of protein products, functions, and, ultimately, 

heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types 

of diversity in gene expression profiles, and overlooking these nuances can misrepresent important 

biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity 

in 1) the expression of all genes within a sample or a single gene across samples in a population 

(gene-level diversity) or 2) the isoform-specific expression of a given gene (isoform-level diversity). 

We first overview modulators and quantification of transcriptome diversity at the gene level. Then, 

we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how 

it can be quantified. Additionally, we overview computational resources for calculating gene-level 

and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future 

applications of transcriptome diversity. This review provides a comprehensive overview of how 

gene expression diversity arises, and how measuring it determines a more complete picture of 

heterogeneity across proteins, cells, tissues, organisms, and species. 

Keywords: gene expression; transcriptome diversity; transcriptional variation; transcript diversity; 

isoform-level diversity; gene-level diversity 

 

Introduction 

Following the central dogma of molecular biology, gene expression heterogeneity can aid in 

predicting and explaining the wide variety of protein products, functions, and, ultimately, 

heterogeneity in phenotypes. Over the past few decades, transcriptomic expression profiles have 

been assayed in many ways, with the two most common approaches being microarray-based and 

sequencing-based [1]. More recently, microarrays have been surpassed by Next-Generation 

Sequencing (NGS), also known as second-generation or short-read sequencing [2,3]. To assay gene 

expression with NGS technology (also known as RNA sequencing, RNA-Seq), RNA is first reverse-

transcribed into cDNA, fragmented, and then constructed into an NGS library that is then read by 

the sequencer and then computationally mapped to the transcriptome for quantification [3]. The 

ability to barcode cells in combination with low-input protocols has also enabled single-cell/nuclei 

RNA-Seq (sc/snRNA-Seq) to measure the transcriptomic profiles of individual cells [4,5]. Most 

recently, third-generation or long-read sequencing popularized by Pacific Biosciences [6] (PacBio) 

and Oxford Nanopore Technologies [7,8] (ONT) has allowed the sequencing of contiguous reads of 

up to 2.3 million bases, considerably longer than the longest human messenger RNA (mRNA) 

transcripts [9]. These long reads are enabled by single-molecule real-time (SMRT) and ionic nanopore 

technology innovations by PacBio and ONT, respectively. In addition, long-read RNA-Seq (lrRNA-

Seq) is capable of directly sequencing RNA and detecting its modifications, which was previously 

not possible with short-read technologies that require reverse transcription into cDNA [10]. 

Additionally, more technologies are being developed for the rapidly growing field of long-read 

sequencing at the single-cell level [11–13].  

As both these and newer technologies continue to evolve with the goal of measuring 

transcriptomic profiles more precisely, the need to quantify and interpret those profiles continues to 
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grow [11–13]. Dating back to microarray experiments, differential expression (DE) is the most 

common analysis of gene expression, and it is frequently used in both bulk RNA-Seq and scRNA-

Seq. Generally, a basic mean DE analysis determines whether individual genes are up- or down-

regulated (i.e., more highly or lowly expressed, respectively) between conditions, for example, across 

tissues [14,15] or disease states [16,17]. There are two main kinds of differential analysis, differential 

variability [18] and differential mean, with the differential mean being the most common [19]. 

Popular R packages for differential mean expression include DESeq2 [20], EdgeR [21], and limma 

[22]. DE analysis is typically done at the gene level, collapsing all counts from a sequencing library 

that map to a single gene unit even though many genes undergo alternative splicing (AS) to produce 

several different mRNA molecules or isoforms. Alternatively, DE can also be examined at the isoform 

level by comparing reads mapped to each specific transcript as independent entities with the 

aforementioned [20–22] or other DE packages. Some caveats of DE are that this analysis alone may 

miss biological complexity and information [23], that DE genes are often not causal (i.e., are disease-

induced [24]), or that the function of causal genes changes but mRNA expression levels remain 

unchanged [25], and that interpretation must also account for biases associated with the expression 

level or abundance of reads for a particular gene [25]. These caveats are also important considerations 

when performing DE analysis in scRNA-Seq as well [26].  

An additional consideration for analyzing transcriptomic profiles is the need to quantify the 

complexity of biological systems because nothing in biology acts in isolation. To illustrate, a 

perturbed gene will likely have perturbed interactions with other genes and proteins in that 

biological system, which in turn may also contribute to phenotypic differences. There are different 

ways to assess these coordinated patterns of gene expression, such as grouping genes together by 

pathway or function in pathway analyses (e.g., KEGG [27] and GO [28]) to determine which 

pathways are up- or down-regulated between conditions. While this analytical approach considers 

genes in aggregate by function and interactions, it does not include all of their known or predicted 

interactions and genes can be part of multiple pathways, which confounds the analysis. Representing 

gene expression profiles as biological networks presents an alternative or complementary approach 

to differential gene expression analysis, and such networks have been shown to be dysregulated in 

disease [29]. These network biology approaches allow researchers to incorporate additional 

information to combine multiple information types and improve in silico-predicted interactions 

within a condition [30].  

However, the above approaches fail to describe how expression patterns change between 

conditions. Transcriptome diversity quantifies gene expression changes at 1) the gene level: the total 

expression of all genes within a sample or a gene across samples in a population, and 2) the isoform 

level: the isoform-specific expression of a given gene (Figure 1). For example, such approaches have 

identified unique disease-related genes across 16 human disease data sets compared to differential 

expression alone  [23]. Here we review the causes and measurement of transcriptome diversity 

across samples, genes, and isoforms in protein-coding genes. While diversity also occurs in non-

coding transcripts, that expression does not lie within the scope of this review. Previous literature 

has primarily focused either on diversity at the gene level [31] or the isoform level [32]. Here, we 

review both kinds of diversity found in transcriptomes and delineate some boundaries for how to 

describe and quantify this diversity. Therefore, we first overview modulators and quantifications of 

transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in 

driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview 

computational resources for calculating gene-level and isoform-level diversity for high-throughput 

sequencing data. Finally, we discuss future applications of transcriptome diversity. 
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Figure 1. Types of transcriptome diversity from gene expression profiles. Gene-level transcriptome 

diversity can be measured across samples in a population or as the diversity of expression across 

genes within a condition. Isoform-level transcriptome diversity can be measured as the number of 

isoforms or the distribution of isoform expression. 

I. Gene-level Diversity in Gene Expression Profiles 

A. Biological Processes that Lead to Gene-level Diversity 

As gene expression analyses have become a critical tool for furthering phenotypic, mechanistic, 

and evolutionary interpretation, it is vital to understand the forces guiding gene expression 

heterogeneity [33]. Like other biological processes, inherent biological noise in gene expression has 

been observed ubiquitously across species [34]. This stochasticity is driven by many processes within 

the cell, including transcription/translation initiation and mRNA/protein degradation [34]. In 

extreme cases, this stochastic gene expression noise has been shown to reduce fitness in yeast cells 

[35]. However, previous studies have noted that genetic and environmental factors are the two main 

drivers of biological heterogeneity in gene expression [36]. However, additional intrinsic factors like 

cell cycle [37], circadian rhythm [38], and aging [39,40] (which are also influenced by genetic and 

environmental factors) also contribute to gene expression heterogeneity.  

Promoters, enhancers, and transcription factors are key genetic features contributing to gene 

expression heterogeneity observed across species, tissues, and cell types [41,42]. The heavily studied 

RNA polymerase II core promoter directly regulates gene expression [43,44], and natural variations 

in promoter regions are linked directly to both gene expression and phenotype heterogeneity [45]. By 

regulating transcription levels distally, enhancers also influence gene expression heterogeneity 

within specific cell types, tissues, and even species [46,47]. Similar to promoters, alteration in an 

enhancer region can lead to phenotypic changes by impacting gene expression [48]. Transcription 

factors are essential regulatory proteins that drive gene expression by interacting with DNA 

sequences like promoters and enhancers to control transcriptional processes [49,50]. Studies like the 

Encyclopedia of DNA Elements (ENCODE) project, which integrated over 450 experiments of 119 

transcription factors, have demonstrated that transcription factors have dynamic regulatory 

networks that lead to measurable heterogeneity in homeostatic gene expression [51].  

Additionally, epigenetic processes including DNA methylation, histone modifications, and 

other environmental or stress responses, can also drive gene expression heterogeneity. DNA 

methylation, notably mammalian m5C (methyl groups at the 5’ cytosine of a C-G dinucleotide) [52], 

regulates gene expression in multiple ways [53], including through transcription factor binding, the 

functionality of enhancers, insulator elements, and promoters, and by altering chromatin 

conformation [54]. Various studies have noted correlations between gene expression and DNA 
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methylation, further supporting its role as a possible driver for gene expression heterogeneity. Post-

translational histone modifications (e.g., acetylation, methylation, phosphorylation, or 

ubiquitination) are also known to be correlated with gene expression [55–57] and can even be used 

to predict gene expression [56]. Environmental and stress-related effects, like hypoxia, can also 

impact the heterogeneity of gene expression. Many organismal studies have observed the impact of 

stress on producing a biological response and subsequent regulation of various genes to alleviate 

environmental damages (e.g., in oxidative stress) [58–60]. 

B. Methods for Quantifying Gene-level Transcriptome Diversity 

Researchers have applied different approaches to empirically calculate gene expression 

heterogeneity for both bulk and single-cell/nuclei transcriptome profiles, including coefficient of 

variation (CV) [23], variance [61], and others [62]. While the gene expression terms variation and 

diversity both describe changes in gene expression across samples, variation/variability are more 

frequently associated with measures of dispersion (e.g., CV, variance), and diversity is more 

commonly associated with these probability-based measures, particularly Shannon or information 

entropy (Figure 2A). In fact, the application of CV and variance to gene expression profiling analysis 

is sometimes known as expression variance (EV) [62]. Originally described by Alemu et al., EV 

showed tissue-specific variation across gene expression profiles [63] and was later used to show 

expression variation associated with aging and methylation [64]. 

 

Figure 2. Shannon entropy can be used to quantify transcriptome diversity. 2A) A toy example 

showing the principle of Shannon entropy when describing gene-level diversity. When there is a 

uniform distribution of gene expression values, the Shannon entropy is higher than when gene 

expression is concentrated on a smaller number of genes. 2B) A toy example of the principle of 

Shannon entropy when used to describe isoform-level diversity. Even when there are varying 

numbers of isoforms, the entropy or diversity is at its maximum when the distribution is most 

uniform or flat. 

Standard deviation describes the dispersion of the data in relation to its mean. Building on 

standard deviation, CV considers the standard deviation of the gene expression sample divided by 

its mean and thus is a standardized measure [23]. Therefore CV can be used to compare across 

conditions or datasets to identify disease-associated genes that are not identified by DE alone [23]. 

Additionally, other studies have applied both technical CV and biological CV (BCV) to describe RNA-

Seq gene expression variation associated with technical or biological variables, respectively, as well 

as [21] normalized CV to examine gene expression variation, for example, across neurological 
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diseases [61]. Recent studies have also used CV to understand how gene expression variability among 

therapeutic targets determines drug effectiveness and safety, thus improving therapeutic 

development methodologies [65]. Another empirical measurement of gene expression is variance. In 

the Mar et al. study, variance measures the significance of the mean difference between groups by 

using a t-test or ANOVA [61], but the term has also been used synonymously with gene expression 

variability [61,64,66,67]. For example, Bachtiary et al. applied variance (here defined as standard 

deviation squared) to measure the variation of expression between and within cervical cancer patient 

samples [68]. Gene expression variance has also been studied in human populations, where 

functional connections between low-variance genes and fundamental cell processes and high-

variance genes with immune processes suggest that variance is biologically meaningful and not 

merely reflective of stochastic noise [69]. 

Though CV and variance are some of the most common methods for empirically calculating 

variation, there are a few other ways of describing variation across gene expression. For example, 

differential variability analysis can also be performed with Bartlett's, Levene's, median absolute 

deviation (MAD), or Fligner–Killeen tests, yet the R package MDSeq based on reparameterization of 

the real-valued negative binomial, which was shown to outperform these methods [19]. On the other 

hand, the range of gene expression observed is one of the simplest measures of variability. Though 

generally not used in its simplest form (i.e., maximum value minus minimum value), a modified 

version of range has been used. For example, dynamic range, the log10 ratio between the maximum 

and minimum normalized gene expression counts, has been used to compare the expression of 

orthologous genes between humans and mice to determine genes constrained throughout early 

vertebrate evolution [70] as well as to describe gene expression variation patterns across organs and 

tissues [71]. Additionally, researchers have developed a metric based on a ratio of the percentage of 

reads covering a proportion of the genome to quantify gene expression variation [72]. When a large 

percentage of reads covers a smaller number of total genes in the genome, it indicates lower 

variability in that condition than when the percentage of reads spans over a larger set of genes in 

another condition. However, these metrics are biased towards longer genes if gene size is not 

properly accounted for during analysis. 

In 1948, Shannon defined entropy as the probability of uncertainty of an outcome or the amount 

of choice in the outcome based on how much information [73]. The basis of Information Theory, 

Shannon entropy, is the log of the event probability so that an event with full certainty or a probability 

of one would have no surprise. Over the years, Shannon entropy has been applied to numerous 

biological processes, including gene expression [74]. When using Shannon entropy in this context, 

gene expression measurements for a specific gene are the information used to measure uncertainty, 

or as we describe it, diversity [75] (Figure 2). Previous studies have employed Shannon entropy to 

study diversity in drug targets [76], tissue-specificity [77], species-specificity [75], and even 

intraspecies genomic DNA information [78]. When used to compare gene expression in RNA-Seq 

data, differential Shannon entropy, compared to differential CV and DE, identified genes overlapping 

with CV-identified genes but also included unique disease-associated genes [23], underlining that 

Shannon entropy can identify biological signals that CV and DE do not. Shannon entropy has also 

been used in combination with WGCNA analyses by calculating entropy from the betweenness of 

networks [79]. Additionally, studies using adaptations of Shannon entropy, such as Tsallis entropy 

(also known as HCDT entropy), have divided gene-level diversity into two categories: alpha and beta 

diversity [80], where alpha diversity represents the diversity of a single profile, and beta diversity 

represents diversity between samples within a group. This particular example of Tsallis entropy 

allows a researcher to able to manipulate a parameter (q) that can adjust the weight of highly-

expressed genes [80], therefore giving a higher degree of control and leaving room for interpreting 

more biologically- relevant information at different levels of q. The introduction of alpha and beta 

diversity nomenclature is an eloquent way to describe the diversity shown in Figure 1A, with alpha 

diversity representing diversity across genes or transcripts within a sample and beta diversity being 

the two-dimensional diversity across all samples in a group or population, though this nomenclature 

is not yet widely used. Example analytical packages that apply entropy and variation in the context 
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of gene expression diversity are described in Table 1, although many of these analyses are performed 

without specialized software. 

Table 1. Software Packages that Detect Gene-level Transcriptome Diversity. This table includes the 

name of the software package, the year published, gene expression data it can be used with, and the 

transcriptome diversity metric. Entries are sorted from most to least recent. Citation counts are from 

Pubmed, March, 2023. 

Name of Package Year 
Bulk or Single 

Cell 

Gene-level Transcriptome 

Diversity Metrics 

Citation 

Count 
Language 

memento [81] 2022 Single-cell Variation 0 Python 

BioQC [82] 2017 Bulk Shannon Entropy 26 R 

MDSeq [19] 2017 Bulk Variation 15 R 

EntropyExplorer [83] 2015 Bulk 
Differential Shannon 

Entropy 
9 R 

Altogether, the aforementioned gene expression studies demonstrate not only the importance of 

further understanding the drivers of this gene expression diversity but also the importance of 

developing new and comprehensive ways to quantify this diversity through various methodologies. 

Quantifying gene-level transcriptome diversity is a salient part of ascertaining how biological 

processes lead to phenotypic manifestations, including in a disease context. Therefore, it is imperative 

to examine other sources of diversity, such as heterogeneity in mRNA transcripts due to AS. 

II. Isoform-level Diversity in Gene Expression Profiles 

A. Biological Processes that Lead to Isoform-level Diversity 

Before the start of the human genome project, the human genome was expected to have 

approximately 100,000 genes [84] based on the approximated number of protein products. However, 

after completing the project, the human genome actually had between 20,000 and 25,000 genes, much 

less than projected [85]. While humans may not have more genes than all other organisms, their 

splicing patterns are more specific and complex [86]. Compared to other eukaryotic organisms, 

humans have the highest relative splicing abundance, and this abundance steadily decreases for 

species with a larger evolutionary divergence from humans [86]. Because 94% of human genes 

undergo AS [87], most genes have a variety of transcript isoforms that, in many cases, result in 

proteins with unique functions, therefore increasing protein diversity. There are between six and 

eight types of AS events depending on the classification used, and their abundance varies by species, 

with exon skipping being the most common in animals and intron retention more common in plants 

and fungi [88]. In addition to RNA splicing, differences in transcript usage in organisms can also be 

driven by alternative promoter usage (e.g., producing different transcripts of the brain-derived 

neurotrophic factor (BDNF) gene [89]) or 3′ end usage [90]. In this section, we will focus on the 

heterogeneity driven by RNA splicing.  

RNA splicing occurs as part of the process to produce mature mRNA from pre-RNA and was 

first described in 1977 [91]. RNA splicing happens in virtually all multi-exonic genes through either 

constitutive splicing (splicing out an intron that is always excluded from a final transcript) or AS 

(variably splicing out alternative exons and/or introns resulting in diverse mRNA sequences). Exons 

that are always incorporated in the final or mature transcript are described as constitutive exons, 

while alternatively-spliced exons are those that vary in usage from transcript to transcript [92]. This 

AS process is performed by the spliceosome, which contains approximately 170 proteins  [93], 

including many RNA-protein complexes called small nuclear ribonucleoproteins (snRNPs), and 
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recognizes splice sites to facilitate the transesterification reactions that lead to intron removal (further 

reviewed in  [94,95], [32]). There is currently a debate on how much of this splicing is functional or 

controlled because not all alternative transcripts are protein-coding, AS changes can be driven 

stochastically [96], and AS transcripts can be sensitive to nonsense-mediated decay. While not all AS 

transcripts are functional, ribosomal profiling experiments indicate that over 75% of medium-to 

highly expressed AS transcripts are bound to ribosomes and translated into proteins [97] so it is still 

highly likely that many of these are made into proteins, as further underscoring AS is biologically 

relevant.  

A key property of AS is its high specialization to a given biological condition. For example, AS 

is species-specific [86], and as organisms gain more evolutionarily complexity, their AS patterns 

become more similar to humans. AS is also sex-specific and can lead to sex-specific traits. For 

example, in fruit flies (Drosophila), the sex splicing gene doublesex (dsx) controls sexual differentiation 

[98] and is regulated by AS. In addition to more extensive sex-specific splicing in fruit flies [99–101], 

sex-specific splicing has also been shown in fish [102], birds [103], non-human primates [104], and 

humans [105,106]. Moreover, AS is critical in developmental changes, particularly as coordinated AS 

changes help define tissue identity [32]. In fact, AS is tissue-specific [107], driven at least in part by 

tissue-specific splicing factors [108]. These tissue-specific splicing factors govern complex splicing 

regulatory networks [109] that can influence protein interaction networks and thereby increase the 

functional diversity of proteins [110]. Further, AS is also highly cell-type specific [111], and the recent 

increase in single-cell studies has highlighted an increasing number of cases of AS that are cell-type 

and even cell-subtype specific [112]. This has been particularly well-documented in the brain during 

neuronal differentiation [113] (e.g., the cerebral cortex [111]) and in immune cells [114]. 

Changes in AS are also associated with many diseases [115,116]. Currently, an estimated 15% of 

human disease-causing point mutations result in an AS defect [117], and many diseases and disorders 

are associated with disrupted splicing patterns, like spinal muscular atrophy, cancer, and autism 

spectrum disorder (ASD) [118,119]. Because of all of these known changes in AS across numerous 

biological conditions, some pathogenic and others benign, it is critical for genomic researchers to 

quantify changes in AS using RNA-Seq. Numerous methodological approaches with software 

implementations for analyzing and quantifying isoform-level heterogeneity (including specialized 

approaches for single-cell or long-read data) are discussed in further detail in the next section. 

B. Methods for Quantifying Isoform-level Diversity 

Measuring alternatively-spliced transcript expression diversity requires first identifying and 

then quantifying transcripts from RNA-Seq data. One way to quantify alternatively spliced 

transcripts from gene expression data relies on identifying reads that cover splice junctions, the 

genomic loci where two exons have been spliced together [120]. This process varies depending on the 

transcript quantification tool, as some tools only count if an exon is included at all (i.e., if any reads 

map to that exon), while others search for junctions to determine if an exon is spliced in, because 

reads mapping to a free exon (i.e., not including a junction) cannot resolve where in the transcript 

that exon has been spliced. A major limitation is that there must be sufficient read depth to detect all 

splice junctions from short-read data [121]. In some cases, junctions are specific to unique transcripts, 

so a read mapping to a unique junction could indicate that that transcript is being expressed without 

having any continuous reads capturing the entire transcript. One of these splice-junction-based 

methods is Splice Expression Variation Analysis (SEVA) [122], which compares the variability of the 

multivariate distribution of splice junction expression profiles between conditions. On the other 

hand, because short reads with few junctions usually do not match a unique transcript, probabilistic 

methods can be used to estimate exon inclusion [123] (also known as percent spliced in, PSI) [124], 

greatly reducing the precision of transcript quantification. 

There are different terminologies for the number of concepts and analyses that fall under the 

umbrella of isoform-level diversity. Differential transcript (or isoform) expression (DTE) is a data 

analysis method similar to differential gene expression as it identifies up- or down-expression of 

specific transcripts in one condition versus another. However, differential transcript usage (DTU), 
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sometimes referred to as differential isoform usage, isoform switching, or differential splicing [125], 

can determine differential proportions of transcript expression within a gene across conditions [126]. 

Soneson et al. describe three methods for DTU: assembly-based, type of AS-based, and differential 

exon usage [126]. Due to limitations with short reads not covering entire transcripts that overlap, 

differential exon usage (DEU) can also be used in a similar way to measure shifts in functional unit 

expression (i.e., bins) across conditions, usually comparing PSI values [126]. Table 2 includes analysis 

packages comparing transcript expression across conditions and used for DTU, DEU (PSI), or other 

analyses.  

However, short-read sequencing technology often fails to adequately resolve transcripts  

because the typical mRNA is over 1kb, whereas most short-read RNA-Seq data is only 100-200 bases 

in length [3], i.e., only long enough to cover an exon or less. The advent of long-read technologies has 

created an opportunity to capture more detailed gene expression profiles, especially for resolving 

transcript expression, but also for accurate sequencing and subsequent mapping of repetitive, hard-

to-map, and/or duplicated gene regions [127]. Additionally, as lrRNA-Seq approaches can sequence 

full-length novel transcript isoforms, they are continuing to identify novel transcripts, including 

those that are lowly expressed [128]. While most of the short-read tools for transcript quantification 

can be used on long-read data, there are transcript quantification tools that are specialized for long-

read sequencing data, like FLAIR [129] and BAMBU [130], which include steps for correcting 

misalignments that can result from less accurate reads. Applying variance and entropy-based 

diversity quantification approaches in combination with these lrRNA-Seq technologies, therefore 

captures transcriptomic changes across biological conditions and phenotypes. 

Additionally, isoform-level diversity can be described by enumerating the total number of 

isoforms [131,132], herein called isoform number diversity. In contrast to counting the number of 

transcripts, the distribution of isoform expression for a gene, such as in DTU, can also be considered 

isoform-level diversity or isoform usage. Similarly to the gene expression level, variance and Shannon 

entropy can be used to describe this isoform-level diversity (Figure 2) [133]. One way to measure 

isoform-level diversity is the Fano factor, or the squared variance over the mean [134], which 

describes the distribution of alternatively spliced transcripts while adjusting for the mean expression 

of that gene. Another method is by Shannon entropy, where a gene with many isoforms could be less 

diverse than a gene with few isoforms if the latter has a more even distribution of expression and 

perhaps equal usage of those gene products. Figure 2B provides an example of isoform-level diversity 

quantified with Shannon entropy.  

The first instance of using Shannon entropy to describe diversity in three types of alternative 

transcription (AS, polyadenylation, and transcription initiation) using targeted microarray 

expression data was by Ritchie et al. in 2008 [133]. Ritchie et al.'s rationale was that Shannon entropy 

could capture aberrant transcription seen in cancer and was therefore used to compare patient 

cancerous tissue transcriptomic profiles with non-cancerous tissue transcriptomic profiles. The 

authors found that out of the three types of transcription studied, only AS had increased diversity in 

cancer tissues. They concluded that these changes in entropy are unlikely to reflect changes in gene 

function because they found it unlikely that, in a cancer context, shifts in isoform expression are 

functional or controlled. This general approach to measuring entropy has also been used to compare 

transcript diversity across conditions in the brain [127] and epithelial cells [135].  

Several software approaches have been developed for comparing isoform-level diversity with 

Shannon entropy, including Cuffdiff (from Cufflinks) [136–138], Whippet [139], and SplicingFactory 

[140]. Cuffdiff uses Jensen-Shannon divergence, which, like Shannon entropy, relies on probability 

to compare the distribution of transcript expression across conditions [138]. Whippet [139] applies 

Shannon entropy to define the entropy of individual AS events instead of at the gene level, meaning 

that each alternatively spliced exon is given a value based on PSI. SplicingFactory [140] is unique 

because it also includes multiple other methods for assaying diversity across isoforms of the same 

gene, like the Gini Index (originally developed for describing wealth inequalities) and the Simpson 

Index (originally developed to measure ecological diversity). The aforementioned Tsallis entropy 

could also potentially be used in an isoform context to describe biological heterogeneity since it has 
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been shown to provide more information than Shannon entropy or Simpson Index alone though it 

has not yet been applied to study alternatively-spliced isoform distributions. While some approaches 

have proved more popular than others, there is no standout or one best method to examine variability 

and diversity across isoforms as of yet. This means that researchers still need to think deeply about 

what analyses they do want to perform based on their questions of interest. 

Table 2. Software packages that detect isoform-level diversity and variability in exon and isoform 

usage. This table includes the name of the software package, the year published, the type of data it 

can be used with, and the analysis type. Note: As terminology used by authors to describe a particular 

method varies, the analysis type listed in the table is standardized according to the defined 

terminology in this review. Entries are sorted from most to least recent. DEU - differential exon usage, 

PSI - percent spliced in, DTU - differential transcript usage. Citation counts are from Pubmed, March, 

2023. 

Package Name Year 
Bulk or Single 

Cell 

Analysis Type: 

Exon/Transcript or 

Other 

Citation 

count 
Language 

Insplico [141] 2023 Both 
Other - Splicing 

Order 
0 Perl 

acorde [142] 2022 Single-cell DTU and coDTU 2 R 

SpliZ [143] 2022 Single-cell DEU (PSI) 4 Python 

DTUrtle [144] 2021 Both DTU 3 R 

NanoCount [145] 2021 Bulk DTU 11 R 

SplicingFactory [140] 2021 Bulk Other - Diversity 0 R 

scisorseqr [146] 2021 Single-cell DTU (modified) 39 R 

satuRn [147] 2021 Both DTU 0 R 

ASCOT [112] 2020 Single-cell DEU (PSI) 24 Python 

BANDITS [148] 2020 Bulk DTU 10 R 

Sierra [149] 2020 Single-cell DTU 28 R 

RATs [150] 2019 Bulk DTU 10 R 

SUPPA2 [151] 2018 Bulk DEU (PSI) 193 Python 

LeafCutter [152] 2018 Bulk 
Other - Intron 

Excision 
246 R/Python 

Whippet [139] 2018 Bulk DTU 61 Julia 

GSReg/SEVA [122] 2018 Bulk Other - Variability 6 R 

IsoformSwitchAnalyzeR [153] 2017 Bulk DTU 104 R 

Census/Monocle [154] 2017 Single-cell DEU (PSI) 610 R 

BRIE [155] 2017 Single-cell DEU (PSI) 50 Python 

DRIM-Seq [156] 2016 Bulk DTU 49 R 

JunctionSeq [157] 2016 Bulk DEU (PSI) 81 R 

MAJIQ [158] 2016 Bulk DEU (PSI) 188 Python/C++ 

SGSeq [159] 2016 Bulk DEU (PSI) 63 R 

SingleSplice [160] 2016 Single-cell DTU 36 R/Perl 

Limma (diffSplice) [22] 2015 Bulk DEU (PSI) 15473 R 

VAST-TOOLS [161] 2014 Bulk DTU 339 R/Perl 

rMATS [162] 2014 Bulk DEU (PSI) 982 Python/C++ 

CuffDiff2 [163] 2013 Bulk DEU (PSI) 2341 C++ 
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SplicingCompass [164] 2013 Bulk DTU 39 R 

DEXSeq [165] 2012 Bulk DEU (PSI) 874 R 

SpliceTrap [123] 2011 Bulk DEU (PSI) 59 C++/Perl 

MISO [166] 2010 Bulk DEU (PSI) 876 Python/C 

To summarize, AS contributes to the gene expression diversity observed by increasing the 

number of products that can be produced by a single gene. Quantifying the isoform-level diversity 

of a given gene will identify not only which isoforms are highly expressed but how isoform 

expression shifts between conditions. With the increasing popularity of more accurate sequencing 

and long-read transcriptomics, more attention should be spent on DTU and looking for the functional 

relevance of these differentially used or diverse transcripts. 

Conclusion 

The types of data most compatible with the analysis discussed in this review are primarily high-

throughput RNA-Seq, long-read RNA-Seq, and scRNA-Seq. However, not all measured gene 

expression profile heterogeneity is due to the condition being studied but may be due to technical 

(i.e., sample processing and sequencing preparation, such as sequencing depth) or biological (i.e., 

gene differing RNA synthesis and degradation rates) artifacts. Sequencing depth is particularly 

important because sequencing depth directly impacts the ability to confidently detect more lowly 

expressed genes or isoforms. At the isoform level, if a researcher is interested in all the isoforms of a 

lowly-expressed gene, they would want to sequence an experiment at a higher depth to ensure they 

are capturing as many different isoforms as possible. Likewise, sequencing length impacts confidence 

in full-length isoform detection, and full-length scRNA-Seq protocols allow for the detection of splice 

variants. Therefore, data normalization is critical. For example, normalization approaches based on 

sequencing depth (such as TPM) are widely used for comparing across groups in bulk expression 

data, because without normalization there may be scenarios where a gene is expressed in equal 

proportions, but the condition with more reads overall may appear to have higher gene expression 

than the other condition. While normalization is a critical step, there are many nuances to comparing 

sequencing results across conditions and samples because there are many factors that can influence 

TPM values such as protocol, tissue type, RNA strandedness, and RNA compartmentalization  [167]. 

For more information on these limitations, we refer readers to the following references [167,168].  

Additional considerations are needed for sc/snRNA-Seq data because of its well-documented 

data sparsity [169], though the degree of sparsity varies by platform. Compared to bulk RNA-Seq 

approaches, TPM is typically not used for most scRNA-Seq libraries due to scRNA-Seq specific 

variation (e.g., technical dropouts), and methods such as counts per million (CPM), high-count 

filtering CPM, and others (e.g., scran [170]) are alternatively used, for more information please refer 

to  [171]. When measuring diversity, taking into account different cell type population proportions 

is key because larger cell clusters may appear to have greater transcriptomic diversity based on more 

sequencing reads. Also, when measuring variability across sample populations technical batch effects 

should always be examined and potentially corrected or minimized, to focus on biologically relevant 

signals for the study. When designing scRNA-Seq data generation experiments, it is ideal to plan for 

the kinds of analyses being performed beforehand and ensure the data generated is powered for 

specific hypotheses. One example of this is enriching for rare cell types to ensure there are enough of 

those cells for analyses like differential expression. Further, due to data sparsity in scRNA-Seq data, 

isoform-resolution gene expression requires increased read depth to capture isoforms of interest. 

Moreover, most scRNA-Seq protocols exhibit preparation-specific read bias that should be accounted 

for when integrating across protocols because this bias can make it difficult to unambiguously align 

reads and distinguish between isoforms [172]. 

In conclusion, measuring transcriptome diversity when analyzing gene expression profiles is an 

integral analysis step to capturing biological information in tandem with the differential expression 

of individual genes and this literature review underscores the primary axes of heterogeneity that exist 

and can be measured in transcriptomic data. Having terminology clarified to better navigate this 
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heterogeneity will enable researchers to simultaneously explore transcriptome diversity at the gene 

and isoform level, and to better interpret and articulate their findings. Gene expression is a critical 

facet of complex living systems, and research can extract additional information with current 

computational methods by investigating transcriptome diversity. Critically, omitting gene-level or 

isoform-level diversity from gene expression analysis could miss biological information since 

phenotypic diversity is partially driven by gene expression fluctuations and AS [88]. Combining both 

applications of diversity to better understand high-dimensional gene expression data can provide 

insight into the transcriptional differences between contexts and reveal gene expression differences 

that traditional DE analyses cannot like novel therapeutic targets [23]. Therefore, we recommend 

examining and comparing variability, diversity, and differential expression at the gene and isoform 

level, when possible, to capture more of this complexity. 

Because of the massive amounts of transcriptomic data being generated, there is an 

unprecedented opportunity for discovery. Increased sequencing depth, longer reads, and more 

cells/samples will further facilitate transcriptomic diversity studies. Here, we provided an overview 

of the drivers of gene expression variability and diversity and described how it has been quantified 

across genes and at the isoform level. Additionally, we summarize resources for calculating diversity 

and variability (Tables 1 and 2). Applying additional variation and diversity measurements in 

transcriptomic analysis has the potential to capture additional gene expression profile changes 

between conditions and, in the future, could be adapted to additional gene expression profile 

analyses, such as in spatial transcriptomics, network biology, personalized medicine, and drug 

repositioning. Incorporation of these transcriptomic data with other data modalities (such as 

epigenetics, metabolomics, or proteomics) may further increase the ability to make functional 

inferences. Clinically, these multimodal meta-analyses may have the potential to also elucidate new 

therapeutic targets for hard-to-treat disorders, further underscoring the importance of transcriptome 

diversity. 
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