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Simple Summary: MR-Class is a deep learning-based MR image classification tool for brain images 

that facilitates and speeds up the initialization of big data MR-based studies by providing fast, 

robust and quality-assured imaging sequence classifications. Our studies observed misclassification 

rates of up to 10% due to corrupt and misleading DICOM metadata. This highlights the need for a 

tool like MR-Class to help with data curation. MR-Class can be integrated into workflows as a 

DICOM inconsistency check and flagging or a "fill in the gaps" solution where DICOM metadata is 

missing and thus contribute to the faster deployment of clinical artificial intelligence applications. 

Abstract 

 

Background: MR image classification in datasets collected from multiple sources is complicated by 

inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for the 

efficient automatic classification of MR brain sequences.                                                                                                                                                                                             

Methods: Deep convolutional neural networks (DCNN) were trained as one-vs-all classifiers to 

differentiate between six classes, T1 weighted (w), contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, 

and SWI. Each classifier yields a probability, allowing threshold-based and relative probability 

assignment while excluding images with low probability (label: unknown, open-set recognition 

problem). Data from three high-grade glioma (HGG) cohorts was assessed; C1 (320 patients, 20101 

MRI images) was used for training, while C2 (197, 11333) and C3 (256, 3522) were for testing. Two 

raters manually checked images through an interactive labeling tool. Finally, MR-Class' added value 

was evaluated via radiomics models' performance for progression-free survival (PFS) prediction in 

C2, utilizing the concordance index (C-I).                                                                                                      

Results: Approximately 10% of annotation errors were observed in each cohort between the DICOM 

series descriptions and the derived labels. MR-Class accuracy was 96.7% [95%-Cl: 95.8, 97.3] for C2 

and 94.4% [93.6, 96.1] for C3. 620 images were misclassified; Manual assessment of those frequently 

showed motion artifacts or alterations of anatomy by large tumors. Implementation of MR-Class 

increased on average the PFS model C-I by 14.6% compared to a model trained without MR-Class. 

Conclusions: We provide a DCNN-based method for sequence classification of brain MR images 

and demonstrate its usability in two independent HGG datasets. 
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1. Introduction 

An essential step in the data preparation phase of MRI-based artificial intelligence 

(AI) applications and studies is accurately classifying MR images since each image 

communicates specific anatomical or physiological information [1]. An example is brain 

tumor segmentation algorithms requiring information from multiple MR modalities, as 

distinguishing between healthy brain tissue and tumors is often challenging. However, 

assuring that the right sequences are used for analysis (classification of sequences) might 

be a tedious and time-consuming task, especially when dealing with a large amount of 

data from various sources (multiple scanners, multiple treatment centers) due to possible 

inconsistent naming schemes. In particular, retrospective data collection yields additional 

challenges (non-prespecified protocols and sequences). 

Gueld et al. demonstrated that classifying medical images based on image metadata 

(i.e., based on information stored in the DICOM header) is often unreliable [2]. DICOM 

tags and the actual examination protocols applied are not always consistently matched. 

This is mainly done to improve imaging quality, for example, the implementation of 

different body region imaging protocols due to variabilities and differences among 

patients' anatomies [2]. Harvey et al. report data labeling as the costliest part of radiomics 

studies [3] and that consistent and unbiased labeling should be performed across the 

entire dataset to yield robust machine learning models [3]. However, this can be 

challenging when large amounts of data are considered. Therefore, automatizing medical 

image retrieval and classifying data based on the content would be beneficial in terms of 

time efficiency, accuracy, and, ultimately reproducibility. 

Compared to text-based image classification, content-based image classification 

(CBIC) is independent of inconsistencies between different image sources, is not affected 

by human error, and is less labor-intensive [4]. CBIC methods for medical images include 

the use of traditional classification machine learning techniques such as K-nearest 

Neighbor (kNN) [5], support vector machine [6] (SVM), as well as deep learning methods 

[7]. After the success of the deep convolutional neural network (DCNN), AlexNet [8] in 

the ImageNet [9] classification challenge, an increase of interest in DCNN has been seen 

when dealing with image classification tasks [10–12]. In the context of medical image 

retrieval and classification using DCNNs, four different studies have been identified for 

the classification of body organs and MR images (Accuracy >90%) [13-16]. A summary of 

these models can be seen in Supplementary-Table S1. A limitation of these methods is the 

inability to deal with the open-set recognition problem, i.e., the failure of a network 

trained to classify between a specific number of classes to handle unknown classes [17]. 

The open-set recognition problem is a common issue when dealing with clinical cohorts 

since datasets exported from the hospitals' Picture archiving and communication system 

(PACS) usually include all available medical images and data, resulting in various 

medical image modalities and sequences. 

In this work, we tackle this problem by training a DCNN-based MR image classifier 

(MR-Class) using a one-vs-all approach. One-vs-all classification is implemented to deal 

with the open-set recognition problem and thus would enable the handling of unknown 

classes. A comparison study of the published DCNNs (mentioned above) for medical 

image classification was first performed to determine the adopted DCNN model. Then, 

one-vs-all binary class-specific DCNN classifiers were trained to recognize a particular 

MR image, thus forming MR-Class. 
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2. Materials and Methods 

2.1 Datasets 

This study included three datasets: The training/validation cohort (C1) consisted of 

320 primary/recurrent high-grade glioma (HGG) patients with a median of 9 image 

acquisition time points, resulting in 20101 MR images acquired between 2006 and 2018. 

The dataset was collected retrospectively from 23 scanners at the Heidelberg University 

Hospital (UKHD). The first testing cohort (C2) consisted of 197 HGG patients, with a 

median of 7 time points resulting in 11333 images acquired between 2009 and 2017. The 

dataset was collected retrospectively from 15 different scanners at the UKHD. A public 

data cohort (C3) was also utilized for the second testing of MR-Class. The data cohort was 

retrieved from the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) data 

collection [18]. The cohort included scans from 256 GBM patients with a median of 3 time 

points, resulting in 3522 MR images acquired between 1986 and 2019 and collected from 

17 scanners. Patient demographics of all three cohorts can be seen in Supplementary Table 

S2. 

2.2 MR scans 

Multiparametric MRIs (mpMRI) were collected from multiple scanners in all three 

datasets, resulting in heterogeneous modalities and MR sequence protocols 

(Supplementary-Table S3). Conventional multislice (2D) acquired in the axial, sagittal, or 

coronal plane, as well as 3D scans, are present. The MR sequences found in the cohorts 

are the widely used sequences for brain tumor imaging [19] in clinical routines and trials 

[20–22]. All MR images found in the training cohort were included in the training. 

However, one-vs-all DCNN classifiers were only trained for T1w, contrast-enhanced T1w 

(T1wce), T2w, T2w fluid-attenuated inversion recovery (FLAIR), apparent diffusion 

coefficient (ADC), and susceptibility-weighted imaging (SWI). No SWI scans were found 

in C3. The in-plane resolution ranged from 0.33 x 0.33 to 2 x 2 mm for C1, 0.45 x 0.45 to 

1.40 x 1.40 mm for C2 and 0.45 x 0.45 to 1.14 x 1.14 mm for C3. Slice thickness ranged from 

0.9 to 7.5 mm in all MR scans. Human experts manually labeled each MR image through 

an in-house interactive labeling tool. The DICOM attributes "Series Description" (SD) and 

"Contrast/Bolus Agent" DICOM attribute were then extracted and compared to the 

derived labels to evaluate the metadata's consistency. Sample images found in the training 

and testing cohorts are shown in Figure 1.  
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Figure 1. Sample images of the different MR images present in the three datasets C1-C3. 

2.3 DCNNs comparison study 

In the context of medical image retrieval and classification using DCNNs, three 

different DCNNs are present, i.e., ResNet-18 [14], Φ-Net [15], and DeepDicomSort [16]. 

Hence, a comparison study was performed where the architecture that showed the highest 

classification accuracy was adopted in the one-vs-all training approach. Both 2D and 3D 

ResNet-18 were considered. C1 was used for training, while C2 was for independent 

testing. C3 was not included in the comparison study as it did not contain all considered 

MR scans. The comparison study was only performed with the images belonging to one 

of the six classes considered, resulting in 11246 MR from C1 (8997/80% for training, 

2249/20% for validation) and 8326 MR from C2 for testing. 

Brief descriptions of the exemplary models behind Φ-Net and DeepDicomSort are 

given. Visual Geometry Group (VGG) was introduced in 2014 by Simonyan and 

Zisserman in a paper titled "Very Deep Convolutional Networks for Large-Scale Image 

Recognition" [23]. The VGG network architecture is simple, formed by 3x3 convolutional 

layers stacked on top of each other as depth increases, pooling layers, and fully connected 

output layers. Residual Networks (ResNet) were introduced in 2015 to deal with the 

degradation problem, i.e., the degradation of the network accuracy as the depth of the 
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network increases [24]. Besides the usual DCNN architecture for classification purposes 

(alternating stack of convolutional, activations, and pooling layers), ResNet introduces 

skip-connections that skip one or more layers. These skip connections fit the unmodified 

input from the previous layer to the next layer, preserving the original image signal by 

performing identity mapping. This results in preserving the norm of the gradient and 

solving the degradation problem. A softmax layer is appended to the end layer to produce 

probabilistic predictions of the classes. Schematics of the ResNet and VGG architectures 

are shown in Supplementary-Figure S1. Besides the dimensionality increase, no changes 

were applied to the 3D ResNet-18 architecture. Diagrams and explanations of the 

architectures of Φ-Net [14] and DeepDicomSort [16] are presented in the authors' original 

papers. 

2.3.1 Data preprocessing 

Before training, different preprocessing steps were implemented. For the DCNNs 

trained with Φ-Net and DeepDicomSort, the preprocessing pipelines provided by the 

authors' GitHub pages were used. As for the 2D and 3D ResNet-18 DCNNs, magnetic 

field inhomogeneities of the T1w images were first corrected using the N4ITK algorithm 

[25]. After reorienting to a common orientation, in-plane cropping was performed to 

remove background voxels. Then, to account for resolution variability, all MR scans were 

resampled to a uniform pixel spacing of 2x2 mm2, and volumes were interpolated to a 2-

mm slice thickness. Images were then cropped around the brain into a digital grid of 

224x224x224. Padding was performed when the image shape was smaller than the target 

grid. Lastly, a z-score normalization of the brain voxels was applied to bring all MR 

images to the same intensity scale. The formula of the Z-score normalization is as follows: 

𝒙− 𝝁

𝝈
= 𝒛 (1) 

where x is the voxel intensity, μ is the mean of the intensity distribution, and σ is the 

standard deviation.  

2.3.2 DCNNs training and testing.   

The 2D and 3D ResNet-18 DCNNs were trained using the deep learning Python 

library PyTorch (1.7.1) [26]. A stochastic gradient descent optimizer with a momentum of 

0.9 was used with a learning rate scheduler that started with 0.001 and decayed by 0.1 

when the training loss did not decrease during three epochs. A categorical cross-entropy 

loss was considered as the loss function. A learning rate scheduler with a patience number 

of 3 was used. Early stoppage was performed when no improvement in the loss was 

observed for five successive epochs. The maximum number of epochs was 100. The batch 

size was 5 for the 3D ResNet and 50 for the 2D ResNet. The 2D ResNet-18 training included 

ten slices around the middle slice, extracted from the corresponding preprocessed MR 

scan acquisition plane. Φ-Net and DeepDicomSort were trained through the training code 

provided by the authors' GitHub pages. All 4 DCNNs were finally tested on the 

independent C2, with the 2D DCNNs classifying an MR image as a class through a 

majority vote (25 slices for DeepDicomSort, 10 slices for the 2D ResNet-18).  

2.4 MR-Class: one-vs-all DCNNs  

MR-Class consists of multiple one-vs-all binary classifiers rather than a single multi-

class classifier, i.e., a classifier trained to classify all classes (as performed in the 

comparison study). The intuition behind training multiple one-vs-all DCNN is the open 

set recognition problem and that training a DCNN image classifier on every possible MR 

image is cumbersome. The architecture adopted for MR-Class was as of the DCNN, which 

showed the highest accuracy in the comparison study. The training was performed twice 

using scans from C1. The first training included all MR images available in the dataset, 
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while the second was performed only with the image volumes of the six considered 

classes (same images included in the comparison study during training). The latter was 

performed to obtain a fair comparison of the performance of the one-vs-all dual-class 

classifiers (MR-Class) against a multi-class DCNN classifier, both trained on the same 

number of images. Classes for each binary classifier were defined as follows: class 1 

included all images corresponding to the targeted class, whereas class 0 contained all 

remaining images in the dataset. A stratified (by class) 80%-20% dataset split was used for 

training and validation (Table 1).  

Table 1. Number (%) of MR images from the training cohort C1 considered for each one-vs-all DCNN 

classifier. T2w-FL: T2-FLAIR 

 Training Validation 

DCNN classifier 
Targeted  

class 

Remaining  

images 

Targeted  

class 

Remaining  

images 

T1w-vs-all 3152 (15.7) 12929 (64.3) 788 (3.9) 3232 (16.1) 

T2w-vs-all 1576 (7.9) 14505 (72.1) 394 (2.0) 3626 (18.0) 

T2w-FL-vs-all 1535 (7.6) 14546 (72.4) 384 (1.9) 3636 (18.1) 

ADC-vs-all 1550 (7.7) 14530 (72.3) 388 (1.9) 3633 (18.1) 

SWI-vs-all 1183 (5.9) 14898 (74.1) 296 (1.5) 3724 (18.5) 

2.4.1 Training and preprocessing 

The preprocessing and training approach implemented for the 2D/3D ResNet-18 are 

likewise applied for the one-vs-all DCNNs. However, further steps were taken to address 

the imbalanced classes arising from the one-vs-all classification design. First, data 

augmentation was implemented using the TorchIO python library [27]. Specifically, the 

transformations implemented included adding random Gaussian noise, blurring, 

performing random affine or elastic deformations, and adding random MR motion 

artifacts like motion, ghosting, or spikes. Second a weighted binary categorical cross-

entropy loss was used, where the weights of a class were equal to the size of the largest 

class divided by the size of that specific class. For example, for the T2w-vs-all DCNN, if 

class T2w has 1970 and class all has 18131 MR images, the weights would be 9.2 and 1.0, 

respectively. Finally, the learning rate scheduler was adjusted to decay based on the 

targeted class training loss instead of the loss of both classes. A summary of the training 

workflow can be seen in Figure 2.  
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Figure 2. MR-Class training workflow. MR-Class comprises five one-vs-all DCNNs, one for each 

class, and the T1w-vs-T1wce binary DCNN. After MR image preprocessing, each DCNN was 

trained with an 80%/20% training/validation split, with class 1 representing the DCNNs' target class 

and 0 for the rest. For the T1w-vs-T1wce DCNN, class 0 was assigned T1w and 1 for T1wce. T2w-

FL: T2w-FLAIR, T1wce: T1w contrast-enhanced. 

2.4.2 Inference and testing.  

C2 and C3 were used to perform independent testing of MR-Class. In inference 

mode, the MR images were preprocessed (same as in training) and fed to each DCNN 

classifier to infer the corresponding class. A classification probability threshold of 0.95 was 

used. The cutoff threshold value was determined based on the distribution of the 

probabilities of correct and wrong labeled images when C1 was inferred back to MR-Class 

(Figure 5). If an image is labeled by more than one classifier, the classifier with the highest 

probability determines the class. If none of the classifiers labels an image (i.e., assigned to 

class 0 by each classifier), it is unclassifiable. The 2D DCNNs classify an MR scan as a class 

using a majority vote of 10 inferred slices extracted around the middle slice of the 

corresponding MR acquisition plane. Figure 3 shows a summary of the inference 

workflow.   
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Figure 3. MR-Class inference workflow. C2 and C3 were used to test MR-Class. After preprocessing, 

MR images are passed to the 5 one-vs-all DCNN classifiers. A classification probability threshold of 

0.95 was used. If none of the classifiers label an image, it is rendered as other. If more than one 

classifier labels a specific image, then the image is labeled by the classifier with the highest 

probability. 

Classifications were compared to ground truth labels, where the number of correct 

predictions divided by the total number of images derived the accuracy. The 95% 

confidence interval (CI) was calculated as the Wilson interval [28]. Classification 

sensitivity and specificity were calculated to evaluate the performance of each classifier. 

Lastly, the misclassified images were analyzed to identify the causes of misclassifications. 

2.5 MR-Class application: progression-free survival prediction modeling 

 To demonstrate the applicability of MR-Class in MR-based radiomics applications, Cox 

proportional hazard models (CPHs) were trained with the T1wce MR sequences of cohort 

C2 to predict the patients' progression-free survival (PFS) after performing a text-based 

curation using the DICOM SDs and a content-based curation using MR-Class [29]. PFS 

was calculated as the number of days between the beginning of the radiotherapy 

treatment and disease progression. Progression events were derived from the clinical 

follow-ups' reports. After performing a series of preprocessing steps on both curated 

datasets (DICOM SD-based and MR-Class-based curated datasets), radiomics features 

were calculated automatically from the gross tumor volume (GTV) segmentations 

extracted from the DICOM RT structure set and the original image, as well as from 

derived images (Wavelet and Laplacian of Gaussian filtering) from each dataset using 

Pyradiomics (v 3.0) [30]. The image preprocessing diagram is shown in Supplementary 

Figure S3. The different feature classes and corresponding feature numbers can be seen in 

Supplementary Table S5. A Spearman rank-order correlation coefficient was next used on 

the total number of features to exclude redundant features (rs>0.80). Three feature 

selection methods, including a univariate analysis under Cox proportional hazard (CPH) 

models (P<0.05), a random forest (RF) -based method, and lasso regression, were applied 

on 1000 random subsamples of the text-based curated and MR-Class curated T1wce 

datasets (10% left out) separately to identify features correlated to PFS. Significant features 

identified at least 950 times were selected, and survival analyses were conducted using 

CPH. Model performances were finally evaluated based on the resampled concordance 

index (C-I). 
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3. Results 

3.1 Metadata consistency 

Between all three datasets, 2704 different DICOM SDs were found (an overview of 

the number of SDs found for each MR scan is shown in Supplementary Table S4). 11.4%, 

10.6%, and 10.7% of the SDs for C1, C2, and C3, respectively, had misleading or 

inconsistent entries, not allowing for the proper identification of the MR image class 

(Table 2). 

Table 2. Percentage of labeling errors for each class considered in all three cohorts. T2w-FL: T2w-FLAIR 

 C1 C2 C3 

 n % error n % error n % error 

T1w 2023 15.1 1189 11.2 433 13.4 

T1wce 1917 13.9 4315 13.4 1096 9.9 

T2w 1970 9.3 630 11.7 347 10.3 

T2w-FL 1919 7.2 811 10.5 389 8.2 

ADC 1938 7.6 895 8.4 122 5.5 

SWI 1479 6.3 486 6.6 - - 

Other 8855 13.1 3007 7.3 1135 12.1 

All 20101 11.4 11333 10.6 3522 10.7 

 

3.2 DCNN comparison study 

Table 3 summarizes the testing C2 MR scan classification accuracies of all four 

multi-class DCNN classifiers. 

Table 3. Classification accuracy of the different DCNN architectures in study. T2w-FL: T2w-FLAIR 

      2D-ResNet DeepDicomSort Φ-Net 3D-ResNet 

T1w 98.4 98.8 97.7 96.5 

T1wce 97.4 95.2 97.5 96.2 

T2w 98.1 97.2 96.6 97.1 

T2w-FL 99.7 99.4 96.5 98.7 

ADC 99.9 99.3 98.5 99.2 

SWI 98.2 98.5 97.5 98.9 

All 98.6 98.1 97.4 97.8 

All classifiers achieved high comparable accuracy, with the 2D ResNet-18 having the 

highest overall accuracy of 98.6%. The training took 18-20 hours for the 3D DCNN (Φ-Net 

and 3D ResNet-18) and 8-10 hours for the 2D DCNN (DeepDicomSort and 2D ResNet-18) 

on an Intel Xeon processor with 8 cores and 32 Gb of RAM and a graphics card NVIDIA 

GeForce GTX 1060 (6 Gb). The average inference time is 0.15 s for a single 2D slice and 

4.92 s for a 3D image. Thus, the DCNN one-vs-all architecture implemented in MR-Class 

was that of the 2D ResNet-18 (a schematic representation is shown in Figure 4). 
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Figure 4. The one-vs-all ResNet-18 architecture. An alternating stack of convolutional activations 

and pooling layers. The skip connections (arrows) fit the unmodified input from the previous to the 

next layer, preserving the original image signal. FC (2) is a fully connected layer with two neurons 

as output, representing the sequence and the other possible sequences. 

3.3. MR-Class: one-vs-all DCNNs 

Table 3 summarizes the classification accuracies in the validation sets of all six 

DCNN classifiers on C1.  

Table 3. Validation classification accuracies of all six binary DCNN classifiers on C1. T2wFL: T2w-

FLAIR 

Classifier Val Acc (%) Classifier Val Acc (%) 
T1w-vs-all 99.1 T2wFL-vs-all 99.4 

T1w-vs-T1wce 97.7 ADC-vs-all 99.6 
T2w-vs-all 99.3 SWI-vs-all 99.7 

All six classifiers have high validation accuracies, with the lowest at 97.7% for the 

T1w-vs-T1wce and the highest at 99.7% for the SWI-vs-all and 99.6% for the ADC-vs-all 

tasks. Passing back the training set dataset I to MR-Class in inference mode, an accuracy 

of 97.4% [95% CI: 96.2, 98.4] is obtained, i.e., out of 20101 MR scans, MR-Class could not 

learn 519. As for the multi-class vs multiple binary one-vs-all classification experiment, 

where only the image volumes of the six considered MR sequences were regarded, the 

validation accuracy was comparable with 98.6% and 98.1%, respectively.  

Distributions of the classification probabilities derived by MR-Class for all 3 cohorts 

are shown in Figure 5. Based on C1, a probability cutoff threshold of 0.95 was set for 

testing MR-Class on C2 and C3.  
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Figure 5. Distribution of the probabilities of correct and wrong labeled images for all 3 cohorts in 

study when inferred to MR-Class. Based on the distributions of C1, a cutoff classification threshold 

probability of 0.95 was used. Histogram bin width = 0.01 

MR-Class's accuracy against the independent C2 was 96.7% [95% CI: 95.8, 97.3], i.e., 

424 out of 11333 images were misclassified. All DCNNs had a specificity ranging between 

93.5% (T2w-vs-all) and 99.6% (SWI-vs-all). The T1w-vs-T1wce and T1w-vs-all had the 

lowest sensitivity with 91.9% and 96.6%, while all remaining DCNNs had a high 

sensitivity (>99%) (Figure 6-A, upper panel). In the multi-class normalized confusion 

matrix (Figure 6-A, lower panel), it is seen that the classification of T1w is the least reliable, 

with an accuracy of 91.17%. Against the independent C3, MR-Class achieved an accuracy 

of 94.4% [95% CI: 93.6, 96.1] with 196 misclassified scans out of 3522. The T1w-vs-T1wce 

had the lowest sensitivity with 97.4%, while all remaining DCNNs had a sensitivity larger 

than 98%. Specificity ranged between 91.3% (T2w-vs-all) and 98.8% (T1w-vs-T1wce) 

(Figure 6-B, upper panel). In the multi-class confusion matrix (Figure 6-D, lower panel), it 

is seen that the classification of T2w is the least reliable, with an accuracy of 91.35%, with 

8.65% classified as "other". Investigations on the misclassified images were performed in 

the next section. 
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Figure 6. Confusion matrices of the 6 DCNNs for C2 (A) and C3 (CB) - The upper panels in A and 

B show the confusion matrices for datasets C2 and C3. - The lower panels in A and B show MR-

Class normalized confusPanelsatrices for datasets C2 and C3, i.e., the percentages (%) of correct 

classification results per class. SE: sensitivity; SP: specificity. Class ' Other': when none of the DCNNs 

label an image; n: number of scans per class, T2w-FL: T2w-FLAIR 

 

3.4. Analyses of misclassified images. 

 

Out of the 14855 inferred images from C2 and C3, MR-Class classified 620 images 

incorrectly. The misclassifications can be sorted into different categories: MR artifact-

middle slice blurring, MR artifacts-other, similar image content for different MR 

sequences (e.g., a T1w-FLAIR sequence instead of T2w), misclassified diffusion-weighted 

imaging (DWI) as T2w, and DICOM corrupted scans (sample images shown in Figure 6).  

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2023                   doi:10.20944/preprints202301.0162.v1

https://doi.org/10.20944/preprints202301.0162.v1


 

 
Figure 6. Examples of misclassified images. The first two images are examples of a misclassified 

MR, possibly due to blurry images (left) and alterations in expected anatomy (displaced ventricles, 

large tumor, right). The next three MR images show incorrect predictions due to different MR 

artifacts (Shading, motion, aliasing). All of these images are falsely classified as "other". The last 

image is a diffusion-weighted image (DWI), specifically a Trace DWI, misclassified as T2w. 

 

A manual evaluation revealed frequent misclassification (n=122, 19.68%) if the 

architecture of the ventricles was altered, e.g., displaced by large tumors. This was 

assessed in detail: we used 122 random, correctly labeled images as a reference group. 

After manual segmentation of the GTVs and brain, we calculated the Euclidean distance 

between the brain's center of mass (CoM) and the CoM of the tumor volume. A t-test was 

then performed between the reference and misclassified CoM distributions. The t-test 

returned a p-value of 0.04, with a median CoMs distance of 46.15 voxels for the correctly 

labeled images and 66.31 for the misclassified images. This result shows a statistical 

difference between the groups, i.e., the further the GTV is from the ventricles, the less 

likely the image is misclassified. The frequencies of the misclassification categories are 

shown in Table 4. 

Table 4. Frequency (n)  and percentage (%) of the misclassified images.  

Category n % 

MR artifact-other 146 26.84 

MR artifact-middle slice blurring 127 23.35 

Tumor/GTV displacing ventricles 122 22.43 

Similar content- different sequence 80 14.71 

DWI as T2w 76 13.97 

DICOM corrupted images 69 12.68 

 

3.5. MR-Class application: progression-free survival prediction modeling 

Figure 7 shows the box plots of the 1st - 99th percentiles resulting from the three 

resampling approaches following the fitting of the PFS CPH models by the radiomics 

signatures derived from the text-based and MR-Class-based curated datasets. 4 and 2 

significant features were identified from the text-based and MR-Class-based curated 

datasets. The average C-Is across the three different resampling approaches are 0.57 [0.55 

0.59] and 0.66 [0.64 0.68] for the DICOM-SD and MR-Class models. The range represents 

the minimum and maximum C-I achieved. The DICOM SD curated included 7 

misclassified T1w and 3 T2w sequences and excluded 10 T1wce images. The MR-Class 

curated dataset excluded 4 misclassified T1wce images as they were labeled as "other".  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2023                   doi:10.20944/preprints202301.0162.v1

https://doi.org/10.20944/preprints202301.0162.v1


 

 

Figure 7. Box plots of the 1st - 99th percentiles C-Is attained by the MR-class and DICOM series 

description (SD) curated dataset models fitted by the respective signatures after 3 resampling 

approaches. MCCV: Monte Carlo cross-validation, BStrap: Bootstrapping, CV: cross-validation 

 

4. Discussion 

In this manuscript, we present an MRI image sequence classifier, MR-Class, which 

differentiates between T1w, contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI 

while handling unknown classes. Testing was performed on two independent cohorts, 

where classification accuracies of 96.7% [95% CI: 95.8, 97.3] and 94.4% [95% CI: 93.6, 96.1] 

were observed. MR-Class consists of 5 one-vs-all DCNNs (one for each class), followed by 

a binary classifier for T1w images to determine whether a contrast agent was 

administrated. This design enables MR-Class to handle unknown classes since each 

DCNN only classifies an image if it belongs to its respective class, and thus an image not 

labeled by any of the DCNNs is rendered as unknown. To compare the performance of 

such a design to the basic multi-class classification approach, we performed the multi-

class vs multiple dual-class classification experiment. We observed that both methods 

have comparable classification results (multi-class: 98.6% multiple one-vs-all: 98.1%) in 

the context of MR brain image classification. However, the latter can deal with the open-

set recognition problem, frequently encountered when handling data from clinical 

cohorts, and thus can help reduce MRI study design times. 

MR image DICOM series description (SD) entries usually follow the MR sequence 

protocol applied. However, they are MR model specific and are sometimes edited by 

clinical staff. We observed around 10% discrepancies in each cohort when the SD was 

compared to the manually derived labels. Typical SDs that do not allow for clear MR scan 

classifications are SDs with only the sequence name, e.g., Spin Echo (SE), or the scan 

direction, e.g., axial, which can stand for any MR sequence. Typographical errors and 

empty SD attributes were also observed. 

Overall, high accuracies were obtained across all DCNNs in the comparison study. 

In conjunction with the high performance achieved in literature in medical image 

classification [13,14,16,17], it is apparent that DCNNs can learn the intricacies behind 

different medical image modalities. The 2D ResNet-18 had the best overall accuracy in the 

DCNN architecture comparison study and thus was the architecture chosen for MR-Class. 

Furthermore, it was seen that the 2D DCNNs outperformed their 3D counterparts in MR 

sequence classification. MR scans correctly classified by the 2D DCNNs, while 

misclassified by the 3D DCNNs, are mainly conventional 2D axial, sagittal, or coronal 

scans with slice thickness ranging between 5 and 9mm. Scans with a field of view that 
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only encompassed the tumor area were misclassified by both 3D DCNNs (representative 

images can be seen in Suppl. fig. 3). It is important to note that no data augmentation was 

performed in the comparison study. 

All six one-vs-all classifiers have high validation accuracies, with the lowest being 

97.7% for the T1w vs T1wce. After passing the training cohort C1 to MR-Class in inference 

mode, it was observed that 519 images could not be learned, out of which 336 belonged 

to class "other", representing 3.8% of the other images used for training. This low error 

percentage demonstrates that MR-Class can learn to handle different sequences indirectly.  

The testing of MR-Class against C2 and C3 yielded an average accuracy of 96.1%, 

where 620 images (4.2%) were classified incorrectly. Overall, the T2w-vs-all had the worst 

performance, with a specificity of 93.5% and 91.3% in C2 and C3. This is mostly due to the 

presence of diffusion-weighted imaging (DWI) sequences (frequently encountered in the 

datasets), which are inherently a series of T2w sequences. Similarly, C3 included T1w-

FLAIR images falsely misclassified as T1w or T2w-FLAIR. It is thus apparent that different 

sequences with similar content are prone to misclassification by MR-Class. A solution 

could be to train a subsequent classifier to distinguish between similar sequences, as 

performed for the T1wce images. Most of the other incorrectly classified images had 

severe blurring or had other types of MR artifacts. These were observed in a higher 

prevalence in C3 than in C2. A reason could be the time interval in which the cohort was 

collected. Most of these classifications were false negatives, i.e., they were labeled as 

unclassifiable by MR-Class. This can be beneficial for radiomics models since any 

corrupted image would be automatically disregarded, and all images labeled as a specific 

class would have similar content. Another subset of the misclassified images showed 

tumor volumes overlapping the ventricles. Statistical analysis was performed between 

these misclassified images and a subset of the correctly labeled images, confirming altered 

anatomy (here: ventricle displacement by large tumors) as a possible reason for 

misclassification. More detailed analyses are warranted to assess further the impact of 

surgery on alterations of overall anatomy (i.e., biopsy, partial resection, total resection), as 

well as on tumors (chemo/radiotherapy) as the latter might, e.g., change the pattern of 

contrast enhancement.  

An essential step in building a radiomics application is to verify the input data labels 

before training the machine learning model, as inconsistent data can lead to the model 

drastically failing [31]. However, this was not performed while building the different 

survival models to demonstrate the applicability of MR-Class in MR-based radiomics 

applications. CPHs models were built with the T1wce MR sequences of cohort C2 to 

predict the patients' PFS after performing a text-based curation using the DICOM SDs and 

a content-based curation using MR-Class. The MR-Class curated model achieved an 

average C-I increase of 14.6 %. This is mainly due to the content dissimilarity between the 

different images in the DICOM SD curated dataset compared to the MR-Class curated 

dataset.  

MR-Class can facilitate the preparation of longitudinal studies for RT treatment 

assessment as MR data from the three cohorts include scans taken before, after, and 

throughout the delivery of the RT fractions, which resulted in different tumor volume 

masses between the different scans, as well as apparent radiation scaring in some of the 

MR images. Furthermore, the data cohort includes images taken directly after the surgical 

resection of the tumor, resulting in visible surgical holes and void tumor beds.  

The 2D DCNN in this study outperformed their 3D counterparts in classifying MR 

images. This was mostly due to multiple conventional 2D multislice MR scans acquired 

in the axial, sagittal, or coronal plane in the 3 cohorts. The classification of MR brain 

images, as shown by MR-Class and DeepDicomSort, is possible and leads to high 

classification results. However, the classification of MR sequences of a different entity, 
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e.g., Abdominal and Pelvic MRI, might be more challenging and demand the intrinsic 

power of 3D DCNN. However, due to the frequent presence of 2D in MR datasets, 

reconstruction of these low-resolution 2D slices to a high-resolution 3D MR might be a 

necessary preprocessing step before training. Nevertheless, the one-vs-all classification 

pipeline implemented in this study on brain MR images can be used for different anatomy 

sites and other medical image classification problems, for example, the classification of 

different body parts and organs. 

5. Conclusions 

MR-Class is a helpful, ready-to-use python tool for the data preparation of MR-based 

research studies in brain MRI. It eliminates the need to manually sort out the images, a 

tedious task due to large amounts of data and different naming schemes. Furthermore, 

since MR-Class classifies images based on the content rather than the metadata, any 

corrupted image would be automatically disregarded, and all images labeled as a specific 

class would have related content. Hence, we believe MR-Class is a useful and time-

efficient tool for big data MR radiomics-based studies. Future work includes the addition 

of modalities and sequences to MR-Class for different anatomy sites.  
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