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Abstract: Pyrolysis has been applied in the human economy for many years, and it has become a significant 
alternative to the production of chemical compounds, including biofuels. The article focuses mostly on recent 
achievements in the technical and processing aspects of pyrolysis. This review provides an overview of the 
recent advanced pyrolysis technology used in gas, bio-oil, and biochar production. The key parameters to 
maximize the production of specific chemical compounds were discussed and considered during the 
construction of the reactors. The emphasis is put on optimizing the process parameters, technical requirements, 
and renewable energy use in the process and conception to improve the efficiency of product production.  The 
application of pyrolysis gas, oil, and biochar as valuable chemical compounds are related to the intensifying 
effects of climate change, biofuel production, and waste management in accordance with the principles of 
sustainable development. 

Keywords: pyrolysis; pyrolysis reactors; bio-waste; biofuels; biochar; pyrolytic gas 
 

1. Introduction 

In the 1970s, attention was drawn to the increasing need for sustainable development, so that is 
an appropriate production and consumption system that would consider the challenges of climate 
change, efficient use of resources, and reduction of environmental impact. The basis for such an in-
depth approach was the Club of Rome Report, which introduced the concept of “limits to growth” 
and according to which the world was threatened with an ecological catastrophe and depletion of 
key natural resources. In 1972, the United Nations Conference was held in Stockholm,  and it was 
the place where the term “sustainable development” was used. The bioeconomy has been defined as 
an economy that is based on natural renewable resources dedicated to the production of food, energy,  
goods, and services [1,2]. 

From the point of view of biomass used for energy purposes, there are three secondary energy 
carriers important – electricity, heat, and transport fuel (in its liquid and gas forms). The first two 
carriers conventionally refer to bioenergy, and the third to biofuel. The application of different 
technologies allows biomass to be converted to each of these carriers, and at the same time, each of 
the carriers can be used interchangeably. For example, transport fuel can be used to supply an 
electricity generator or boiler, and electricity can be used to supply vehicles. In order to distinguish 
the sectoral use of biofuels, it is assumed that liquid biofuels are fuels used in transport, and 
bioliquids, as well as solid and gaseous biofuels – are fuels used to generate electricity and heat [1,2]. 

The production process of 1st generation biofuels has been questioned, mainly as a result of the 
conflict with food production and adverse environmental effects related to an indirect land-use 
change. The above reservations do not apply to 2nd generation of biofuels produced from 
lignocellulosic raw materials that do not compete with food production and have a potentially 
marginal degree of impact on land-use changes [3].  

Physicochemical transformations and conversions of fuels are processes targeted at the 
transformation of the chemical energy from a fuel into another type of energy (direct transformation), 
or the transformation of fuel from one form into another, which usually allows easier further 
handling (indirect transformation). An example the direct conversion is fuel combustion. In turn, the 
processes of indirect fuel conversion can be divided into:  
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- pyrolytic processes in which the main factor of the changes taking place is the heat supplied to 
the processed fuel [4,5],  

- oxidative processes where the main factor causing the fuel conversion is both free and 
chemically bound oxygen (e.g. in the form of CO2 or H2O),  

- hydrogeneration processes in which hydrogen is the main factor causing fuel conversion [6]. 
The process of waste biomass pyrolysis allows for obtaining of many chemical compounds (2nd 

generation biofuels) [7]. The three most common fractions involve gaseous [8], liquid (often called 
bio-oil) [9], and solid (biochar) [10]. Optimization of the pyrolysis process allows obtaining the 
desired products that are applied in the chemical industry, energy, and transport [11,12]. 

The war in Ukraine caused major perturbations in the fuel market, leading to a large price 
increase. Biofuels obtained in the pyrolysis process can partially fill the gaps in the fuel market. A 
country developing pyrolysis technology will be energy independent to a large extent. 

The aim of the review was to present the latest research on the process of waste biomass 
pyrolysis to fuels production. The paper describes the mechanism of the pyrolysis process, 
composition, and properties of the obtained fractions: pyrolysis gas, bio-oil, and biochar. 
Additionally, the technical aspects of the pyrolysis process were mentioned, with particular attention 
to the construction of the reactors. 

The authors tried to make most of the cited articles come from the last 2-3 years. As a result, this 
article contains the latest information on the development of pyrolysis of waste biomass in the world. 
In addition to the ”typical overview”, a chapter was added on the latest research, often only 
preliminary perspectives, as well as on the possibilities of further development of this technology. 

2. Pyrolysis processing and technology of biomass 

The process of biomass pyrolysis consists of the following stages: receiving and storing the raw 
material, pre-treating the raw material (e.g. drying, grinding), the proper pyrolysis in a suitable 
reactor, separating the solid residues (carbonizate and ash), cooling and condensing the vapors, and 
collecting bio-oil. Prior to condensation, the pyrolytic vapors may be catalytically reformed to achieve 
selectivity for the preferred product. Part of the gaseous product may be burned to obtain heat for 
the raw material pretreatment (e.g. drying) [13]. 

It is virtually impossible to clearly define the pyrolysis mechanism for all types of waste [14,15]. 
Waste is a group of materials with extending diversity in terms of types of chemical substances, 
therefore, the mechanism of pyrolysis of various wastes has become the subject of much research and 
scientific works [16,17]. The easiest way to comprehend the pyrolysis mechanism can be presented 
in the wood waste example. The mechanism of wood pyrolysis at low heating rates – i.e. in conditions 
commonly used in biochar production systems, includes the following stages: 

1. when the temperature of the wood rises from 145 to 165 °C, water is released which is not 

chemically bound to the organic matter of the wood (absorbed water), 

2. with a further increase in temperature from 245 to 265 °C, water chemically bound in the cellulose 

structure and the release of CO2, CO, and small amounts of condensing acetic acid and methanol 

vapors, also begin to emit small amounts of wood tar,  

3. above 265 to 275 °C, the process becomes exothermic, with the strong release of methanol, acetic 

acid, acetone, lighter hydrocarbons, wood tar, and small amounts of hydrogen; the amount of 

CO2 and CO released decreases,  
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4.  at temperatures above 400 °C, the remaining organic matter is aromatized, resulting in the 

formation of quasi-graphite layers; the transformation of wood into biochar (char) is practically 

completed [13,18]. 

The pyrolysis process covers mainly waste materials from food processing, agriculture, and 
forestry. The source of raw materials consists, therefore, the wood biomass (chips, branches, bark, 
shavings, and woody plant stems), agrarian biomass (luerna, giant miscanthus, millet, cereal straw, 
fruit residues, seed shells, bagasse, food waste), water biomass – algae, animal biomass (e.g. poultry 
processing waste), sewage sludge, waste from the paper industry  [19,20]. 

It is believed that in the process of pyrolysis of wood it is possible to obtain the same products 
as the ones that would be formed during the separate thermal decomposition of its three main 
components – cellulose, hemicelluloses, and lignin (Figure 1) [21]. Their decomposition takes place 
at different temperature levels: hemicellulose –  200÷260 °C, cellulose – 240÷350 °C, lignin 280÷500 
°C. The course of the decomposition also depends on the reaction atmosphere, pressure, and 
composition of the input material. As a rule, increasing the pressure and low heating rates result in 
an increase in the efficiency of the char (in this case, biochar) [22,23]. 

 

Figure 1. Decomposition mechanism of (A) cellulose; (B) hemicellulose; and (C) lignin (own 
elaboration from [22,23]). 

Lignin is a complex natural polymer in which individual units contain oxygen functional 
groups: methoxy, hydroxyl, carboxyl, and carbonyl. The high content of methoxy groups in lignin 
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may hinder the formation of biochar as the pyrolysis temperature increases. This phenomenon is 
caused by the decomposition of methoxy groups and leads to the formation of low-molecular radicals 
that can stabilize the macrostructure fragments of lignin and, consequently, limit their 
polymerization to biochar. The main product of lignin decomposition in the range from 400 to 800 °C 
are phenols. During the thermal decomposition of methoxy groups, low-molecular-weight products 
may also be formed, e.g. methane and methanol. Additionally, oxygen groups derived from CO2, CO, 
or formaldehyde may remain in the side chains [24,25].  

Ansari et al., reported [26] the most important pyrolysis reactions obtained as a result of the 
controlled process. The mechanisms of pyrolysis reactions, such as cleavage of the glycosidic bond 
of cellulose (by breaking the end and middle chain) were experimentally confirmed, and the reaction 
of dehydration of cellulose (or glucose) derived sugars to levoglucosan and indirect conversion of 
anhydrosugar into furans. The breakdown of hemicellulose into individual chemical compounds 
(formaldehyde, xylose, acetic acid, acetaldehyde, and acetone) and non-condensing gases are 
presented. Then, the thermal breakdown of lignin into syringes and guaiacol as well as non-
condensing gases by decarbonylation, decarboxylation, and demethylation reactions have been 
discussed. It was found that the naturally occurring metals in biomass showed both catalytic and 
anti-catalytic activities in pyrolysis reactions; some catalysts such as Mg2+ and Ca2+ favored the 
formation of volatile products, while others (ie Na+) favored the production of decolorizing carbon. 

The TG-FTIR-MS spectra showed [27] that the concentrations of volatile substances were in the 
sequence CO> CO2> aliphatic C–O–(H) >C–O– (C) in esters> aromas> H2O> phenolic hydroxyl> 
aliphatic hydrocarbons> CO, peaking at around 410-433 °C. The result of in-situ FTIR deconvolution 
indicates that dehydration of the PS hydrogen bond network started below 250 °C and played a key 
role in weakening the bond strength in the degradation of macromolecular structures. It was also 
observed that the formation of aromatic and CO ring groups was favored by intramolecular OH 
dehydration and condensation reactions with the removal of C–Hn groups at 150-250/260 °C, and the 
OH and C–H groups were positively correlated. Moreover, the transformation temperatures of 
various C–O groups suggested that the aliphatic C–OH and C–O–C groups were weaker than other 
C–O groups. At 500 °C, most of the oxygen-containing functional groups in the PS matrix were 
eliminated. 

Table 1 presents data characterizing the individual types of pyrolysis [28,29]. The composition 
of pyrolysis products varies depending on the chemical composition of the biomass and the 
conditions in which the pyrolysis process takes place. Moreover, fast or instant pyrolysis is applied 
in order to maximize the oil or gas process of production. 

Table 1. Characteristics of individual types of pyrolysis (own elaboration). 

Type of pyrolysis Duration Heating speed Temperature [°C] Products Ref. 
Slow charring several days very slow 400 charcoal [28] 

Slow hours/days slow 400 charcoal, gas [28] 
Slow conventional 5-30 min. slow 600 charcoal, oils, gas [30] 

Intermediate 
 

Fast 

10 min. 
 

0,5-5 s 

intermediate 
 

very fast 

300-450 
 

300-1000 

charcoal, 
 

oils, gas 
charcoal, oils, gas 

[31] 
 

    [32] 

Instant liquid < 1 s fast < 650 oils [28] 
Instant gas < 1 s fast < 650 chemicals, gas [28] 

Ultra lightning fast < 0,5 s very fast 1000 chemicals, gas [28] 
Vacuum 2-30 s medium 400 oils [28] 

Hydro-pyrolysis < 10 s medium < 500 oils [28] 
Methane-pyrolysis < 10 s medium >700 chemicals [28] 

The biofuels production in the pyrolysis processes 
The composition and quantity of products obtained from the process of biomass pyrolysis depend on the 

composition of the fuel, its physical and chemical properties, as well as the process temperature and heating 
rate. The low temperature of the pyrolysis process (at a heating rate <50 °C/min) increases the amount of the 
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produced char [33]. Moreover, Zhao et al. [34] found that the optimal value of the heating rate equal to 5 ° C/min 
can be indicated, at which the production of the char is the highest. The reduction of the heating rate (10-200 
°C/s) makes the liquid phase dominant over the products of the pyrolysis process. 

The conventionally used pyrolysis process,  where the temperature increase takes place slowly, has been 
used for thousands of years and its main product was biochar. Normally, in the slow pyrolysis process, the 
biomass is heated to about 500 °C. The residence time of the vapors in the reactor ranges from 5 to 30 minutes. 
The long residence time of the particles in the chamber causes the secondary conversion of the originally formed 
products. The gas-phase components come into reaction with each other and as a result, they form a solid-carbon 
phase and a liquid phase [35]. The rapid pyrolysis process is a high-temperature process in which the biomass 
is heated at high velocity without any air access. The products obtained from this process include gaseous 
products, aerosols, and carbonized residue. Consequently, having obtained the process of cooling and 
condensation of the gas phase and aerosols, a brown liquid is developed, the calorific value of which is half that 
of traditionally obtained diesel fuel. Another feature of the discussed fast pyrolysis refers to careful control of 
the process temperature, which ranges between 450 and  900 °C. The third feature of the fast pyrolysis is the 
short residence time of the vapors appearing in the reactor (less than 2 seconds). 

According to the above, the fast pyrolysis process presents a similar temperature range to the slow 
pyrolysis process but has a higher liquid yield (up to 75%), which contributes to high biofuel production. The 
main reason for this phenomenon is the shorter duration of the process itself. The flash pyrolysis process requires 
high temperatures of up to 900 °C, and the high heating rates of about 1000 ° C/s, as well as the shortest reaction 
times – less than 1 s [36]. 

 The works on the biomass pyrolysis process also discuss the influence of the carrier gas on its efficiency. 
The pyrolysis takes place in an atmosphere of inert gas,  including N2, H2, CO2, CH4, or water vapor. The process 
of biomass pyrolysis in various gases has been investigated by Zhang et al. [37]. Their study revealed that there 
was a close relationship between the yield and composition of individual fractions and the carrier gas used in 
the process. The CO2 atmosphere resulted in a lower yield of solid residue compared to the other gases. In 
addition, a lower proportion of CO2 was noted than when N2 was applied as carrier gas. Additionally, the CO2 
atmosphere resulted in the highest concentration of acetic acid in liquid products.  

According to thermogravimetric analysis, there were no significant differences in the pyrolysis behavior of 
brewer's spent grain under argon, nitrogen, and CO2 with a heating rate of 5 °C/min. The maximum conversion 
of samples reached almost the same temeperature level of 284 °C for each gas. Analyzing oil composition it was 
discovered that the most dominant group of organic compounds were acids with a maximum content of 68% at 
600 °C under an argon atmosphere. The presented analysis showed the correlation between the content of acids 
and the carrier gas as follows: Ar> N2> CO2. At 600 °C and 700 °C, fewer acids could be obtained in the case of 
CO2 relative to inert gases. Additionally, the highest content in the oil was hexadecanoic acid, and it could be a 
result of the degradation of fats. CO2 promoted a lower concentration of this compound in the oil at the level of 
600 °C and 700 °C. The inert atmosphere did not influence the yield of N-containing compounds in the oil. At 
temperature levels of 600 °C and 700 °C, argon provided a higher amount of these compounds. According to the 
results, it is worth considering CO2 as the carrier gas in char production via the intermediate pyrolysis process. 
Char obtained under CO2 is characterized by the highest carbon content. Additionally, CO2 is used, which 
indirectly may lead to a decrease in CO2 in the environment [38]. 

Then, Bieniek, et al.  [39] researched the effect of biomass particle size on the yield of pyrolysis products. 
It was found that the small particles promoted cracking of the intermediates in the pyrolysis reaction, resulting 
in greater production of H2 and CO and less CO2. The spherical shape of the biomass particles resulted in a lower 
gas yield compared to the process in which flat or cylindrical particles were pyrolyzed.  

In addition, Xu and Gholizadeh [40] obtained the softwood char for the tests was characterized by fine 
graining. The average grain size was only 0.50 mm, and the number of fractions below 1 mm accounted for over 
84% by weight. The average grain size for the coke breeze was 1.45 mm, with almost 60% of fractions below 1 
mm. The carbon content in the char was at the level of 75%, and  81% in n the coke breeze. The char practically 
did not contain any harmful sodium, chlorine, zinc, or copper. The sulfur content was also at the low level, 
0.33%. compared to 0.9% in a coke breeze. 

Niesler et al. [41] proposes an integrated process of biomass pyrolysis and gasification (SPBG). The content 
of H2 increased by 6.22% owing to the synergistic action of the S and S-volatile vapor. It needs to be stressed that 
the free radicals modified the reaction system, facilitating dehydrogenation with condensation and the formation 
of new functional groups. In addition, a synergistic effect converted N from nitriles to amines which then 
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condensed to N-PAHs. If the wet sludge moisture was in the range of 30-70%, more H2 and a higher calorific 
value of the product gas could be obtained. 

Bio-oil is a mixture of condensable volatiles and is produced by the pyrolysis of biomass [42]. The 
production of biofuel from bio-oil via hydrotreatment received considerable attention from both the research 
community and industry. However, for the effective conversion of bio-oil to biofuel, there was one key challenge 
that had to be overcome and it is the coke formation. The process is developed especially at high temperatures. 
Coke was formed both because of the presence of abundant organics in bio-oil with their reactive oxygen-
containing functionalities and the heavy organics with large molecular structures. Pyrolytic lignin (PL), derived 
primarily from the pyrolysis of the lignin fraction in biomass, is a major component of the heavy organics in bio-
oil. It is important to acknowledge the properties of PL for solving the issue of coke formation during the 
polymerization/cracking of PL process and for further utilizing PL for the production of chemicals, biofuels, and 
carbon materials. In the article, the progress toward understanding the properties of PL, the separation of PL 
from bio-oil, and the conversion of PL to other value-added products (i.e., biofuels, chemicals such as phenolics, 
aromatics, hydrogen, and radical scavengers, antioxidants, resins, carbon materials, and binders) have been 
discussed, and techno-economic assessments of various routes for PL conversion have discoursed. Suggestions 
have been provided for taking further steps in each PL application, and the potential challenges have been 
analyzed and thoroughly discussed. 

2.1. Pyrolytic gas 

Nevertheless, the gas mixture obtained in the pyrolysis process mainly contains CO2, CO, H2, CH4, C2H6, 
and C2H4 and small amounts of gases such as C3H8, NH3, nitrogen oxides, sulfur oxides, and alcohols with a low 
carbon number. The typical energy value of pyrolitic gases is 10 to 20 MJ/m3. Before the practical use of pyrolysis 
gas, the elimination of undesirable components such as tar, dust, aerosols, water vapor, HCN, NH3, and H2S is 
required [43]. 

Pyrolytic gas has many potential applications, such as direct application to the production of heat or 
electricity (e.g. gas combustion in spark-ignition and diesel engines). In addition, the gases obtained are often 
used for auto-feeding pyrolysis reactors operating in a continuous system for preheating the inert gas in the 
chamber, or they can play the role of carrier gas in pyrolysis fluidized bed reactors [13].  

Additionally, methane, and above all biomethane, constitute an important and future energy 
carrier. Zhang et al. [44] proposed a new approach to the direct synthesis of methane-rich gases from 
reed pyrolysis performed under atmospheric pressure. Ni catalysts embedded in cane biocarbon 
were used. It was found that nickel catalysts supported by biochar performed better than cane 
catalysts supported by biochar from seawater. It was noticed that it was influenced by: homogeneous 
Ni dispersion, large specific surfaces, and appropriate Ni-biochar interactions. 

2.2. Pyrolitic oil 
For further explanation, pyrolltic oil is also referred to as bio-oil, pyrolysis liquid or tar, liquid 

wood or wood oil [45]. The oil itself as a condensation product of volatile substances is a dark brown 
organic liquid, which in its composition contains significant amounts of water (usually 15-35% by 
weight) and numerous organic compounds such as acids, alcohols, ketones, aldehydes, phenols, 
ethers, esters, sugars, furans, alkenes, nitrogen compounds, as well as a small particles of solid 
particles. Thus, before its application in engines, it is necessary to refine the pyrolysis oil. Currently, 
the production of liquid transport fuels from bio-oils is possible thanks to the developed technology 
of catalytic cracking and under-high pressure hydroprocessing. The potential application of pyrolysis 
oil is its use for the production of valuable chemical compounds, including food flavors or phenols 
for the production of resins, fertilizer, and pharmaceutical additives [46,47].  

Several dozen organic compounds have been identified in pyrolysis oil – the most important of 
them are presented in Table 2 [28]. 
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Table 2. List of chemical compounds occurring in the highest amounts in bio-oil from rapid pyrolysis 
(own elaboration from [28]). 

Component Content in bio-oil [%] 

Hydroxyacetic aldehyde 

Acetic acid 

Formic acid  

Acetaldehyde  

Hydroxyacetone  

Isoeugenol  

Furfuryl  

alcohol 2,6 - dimethyloxyphenol  

Etandial  

Phenol  

Formic aldehyde  

Acetone  

Eugenol  

Ethylene glycol  

1,4 - dihydroxybenzene  

Cellobiose  

1,6 - anhydroglycofuran  

Fructose  

Levoglucosan  

Glucose 

0.9-13.0 

0.5-12.0 

0.3-9.1 

0.1-8.5 

0.7-7.4 

0.1-7.2 

0.1-5.2 

0.7-4.8 

0.9-4.6 

0.1-3.8 

0.1-3.3. 

2.8 

0.1-2.3 

0.7-2.0 

0.1-1.9 

0.6-3.2 

3.1 

0.7-2.9 

0.4-1.4 

0.4-1.3 

Bio-oil, after separating the carbon residue, can be used to drive diesel engines without additives 
facilitating self-ignition. Bio-oil can also play an intermediary role in obtaining valuable chemical 
compounds through their selective extraction. The carbohydrate fraction can be used to extract 
hydroxyacetaldehyde, hydroxyacetone, or levoglucosan, and the phenolic fraction can be used in the 
synthesis of phenolic resins. 

Thus, in the presence of the termite hill catalyst, the pyrolysis of peanut shells brought a change 
in the nature and chemical composition of the bio-oil, when compared with the bio-oil obtained from 
the pyrolysis of solitary peanut shells, i.e., C4–C31 hydrocarbons were detected for catalytic pyrolysis 
[48]. The major hydrocarbons detected include 1-(4-hydroxy-3-methoxyphenyl)-propanone, 
tetrahydro [2,2’]bifuranyl-5-one, 1,2-benzenediol, cyclopropyl carbinol and 1-(4-hydroxy-3- 
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methoxyphenyl)-ethanone. Hence, it was revealed that the termite hill played an effective role as a 
catalyst for improving the quality of the oil. 

Nisar et al. [49] have undertaken the refining of bio-oil to the fractions of gasoline, diesel fuel, 
and heavy hydrocarbons in the process of fast pyrolysis thermal pyrolysis (TFP) and catalytic 
pyrolysis (CAT). The obtained results depicted that the use of waste gases from the pyrolysis process 
for the production of synthetic natural gas with an external hydrogen source can provide up to 48.2% 
(TFP) and 61.2% (CAT) reduction in the use of biomass resources. So, it was a significant 
improvement in the carbon efficiency of hydrogen-enhanced designs that created the savings. 
Although the CAT process had a lower biofuel efficiency than the TFP process, it presented a higher 
hydrogen upgrade potential and achieves a higher biofuel efficiency than TFP when fully enriched 
with hydrogen from the outside. 

Shen et al. [50] performed the catalytic pyrolysis of rice husk (RH) with various potassium 
compounds (ie KOH, K2CO3, and K2C2O4) for the production of biofuels and porous carbons. The 
process of decomposition of biomass took place at a lower temperature, which was influenced by 
potassium compounds, in the following order KOH> K2CO3> K2C2O4. Due to the rapid pyrolysis of 
RH with potassium compounds, the number of organic compounds was significantly reduced. More 
hydrocarbons (e.g. long-chain alkanes, benzene)  were generated by in situ catalytic upgradings (e.g. 
deoxidation) of bio-oil. The pyrolysis of biomass with potassium compounds was also able to 
accelerate the production of unsaturated aliphatic hydrocarbons. In particular, the pyrolysis of RH 
with K2C2O4 could result in bio-oil with a high content of hydrocarbons and a low content of oxidized 
compounds (e.g. phenols or acids.) 

Then, Fan et al. [51] have performed non-thermal synergistic plasma catalysis (NPSC) in order 
to improve the vapor pyrolysis of biomass for the preparation of biofuels. The effect of three-way 
catalysis (non-thermal plasma, HZSM-5 body, and modified components) on bio-oil improvement 
performance and catalyst stability was investigated. The bio-oil yields decreased, but the 
physicochemical properties of the obtained chemical compounds further improved. 

Kumar et al. [52] performed the extraction of biofuel from Martynia annua seeds in the process 
of slow pyrolysis and tested this biofuel for use in a diesel engine. The physicochemical properties of 
the obtained biofuel were tested. The suitability of mixing biofuel with diesel fuel was determined. 
The pyrolysis process was carried out in a fixed bed batch reactor with an electric heater after the 
sample had been subjected to the pre-treatment process. Next, the pyrolysis process was carried out 
at a temperature of 650 °C with a particle size of 250 μm and a reaction time of 3 hours. The produced 
biofuel was tested in a diesel engine environment in various proportions with diesel fuel. It was 
found that the biofuel obtained by pyrolysis of Martynia annua seeds can replace diesel fuel up to 40% 
in an unmodified diesel engine without major changes in efficiency and emissions. 

It requires stressing that the heat necessary for the pyrolysis process can be transferred to the 
converted fuel directly (so-called allothermal pyrolysis) or indirectly (autothermal pyrolysis). The 
temperature and rate of heating also affect the composition of the pyrolysis products. Armer, et al. 
[53] observed an increase in the proportion of carbon and a decrease in the amount of oxygen and 
hydrogen in the char with an increase in the temperature of the process. In addition, it has been found 
that an increase in temperature results in a higher acid content in the liquid pyrolysis products. 

However, much research concerns the use of catalysts in the pyrolysis process to improve the 
quality of the produced liquid phase, mainly by removing O2, so that it could potentially be an 
alternative to liquid fossil fuels [54]. For this purpose, the following metal oxides are applied: Al2O3, 
SiO2, ZnO, K2O, MgO, CaO, La2O3, CaO, and MgO.    

Zhang and Sun [55] have examined the process of ketonization of vapors obtained in the process 
of biomass pyrolysis on the CeO2 catalyst. The analysis of TG-MS and TG-GC/MS detected that 
bagasse was suitable for ketonization owing to the high content of hemicellulose and cellulose. 
Additionally, it was found that temperature of 380 °C was favorable for the ketonization of bagasse 
with a maximum ketone yield of over 34%. Therefurmove, it was advantageous for the production 
of ketones to introduce an appropriate amount of metal elements into the treated seawater. 
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Table 3 summarizers the properties of bio-oil obtained by different upgrading methods. The 
highest yield (86.87%) of biofuel was found for pyrolysis of palm shells at 700 °C, process duration: 
20 minutes and in the presence of Amberlyst15 catalyst. 

Table 3. Properties of bio-oil obtained by different upgrading methods. 

Feedstock Reaction condition Catalyst Oil yield References 

Peanut shells 
 

Martynia annua seed 
Corn leaf waste 

 
 

Poplar wood 

3-30℃/min, 30-800℃ 
650 °C, 3 h 

 
300-450 °C, constant 
flow rate of nitrogen 

350℃, 90 min 

termite hill 
 
- 
 
 
- 
 
 

Pd/C 

max. 57 
 

30.77% of BTE 
57–73% of diesel 

fracttion 
 

23.6 

[49] 
 

[52] 
 

[53] 
 
 
 

[56] 
Beech wood 450℃, 4 h, 35 MPa H2 Ru/C 60 [57] 
Pine wood 350℃, 4 h, 14 MPa H2 NiMo/ SiO2-Al2O3 42.4 [58] 

Wheat straw 340℃, 1.6 h, 8 MPa H2 NiW/AC 18.2 [59] 
Wheat straw 340℃, 1.6 h, 8 MPa H2 Ni/TiO2 76.8 [60] 

Corn stover 
300℃, 4 h, 12.5 MPa 

H2 
Ru/C 54.4 [61] 

Rice husks 465℃, 30 min SO42-/ZrO2 56 [62] 
Palm shell 700℃, 20 min Amberlyst15 86.87 [63] 

Swine manure 
400℃, 30 min, 0.69 

MPa N2 
Modified zeolite 45 [64] 

Sewage sludge 330-1200 °C Graphite 7.16-49.79 [65] 

 Bagasse 300 W 
Activated carbon 
(35%, 55%, 75%), 

13.95-18.95 [66] 

Sugarcane bagasse 493-532 °C NiO, CuO, CaO, MgO 18.4-35 [67] 

Oil palm shell 180-720 W 
Activated carbon 

(18.8–91.2%), 
16.43-36.75 [68] 

Food waste 300-600 W 
CaO, MgO, CuO, 

Fe2O3, MnO2, CuCl2 
10-36 [69] 

Agricultural waste 400-600 °C SiC 14.56-31.86 [70] 

2.3. Biochar 

Biochar and its use is definitely not a new solution – it has been used in agriculture worldwide 
for centuries. However, in recent years, its properties and potential applications have become 
“rediscovered” and now it cannot be denied that the traditionally known carbonate, in response to 
contemporary needs and applications in the field of environmental protection, has gained a new 
“brand” and functions as biochar [71]. Due to its physicochemical properties, such as a high content 
of stable organic carbon and mineral substances, significantly developed porosity, and specific 
surface area, biochar can be successfully applied: in bioenergy as a renewable fuel; for soil carbon 
sequestration; in the composting process as a structural material or additive limiting the emission of 
ammonia; in the production of organic fertilizers based on biochar; to improve the properties of 
agricultural soils; for removing pollutants from water solutions, municipal and industrial 
wastewater, and process gases; in the remediation of soils contaminated with organic and inorganic 
compounds, and to reduce the pollution of groundwater and surface waters through the retention of, 
nutrients in the soil [72]. 

Additionally, the use of biochar in environmental protection brings many benefits, including the 
possibility of replacing fossil fuels with renewable fuels, improving soil properties, e.g. increasing 
the amount of carbon in the soil or soil water capacity, reducing the use of organic and inorganic 
fertilizers and plant protection products, and thus the risk of contamination of groundwater and 
surface waters. The production of biochar from various types of biomass in the pyrolysis process 
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allows for obtaining liquid and gaseous fuels for energy production, and the resulting biochar is a 
solid renewable fuel used in the energy industry [73]. 

There is a wide range in the application of biochars obtained by the low-temperature pyrolysis 
of lignocellulosic biomass wastes. Depending on their physical and chemical properties, they can be 
significantly utilised in the energy sector, as a substrate for the active carbon production, and finally 
as a sorbent for pollutants. The obtained biochars had a significant increase in carbon content (up to 
c.a. 70% of C) and a lower O/C ratio [74]. 

This study has investigated the pyrolysis of date palm seeds in a fixed-bed pyrolyzer at varying 
heating rates of 2.5, 5, 7.5, and 10 °C/min to produce biochar. The final analysis of the date seed 
powder revealed that carbon, hydrogen, and oxygen were present primarily in the lignocellulosic 
structure, which consisted of 33.1% cellulose, 24.3% hemicelluloses, and 22.6% lignin. The conversion 
rate profiles indicated that the complex degradation of the date seed during pyrolysis occurred in the 
active pyrolysis zone [75]. 

Duan et al. [76] have optimized the pyrolysis temperature of peanut shells. The obtained biochar 
was modified with HCl in order to obtain a better pore structure and surface properties of the biochar. 
The study presented that peanut shells could be widely used as raw materials and catalysts for the 
production of chemicals, obviously with a high added value. 

Table 4 summarizes the characteristics of biochar (activated carbon) from raw biomass with 
various preparation methods [77]. 

Table 4. The characteristics of activated carbon from LB with various preparation methods. 

Raw biomass Agent Temperature [°C] Time [min] Surface [m2/g] 
Micropore 

valume  
[cm3/g] 

Ref. 

Barley straw Steam 700 60 552 0.2304 [78] 
Barley straw Steam 800 60 534 0.2186 [79] 
Barley straw CO2 700 60 211 0.0830 [80] 
Orange peels K2CO3 700 60 477 0.21 [81] 
Orange peels K2CO3 950 60 1352 0.22 [81] 
Orange peels ZnCl2 700 60 822 0.09 [81] 
Soybean oil 

cake 
K2CO3 600 60 643 0.272 [82] 

Soybean oil 
cake 

KOH 600 60 600 0.213 [82] 

Soybean oil 
cake 

KOH 800 60 619 0.143 [82] 

Tomato ZnCl2 400 60 648 0.086 [83] 
Tomato ZnCl2 600 60 1093 0.129 [83] 
Tomato ZnCl2 800 60 492 0.058 [83] 
Chesnut 

Shell 
H3PO4 750 20 1138 0.424 [84] 

Chesnut 
Shell 

H3PO4 850 20 1413 0.562 [84] 

In the technology of removing chromium ions from aqueous solutions, biochar adsorbents were 
becoming more and more frequent research objects. The mechanism of removing Cr(VI) and Cr(III) 
ions using biochar was slightly different from each other. In the case of Cr(III) ions, these are: (i) 
complexation of Cr(III) ions by oxygen functional groups, (ii) ion exchange, and (iii) electrostatic 
interactions between positively charged Cr(III) ions and negatively charged biochar surface. In the 
case of Cr(VI) ions, these were as follows: (i) electrostatic interactions, and (ii) reduction of Cr(VI) to 
Cr(III) ions through oxygen groups (hydroxyl and carboxyl), which were then complexed on the 
surface of the biochar [27]. 

Table 5 presents a summary of the sorption capacities of biochars from various raw materials 
used for the sorption of Cr(III) ions from aqueous solutions [82–85]. 
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Table 5. The sorption capacity of biochars obtained from various raw materials and the pyrolysis 
temperature of their production. 

Raw material 
Pyrolysis 

temperature [°C] 

Initial 
concentration 

Cr(III)  

Sorption 
capacity 

References 

The husk of 
rice 

300 185 [μg/dm3] 15.1 [μg/dm3] [37] 

Soybean stalks 400 260 [mg/dm3] 14.6 [mg/dm3] [50] 
Slurry 600 300 [mg/dm3] 40.0 [mg/dm3] [17] 

Wood of 
conifers 

700 650 [mg/dm3] 32.0 [mg/dm3] [75] 

It cannot be denied that the constantly growing world demand for electricity, caused by 
population growth, industrial development, and urbanization, forces us to search for efficient 
alternative energy sources [86]. Mierzawa-Hersztek et al. [87] carried out the pyrolysis of miscanthus 
straw and sawdust. It was found that pyrolysis reduced the content of volatile compounds, and the 
calorific value of the obtained biochar was 26.6 M /kg and 23.4 MJ/kg, respectively, for miscanthus 
straw and sawdust. 

Owing to its physicochemical properties, biochar can be applied in composting as a structural 
material, as well as an additive limiting the emission of ammonia. Composting materials with a 
narrow C/N ratio results in increased ammonia emissions during the composting process and, 
consequently, reduced nitrogen content in the resulting compost. Biochar as a structural material in 
the composting process is able to increase the total porosity, air porosity, and water capacity [88]. 
Moreover, the addition of biochar accelerated the biodegradation processes and reduced the emission 
of ammonia by 64%. Then, it was found that biochar can be used as a structure-forming material for 
composting nitrogen-rich waste.  

The analysis of biochar obtained in the pilot plant depicts its energetic suitability in the case of 
sewage sludge and straw, and as a soil improver or material for forest land reclamation with regard 
to chaff and straw. Biochar obtained from sewage sludge with a calorific value of about 17 MJ/kg 
presented appropriate parameters for a good quality fuel for co-incineration in the cement industry 
and energy, better quality than dried sludge [73]. 

So far, research has been carried out on the use of biochar from various substrates (e.g. straw, 
manure, anaerobically stabilized biomass, bamboo, sugar cane, hickory tree, etc.) to remove e.g. 
pharmaceutical residues such as endocrine disruptors or bacteriostatic antibiotics (e.g. 
sulfamethoxazole) from sewage, and copper, mercury, nickel, lead, cadmium and chromium from 
aqueous solutions or municipal sewage, pesticides such as e.g. carbaryl, atrazine, simazine, 
acetochlor [89]. 

Soil contamination with organic and inorganic substances has become increasingly popular in 
many regions of the world, posing a threat to living organisms and human health [90]. For this reason, 
new, effective and cheap solutions for in situ remediations are sought, which would enable the 
natural removal of toxic and harmful substances from soil, while revitalizing the soil ecosystem and 
stimulating plant growth. Such a solution could be the addition of biochar to contaminated soils. It 
has been estimated that organic pollutants in soils undergo sorption processes on biocarbon twice as 
fast as on naturally occurring organic matter [91]. 

Biochar introduced into the soil allows for long-term storage of the carbon element. It has also 
been estimated that the addition of biochar to the soil at a dose of 13.5 Mg/ha (which is 3% of the 
upper layer 30 cm deep) ensures carbon storage for at least two centuries [92]. Moreover, the carbon 
stored in the soil remains chemically stable for millennia. If 10% of the world's biomass resources 
were converted to biochar with a process efficiency of approx. 50% and obtaining 30% of energy from 
volatile substances, carbon sequestration in the amount of 4.8 GtC/year would be possible, which is 
approx. 20% of the current annual growth in the amount of atmospheric carbon (i.e., 4.1 GtC/year) 
[92,93]. 
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3. Pyrolitic reactors – the technical aspects and influence on the process 
Along with the existing interest in pyrolysis technology, many reactor designs have been studied 

to optimize pyrolysis efficiency and enable high production quality of bio-oil. However, each type of 
reactor possesses some specific characteristics, some types of them have limitations and others have 
advantages in obtaining biofuels [92].  

The fixed bed pyrolysis reactor included a gas cooling system and a cleaning system. Fixed bed 
reactor technology ia a simple, reliable, and proven for fuels that are uniform in size and low in 
impurities. In this type of reactor, the solid moves down a vertical tube and contacts the gas stream 
in countercurrent. Fixed bed reactors generally operate with high coal efficiency, long solids 
residence time, low gas velocity, and low ash transfer [92]. 

Li et al. [94] investigated the pyrolysis of date palm seeds in a fixed-bed pyrolyzer at varying 
heating rates of 2.5, 5, 7.5, and 10 °C/min to produce biochar. The final analysis of the date seed 
powder revealed that carbon, hydrogen, and oxygen were present primarily in the lignocellulosic 
structure, which consisted of 33.1% cellulose, 24.3% hemicelluloses, and 22.6% lignin.  

Fluidized bed reactors seems to be popular for fast pyrolysis as they provided fast heat transfer, 
good pyrolysis reaction, and residence time control, large liquid-solid contact area per unit bed 
volume, good thermal transport within the system, and the high relative velocity between the phases 
of liquid and solid [95,96]. 

Moreover, the bubble bed reactors (Figure 2) are characterized by rapid heat transfer combined 
with uniform bed temperatures, these appeared to be the essential attributes of the fast pyrolysis 
process. Once the appropriate size of the fluidized bed was selected, the gas flow could be designed 
such that the residence time of the gas/vapor in the void upstream of the bed could be set to the 
desired value, typically in the range of 0.5-2.0 seconds. Experiments proved that an operating 
temperature of 500-550 °C in the bed and a residence time of about 0.5 seconds would usually lead 
to the highest liquid yield [92,96,97].  

 

Figure 2. Bubble fluidized bed reactor. 

Moving circulating fluidized bed reactors had similar features to bubble bed reactors, with the 
exception of a shorter residence time for the char and vapors (Figure 3). This results in higher gas 
velocity and higher char content of bio-oil compared to bubble fluidized bed reactors. It must be 
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stated here that one advantage was that this type of reactor was suitable for high production 
capacities, although the hydrodynamics seemed to be more complex. There were basically two types 
of circulation for fluidized bed reactors: single circulation and double circulations [96,97]. 

 

Figure 3. Moving circulating fluidized bed reactor. 

A reactor with a screw conveyor is used to move the raw material in a cylindrical, heated, and 
oxygen-free tube (Figure 4). The further step of the process involves the passage of the raw material 
through the pipe heating it up to the desired temperature during pyrolysis in the range of 400-800 
°C. Due to the high thermal conductivity of heat carriers, the energy necessary for rapid pyrolysis 
was  transferred to the biomass. The generated vapors are quickly directed to the condensation in 
order to minimize the reaction time, and the produced char was separated from the heat carrier 
independently of the thermal decomposition reaction [98,99]. 

 
Figure 4. A reactor with a screw conveyor. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2023                   doi:10.20944/preprints202301.0203.v1

https://doi.org/10.20944/preprints202301.0203.v1


 14 

 

The mechanism of action in the ablative pyrolysis reactor (Figure 5) was compared to “melting 
butter in a pan”, the melting rate could be greatly accelerated by pressing and sliding it against the 
heated surface of the pan. In ablative pyrolysis, the heat is transferred from the hot wall of the reactor 
to the “molten” biomass, which is in contact with it under pressure. As the biomass is moved, the 
molten layer evaporates. The wall temperature in the ablation reactor is less than 600 °C. The bio-oil 
yield in the ablation reactor is 70-75% [96,100]. 

 

Figure 5. Ablative pyrolysis reactor. 

5.1. Reactor heating method 

Pyrolysis is an endothermic process and requires a significant amount of heat to raise the 
temperature of the biomass. There are two important requirements for heat transfer in a pyrolysis 
reactor:  
• the heat is transferred to the reactor by the heat carrier,  
• from the carrier, the heat is transferred to the biomass to be pyrolyzed [46]. 

In fast pyrolysis, biomass particles could be heated in two main ways: gas-solid heat transfer as 
in a flow reactor where heat was obtained from the hot pyrolysis gas to the biomass particles mainly 
by convection. Solid-solid, heat transfer took place by conduction. In addition to convection and 
conduction, heat transfer by radiation also was performed in all types of reactors [46]. 

The heat to the pyrolysis reactor could  be supplied by [46]:  
• heat exchange surfaces placed in appropriate places in the reactor, 
• heating with fluidizing gas, 
• removal and reheating of the bed (sand) in a separate reactor, 
• adding some air, which can create hot spots and grow cracks leading to tar formation. 

4. Prospects and developments in the pyrolysis technology 
It has to be well stressed that the economic development leads to an improvement in the quality 

and comfort of people's lives, however, its effect is the constant degradation of the natural 
environment, the cause of which is the emission of man-made pollutants into the atmosphere and 
waters surface and underground, and the ground. Increasing awareness of the societies develops the 
need to protect the environment, and it requires extensive efforts to reduce adverse impacts of human 
activity on the natural environment [101]. 

And it is the industry and energy that constitute an extremely important domain of each 
developed economy and, to a large extent, determine its development. At the same time, they use 
and influence environmental resources. Awareness of this state of affairs has for several decades 
resulted in the industry and energy taking a number of organized, pro-ecological activities aimed at 
irreversible and clear improvement in the functioning of enterprises, resulting in a measurable 
reduction in the negative impact on the environment. The newly introduced, environmentally 
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friendly technologies are being implemented, including the conversion of waste from biomass in the 
pyrolysis process [101]. 

For a long time, traditional incineration or landfilling of organic waste has weakened the 
resources of soil and water. Food was wasted often. In order to achieve positive ecological effects, it 
is worth paying more attention to the pretreatment of organic waste and using pyrolysis, to obtain 
second-generation biofuels [98,101]. 

The use of waste biomass resources is gaining more and more interest around the world due to 
the depletion of fossil fuels and concern for the protection of the environment. So, pyrolysis is a 
process that plays a significant role in the conversion of biomass into chemicals and biofuels. The 
development of industry and energy requires new chemicals that can be delivered by pyrolysis [101]. 

The pyrolysis of biomass has become a promising renewable, sustainable source of fuels, 
petrochemical substitutes, and valuable chemicals. Hence, the growing interest of the world of 
science and industry in the further development of this biotechnology. Moreover, it can be noted that 
the number of possible substrates that can be pyrolyzed is constantly increasing and includes 
different types of waste biomass such as wood waste, energy crops, agricultural waste, food waste, 
municipal waste, sewage sludge, and sewage, etc. Agricultural waste consisting of fruit peels, rice 
husks, or corn cobs is an easily available and cheap material used to generate energy and biochar. 
One of the most valuable agricultural waste is orange peel, which consists mainly of cellulose, 
hemicellulose, and pectins. Until now, a significant stream of this waste often ended up in landfills, 
thus it is economically used for the production of chemical compounds and biofuels of the second 
generation. The pyrolysis process allows for “waste-to-energy”.A specific compound or a mixture of 
chemical compounds is obtained with ever-greater efficiency and ever-greater purity, which allows 
for a broad spectrum of pyrolysis product management [98,101]. 

Additionally, it is visible as great scientific and technical progress in the pyrolysis process 
including optimizing to obtain higher biofuel yields and lower energy consumption with applying 
renewable energy resources. Moreover, current and future trends in biomass pyrolysis are 
developed, e.g. solar pyrolysis, microwave pyrolysis, plasma pyrolysis, hydrogen production by 
biomass pyrolysis, biomass co-pyrolysis with synthetic polymers and wastewater, selective 
preparation of fine chemicals, pyrolysis exotic biomass (coffee grounds and cotton husks), 
comparison of pyrolysis of algae biomass and terrestrial biomass. The very concrete prospects for the 
future are being explored, the production of metal catalysts deposited on biochar to remove 
environmental pollutants, the production of supercapacitor biocarbon materials through one-step 
single-step pyrolysis of biomass with other components [98,101]. 

The choice of substrates depends, among others, on physicochemical properties (e.g. water and 
organic matter content, particle size), potential use (e.g., energy production, agricultural use, and 
pollution removal), logistic aspects, and the pyrolysis process and along with its parameters [98,101]. 

Thus, in the future, new materials for the construction of pyrolysis reactors will be introduced, 
which will allow the process to be optimized. This pre-process will run faster, with greater efficiency, 
lower energy consumption, and finally cheaper pyrolysis substance production [98,101]. 

Discussing solar pyrolysis it has to be explained that it purely depends on concentrated solar 
energy as the source of heat required for biomass pyrolysis reactions (figure 6). Solar energy also 
upgrades biomass energy. This energy upgrading occurs by storing solar energy in chemical forms 
in the produced pyrolysis products (biogas, bio-oil, and biochar) [102]. The energy already stored in 
biomass refers to the energy produced when this biomass is burned conventionally in the presence 
of oxygen. A high yield of gas was produced by solar pyrolysis from a group of agricultural residues 
and forest by-products, namely pine sawdust, peach pit, grape stalk, and grape marc (squeezed grape 
residue). Factors affecting the yield of gas were studied, including the type of biomass, temperature 
(800-2000 °C), and rates of heating (10-150 °C/s). Gas yield increased with increasing the amount of 
cellulose and hemicellulose contents in biomass. Higher temperatures increased the gas yield. Also, 
higher rates of heating favored gas formation. Pine sawdust produced 63.5 wt% of gas by solar 
pyrolysis at 2000 °C and a rate of heating of 50 °C/s [103–105]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2023                   doi:10.20944/preprints202301.0203.v1

https://doi.org/10.20944/preprints202301.0203.v1


 16 

 

 

Figure 6. Principle of solar pyrolysis. 

Table 6 presents the summary of solar simulated biomass pyrolysis. 

Table 6. Summary of solar simulated biomass pyrolysis. 

Biomass Reactor Concentrator Light source References 

Wood Quartz tube Direct 

concentration 

5 kWarc Xenon 

bulb 

[106] 

Waste biomass Indirect 

(conduction) 

Elliptical reflector 1.6 kW 

Xenon arc lamp 

[107] 

Mixed biomass 

components 

Integrated sphere Converging lenses A xenon lamp [108] 

Pine sawdust Cylindrical quartz 

reactor 

Deep-dish 

Parabolic 

concentrator 

5 kW Xenon 

arc lamps 

[109] 

Chicken-litter Copper, Indirect 

(conduction) 

Elliptical reflector 0.6 kW Xenon arc 

lamp 

[110] 

Thus, on one hand, the pyrolysis products are a consists a good alternative to using instead of 
fossil fuels, particularly in the adsorbents industry. On the other hand, combining hydrogen 
production with solar pyrolysis would be the most environmentally friendly process in the near 
future. As green hydrogen is an intensively developed fuel, the full-scale hydrogen production 
during the pyrolysis process can help to reduce climate change caused by CO2 emissions [111]. 
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In vehicles, biohydrogen can be applied as fuel in two ways. First, to generate electricity in fuel 
cells (when it combines with oxygen, only energy and clean water are created). Second, to power 
internal combustion engines as fuel. 

In the near future, the pyrolysis process can be combined with the production of energy from 
renewable sources (RES). Surplus energy from RES can cover the energy needs of the pyrolysis 
process. The development of RES and pyrolysis will increase energy and fuel security [112]. 

There are numerous advantages referring to RES, which make the ongoing energy 
transformation not only a necessity but also a real benefit for the economy, society, and the 
environment. While all non-renewable energy sources: coal, gas, or oil, will terminate one day and 
their further extraction will not be possible anymore, the concept of the RES is a constant and reliable 
source that appears not to run out. Thanks to that, we can rely on a safe and predictable energy 
supply, without any significant risk. The energy transformation will continue as more and more 
countries are choosing to switch substantially or completely to obtaining energy only from RES [112]. 

The main difference between the process of conventional pyrolysis and microwave pyrolysis is 
the method of heating the raw material [112] (figure 7). In the classical heating, the heat is transferred 
from the surface of the material to its center by convection, radiation, and conduction. It is a relatively 
slow process and requires good grinding of the raw material. Microwave heating, on the other hand, 
is the process of converting electromagnetic energy into thermal energy. Microwave energy induces 
molecular motion through the rotation of the dipoles and the migration of joins. Microwave heating 
is non-contact, fast, and covers the entire volume, so heat is generated in the entire volume of the 
material particle. In addition to this, microwave heating is selective, which means that not all 
materials will behave the same in a microwave field. The most susceptible to microwaves, and thus 
to heating, are dielectric materials, e.g. water, and methanol. These types of materials are referred to 
as microwave radiation absorbers. Materials that do not exhibit dielectric properties will reflect or 
transmit microwave radiation without being heated. Thus, raw materials that completely or partially 
absorb microwave radiation can be subjected to microwave pyrolysis, thanks to which it is possible 
to heat them [112]. 

Possible methods of heating the pyrolysis reactor are shown in figure 7. 

 
Figure 7. Diagram of the microwave-assisted biomass pyrolysis process. 

Recently, high hopes are associated with algae (microalgae, algae) (sometimes referred to as 3rd 
generation biofuel) [113]. Algae are a group of thalli organisms, most often self-nourishing, living in 
an aquatic environment or in humid places. In the aspect of alternative fuels, algae are miniature 
biological “factories” that, through photosynthesis, convert CO2 and sunlight into biomass rich in 
minerals. 
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The third-generation biofuels address this issue by using aquatic biomass, such as microalgae or 
macroalgae as feedstock. High lipid content, fast growth rate and low land demand make algae a 
promising third-generation energy crop [114]. 

Algae biochar generally has a higher extractable inorganic content nutrients (Mg, Ca, K and P) 
than lignocellulosic biochar. This composition is beneficial for soils, which is associated with higher 
crop productivity [115]. Algae biochar can be used as an adsorbent to remove inorganic and organic 
pollutants from wastewater. It is assumed that there are four main mechanisms of inorganic ion 
removal: surface complexation with functional groups, precipitation, ion exchange and electrostatic 
interactions [116]. 

Worldwide, the demand for electric vehicles and energy storage is growing and will continue to 
grow. Capacitors can be an alternative to lithium-ion batteries. Their advantages include a very high 
charging speed, high efficiency and low operating costs. The electrochemical properties of biocarbon 
electrodes from algae are determined by the type of algae and the conditions used during its 
bioconversion. As a rule, the surface of algae biochar is usually relatively small, which makes it 
suitable for use in supercapacitors [116,117]. Table 7 shows examples of recent developments in 
supercapacitors derived from algal biochar. 

Table 7. The recent developments on supercapacitors derived from algal biochar. 

Algae Specific 

surface area 

[m2/g] 

Energy 

density [Wh 

/kg] 

Cycle stability Cycle stability 

percent [%] 

References 

Chlorella 1337.9 20 10,000 92 [118] 

Cladophora glomerata 354 42.4 5000 99.2 [119] 

Cladophora glometa 957 41.5 10,000 93.1 [120] 

Enteromorpha 

prolifera 

2000 7 10,000 96 [121] 

Kelp 4425 8 20,000 92 [122] 

Nannochloropsis 

salina 

1784 26.1 5000 83 [123] 

Ulva fasciata 376.82 46.1 5000 97.5 [124] 

Undaria pinnatifida 3270 42 10,000 94 [125] 

      

The study of the microwave pyrolysis process, in which the raw material was freshwater algae 
Chlorella sp., was conducted by Li et al. [97] (table 8). Algae were grown on a pilot scale in special 
photoreactors. Before starting the pyrolysis, the algae paste containing about 85% water had been 
dried. As the algae paste poorly absorbs microwave radiation, it was mixed with the char obtained 
from the first pyrolysis experiment. The biomass prepared in this way was subjected to pyrolysis at 
various microwave heating powers of 500 W, 750 W, 1000 W, and 1250 W, which corresponded to the 
process temperature of 460 °C, 570 °C, 600 °C, 625 °C, respectively. The volatile components of the 
reaction were cooled in five condensers with the help of cooling water, and the non-condensing gases 
were collected in special gasbags. The pyrolysis time was 20 minutes. 
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Table 8. The efficiency of individual fractions depending on the power of microwave heating. 

Fraction yield 

[%] 

Heating power [W] 

500 750 1000 1250 

Oil fraction 26 28.5 25 17 

Water fraction 21 20 20 22 

Carbonizate 28 24 25 25 

Gaseous 

fraction 

24 26.5 29 35 

Sun et al. [126] showed that until now, most of the research has been conducted using hybrid or 
direct microwave heating. In indirect heating, on the other hand, biomass particles are heated mainly 
by contact with heated surfaces or high-temperature absorbents. Compared to hybrid or direct 
heating with pure biomass particles or a mixture of sorbent and biomass particles, indirect heating 
can provide a high heating rate. In the future, microwave absorption and heat transfer between 
microwave absorbent and biomass particles should be studied to understand the temperature 
profiles of different heating modes and their effect on reactor efficiency [127]. 

Wang et al. [128] proposed a method of microwave-assisted pyrolysis of wood biomass through 
the interaction of microwaves and needle-shaped metal. The characteristics of the pyrolysis process 
were investigated, using pine sawdust and a mixture of biomass components as a material. Moreover, 
the properties of pyrolysis products with and without microwave-metal interaction were 
characterized, and the mechanism of microwave-metal interaction on pyrolysis intensification was 
analyzed. An enhanced pyrolysis process was found which resulted from the increased density of 
electromagnetic distribution after the introduction of the iron wire into the microwave, and even a 
microwave discharge occurred at the initial stage. 

Haeldermans et al. [129] performed microwave co-pyrolysis of biomass and plastics. The results 
revealed that microwave co-pyrolysis of plastic and biomass shortened the reaction time and 
increased the yield of bio-oil (biofuels). In addition, the oxygen content in the bio-oil was reduced 
and the improvement of the formation of high-calorific components (gasoline and diesel fuel 
components) was targeted. As a result of the reduction of the oxygen content and the increase of 
aliphatic hydrocarbons, the chemical energy of the bio-oil increased from 1.76 to 6.40 MJ/kg (50%). 
The energy recovery efficiency of the microwave co-pyrolysis of cow dung with 50% low-density 
polyethylene appeared to be more than three times greater than that of cow dung pyrolysis. 

The economy of pyrolysis consists of capital cost, production cost, and revenues. As shown in 
the table, compared to traditional heating pyrolysis, microwave pyrolysis needs higher financial 
outlays. The main reason is the limited penetration depth of the microwaves, which requires more 
parallel reactors to achieve equal efficiency to traditional heating pyrolysis [130]. The unabsorbed 
reflected power can be hazardous to electricity, especially at the end of pyrolysis. Moreover, to 
guarantee microwave heating efficiency, a multimode cavity requires careful size design. Therefore, 
the cost of a "classic" reactor is $ 80,574 [131], while the cost of a microwave heating reactor is USD 
200,000 [132]. 

Table 9 shows comparison of costs of traditional heating pyrolysis and microwave pyrolysis 
[133]. 
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Table 9. Comparison of costs of traditional heating pyrolysis and microwave pyrolysis [133]. 

Costs Traditional heating pyrolysis Microwave pyrolysis 

Capital costs 

details 

+++ +++ 

Electrical panels, magnetron, 

reactor design 

Production costs 

details 

++ 

High throughput 

++ 

Low pyrolysis temperature and 

time 

Revenues  

details 

+ ++ 

High-quality products 

+ low, ++ moderate, +++ high 

Plasma pyrolysis is one of the technologies which could be opted for disposal of waste. In plasma 
pyrolysis, high temperature is produced using a plasma torch in an oxygen-starved environment to 
destroy plastic waste efficiently and in an eco-friendly manner. 

Due to its physicochemical properties, such as a high content of stable organic carbon and 
mineral substances, significantly developed porosity, and, specific surface area, biochar can be 
successfully used: in bioenergy as a renewable fuel; for soil carbon sequestration; in the composting 
process as a structural material or additive limiting the emission of ammonia; in the production of 
organic fertilizers based on biochar; to improve the properties of agricultural soils; for removing 
pollutants from water solutions, municipal and industrial wastewater, and process gases; in the 
remediation of soils contaminated with organic and inorganic compounds, and to reduce the 
pollution of groundwater and surface waters through the retention of, for example, nutrients in the 
soil. Therefore, the common application of biochar in environmental protection brings many benefits, 
including such as the possibility of replacing fossil fuels with renewable fuel, improving soil 
properties, e.g. increasing the amount of carbon in the soil or soil water capacity, reducing the use of 
organic and inorganic fertilizers and plant protection products, and thus the risk of contamination of 
groundwater and surface waters. Biochar can be used as a soil structuring material or an additive to 
waste with high water and/or nitrogen content [133]. 

The addition of biochar to compost mixtures can reduce ammonia emissions, reduce total 
nitrogen losses during composting, and increase water absorption and nutrient retention. Moreover, 
biochar can act as a carrier for microorganisms and constitute a component of biofilters in composting 
plants. Thus, depending on the chemical composition and physicochemical properties, biochar added 
to compost mixtures primarily increases their initial air porosity, binds excess water, and provides 
nutrients and microelements. Therefore, with the above, it is possible to ensure the correct course of 
the composting process during the composting process. The obtained composts, in which one of the 
components is biochar, may have additional functional properties, such as improved sorption 
properties, increased retention of nutrients, increased water capacity, etc. [133]. 

5. Conclusion 
The process of waste biomass pyrolysis allows for obtaining of many chemical compounds (2nd 

generation biofuels). The three most common fractions involve gaseous, liquid (often called bio-oil), 
and solid (biochar). Optimization of the pyrolysis process allows obtaining the desired products that 
are applied in the chemical industry, energy, and transport. 
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Along with the existing interest in pyrolysis technology, many reactor designs have been studied 
to optimize pyrolysis efficiency and enable high production quality of bio-oil. However, each type of 
reactor possesses some specific characteristics, some types of them have limitations and others have 
advantages in obtaining biofuels. 

Pyrolysis products have become a good alternative to use instead of fossil fuels. The waste 
pyrolysis process brings many benefits that may affect the natural environment, including reducing 
the consumption of fossil raw materials and reducing the volume of waste in landfills. The 
optimization of the pyrolysis process by applying various types of waste, newly designed reactors, 
and integration of the process with using RES means higher biofuel yields and lower energy 
consumption. The research on the mechanisms of the pyrolysis processes is going to be promised, 
therefore it will provide access to cheap and clean chemicals that will be widely used in the chemical 
industry, energy, transport, and agriculture biocircular economy. 
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