
Article 

Identification of a family of glycoside derivatives biologically 

active against Acinetobacter baumannii and other MDR bacteria 

using a QSPR model 

Francisco José Palacios-Can 1,2, Jesús Silva-Sánchez 3, Ismael León-Rivera 2, Hugo Tlahuext 2, Nina Pastor 1 and   

Rodrigo Said Razo-Hernández 2,* 

1 Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universi-

dad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209 México 
2 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 

Col. Chamilpa, Cuernavaca, Morelos, 62209 México. 
3 Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universi-

dad 655, Col. Sta. Ma. Ahuacatitlan, Cuernavaca, Morelos, 62100 México 

* Correspondence: rodrigo.razo@uaem.mx 

Abstract: As the rate of discovery of new antibacterial compounds towards multidrug resistant bac-

teria is declining, there is an urge for the search of molecules that could revert this tendency. Aci-

netobacter baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired 

multiple mechanisms against antibiotics and is considered of critical priority. In this work we de-

veloped a quantitative structure-property relationship (QSPR) model with 592 compounds for the 

identification of structural parameters related to their property as antibacterial agents against A. 

baumannii. QSPR mathematical validation (𝑅2 = 70.27, 𝑅𝑁 = -0.008, 𝑎(𝑅2) = 0.014 and 𝛿𝐾 = 0.021) 

and its prediction ability (𝑄2
LMO= 67.89, 𝑄2

EXT = 67.75, 𝑎(𝑄2)= -0.068, 𝛿𝑄 = 0.0, 𝑟𝑚
2 = 0.229, and 

∆𝑟𝑚
2 = 0.522) were obtained with different statistical parameters; additional validation jobs were 

done using three sets of external molecules (𝑅2 = 72.89, 71.64 and 71.56). We used the QSPR model 

to perform a virtual screening on the BIOFACQUIM natural product database. From this screening 

our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants of 

the Ipomoea sp., are potential antibacterial against A. baumannii. Furthermore, biological assays 

showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinical isolated 

strains of A. baumannii, as well as other multidrug resistant bacteria including Staphylococcus aureus, 

Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a poten-

tial lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our 

QSPR model can be used as a tool for the investigation and search of new antibacterial compounds 

against A. baumannii. 
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1. Introduction 

Opportunistic infectious diseases caused by multidrug resistant bacteria represent a 

world-concerning health problem that is growing at an accelerated rate. Despite the im-

mense quantity of literature and efforts sponsored by health committees, academia, and 

other non-governmental organisms on antibiotic resistance [1–3], there is still a lack of real 

education campaigns to promote the correct use of antibiotics. In accordance with recent 

reports, more than 2.8 million of antibiotic-resistant infections occur in the U.S. alone, with 

over 35,000 deaths as a result [3,4]. It is estimated that for 2050 a stunning 10 million deaths 

will be caused solely by antibiotic-resistant bacteria [5]. In Mexico the number of deaths 

caused by septicemia in hospitals have been increasing in recent years and since 2019 it is 

within the 15 main causes of deaths [6–8]. 
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From the twelve bacteria listed on the website [9] of the World Health Organization 

(WHO), Acinetobacter baumannii, Pseudomonas aeruginosa, and several Enterobacteriaceae are 

considered of “critical” urgency. A. baumannii is an opportunist Gram-negative (GN) path-

ogen that has gained notorious attention because of its high virulence, its multiple mech-

anisms against antibiotics, and great capacity for adaptation to different environments 

[10–13]. Its incidence has been mainly related to pneumonia (associated with the use of 

ventilators), septicemia (due to contamination of central and peripheral airways), and in-

fections at the site of the injuries [14,15]. 

As companies have dropped-out of the research and development (R&D) of new an-

tibacterial drugs and less molecules have been approved by the FDA [16–20], the quest 

for novel potential candidates has decreased. Natural products (NPs) are a promising al-

ternative to the use of traditional drugs because of their vast scaffold diversity and struc-

tural complexity [21]. These properties can be advantageous when comparing to typical 

synthetic small-molecule compounds: high molecular mass [22], large number of sp3 car-

bon and oxygen atoms, which also correlates with low cLogP values (or higher hydro-

philicity) [23–26], and greater rigidity [27]. Nonetheless, identifying bioactive compounds 

of interest is challenging and often takes additional time for isolation, complete character-

ization and, if afforded, full synthesis [28,29]. Several analytical techniques have proven 

to be of relevance for this task, for example, the use of computational resources, which has 

reduced the amount of time and optimization of drug candidates. Quantitative Structure-

Activity/Property relationships (QSAR/QSPR) have allowed the search and optimization 

of better bioactive molecules by determining which physicochemical and structural fea-

tures (molecular descriptors) are key-points for the biological activity [30]. 

Virtual screening (VS) comprises the use of computational tools to search and analyze 

large databases of small molecules, to identify potential bioactive compounds. VS can be 

divided into two major categories depending on the type of information available: ligand-

based virtual screening (LBVS) and structure-based virtual screening (SBVS), both of 

which have been reviewed elsewhere [31–33]. Nevertheless, many other types of tech-

niques have been developed to improve the accuracy of activity prediction. In this sense, 

the use of QSAR/QSPR as an approach for virtual screening of large libraries of small 

compounds has proven to accelerate the rate of the discovery process by reducing the 

number of potential candidates. When comparing the hit rates of techniques like High-

throughput screening (HTS) with the QSAR/QSPR-based virtual screening, it is seen that 

the hit rate of HTS ranges between 0.01% and 0.1%, while for the latter it spans between 

1% and 40%. [34] This has found application in the search of new antimalarial [35], anti-

schistosomiasis [36], anti-tuberculosis [37] and antiviral [38,39] drugs, for which several 

compounds proved to be active. 

Due to the high resistance to different antibiotic treatments caused by A. baumannii, 

worldwide research groups have carried out important efforts in the search for com-

pounds against this pathogen. Most of them have carried out QSAR-type studies to deter-

mine their biological properties based on the molecular structure. However, a problem 

regarding these QSAR models is the use of small sets of compounds, mainly those syn-

thesized and tested in the same work with minor chemical changes at the core structure. 

Furthermore, small datasets considering molecules acting against multiple pathogens 

have the disadvantage that it is necessary to seek/use as many models as possible to de-

termine and predict the antibacterial activity for these sets of compounds. Prado-Prado et 

al., developed a QSAR analysis by introducing entropy-like molecular descriptors for their 

models to predict the antibacterial activity of several drugs against different strains of 

bacteria [40]. Semenyuta and collaborators established several QSAR models for the ac-

tivity of imidazolium ionic liquids with the use of neural networks and random-forest 

regressions [41], allowing them to use multiple molecular descriptors to correlate the 

structure with the bioactivity of these new compounds towards A. baumannii. Nonethe-

less, a main drawback of these QSAR analyses is the use of complex molecular descriptors 

that are often difficult to interpret and handle, limiting their applicability and simplicity. 
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In the present work we have developed a QSPR model of active compounds (from 

synthetic to NPs) against multidrug resistance (MDR) A. baumannii, by means of the ge-

netic algorithms (GA) technique, using several molecular 0D, 1D and 2D-descriptors. The 

QSPR model was employed to identify structural features of the bioactivity compounds, 

within the dataset, that can be associated with their pharmacokinetic aspects (absorption 

and distribution). Therefore, one of the objectives of our QSPR model is to predict the 

entry of the compounds into A. baumannii [42–44]. Then, our QSPR was used to identify 

potential antibacterial candidates from a NP-database. Furthermore, we obtained and car-

ried out the biological evaluation of these candidates, corroborating the prediction of our 

QSPR model. 

 

2. Results and discussion 

2.1. QSPR model validation 

As a first approach, regression models were built using genetic algorithms to select 

the most appropriate descriptors. After selection of the descriptors, multiple linear regres-

sion analysis was performed to generate suitable models that could allow us to categorize 

the biological activity of the dataset. The best QSPR model for antibacterial activity against 

A. baumannii consists of fifteen descriptors as follows: 

pMIC = (0.001±0.000)D/Dr06 + (–0.438±0.004)GATS6m + (0.529±0.004)nArCOOH + 

(1.249±0.005)nRCONH2 + (0.334±0.001)nROR + (–0.429±0.006)nImidazoles + 

(0.115±0.000)nHDon + (–0.204±0.001)nHBonds + (1.257±0.005)C018 + 

(0.476±0.001)C029 + (1.149±0.004)C032 + (–0.105±0.000)H051 + (–0.186±0.001)N075 + 

(–0.555±0.001)N079 + (0.025±0.000)TI2 + 4.292(±0.005) 

(1) 

𝑅2 = 70.278(±0.907); 𝑅2
ADJ = 69.162(±0.973); 𝑎(𝑅2) = 0.014(±0.000);  

s = 0.462(±0.000); F = 62.978(±8.418); 𝑄2
LMO = 67.886(±1.043);  

𝑄2
BOOT = 66.882(±1.104); 𝑄2

EXT = 67.747(±5.414); 𝑎(𝑄2) = -0.068(±0.000);  

𝛿𝐾 = 0.021 (0.000); 𝛿𝑄 = 0.000 (-0.005); 𝑅𝑃= 0.015 (0.100); 𝑅𝑁= -0.008 (-0.054) 

 

All statistical parameters were obtained as their average values (see Table S3), for 

example, the square correlation coefficient ( 𝑅2 ) of 70.278(±0.907), and the 𝑅2
ADJ of 

69.162(±0.973). The Fischer F and the standard deviation (s) are 62.978(±8.418) and 

0.462(±0.000) respectively, indicating that our model is acceptable. Also, redundancy and 

overfitting rules were checked to determine the nature of the descriptors used in the 

model. In this sense, the overfitting rule, 𝑅𝑁 = -0.008 (-0.054), was approved fairly while 

the redundancy rule, 𝑅𝑃  = 0.015 (0.100), indicated that some descriptors, nHDon and 

nHBonds, are correlated to the dependent variable. However, these descriptors cannot be 

removed as they are important for the correct description of our regression model. Fur-

thermore, the prediction ability of the model was validated by the leave-many-out cross-

validation, 𝑄2
LMO = 67.886(±1.043), a value indicating that the regression model has good 

predictive power. The robustness parameter was indicated by the high value of 𝑄2
BOOT = 

66.882(±1.104) based on bootstrapping, which was repeated 5000 times.  

An external validation was essential as a high 𝑄2
LMO only indicates a good internal 

validation, but it does not show a high prediction capability of the created model. There-

fore, for the external validation procedure, 70% of all the molecules in the dataset were 

randomly selected for the training process, and the remaining 30% were used as the test 

set. This process was repeated six times; their plots are shown in Figure 1, with their up-

per/lower confidence intervals at a 95% confidence level. The Y-scrambling test was used 

on the training-test set, giving the new values of 𝑎(𝑅2) = 0.014(±0.000) and 𝑎(𝑄2) = -

0.068(±0.000). These new values were lower than the original ones, confirming that our 

model is reliable. With the same purpose, the Asymptotic 𝑄2 rule, 𝛿𝑄 = 0.000 (-0.005), 

was employed. Therefore, the model in (1) passed all the statistical tests proposed by Roy 

et al. [45–47], as an average value derived from ten experiments shows: (a) 𝑄2 = 

67.88(±1.043); (b) 𝑟2 = 0.679(±0.000); (c) 
𝑟2−𝑟0

2

𝑟2 = 0.001(±0.000); (d) 𝑘 = 0.999(±0.000) (or 

𝑘′ =  0.991(±0.000)); (e) |𝑟0
2 − 𝑟′

0
2

| =  0.127(±0.000). For an acceptable prediction, the 
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value of ∆𝑟𝑚
2 should preferably be less than 0.2, while 𝑟𝑚

2 should be greater than 0.5. 

In our model, ∆𝑟𝑚
2 presents a value of 0.229(±0.000), while 𝑟𝑚

2  has an average value of 

0.552(±0.000). A complete list for each evaluation can be seen in Table S4. 

 

 
 

Figure 1. Scatterplots of predicted pMIC against experimental pMIC values. Blue dots represent 

molecules of the training set (70%), and yellow diamonds depict molecules used for the test set 

(30%). For each plot, the percentage of molecules used in the training and test datasets were ran-

domly chosen. 

 

The applicability domain is graphically depicted by the Williams plot in Figure 2. For 

each compound, the leverage values can be calculated and, by plotting these values 

against the standardized residuals, it is possible to establish the applicability domain of 

the developed model [48]. This allows detection of molecules that our model cannot pre-

dict adequately, thus considered as outliers [49,50], molecules with distinctive structures 

(high leverage outliers, ℎ >  ℎ∗), or those associated to the response (predicted residuals 

> 3*SDEC). All compounds that are outside the limits established by the leverage warning 

and three times the standard deviation in error calculation are outliers. 
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Figure 2. Williams plots for molecules with antibacterial activity against A. baumannii. The dotted 

vertical line in red indicates the warning leverage limit (ℎ∗ = 3𝑝/𝑛, where n is the number of mole-

cules and p is the number of descriptors in the model plus one). The upper/lower dotted horizontal 

lines in black represents the boundaries for which the triple of the standard deviation (3*SDEC) 

value is used. 
 

As seen from the Williams plot, outliers are correlated to the structure of molecules. 

Due to the relative wide variety of molecular structures used in our model, detected out-

liers both from the training and test sets are very different (Figure 3). 

In compound 1, although it shares a similar structure with those of the Batzelladine 

alkaloids’ family used in this model [51], the two cyclic ether-like motifs at the central 

positively charged nitrogen core, as well as two pendant primary aliphatic amine arms, 

are distinctively different from the rest of the analyzed molecules. Compounds 2 and 5 to 

13 are considered as outliers because of the many positively charged nitrogen atoms pre-

sent at the molecules. Two fluoroquinolone derivatives are present as outliers: compound 

3 possesses a 3,5-difluoro-substituted pyridine instead of the common cyclopropyl or 

ethyl groups at nitrogen while compound 4 has a pyridine-type structure at the core as in 

nalidixic acid. These two features are unique among the set of fluoroquinolones used in 

our model. Compounds 14 and 15, being both aminoglycosides, are seen as outliers from 

our model as it is suggested that amino groups are responsible for this distinction. Com-

pound 16 is a flavanone-7-O-glycoside. Although there are many flavanones in the da-

taset, none of them present a disaccharide (or any mono- or polysaccharide), which makes 

16 unique. On the other hand, many examples of substituted triazoles are seen in our 

model, but molecule 17 has a benzotriazole which unique, thus, it is considered as an out-

lier. Even though there are many compounds with aromatic alcohols, 18 (gallic acid) pos-

sess a benzenetriol motif which is not encountered in any other molecule. Structure 19 has 

the hydantoin functional group, which is unique among the set of active molecules against 

A. baumannii. 
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Figure 3. Chemical outliers obtained from the analysis of the Williams plots. 

 

 

To test the reliability of our QSPR model, molecules which were not introduced in 

our initial dataset were employed as an external validation set to obtain their predicted 

pMIC values. Three sets of compounds were used as follows: a) the first set from mole-

cules reported from Matsingos et al. [52]; b) compounds reported by Singh [53], Wang [54], 

and Zhou [55] as the second set, and finally, c) chemical structures described by Lyons 

and collaborators [56]. For the three sets of data there is a good correlation between ex-

perimental and predicted pMIC values, with 𝑅2 values of 72.89, 71.64 and 71.56 respec-

tively. On the other hand, compounds that exhibit, for example, positively charged nitro-

gen atoms like those reported by Vereshchagin and co-workers [57], are not well predicted 

by our model in accordance with the results of the outliers analyzed previously.  

Our model applied to the first set of linezolid analogues with different C5-acylamino 

substituents gives an insight into their structural features. An increase in the pMIC values 

is seen when moving from small-chain alkyl groups to cyclic non-aromatic and finally to 

aromatic substituents. This increase is shown in Figure 4. 
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Figure 4. Scatterplot for molecular data set of linezolid analogues. Selected molecules are displayed 

within the plot showing the change of substituent. 

 

The second set of compounds comprises three different groups of molecules for 

which our model classifies first the divin derivatives, moving into pyrazinoindole ana-

logues, and finally with the subset of 2-aminothiazole sulfanilamide oximes, as seen in 

Figure 5. 

 

 
Figure 5. Scatterplot for molecular data set used the validation for the QSPR model. Selected mole-

cules are displayed within the plots. 

 

The last set of compounds comprises several oxazolidinone derivatives in Figure 6. 

The first molecules are classified in accordance with the structure of the 1,5-naphthyridin-
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2(1H)-one, while the last ones have a 1,8-naphthyridin-2(1H)-one. Molecules at the center 

possess the nitrogen atom at different positions of the quinolin-2(1H)-one core. 

 
Figure 6. Scatterplots for molecular data sets used the validation for the QSPR model. Selected mol-

ecules are displayed within the plots. 

 

2.2. QSPR interpretation 

The understanding of the descriptors presented by the QSPR model allows us to gain 

some insights into chemical features of the molecules used in the model that are relevant 

for their antibacterial activity towards A. baumannii. Equation (1) displays two topological 

descriptors (D/Dr06 and TI2), one 2D-autocorrelation (GATS6m), six functional group 

counts (nArCOOH, nRCONH2, nROR, nImidazoles, nHDon and nHBonds), and six 

atom-centred fragments (C-018, C-029, C-032, H-051, N-075 and N-079), all of them being 

2D-dimensional descriptors. 

The first descriptor in the model is D/Dr06, a topological descriptor. Distance/detour 

ring indices (D/Drk) are calculated by summing up distance/detour quotient matrix row 

sums of vertices belonging to single rings in the molecule. These descriptors can be con-

sidered special substructure descriptors reflecting local geometrical environments in com-

plex cyclic systems [58]. D/Dr06 displays a positive coefficient value, indicating that the 

presence of this descriptor enhances the activity of the molecule. This descriptor appears 

when a 6-membered cyclic structure is present in the molecule. From the set of com-

pounds, most of the cyclic structures belongs to benzene type rings (both carbocyclic and 

heterocyclic). D/Dr06 has been used in similar way for the description of the anticancer 

activity of aromatic molecules [59]. The highest D/Dr06 value belongs to compound 2 

where two adamantyl moieties are present in the molecule. Values of zero correspond to 

molecules which do not display any 6-membered cyclic system, such as compounds 22 to 

25, seen from Figure 7. Furthermore, molecules that display high values of D/Dr06 also 

show high pMIC values. 
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Figure 7. On the top row, the highest D/Dr06 values are displayed for compounds. Below, molecules 

which do not have any 6-membered ring in their structures display a zero value of the descriptor. 

 

The second Mohar index [60], (TI2), is calculated from the eigenvalues of the Lapla-

cian matrix as shown: 

TI2 =
4

nSK − 𝜆nSK−1

 (2) 

 

Where the nSK is the number of non-H atoms and 𝜆nSK−1is the first non-zero eigen-

value. TI2 is a topological descriptor and belongs to the Mohar indices that are related to 

solubility of compounds. In general, it is associated with the size, shape, symmetry, as 

well with branching or cyclicity of the molecule. TI2 shows a positive coefficient value, 

indicating that by increasing the value of the descriptor, the expected pMIC values will 

also increase. This descriptor has been used in the explanation of the activity of diaryl urea 

derivatives [61] and in the QSAR analysis of aminomethyl-piperidones [62].  

The GATS6m [63,64] descriptor belongs to the 2D autocorrelation indices where the 

Geary coefficient is a distance-type function that can be any physicochemical property (w), 

calculated for each atom, such as atomic mass, polarizability, or volume, among others, 

and is represented by (3). By summing the products of a certain property of two atoms 

located at a certain distance or spatial lag (k), a spatial autocorrelation can be obtained. 

 

𝐺𝐴𝑇𝑆(𝑘, 𝑤) =
(

1
2∆𝑘

) ∙ ∑ ∑ (𝑤𝑖 − 𝑤𝑗)
2𝐴

𝑗=1
𝐴
𝑖=1 ∙ 𝛿(𝑑𝑖𝑗 ; 𝑘)

(
1

𝐴 − 1
) ∙ ∑ (𝑤𝑖 − 𝑤̅)2𝐴

𝑖=1

 (3) 

 

Where A is the number of non-hydrogen atoms, 𝑤̅ is the average of the 𝑤𝑖  atomic 

property value, 𝛿(𝑑𝑖𝑗 ; 𝑘) is the Kronecker delta, and ∆𝑘 is the number of vertex pairs at 

distance equal to k. GATS6m is the mean Geary autocorrelation of lag 6/weighted by 

atomic mass, which means that this descriptor considers the atomic mass of any atom in 

the structure at different path lengths (lag) of 6. Strong spatial autocorrelation between 

pair of atoms produces low values of this index. Also, symmetric, or low-branched struc-

tures as well as molecules with low number of heteroatoms (atoms besides C and H) are 

expected to produce low to zero values. The GATS6m descriptor displays a negative co-

efficient in (1), which indicates that by increasing the autocorrelation between pairs of 

atoms considering their atomic masses at a distance of 6 between them, the value of this 

descriptor will increase, causing a reduction in its pMIC value. As seen from Figure 8a, 

there is a homogeneous distribution of the data when plotting the GATS6m descriptor 

against the corresponding pMIC values. Eight molecules from the dataset have a zero 
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value of GATS6m; their structures are displayed in Figure 8b. Furthermore, these mole-

cules are seen to have medium-interval of pMIC (between 3.5 to 5) relative to their location 

in the scatterplot. In Figure 8c, for the molecule with the highest GATS6m-value, selected 

pathways are shown for which the sum of their atomic masses produces the final value. 

 

 
Figure 8. (a) Scatterplot of the GATS6m descriptor vs. the experimental pMIC value of the 592 mol-

ecules. (b) Molecular structures of compounds with zero value of GATS6m. (c) Selected pathways 

used for the calculation of the descriptor. 

 

The next six descriptors belong to the functional-group counts (FGC), which are con-

sidered as indicator variables. Their value will depend on the number of functional groups 

present or absent from the molecule, meaning that not all compounds will feature them. 

The FGC have been used to identify structural features that are important for a property 

of particular interest. Therefore, their presence or absence can significantly alter the pre-

dicted activity in the model. Each FGC descriptor can be easily understood in terms of the 

nature of functional groups. For example, nArCOOH, nRCONH2, nROR, and nImidaz-

oles accounts for the number of aromatic carboxylic acids, the number of aliphatic primary 

amides, the number of aliphatic ethers and the number of imidazole moieties, respectively 

(Figure 9). 

The nHDon indicates the number of hydrogen donor atoms (-NH2 and -OH) for 

which the formation of hydrogen bonds is possible; in the same manner, nHBonds ac-

counts for the number of intramolecular hydrogen bonds that are possible when there are 

acceptor atoms like N, O, or F, as shown in Figure 10. Intramolecular hydrogen bonds are 

crucial for the biological activity of many compounds. It is well stablished that intramo-

lecular hydrogen bond formation can lead to temporarily closed ring systems which are 

more lipophilic in nature, while open forms are exposed to solvent, lending more hydro-

philic character to the molecule [65]. For example, small hydrophilic molecules, such as β-

lactams, use the pore-forming porins to enter cytoplasm/periplasm [66], while hydropho-

bic drugs like macrolides diffuse across the lipid bilayer [67]. In our model, the nHDon 

descriptor displays a positive value, indicating that a high number of donor atoms leads 

to an increase in the biological activity. However, as the nHBonds descriptor possesses a 

negative coefficient, it indicates that as the number of intramolecular hydrogen bonds in-

creases, in part due to a high number of hydrogen donor atoms, the biological activity 

decreases, which is correlated to a more lipophilic nature of the molecules. 
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Figure 9. Functional-group count (FGC) descriptors with some representative molecules for each 

nArCOOH, nRCONH2, nROR, and nImidazoles. The corresponding functional groups are high-

lighted in yellow. 

 

 
Figure 10. Functional-group count (FGC) descriptors with some representative molecules for 

nHDon and nHBonds. Highlighted in yellow are groups for which hydrogen donor atoms are 

counted (nHDon). Red arrows indicate the groups where intramolecular hydrogen bonds are pos-

sible (nHBonds). 
 

Six atom-centred fragment (ACF) descriptors are present. ACF descriptors are based 

on structural fragments which contain the information of the central atom and their bond-

ing neighbors [68–70]. Each ACF is defined by the type of bonding, as well as the number 

and nature of the neighbors bounded to the centered atom. For example, C018 (=CHX) 

corresponds to a sp2 C atom which is single-bonded to a hydrogen and to any electroneg-

ative atom (such as N, O, S, etc). The C029 (R--CX--X) descriptor, for which the “--" repre-

sents an aromatic bond (e.g., benzene) or delocalized bonds (as in the N-O bond in a NO2 
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group), corresponds to a central sp2 C atom that is single-bonded to an electronegative X 

atom, and also both double-bonded to a X atom and a R group, in which their bonds are 

delocalized. The C032 (X--CX--X) descriptor behaves in a similar fashion to C029, but in-

stead of a R group it is replaced by a third X atom. This descriptor has been used also for 

the analysis of chemical features essential for anticoronaviral activity [71]. The H051 de-

scriptor stands for the environment in which a hydrogen atom is bonded. It is defined as 

a hydrogen that is attached to an alpha-C atom; an alpha-C may be defined as a carbon 

connected through a single bond with -C=X (double bond), -C≡X (triple bond), or -C--X 

(aromatic bond), where X represents any electronegative atom, like in the case of alpha-

hydrogens in carbonyl compounds. This descriptor has been used to explain the activity 

of a series of molecules containing nitroaromatics motifs as radiosensitizers [72]. The next 

two descriptors, N075 and N079, are nitrogen based structural fragments. The first one is 

defined as a central sp2 N atom which is bonded to two R groups or to one R and X groups 

(R--N--R or R--N--X), like in pyridine type motifs. This descriptor is particularly important 

as many molecules in our set present these kinds of motifs. The second descriptor is re-

lated to any nitrogen atom which bears a positive charge. Representative examples for 

each of the ACF descriptors are presented in Figure 11. 

 

 

 
Figure 11. Atom-centred fragments (ACF) descriptors with representative molecules which incor-

porate them within their structures. 

 

From a general view, descriptors in Equation (1) can be classified into global and 

indicator variables. Global terms like GATS6m and TI2 are present in the molecule and 

give information of the whole structure, while indicator variables only appear if the mo-

lecular structure contains the motif. Furthermore, descriptors can be associated to the 
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steric and electronic properties of the molecule (D/Dr06, GATS6m, and nImidazoles, as 

well as the six-ACF descriptors), while others are more related to solubility of compounds, 

like in the case of nHDon, nHBonds, TI2, as well as functional groups like nArCOOH, 

nRCONH2, and nROR. Electronic parameters can be associated to atom-centred frag-

ments which indicates the distribution of substituents around a specific atom. As many 

molecules include within their structure specific ACF moieties, their inclusion will lead to 

an increase or decrease in the predicted pMIC value. For example, the three ACF based on 

central carbon (C-018, C-029 and C-032) are positive in their signs indicating that their 

presence enhance bioactivity. Furthermore, as they are carbon ACF descriptors, they can 

be associated with core-structure features. However, H051, N075, and N079 ACF de-

scriptors lead to a decrease in the activity. H-051 recall hydrogen atoms which are reactive 

and hence, they are prone to be abstracted by the use of bases. Nitrogen atoms like those 

described by the N075 descriptor are good hydrogen bond acceptors, leading to the gen-

eration of inter- and intramolecular interactions by the use of their lone pairs of electrons, 

which decreases the solubility of molecules, as stated by the nHBonds descriptor. On the 

other hand, molecules which are well solvated in aqueous media are expected to be high 

in pMIC values. 

Figure 12 shows the percentage of distribution of the descriptors for molecules in the 

dataset. 95.9% of the molecules (568) have the nHDon functional group and almost all 

other descriptors fall within this category. The second major descriptor that appears in the 

dataset is nHBonds with 53.9% of the molecules (319), followed by the N075 descriptor is 

in 278 molecules of the subset (47%). Considering the high number of bioactive com-

pounds which includes a pyridine-fused or pyridine-containing heterocycles, as well as 

their tendency to participate in hydrogen bonding, the presence of this descriptor in great 

percentage is important to account the description of the activity of molecules [73,74].  

 

 
 

Figure 12. Local distribution of descriptors in molecules used in the model. 

 

Some molecules are observed to be outside the boundaries of the nHDon/nHBonds 

descriptors, which agrees with the presence of compounds without donor groups such as 

hydroxyls (-OH), or amines (-NH2), like in natural products. The rest of the molecules are 

located into these major categories, which can be seen adequately in the Venn diagram 

[75–80] in Figure 13. It is also seen that eight molecules lack of the rest of molecular de-

scriptors used in the model. Thus, they are depicted outside the Venn diagram as a sole 

group. 
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Figure 13. Venn diagram showing representative molecules from the dataset classified by the pres-

ence of, at least, one molecular descriptor and their correlations. Molecular descriptors used for 

Venn diagram are nHDon, nHBonds, nArCOOH, nRCONH2, nROR, nImidazoles, C018, C029, 

C032, H051, N075, N079. 

2.3. Virtual screening using BIOFACQUIM dataset 

Once we fully validated our model for antibacterial activity against A. baumannii, we 

proceeded to search for new molecular candidates in an online database of molecular 

compounds. BIOFACQUIM [81] is a Mexican natural product database which comprises 

528 compounds isolated from many plants and other organisms from Mexico. After care-

ful curation of the database and calculation of their descriptors (Table S5), we performed 

the analysis of the molecules using our QSPR model. The predicted pMIC values from 

molecules of the database range between 1.65 and 11.24. Table 1 shows these values for 

the most active molecules, suggested by our model, and depicted for some structures in 

Figure 14. As stated in Equation 1, a high value of the calculated pMIC implies a small 

concentration of the compound, which correlates to an increase in its potency. In this 

sense, desirable molecules should exhibit high pMIC values. 
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Figure 14. Molecular structure of selected natural products. Molecules 32 to 35 and 53 exhibit the 

highest predicted pMIC value. Molecules 27, 36, 37, 46, and 50 show low predicted values according 

to Equation 12. 

 
Table 1. Molecular descriptors values for natural products 26 to 53 with their predicted pMIC value. 

These molecules show the highest values from the BIOFACQUIM database. 

MolID MW D/Dr06 GATS6m nROR nHDon nHBonds C018 H051 N075 TI2 pMIC 

26 274.24 101.297 0.399 1 1 0 1 0 0 1.208 5.910 

27 404.51 208.41 1.05 5 2 2 0 0 0 3.678 5.533 

28 1167.41 1692.143 0.951 12 16 8 0 2 0 8.304 9.049 

29 1195.47 1739.777 0.958 12 16 8 0 2 0 8.397 9.076 

30 1341.63 2360.184 0.965 13 19 10 0 2 0 10.723 9.756 

31 1690.16 2257.102 1.01 14 13 8 0 9 0 6.18 8.879 

32 2473.43 6328.172 1.071 19 16 11 0 10 0 20.998 12.845 

33 2449.3 7015.971 1.082 19 16 11 0 8 0 21.234 13.451 

34 2445.37 6531.924 1.071 19 16 11 0 10 0 21.416 12.972 

35 2501.49 6713.547 1.076 19 16 9 0 10 0 21.566 13.485 

36 272.27 101.297 0.894 1 0 0 1 0 0 1.208 5.579 

37 346.31 89.966 1.133 2 1 0 1 0 0 1.397 5.920 

38 560.71 440.654 0.966 4 8 4 0 0 0 5.474 5.695 

39 250.27 80.687 0.942 1 2 1 1 0 0 1.546 5.580 

40 1151.41 1669.117 0.921 11 16 9 0 2 0 8.266 8.511 

41 1179.47 1715.713 0.923 11 16 9 0 2 0 8.347 8.539 

42 869.18 889.623 0.957 7 10 5 0 2 0 8.006 6.834 

43 1035.28 1396.119 0.967 10 14 8 0 2 0 8.601 7.984 

44 1165.44 1695.422 0.921 11 15 10 0 2 0 8.575 8.216 

45 1193.5 1742.017 0.923 11 15 9 0 2 0 8.623 8.446 
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46 250.27 80.687 0.942 1 2 1 1 0 0 1.546 5.580 

47 1199.65 1656.598 1.024 10 10 7 0 4 0 8.71 7.644 

48 1223.67 1189.333 1.054 10 8 6 0 5 0 5.649 7.156 

49 512.56 409.063 0.805 3 6 2 1 2 1 4.621 6.430 

50 302.36 106.192 1.753 5 2 1 0 0 0 1.027 5.304 

51 1369.82 1718.197 1.079 10 8 6 0 5 0 6.149 7.460 

52 1383.85 1778.609 1.097 10 8 6 0 6 0 6.324 7.386 

53 2795.76 9251.423 1.099 20 16 8 0 10 0 22.254 15.481 

 

Table 1 shows that molecules with the highest predicted pMIC values are compounds 

32 to 35 and 53, which were isolated from several plants of the genus Ipomoea [82,83]. Their 

molecular structures contain several functional groups that contribute to their predicted 

activity. Three important features are observed: 1) all of them have a high number of py-

ranose-like rings, which may contribute to their hydrophilicity properties; 2) most of them 

contain large aliphatic side chains and/or macrocyclic lactone rings, which may contribute 

to their lipophilicity; 3) all of them present at least one terminal ester group which may be 

prone to cleavage by hydrolysis in aqueous media. Molecules 59 to 62 and 64 also exhibit 

terminal carboxylic acid fragments. 

Analyzing these characteristics in our model we can obtain some insights regarding 

the structural information that correlates to the predicted values. For example, all the mol-

ecules exhibit a great number of aliphatic ether groups and, according to our model in 

Equation 12, as the number of aliphatic ether motifs (nROR) increases, the greater their 

activity will be. This is highly correlated to the large number of donor atoms (oxygens) 

and therefore, as the number of nHDon increases, so does the predicted bioactivity. None-

theless, a great number of donor atoms also increases the possible number of intramolec-

ular hydrogen bonds (nHBonds) which, according to our model, diminishes the predicted 

values. Another descriptor that appears to affect the predicted values is H-051 that implies 

the presence of hydrogens attached to alpha-carbon atoms, known as alpha-hydrogens 

(α-H). As the number of α-H increases, the bioactivity tends to decrease. In those mole-

cules that are predicted with the highest pMIC values, ester and carboxylic acid groups 

appear in great numbers, suggesting that this kind of functional groups are not adequate 

for their pharmacokinetic profile, as all of them exhibit α-H. Another feature is the pres-

ence of a high number of pyranose-like rings which are 6-membered rings, thus, the high 

D/Dr06 value displayed. Furthermore, because of their structure, these molecules are 

highly branched which is seen in their high TI2 values. GATS6m is complex in nature but 

correlates well with the molecules under analysis. As the average number of possible 6-

pathways for which heavy atoms can be included, there is a decrease in the predicted 

bioactivity. There are many known bioactive compounds for which their molecular 

masses are substantially high, for example the macrolides and some other natural prod-

ucts like digitoxin [21,22,84,85], thus violating one of the Lipinski’s rules used for the eval-

uation of possible new drugs [86]. Molecules 31, 48 and 53 present relative medium high 

GATS6m values, hence high molecular mass; however, our model predicts elevated pMIC 

for these compounds. This can suggest that there could be a limit in the mass of the mol-

ecule and the number of oxygen atoms or any other heavy element that will cause mole-

cules to be less active. 

 

2.4. Antibacterial activity evaluation 

Having identified molecular properties with potential high activity against A. bau-

mannii from plants, we searched for similar molecules from the same genus of plants Ipo-

moea. Several isolated molecules from plants of the species I. stans, I. purga, I. murucoides, 

and I. tyrianthina [87–89] were subject to treatment with our model to obtain their pre-

dicted values prior to experimental work. Results are shown in Table 2 and Figure 15 de-

picts molecules with the highest and lowest predicted pMIC values. 
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Table 2. Molecular descriptors for natural products 54 to 68 with their predicted pMIC value. 

MolID MW D/Dr06 GATS6m nROR nHDon nHBonds H051 TI2 pMIC 

54 1139.49 637.544 1.05 8 8 4 5 4.452 6.553 

55 1095.43 603.051 1.06 8 7 4 5 4.134 6.406 

56 1155.49 645.374 1.047 8 9 4 5 4.4 6.672 

57 1225.64 1192.314 1.016 10 9 5 7 5.92 7.289 

58 1107.49 600.453 1.072 8 6 5 5 4.095 6.080 

59 1153.38 1669.117 0.957 12 16 11 2 8.266 8.422 

60 334.46 90.65 0.904 2 4 1 2 4.886 4.781 

61 326.33 164.888 1.054 1 5 1 0 4.222 4.733 

62 342.33 166.979 1.09 1 6 2 0 3.98 4.624 

63 1646.15 2393.949 1.019 13 14 12 6 5.644 8.223 

64 1019.28 1307.203 0.962 10 13 6 2 9.197 8.242 

65 855.1 437.562 0.955 8 9 5 2 3.704 6.688 

66 1093.46 601.959 1.069 8 6 4 5 4.081 6.285 

67 1037.39 565.718 1.019 8 7 4 5 4.448 6.410 

68 1123.49 624.213 1.054 8 7 4 5 4.266 6.424 

 

Compounds 59, 63, and 64 exhibit the highest predicted values of pMIC of 8.422, 8.223 

and 8.242. From our QSPR model, we can observe some important features which are 

present in these compounds. First, molecules from 54 to 68 present many aliphatic ether 

groups from the pyranose-type rings, consequently a great number of hydrogen donors 

(nHDon descriptor), which contributes to an increase in its antibacterial activity. As the 

pyranose-type rings are six-membered structures, the D/Dr06 descriptor also promotes a 

rise in the expected pMIC. However, because of the large number of oxygen atoms and 

carbonyl motifs, the nHBonds and H-051 descriptors have a considerable effect in decreas-

ing the predicted pMIC. Furthermore, the value of the calculated GATS6m, compared to 

other molecules, implies a small negative contribution to the predicted activity which is 

balanced by the contribution of the D/Dr06 descriptor. Compounds 60, 61 and 62 (Figure 

15) are predicted to have the lowest pMIC values (4.781, 4.733 and 4.264, respectively). 

This situation is due to the presence of only one pyranose-type ring in each structure, 

hence, only one aliphatic ether group and a reduced number of oxygen atoms. Moreover, 

given their molecular structure (low symmetry), their GAST6m values are also the highest 

among the compounds, thus diminishing the predicted value. Consequently, it is ex-

pected that a great number of pyranose-type rings which do not form intramolecular hy-

drogen bonds are valuable for the antibacterial activity of these compounds. 
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Figure 15. Molecular structure of natural products isolated from different species of Ipomoea. Mole-

cules 59, 63, and 64 display high values of predicted pMIC, while compounds 60 to 62 show the 

lowest values. 

 

 

 

2.5. Glycoside SAR analysis 
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As stated before, the increasing number of multidrug-resistant bacteria represents an 

important risk to human health worldwide. Although A. baumannii represents a serious 

treat, the search for wide-spectrum antibiotics for the treatment of infections caused by 

several of the ESKAPE pathogens is crucial. To determine if the proposed molecules dis-

play antibacterial activity towards this bacterial critical group, the corresponding bioas-

says were tested using clinical isolates which are metallo-β-lactamase producers and re-

sistant to betalactam antibiotics (Table 3). 

 
Table 3. Biological essays for compounds isolated from Ipomoea sp. towards different bacterial 

strains. For each bacterial strain, essays marked as (+) were positive and (-) negative in susceptibility 

tests 

Bacterial strains 

ID 

sample 

E. coli 

ATCC 

25922 

S aureus 

ATCC 

A baumannii 

9736 (1) 

A. baumannii 

10324 

E. coli 

10225 

K.  pneumoniae 

6411 

K. pneumoniae  

3407-2 

P. aeruginosa 

4899 

P. aeruginosa 

4677 

54 - - - - - + - - - 

55 - + - - - + - + + 

56 + + + - - + + + + 

58 - - - - - - + - - 

60 + + + + + + + + + 

61 - - - + - - - - - 

62 - - - + - - - - - 

63 - - + + - - - - - 

64 - - + - - - - - - 

 

From the results, important features arise from the molecular structures of the glyco-

sides. First, molecular structures of compounds 54, 55, 56 and 58 contain the same tetra-

saccharide core which is connected by a macrolactone ring. From 54 to 55, removal of one 

carbon atom, from central 2-methylbutyrate to 2-methylpropionate, increases the activity 

of the glycoside, being active not only to K. pneumonia but also now to P. aeruginosa and S. 

aureus. In compound 56, reinsertion of the carbon atom but with the addition of a hydroxyl 

group at position three of the 2-methylbutyrate group reinforces the activity spectrum by 

being active to A. baumannii, as seen in Figure 16. However, removal of the hydroxyl group 

of the central and outer 2-methylbutyrate groups and addition of one carbon atom of the 

macrolactone ring (from ten atoms to eleven) causes molecule 58 to lose wide spectrum 

activity and to be only active against K. pneumoniae, this suggest that hydroxyl groups, 

located in specific regions of this molecular core, enhance the bioactivity of this set of gly-

cosides. 

Compounds 60 to 62 are the smallest compounds. They share in common a terminal 

carboxylic acid alongside a pyranose-ring. Although 60 has wide antibacterial activity 

against multidrug resistant bacteria, 61 and 62 only display activity against A. baumannii. 

This important loss of activity may be attributed to the removal of the aliphatic chain con-

necting the pyranose ring and the terminal carboxylic acid, being replaced by a more rigid 

phenyl core. Close inspection of compound 63 reveals the structure of compound 60 

within it forming an ester bond at the terminal carboxylic acid group. This feature could 

explain the retained activity against A. baumannii. Similar to this, molecules 54 to 56 share 

common structural features, like at the macrolactone ring with the same set of atoms, the 

lack of hydroxyl groups at the outer methylbutyrates may affect the expected activity. 
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Figure 16. SAR analysis of compounds 54, 55, 56 and 58. Small changes in the structure expand the 

antibacterial activity from 54 to 56. Removal of -OH groups and elongation of the alkyl chain in the 

macrocyclic ring decrease the bioactivity of the molecule. 

 

An insight into the chemical structures of 32 to 35 and 53, the most potent molecules 

according to model in Equation 12, reveals that the core of 60 is present (Figure 17). Fur-

thermore, the macrolactone ring alongside the chiral carbon is also a common feature, 

with the cycle formed of ten or eleven methylene groups as in 54 to 58. This could suggest 

that molecules of the BIOFACQUIM database would also exert antibacterial activity to-

wards A. baumannii and other resistant bacteria. 

 

 
Figure 17. Partial chemical structure of 53 and complete molecule 63. Chemical core of 60 is dis-

played within the other structures. Furthermore, the macrolactone ring is shared between com-

pounds. 

 

One of our remaining questions is which action mechanisms can exert these mole-

cules? In order to propose one, we constructed a simplified version of the Venn diagram 

in which is possible to observe the correlation between the H-051 and the nROR de-

scriptors seen in the isolated molecules. The purpose of this diagram in Figure 18 is to 

identify molecules with known action mechanism and with structural similarity (same 

molecular descriptors) to our compounds. Furthermore, other type of compounds used 

are also part of the inner set of molecules. These compounds have different structural 
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motifs when compared to compounds 54 to 68 and, they present different mechanisms of 

action 

 

 
 

Figure 18. Simplified Venn diagram with representative molecules showing the nHDon, nHBonds, 

nROR and H-051 descriptors which appear in molecules 54 to 68. 

 

From a structural point of view, compounds 56 and 63 resemble those of the macro-

lide antibiotics [85]. Examples of macrolides are Erythromycin A, oleandomycin, 

josamycin, and spiramycin, isolated from different microorganisms, as well as many sem-

isynthetic derivatives like clarithromycin, flurithromycin, and other unique compounds 

like azithromycin. Also, the latest new members, the ketolides and fluoroketolides are also 

structurally related to the macrolide family. As stated above, when comparing the new 

molecules with macrolides, several features are shared (Figure 19). Macrolides are well 

characterized by the presence of 14- to 16-membered macrocyclic lactone ring to which 

one or more deoxy sugars are attached. In the case of compounds like 56 and 63, the mac-

rolactone ring is shown connecting two or three sugar-type rings. Furthermore, because 

of the relative high number of carbonyl motifs in macrolides, α-H are also present in great 

numbers. This is also true for many compounds from 54 to 58 and 65 to 68, where the ester 

group is observed. Moreover, a great number of aliphatic ether groups, and a great num-

ber of oxygen atoms present at the hydroxyl groups and other motifs are also features 

which are in common. Macrolides are potential bacteriostatic compounds, for which one 

mechanism of action relies on binding to the P site on the 50S subunit of the bacterial 

ribosome. Because of this, we can suggest that compounds 56 and 64, among others, could 

exhibit a similar action on bacteria, thus acting as protein synthesis inhibitors 
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Figure 19. Structural comparison between a macrolide (clarithromycin) and compound 63, where 

arrows indicate the descriptors that are shared. 

 

Finally, compound 60 as a small molecule can be considered as a lead compound for 

which specific chemical transformations could improve its efficacy. Moreover, molecules 

isolated from Ipomoea also share within their structures a deoxy-sugar moiety that could 

be relevant for their activity. By close inspection of the fragment, we search for molecules 

in the ChEMBL database for bioactive compounds which incorporate the deoxy sugar in 

their structures. A wide variety of molecules possesses the motif, from anticancer to anti 

allergenic [90–98]. Chemical structures for these compounds can be seen in Figure S3. 

In summary, the model was validated statistically by internal and external parame-

ters, showing good predictive power. This was demonstrated using the model, first ap-

plied to the BIOFACQUIM natural products’ database in the search of potential candi-

dates and finally, by exploring the properties of isolated natural products from Ipomoea 

sp. We observed wide antibacterial spectra activity of compounds 56, 60, and 63 against 

several isolated bacterial strains, which agrees with the properties calculated by the 

model. 

 

3. Materials and methods 

3.1. Data set 

An initial dataset of 944 compounds was obtained from the literature between 1995 

and 2020. These compounds shared the same evaluation method, as follows. To improve 

the reliability of the data, all the compounds were curated [99–101] to point-out outliers, 

uncertainties and potential errors that could affect the models generated at later stages, 

which included: (1) removal of mixtures, salts, and inorganic/organometallic compounds; 

(2) ring aromatization as well as standardization of the carboxyl, nitro, and sulfonyls 

groups; (3) deletion of duplicates and exclusion of stereoisomers of the same compound, 

as 3D-molecular descriptors are not used in this work (see below). After data curation, 

compounds with undefined MIC values and values greater than 300 µg/mL were removed 

[102], leaving a final set of 592 molecules for the generation of the models. Finally, loga-

rithmic transformation of MIC values was achieved to normalize the experimental infor-

mation; a conversion of MIC values from µg/mL to molar concentration (M = mol/L) was 

done, followed by a transformation to pMIC according to: 

pMIC = – log10[MIC] (4) 
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3.2. Calculation of molecular descriptors 

The structures of the molecules of interest were drawn in Avogadro [103,104] and 

MarvinSketch [105] (ChemAxon, Budapest). For the calculation of molecular descriptors, 

the Dragon [106] computational package was employed. For most of the molecules, their 

action mechanism is unknown, as in the case of many natural products. Therefore, be-

cause molecular conformation is not considered, only zero-, mono- and bi-dimensional 

descriptors were calculated. The number of descriptors employed per family for the Ge-

netic Algorithms (GA) technique were as follows: 45 constitutional, 105 topological, 33 

connectivity indices, 96 2D autocorrelations, 21 topological charge indices, 93 functional 

groups, 88 atom-centred fragments, and ten molecular properties. A complete list with 

the molecular descriptors and biological activities reported as Minimum Inhibitory Con-

centration (MIC) in µg/mL are found in the Supplementary Information (SI, Tables S1 and 

S2). 

 

3.3. Generation of the mathematical model 

The regression models were built using GA techniques with the Mobydigs software 

[107]. GA are a statistical method that can be employed for analyzing complex systems 

that correlate with multiple variables. In an analogous manner to genetic evolution, this 

approximation allows the selection of the most suitable mathematical models from a large 

set [108]. Molecular descriptors were used as independent variables and the experimental 

MIC value expressed as pMIC was used as the dependent variable. The selection of the 

best model was based on parameters values such as the coefficient of determination (𝑅2); 

additionally, the standard deviation (s) and the Fischer test (F) were employed. The Y-

scrambling test was used to guarantee that QSPR model was built adequately in terms of 

correlation obtained by chance. This was performed first by randomly permuting the 

pMIC values of the data set and then using the new column of values with the same vari-

ables to generate new models. The procedure was repeated 300 times, and the quality 

parameters of these new models were compared to the original values of the QSPR model: 

if the original model has no chance correlation, the new 𝑅2 and 𝑄2 values calculated for 

the permuted pMIC QSPR models will have a significant difference with respect of the 

original values, otherwise, the model is rejected. Non-collinearity between descriptors is 

determined using the QUIK rule. Accordingly, the QUIK rule is based on the K multivar-

iate correlation index that measures the total correlation of a set of variables as follows: 

 

𝐾 =

∑ |
𝜆𝑗

∑ 𝜆𝑗𝑗
−

1
𝑝

|𝑗

2(𝑝 − 1)
𝑝

 (5) 

where j = 1, … , p and 0 ≤ K ≤ 1  

λ are the eigenvalues obtained from the correlation matrix of the data set 𝑋(𝑛, 𝑝), 𝑛 

represents the number of compounds and 𝑝 the number of variables (descriptors). The 

total correlation in the set given by the model descriptors 𝑋 plus the response 𝑌(𝐾𝑋𝑌) 

should always be greater than that measured only in the set of descriptors (𝐾𝑋). In other 

words, if 𝐾𝑋𝑌 − 𝐾𝑋 < 𝛿𝐾 then the model is rejected. The typical 𝛿𝐾 threshold values for 

models are between 0.01 – 0.05. Models that have negative values are not allowed. In order 

to detect models with an excess of “good” or “bad” descriptors, the redundancy (𝑅𝑃) and 

overfitting (𝑅𝑁) rules were applied. 𝑅𝑃 is defined as: 

𝑅𝑃 = ∏ (1 − 𝑀𝑗 (
𝑝

𝑝 − 1
))

𝑝+

𝑗=1

 (6) 

with 𝑀𝑗 > 0 and 0 ≤ 𝑅𝑃 ≤ 1  

While 𝑅𝑁 is defined as: 
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𝑅𝑁 = ∑ 𝑀𝑗

𝑝−

𝑗=1

 (7) 

where 𝑀𝑗 < 0 and −1 < 𝑅𝑁 ≤ 0  

Given a regression model with 𝑝 variables, 𝑅𝑗𝑦 is the absolute value of the regres-

sion coefficient between the jth descriptors and the response 𝑌. In this sense, 𝑀𝑗 can be 

calculated as follows: 

𝑀𝑗 =
𝑅𝑗𝑦

𝑅
−

1

𝑃
   and  −

1

𝑃
≤ 𝑀𝑗 ≤

𝑝 − 1

𝑝
 (8) 

 

The redundancy rule establishes that if 𝑅𝑃 < 𝑡𝑃, then the model is rejected, where 

depending on the data, 𝑡𝑃, which is a user-defined threshold, can range from 0.01 and 0.1, 

with a suggested value of 0.05. The overfitting rule specifies that if 𝑅𝑁 < 𝑡𝑁(𝜀), then the 

model is rejected. Calculating 𝑡𝑁(𝜀) follows: 

 

𝑡𝑁(𝜀) =
𝑝𝜖 − 𝑅

𝑝𝑅
 (9) 

Where values of 𝜀 can range from 0.01 to 0.1 and 𝑝 is the number of variables. 

 

3.4. QSPR validation of prediction capability 

The model reported herein was validated internally by the leave-many-out cross-val-

idation method (𝑄2
LMO ) for which the data set was randomly divided into a training set 

(415 molecules) and a test set (117 molecules) which represented 70% and 30%, respec-

tively of the complete data set. The robustness of the model was further evaluated by 

bootstrap (𝑄2
BOOT ) and 𝑄2

EXT . The predictive ability validation was performed by apply-

ing the Asymptotic 𝑄2 rule (𝛿𝑄). It is assumed that a good model should have a small 

difference between fitting and predictive ability, in which significant variations between 

the 𝑅2  and 𝑄2  values can be due to overfitting or to some not predictable samples 

[109,110]. The Asymptotic 𝑄2 rule evaluates the asymptotic 𝑄2 versus the 𝑄2 values of 

the model: 

𝑄2
𝐿𝑀𝑂 − 𝑄2

𝐴𝑆𝑌𝑀 < 𝛿𝑄 (10) 

If the difference is less than the threshold, typically 𝛿𝑄 = −0.005, then the model is 

rejected. As 𝑄2
LMO is asymptotically related to the value of 𝑅2, it is possible to calculate 

the 𝑄2
ASYM by using the following expression: 

𝑄2
𝐴𝑆𝑌𝑀 = 1 − (1 − 𝑅2) (

𝑛

𝑛 − 𝑝′
)

2

 (11) 

Where n is the number of objects and 𝑝′ the number of model parameters. To further 

evaluate the predictive applicability of the model, some statistical parameters developed 

by Roy et al. were used [45–47]. According to the statistical parameters, the following cri-

teria must be present for each evaluation as shown: (i) 𝑄2 > 0.5; (ii) 𝑟2 >  0.6; (iii) (𝑟2 −

𝑟0
2)/𝑟2 < 0.1  (or (𝑟2 − 𝑟′

0
2

)/𝑟2  <  0.1); (iv) 0.85 ≤  𝑘 ≤  1.15  (or 0.85 ≤  𝑘′ ≤  1.15) 

and (v) |𝑟0
2 − 𝑟′

0
2

| < 0.3. Additionally, two parameters derived from the above, 𝑟𝑚
2 and 

∆𝑟𝑚
2 were also used to evaluate the predictive power of the model [111]. According to, 

𝑟𝑚
2 follows that: 

𝑟𝑚
2 =

(𝑟𝑚
2 + 𝑟′

𝑚
2

)

2
 (12) 

Where 𝑟𝑚
2 is calculated as: 

𝑟𝑚
2 = 𝑟2 (1 − √𝑟2 − 𝑟0

2) (13) 
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and where: 

𝑟′
𝑚

2
= 𝑟2 (1 − √𝑟2 − 𝑟′

0
2) (14) 

 

While according to (15), ∆𝑟𝑚
2 is obtained by the following expression: 

∆𝑟𝑚
2 = |𝑟𝑚

2 − 𝑟′
𝑚

2
| (15) 

The calculation of the 𝑟2, 𝑟0
2, 𝑟′

0
2, 𝑘 and 𝑘′ are shown in the SI. 

 

3.5. External validation 

The generated model was validated externally by the prediction of different sets of 

molecules which were not included in the generation of the model with the following 

specifications: (1) only molecules with reported MIC values and active towards A. bau-

mannii were used; and (2) molecules above 300 µg/mL were excluded. Data curation, as 

stated above, was performed on a total of 98 molecules, which were drawn in Avogadro 

and their molecular descriptors obtained from the Dragon software package. A complete 

list of descriptors and references can be found in the SI, Table S5. 

 

3.6. Virtual screening 

528 natural products were obtained from the molecular database BIOFACQUIM. To 

improve the consistency of the data, all the compounds were curated by (1) ring aromati-

zation, (2) standardization of the carboxyl, nitro and sulfonyls groups if present, and (3) 

addition of missing bonds where required. The structures of the molecules of interest were 

drawn in Avogadro and their molecular descriptors were obtained from the Dragon soft-

ware package. A complete list of descriptors can be found in Table S6. 

 

3.7. Plant material 

Roots of Ipomoea stans were collected in the state of Puebla, México. Botanical classi-

fication was carried out by M. Sc. Abigail Aguilar, Head of the Instituto Mexicano del 

Seguro Social Herbarium in Mexico City (IMSSM), and a voucher specimen (number 

15077) is deposited at IMSSM. Exudates from the bark of Ipomoea murucoides were col-

lected manually in the campus of the Universidad Autónoma del Estado de Morelos 

(UAEM), in Cuernavaca, Morelos, México. The plant material was identified by Biol. 

Alejandro Flores, and a voucher specimen (No. 22444) was deposited at the Herbarium of 

the Centro de Investigación en Biodiversidad y Conservación, UAEM. Roots of Ipomoea 

purga were authenticated and donated by M. Sc. Abigail Aguilar, Head of the Instituto 

Mexicano del Seguro Social Herbarium in Mexico City (IMSSM). A voucher specimen 

(number 16180) is deposited at IMSSM. 

 

3.8. Extraction and isolation of compounds 

The dried, powdered roots of I. purga and I. stans (250.0 g each one) were extracted 

by maceration with MeOH (500 ml × 3), to obtain a dark syrup (25.0 g I. purge, and 20.4 g 

I. stans). The dark syrups were extracted with distilled water (3 × 50 ml) and dichloro-

methane (DCM, 3 × 50 ml), to afford a dark solid (9.3 g I. purga, and 7.6 g I. stans). The dark 

solids (1.0 g I. purga, 1.1 g I. stans) were submitted to a C18 column (Supelco, 10 × 15 mm) 

with a gradient of MeOH:H2O (0:100 to 100:0, at increments of 10%), fractions were col-

lected and (0.7 g I. purga, 0.6 g I. stans) was obtained. The resinous solids were percolated 

on an activated charcoal column, eluting with MeOH. Fractions of 5 ml were collected and 

reunited giving the convolvulin (0.42 g I. purga, and 0.32 g I. stans). Convolvulin of I. purga 

was chromatographed on normal and inverse phase silica gel column, using as mobile 

phase DCM/MeOH/H2O (84:14:2) respectively with MeOH gradient, yielding 80 mg IP-

JALB (compound 63). From the convolvulin of I. stans in the same conditions, 30 mg of 

ISACAF (compound 62) and 27 mg ISACAR (compound 61) were obtained. Exudates 

from the bark of Ipomoea murucoides (15 g) were dried, ground, and dissolved in MeOH to 
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give, after filtration and removal of the solvent, a brown solid material (10 g). The brown 

solid was dissolved in a mixture of CHCl3:MeOH (9:1). This solution was subsequently 

subjected to passage over a silica gel column eluted with a gradient system of 

CHCl3:MeOH (from 9:1 to 7:3), leading to the separations of two chromatographic frac-

tions. Purification of the less polar chromatographic fraction was carried out by prepara-

tive HPLC. Eluates with retention time, tR, value of 23.5 min were collected and reinjected 

into the HPLC system to achieve pure IM620 (compound 57). The rest of compounds 

tested for biological essays were given by Dr. Ismael León, purified by similar methods, 

and used as received. 

 

3.9. Bacterial strains 

Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 29213 were purchased 

from the American Type Culture Collection. MDR clinical isolates, which are non-suscep-

tible to at least one agent in three or more antimicrobial categories and cause nosocomial 

infections, were obtained from the Center for Research on Infectious Diseases collection 

of the National Institute of Public Health (Instituto Nacional de Salud Pública), Cuerna-

vaca, Morelos, Mexico. The various strains include the following isolates: A. baumannii 

9736 and 10324, E. coli 10225, K. pneumoniae 6411 and 3407-2 and two P. aeruginosa 4899 

and 4677. These isolates are metallo-β-lactamase-producers and are resistant to all beta-

lactam antibiotics including cephalosporins and carbapenems. 

 

3.10. Antibacterial assays 

The antibacterial activity of the compounds was qualitatively measured following 

the Kirby–Bauer method (1996), according to the CLSI (Clinical and Laboratory Standards 

Institute) recommendations [112]. Briefly, Petri dishes containing Müeller-Hinton agar 

were sown with bacteria inoculums from 1 to 2×108 colony-forming units (CFU)/ml, and 

then 3 μl of compound solution was placed over the agar. Incubation time was from 16 to 

19 h at 35 ± 2 °C. A halo of growth inhibition was observed as a positive result. Two ref-

erence susceptible strains were used: E. coli ATCC25922 and S. aureus ATCC 29213. 

4. Conclusions 

There is a great number of compounds that have been biological tested as antibacte-

rial against A. baumannii. Nevertheless, a careful selection of them needs to be done before 

their use for the generation of a QSPR/QSAR model. Our QSPR model comprises fifteen 

2D-dimensional descriptors: one 2D-autocorrelation, two topological, six functional 

group counts, and six atom-centred fragments descriptors. These molecular descriptors 

were used to describe their suitability as antibacterial compounds against A. baumannii. 

Additionally, our QSPR model prediction ability, which was fully evaluated by means of 

different test and validation sets of molecules, allowed us the identification of antibacterial 

compounds against A. baumannii by means of a virtual screening of the BIOFACQUIM 

database, an interesting source for potential bioactive compounds. The identified com-

pounds, isolated from Ipomoea sp., indicated specific molecular features consistent with 

antibacterial activity. Furthermore, our model proved to be predictively reliable by iden-

tifying compounds isolated from local collections of Ipomoea sp. that showed promising 

wide antibacterial spectrum. Upon experimental testing, compound 60 showed wide an-

tibacterial activity against clinically isolated multidrug resistant bacteria. Its structure can 

be found in other compounds also isolated from Ipomoea, as in the case of molecule 63. 

Molecule 60 could serve as a lead compound for the development of new compounds with 

possible wide spectrum antimicrobial activity. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1. Scatterplots and Williams plots for each training-test experi-

ment; Figure S2. Scatterplots for each of the molecular descriptors against experimental pMIC; Fig-

ure S3. Chemical structures from them ChEMBL database which incorporates the deoxy-sugar moi-

ety found in compound 60; Table S1. Complete list of descriptors from Dragon package; Table S2. 

List of molecules used for the generation of the QSPR mode; Table S3. Average values for each 
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molecular descriptor; Table S4. Statistical parameters for the evaluation of the predictive power; 

Table S5. List of molecules used for the validation tests sets, their calculated molecular descriptors 

and predicted pMIC values; Table S6. List of molecules from the BIOFACQUIM database and their 

calculated molecular descriptors and predicted pMIC values.  
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