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Abstract: Emotions are indicators of affective states and play a significant role in human daily life, 1

behavior, and interactions. Giving emotional intelligence to the machines could, for instance, facilitate 2

early detection and prediction of (mental) diseases and symptoms. Electroencephalography (EEG) 3

-based emotion recognition is being widely applied because it measures electrical correlates directly 4

from the brain rather than the indirect measurement of other physiological responses initiated by 5

the brain. The recent development of non-invasive and portable EEG sensors makes it possible to 6

use them in real-time applications. Therefore, this paper presents a real-time emotion classification 7

pipeline, which trains different binary classifiers for the dimensions of Valence and Arousal from an 8

incoming EEG data stream. After achieving a 23.9% (Arousal) and 25.8% (Valence) higher f1-score on 9

the state-of-art AMIGOS dataset, this pipeline was applied to the dataset achieved by an emotion 10

elicitation experimental framework developed within the scope of this thesis. Following two different 11

protocols, 15 participants were recorded using two different consumer-grade EEG devices while 12

watching 16 short emotional videos in a controlled environment. For an immediate label setting, the 13

mean f1-score of 87% and 82% were achieved for Arousal and Valence, respectively. In a live scenario, 14

while continuously being updated on the incoming data stream with delayed labels, the pipeline 15

proved to be fast enough to achieve predictions in real time. However, the significant discrepancy 16

from the readily available labels on the classification scores leads to future work to include more data 17

with frequent delayed labels in the live settings. 18

Keywords: Online Learning; Emotion Classification; AMIGOS dataset; Wearable-EEG (Muse and 19

Neurosity Crown); Psychopy Experiments 20

1. Introduction 21

Emotions are part of everyone’s daily life as they are crucial to many aspects: They are 22

a significant factor in human interactions, influence decision-making, and are involved in 23

mental health. Emotions play a crucial role in human communication and cognition, which 24

makes comprehending them significant to understanding human behaviour [1]. The field 25

of affective computing strives to build systems that can recognize and interpret human 26

affects [1,2], offering exciting possibilities for education, entertainment, and healthcare. 27

Giving machines emotional intelligence could, for instance, facilitate early detection and 28

prediction of (mental) diseases or their symptoms since specific emotional and affective 29

states are often indicators thereof [3]. For example, long-term stress is one of today’s 30

significant factors causing health problems, including high blood pressure, cardiac diseases, 31

and anxiety [4]. Notably, some patients with epilepsy (PWE) report premonitory symptoms 32

or auras as specific affective states, stress, or mood changes, enabling them to predict an 33

oncoming seizure [5]. The association of premonitory symptoms and seizure counts has 34

been analyzed from patient reported diaries [6], and the non-pharmacological interventions 35

proved to reduce the seizure rate [7]. However, many PWE can not consistently identify 36

their prodromal symptoms, and many do not perceive prodromes [8], emphasizing the ne- 37

cessity of objective prediction of epileptic seizures. In previous work, the authors proposed 38
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developing a system to predict seizures by continuously monitoring their affective states [9]. 39

Therefore, measuring and predicting affective states in real-time through neurophysiologi- 40

cal data could aid in finding pre-emptive therapies for epilepsy patients by identifying the 41

pre-ictal state to predict a seizure onset. That would be incredibly beneficial, especially to 42

people with drug-resistant epilepsy, and improve their quality of life by enabling them to 43

anticipate and mitigate possibly violent seizures [3,8]. Consequently, emotion detection in 44

this paper is motivated by the idea that allowing computers to perceive and understand 45

human emotions could improve human-computer interaction (HCI) and enhance their 46

abilities to make decisions by adapting their reactions accordingly. 47

Since emotional reactions are seemingly subjective experiences, neurophysiological 48

biomarkers, such as heart rate, respiration, or brain activity [10,11] are inevitable. Ad- 49

ditionally, for continuous monitoring of affective states and thus detecting or predicting 50

stress-related events reliably, low-cost consumer-grade devices rather than expensive and 51

immobile hospital equipment would be more meaningful [12]. It is an important area of 52

interest in cognitive science and affective computing, with use cases varying from designing 53

brain-computer interfaces [13,14] to improving healthcare for patients suffering from neu- 54

rological disorders [15,16]. Among these, Electroencephalography (EEG) has proven to be 55

an accurate and reliable modality without needing external annotation [17,18]. With recent 56

advancements in wearable technology, consumer-grade EEG devices have become more 57

accessible and reliable, opening possibilities for countless real-life applications. Wearable 58

EEG devices like the Emotiv EPOC Neuroheadset or the Muse S headband have become 59

quite popular tools in emotion recognition [19–21]. Muse S headband has also been used 60

for event-related potential (ERP) research [12] and for the challenge of affect recognition 61

in particular. More specifically, Muse S has already been used in experimental setups to 62

obtain EEG data from which the mental state (relaxed/concentrated/neutral) [13], and the 63

emotional state (using the valence-arousal space) [22], could be reliably inferred through 64

the use of a properly trained classifier. 65

However, a challenging but important step to identifying stress-related events or 66

improving HCI in real-life settings is to recognise changes in peoples’ affect by leveraging 67

live data. The EEG-based emotion classification mentioned in the literature has nearly 68

exclusively employed traditional machine learning strategies, i.e., offline classifiers, often 69

combined with complex data preprocessing techniques, on static datasets, making it un- 70

suitable for daily monitoring. Therefore, researchers are interested in building a real-time 71

emotion classification pipeline since lately, where the classification results are obtained from 72

pre-recorded (and already preprocessed) data, often utilizing a pre-trained model [23,24] 73

rather than working with (live) data streams. Li et al. [25] address the challenges when a 74

model can see the data only once by leveraging cross-subject and cross-session data but 75

does not apply live incoming data stream to their work. Whereas Lan et al. [26] analyse 76

stable features for real-time emotion recognition and implement their proposed algorithm 77

in two emotion-monitoring applications where computer avatars reflect a person’s emotion 78

based on live EEG data. However, the live emotion classification is based on a static model, 79

which has to be trained in a prior training session and is not updated afterward. To the 80

best of our knowledge, only Nandi et al. [27] have employed online learning to classify 81

emotions from an EEG data stream from the DEAP dataset and proposed an application 82

scenario in e-learning but did not report on undertaking any such live experiments. Indeed, 83

more research is needed on using online machine learning for emotion recognition. 84

Moreover, multi-modal labeled data for the prediction of affective states have been 85

made freely available through annotated affective databases, like DEAP [28], DREAMER [29], 86

ASCERTAIN [30], and AMIGOS [21], which play a significant role in further enhancing the 87

research of this field. They include diverse data from experimental setups using differing 88

emotional stimuli like music, videos, pictures, or cognitive load tasks in an isolated or 89

social setting. Such databases enable the development and improvement of frameworks 90

and model architectures with existing data of ensured quality. However, none of the 91
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datasets have published the data collection framework to be reused in curating the data 92

from wearable EEG devices in live settings. 93

Therefore, firstly, the key contribution of this paper is the establishment of a lightweight 94

emotion classification pipeline that can provide predictions on a person’s affective state 95

based on an incoming EEG data stream in real-time, efficiently enough to be used in real 96

applications i.e., seizure prediction. The developed pipeline leverages online learning 97

to train subject-specific models on data streams by implementing binary classifiers for 98

the affect dimensions: Valence and Arousal. The pipeline is validated by streaming the 99

existing datasets of established quality, AMIGOS, with better predictive performance than 100

state-of-the-art contributions. Secondly, an experimental framework is developed, similar 101

to the AMIGOS dataset, which can collect neurophysiological data from a wide range of 102

commercially available EEG devices and show live prediction of the subjects’ affective 103

states even when labels arrive with a delay. Data from 15 participants were captured by 104

using two consumer-grade devices. Thirdly, the most novel contribution of this paper is to 105

validate the pipeline on the curated dataset by wearable EEG devices in the first experiment 106

with consistent prediction performance with the AMIGOS dataset. Following this, the 107

live prediction was performed successfully on an incoming data stream in the second 108

experiment with delayed incoming labels. 109

The curated data from the experiments and metadata is accessible to the designated 110

researchers as per the participants’ consent; therefore, the dataset is available upon request 111

for scientific use via a contact form on Zenodo (https://doi.org/10.5281/zenodo.7398263). 112

The Python code for loading the dataset and implementations of the developed pipeline 113

are made available on GitHub (https://github.com/HPI-CH/EEGEMO). The next section 114

will explain the material and methods utilized within this paper following the results and 115

discussion sections. 116

2. Materials and Methods 117

2.1. AMIGOS dataset 118

The emotion classification pipeline developed within the scope of this paper was eval- 119

uated on the state-of-art dataset for affect, personality, and mood research on individuals 120

and groups (AMIGOS) published by Miranda-Correa et al. [21]. Upon following the data 121

receiving protocol, all data from the AMIGOS dataset that is used in this work stems from 122

the short video individual experiments where 40 healthy participants (13 female), aged 123

between 21 and 40 (mean age 28.3) were asked to watch 16 videos from defined movie 124

clips. The EEG data was recorded using the Emotiv EPOC Neuroheadset 1 with a sampling 125

frequency of 128 Hz with 14 bit resolution. This device records EEG data from 14 channels 126

(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) of the brain according to the 127

10-20 system as depicted in Figure 1a. 128

Additionally, AMIGOS dataset reports the Self-Assessment Manikin [31] with a scale 129

from 1 to 9 as recording participants’ affect ratings of the dimensions valence, arousal, and 130

dominance. The participants were also asked to rate their familiarity with the videos, and 131

their liking of them and had to select at least one option from a list of basic emotions that 132

they felt after watching each video. However, only the obtained valence and arousal ratings 133

are considered as the ground truth for the classifier while working with AMIGOS dataset 134

within this paper. Furthermore, the participants answered the Positive and Negative Affect 135

Schedules (PANAS) [32] questionnaire at the beginning of the experiment and a second 136

time in the days after the experiment; only one overall calculated PANAS score is reported. 137

To evaluate the classification pipeline, the preprocessed data files were used where the EEG 138

data was downsampled to 128 Hz, averaged to common reference, and applied a band pass 139

frequency filter from 4.0− 45.0 Hz as described in the AMIGOS dataset description website 140

1 https://www.emotiv.com/epoc-x/
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2. The files containing electrocardiogram (ECG) and galvanic skin response (GSR) data 141

have been remmoved for the analysis of this paper.

(a) Emotiv EPOC (b) Muse S Headband (c) Neurosity Crown
Figure 1. Different electrode positions, according to the international 10-20 system, of the EEG devices
used in AMIGOS dataset: 1a, and in Experiments I and II: 1b, 1c . Sensor locations are marked in
blue, references in orange.

142

2.2. Experimental Setup 143

This paper establishes a lightweight emotion classification pipeline that can provide 144

predictions on a person’s affective state based on an incoming EEG data stream in real-time 145

efficiently enough to be used in a live setting.Two different experimental protocols, named 146

Experiment I and Experiment II, were designed with the description of participants, data 147

acquisition, and experimental protocols mentioned below. 148

2.2.1. Participants 149

For Experiment I, 13 participants were recruited including two test participants. There- 150

fore, the data analysis cohort consists of 11 participants (6 females and 5 males) between 151

the age of 25 and 42 (µ = 29.27, σ = 5.41 years). Experiment II was conducted with 4 152

participants (1 female and 3 males) between the age of 25 and 34 (µ = 28.5, σ = 3.5 years). 153

Exclusion criteria for the study included being pregnant, being older than 65 years, and had 154

taken part in Experiment II. All participants had normal or corrected vision and reported 155

no history of neurological or mental illnesses or head injuries. 156

2.2.2. Data Acquisition 157

Hardware: During the experiments, two consumer-grade devices: Muse S Headband Gen 1 3
158

and Neurosity Crown 4, were used to collect the EEG data from the participants as depicted 159

in Figure 2. While both devices operate with the sampling rate of 256 Hz, the EEG data 160

is collected with 4 and 8 channels, respectively. According to the international 10-20

(a) Muse S Headband (b) Neurosity Crown
Figure 2. Two consumer-grade EEG devices with integrated electrodes used in the experiments.

161

system [33], the channels on the Muse S Headband correspond to AF7, AF8, TP9, and TP10 162

(see Figure 1b), with a reference electrode at Fpz [12]. The channel locations of Neurosity 163

2 http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
3 https://choosemuse.com/compare/
4 https://neurosity.co/crown
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Crown are C3, C4, CP3, CP4, F5, F6, PO3, and PO with the reference sensors located at T7 164

and T8 as shown in Figure 1c. Using Mind Monitor App 5, the raw EEG data was streamed 165

from Muse to a phone via Bluetooth. The app sends the data to a laptop via the open sound 166

control (OSC) protocol, and the python-osc library 6 on the receiving end. As the incoming 167

data tuples from the Muse Monitor App did not include timestamps, one was added by 168

the pipeline upon arrival of each sample. Similarly, the Crown uses the python-osc library 169

to stream the raw EEG data to a laptop without enabling any preprocessing settings. In 170

contrast to the Muse Headband, the Crown includes a timestamp when sending data. 171

In order to compare the data from the different devices and have consistent results, the 172

pipeline also added a timestamp to each sample when receiving the data. 173

Software: In this paper, the experiment was implemented using the software PsychoPy (v 174

2021.2.3) [34] in a way that guided the participants through instructions, questionnaires, 175

and stimuli. The participants are allowed to go through their own pace by clicking on 176

the ‘Next’ (in German ‘Weiter’) button, as shown in the screenshots of PsychoPy in figure 177

Figure 4. 178

2.2.3. Stimuli Selection 179

Inducing (specific) emotional reactions, even in a fully controlled experimental set- 180

ting, is a challenge. Several datasets are trying to solve it with different modalities like 181

pictures [35–37], music [38,39], or (music-) videos [28,40,41] or combinations of them [42]. 182

In this work, videos depicting short movie scenes were used as stimuli, based on the 183

experimental setup Miranda-Correa et al. used for AMIGOS dataset [21]. Therefore, 16 184

short clips (51-150 s long, µ = 86.7 s, σ = 27.8 s) depicting scenes from 15 different movies 185

were used in the experiments for emotion elicitation. 12 of these videos stem from the 186

DECAF dataset [40], and 4 movie scenes were taken from the MAHNOB-HCI [41] dataset. 187

According to Miranda-Correa et al., these specific clips were chosen because they “lay 188

further to the origin of the scale” than all other tested videos. It means they represent the 189

most extreme ratings in their respective category according to the labels provided by 72 190

volunteers [21]. The labels were provided in the two-dimensional plane spanned by the 191

two dimensions Valence and Arousal according to Russell’s circumplex model of affect [43]. 192

Valence, the dimension describing one’s level of pleasure, ranges from sad (unpleasant, 193

stressed) to happy (pleasant, content), and can be seen on the horizontal axis, whereas 194

Arousal, which ranges from sleepy (bored, inactive) to excited (alert, active), is placed on 195

the vertical axis. Experienced affective states can be objectively described by assigning a 196

rating in both dimensions. As depicted in Figure 3, the model divides the plane into four 197

quadrants. Independent of the employed scale, everything greater than the middle of each 198

axis (i.e., above or to the right of it) respectively is usually deemed as a high level of feelings 199

in the corresponding dimension and everything under that threshold is deemed as low. 200

Following this, the four quadrants are called: High Arousal Low Valence (HALV), High 201

Arousal High Valence (HAHV), Low Arousal High Valence (LAHV), and Low Arousal Low 202

Valence (LALV). The selected movie scenes described in Table 1 are balanced between each 203

of the valence-arousal space quadrants (HVHA, HVLA, LVHA, LVLA). The video ID 19 204

corresponded to a scene from the movie Gandhi, which differs from the AMIGOS dataset 205

but falls into the same LALV quadrant. 206

2.2.4. Behavioral Data 207

PANAS: During the experiments, participants were asked to assess their baseline levels of 208

affect, also referred to as mood, in the PANAS scale. As depicted in one of the screenshots 209

from PsychoPy in figure Figure 4a, the total 20 questions (10 question from each of the 210

Positive Affect (PA), and Negative Affect (NA) dimension) were asked to rate in a 5-point 211

Likert scale with the options ranging from “very slightly or not at all” (1) to “extremely” 212

5 https://mind-monitor.com/
6 https://pypi.org/project/python-osc/
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(a) (b)
Figure 3. Figure 3a Russell’s Circumplex Model of Affect in multidimensional scaling [43], 28 affect
words are placed on the plane spanned by two axes without explicit title. Figure 3b is a reduced
version of Russell’s Circumplex Model of Affect [44] depicting the valence-arousal space as it is used
in this work with the four quadrants: HALV, HAHV, LAHV, LALV. H, L, A, and V stand for high,
low, arousal and valence respectively.

Table 1. The source movies of the videos used in the experiments are listed per quadrant in the
valence-arousal space. Video IDs are stated in parentheses, sources marked with a † were taken from
the MAHNOB-HCI dataset [41]; all the others stem from DECAF [40]. In the category column, H, L,
A, and V stand for high, low, arousal, and valence respectively. This table has been adapted from
Miranda-Correa et al. [21].

Category Source Movie

HAHV Airplane (4), When Harry Met Sally (5), Hot Shots (9), Love Actually (80)†

LAHV August Rush (10), Love Actually (13), House of Flying Daggers (18),
Mr Beans’ Holiday (58)†

LALV Gandhi (19), My Girl (20), My Bodyguard (23), The Thin Red Line (138)†

HALV Silent Hill (30)†, Prestige (31), Pink Flamingos (34), Black Swan (36)

(5). To see if the participants’ moods generally changed over the course of the experiments, 213

they were asked to answer the PANAS once at the beginning of the experiment and then 214

once again at the end. For the German version of the PANAS questionnaire, the translation 215

of Breyer and Bluemke [45] was used in the experiments. 216

Affect Self-Assessment: The Affective Slider (AS) [46] was used in the experiment to 217

capture participants’ emotional self-assessment after presenting each stimulus as depicted 218

in the screenshot in Figure 4b 7. AS is a digital self-reporting tool composed of two slider 219

controls for the quick assessment of pleasure and arousal. The two sliders show emoticons 220

at their ends to represent the extreme points of their respective scales, i.e. unhappy/happy 221

for pleasure (valence) and sleepy/wide-awake for arousal [43]. To rate the experienced 222

level of one of these dimensions, the corresponding slider can be moved to the appropriate 223

point on the scale. For the experiments, AS was designed in a continuous normalised 224

scale with a step size of 0.01 (i.e., a resolution of 100) and the order of the two sliders were 225

randomized each time. 226

Familiarity: The participants were asked to indicate their familiarity with each video on a 227

discrete 5-point-scale ranging from “Have never seen this video before” (1) to “Know the 228

video very well” (5). The PsychoPy slide with this question used in the experiments and 229

was always shown after the affect self-assessment. 230

7 https://github.com/albertobeta/AffectiveSlider
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(a) PANAS questionnaire. (b) Affective slider.
Figure 4. Screenshots from the PsychoPy [34] experimental setup of self-assessment questions the
participants were shown in Experiment I and II. 4a is one part of the PANAS questionnaire with 5
different levels represented by clickable radio buttons with levels explanation on top. 4b shows the
AS for valence displayed on top and the slider for arousal on the bottom.

2.2.5. Experiment I 231

Briefing Session: At the beginning of the experiment, the participant went through a 232

briefing session from the experimenter. In this session, the experimenter explained the 233

study procedure after leading the participant into the study room. The participants were 234

informed that the experiment would entail two parts of approximately 20 minutes each with 235

a small intermediate break. The participant will then receive and read the data information 236

sheet, fill out the personal information sheet, and sign the consent to participate in the 237

study. Personal information includes age, nationality, biological sex, handedness (left 238

or right-handed), education level, and neurological or mental health-related problems. 239

The documents and the study platform (i.e., PsychoPy) were provided according to the 240

participant’s choice of study language between English and German. Afterward, the 241

experimenter explains the three scales mentioned in and allows the participant to accustom 242

to the study platform, PsychoPy. This ensures the understanding of the different terms and 243

scales used for the experiment without having to interrupt the experiment afterwards. The 244

participant can refrain from participating at any moment during the experiment. 245

Data Collection: After briefing, the experimenter put either the Muse Headband or the 246

Neurosity Crown on the participant by a random choice. Putting headphones over the 247

device, the participants was asked to refrain from strong movements, especially with the 248

head. The experimenter then checks the incoming EEG data and let the participant begin 249

with the experiment. After greeting the participant with a welcome screen, a relaxation 250

video were shown to the participant 8.They answered the PANAS questionnaire to rate 251

their current mood and close their eyes for half a minute to get a baseline measure of EEG 252

data. Afterwards, they were asked to initially rate their valence and arousal state with 253

the AS. Following this, an instruction about watching 8 short videos is provided. Each of 254

those was preceded by a video counter and followed by two questionnaires,the AS and the 255

familiarity with each video. The order of the videos and the order of the two sliders of As 256

were randomized over both parts of the experiments, fulfilling the condition that the label 257

of the videos are balanced. The first part of the experiment ended after watching 8 videos 258

and answering corresponding questionnaire. The participants were allowed a short break 259

after taking the EEG device and the headphone off. 260

In the second part of the experiment, the experimenter put the device that had not been 261

used in the first part (Muse or Crown, respectively) and the headphones on the participant. 262

Subsequently, the experimenter started the second part of the experiment, again after 263

ensuring that the data collection was running smoothly. The participants followed exact 264

same protocol, watching relaxation video, answering PANAS, closing eyes and watching 8 265

more movie scenes with the AS and familiarity question in between. Lastly, they were asked 266

8 https://www.youtube.com/watch?v=S6jCd2hSVKA
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for a final mood self-assessment via a second PANAS questionnaire to capture differences 267

before and after the experiment. 268

In Experiment I, one PC (with a 2, 4 to 3, 0 GHz Dual Intel Core i5-6300U and 12 GB 269

RAM) was used to present the stimuli and obtain the subjects’ self-assessments through 270

PsychoPy, as well as receive the signals from the EEG measuring devices. All data was 271

stored and only used after the experiment session. 272

2.2.6. Experiment II : Live Training and Classification 273

In Experiment II, the participants received the same briefing as mentioned in Sec- 274

tion 2.2.5. For both part of the experiment same device has been used in this experiment. 275

The protocol for the stimuli presentation in the first part (before the break) was also fol- 276

lowed according to Experiment I: relaxation video, PANAS, eye closing, 8 video stimuli 277

with the AS and familiarity question. One additional instruction after each AS was shown, 278

which includes the original label of the videos. This additional information was given to the 279

participant, since the arousal ratings given in Experiment I were very imbalanced. During 280

the break, the recorded EEG data was preprocessed and used to train a initial model in an 281

online way. This initial model training was necessary because the data needed to be shuf- 282

fled, as explained in Section 2.3.2. The initial model is continuously trained and updated 283

during the second part of the experiment where the live prediction of affect is available. 284

The second part of the experiment is conducted according to the first part: relaxation video, 285

PANAS, eye closing, 8 video stimuli with the AS and familiarity question. However, one 286

additional prediction is performed and available to the experimenter before the AS label 287

from the participant. Furthermore, the AS label was used to update the model training and 288

the prediction was running in parallel. Figure 5 displays the initialised model in the bottom 289

grey rectangle to do live emotion classification on the incoming EEG data stream. However, 290

the prediction results were only displayed to the experimenter to avoid additional bias. 291

Since the objective of Experiment II was live online learning and classification, the data 292

coming in a online stream, however, the data was also stored for later evaluation and 293

reproducibility. 294

In Experiment II, the same PC that was employed in Experiment I (2, 4 to 3, 0 GHz Dual 295

Intel Core i5-6300U and 12 GB RAM) was used to present the stimuli through PsychoPy, 296

and send the AS label to a second PC. This second machine was a MacBook Pro (2019) with 297

a 2, 8 GHz Quad-Core (Intel Core i7) and 16 GB of memory. It was used to receive the signals 298

from the EEG devices and the labels from the first PC, as well as for data preprocessing, 299

online model training and live emotion classification. 300

2.3. Emotion Classification Pipeline 301

2.3.1. Data Preprocessing 302

In this paper, no additional preprocessing was performed in AMIGOS dataset, since 303

the preprocessed data provided by the author was used. However, the EEG data collected 304

during Experiment I and II went through significant preprocessing to remove artifacts from 305

the data [47,48]. Figure 5 depicts all the similar preprocessing steps applied on both shows 306

the immediate labelling setting (top) and in a live application (bottom). To remove the 307

powerline interference visible on raw EEG recordings as a sinusoidal at 50 Hz (in Europe) 308

[49], a second-order IIR notch digital filter was applied to the data [50]. Furthermore, 309

a fifth-order Butterworth bandpass frequency filter from 0.5 to 45.0 Hz was applied to 310

remove noise on frequencies that were not relevant (see ??). Additionally, the data was 311

average-referenced after filtering, i.e., the overall average potential is subtracted from each 312

channel [21,28? ]. This method “relies on the statistical assumption that multichannel EEG 313

recording are uncorrelated” [51] and assumes an even potential distribution across the 314

scalp. The preprocessing had to be minimum instead of computation-heavy steps, since 315

the live prediction had to be time efficient. 316
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Figure 5. Overview of pipeline steps for affect classification. The top grey rectangle shows the
pipeline steps employed in an immediate label setting with prerecorded data. For each extracted
feature vector the model (1) first predicts its label before (2) being updated with the true label for
that sample. In the live setting, the model is not updated after every prediction, as the true label of a
video only becomes available after the stimuli has ended. The timestamp of the video is matched to
the samples’ timestamps to find all samples that fell into the corresponding time frame and update
the model with their true labels.

2.3.2. Data Windowing and Shuffling 317

Since EEG data is considered stationary only over short time intervals, the prepro- 318

cessing and the feature extraction were performed in tumbling windows with a fixed size 319

and no overlap. Figure 6 shows that one window of the incoming data stream includes all 320

samples xi, xi+1, ... arriving during the specified window length. The pipeline extracts one 321

feature vector, Fi, per window. All feature vectors extracted from the windows of a video 322

duration (between tstart and tend) receive a label yi corresponding to the reported label, Yj by 323

the participants. Different window length, l ϵ [1s, 2s, 3s, 4s, 5s] were tested on the AMIGOS 324

dataset and the dataset from Experiment I to find the optimal one for the classification 325

pipeline. As mentioned in the algorithm in Appendix A, a window, |w| includes l ∗ s f 326

samples with the sampling frequency denoted by sf. 327

Figure 6 shows that a lot of samples in a row received the same label of the duration of 328

each video upto several minutes. Through an internal testing implies that training a model 329

by streaming the data resulted in classifiers that did not learn from features but only always 330

predicted the same value until seeing a different one. Therefore, the time windows are 331

shuffled among one another with the corresponding labels. Since shuffling needs all data 332

and labels present before feature extraction, it was not performed during the live training 333

and classification. 334

2.3.3. Feature Extraction 335

Similar to [21], power spectral density (PSD) features per challen were derived from 336

the raw EEG data by using Welch method [52] on each window. The PSD from each of 337

the five frequency bands: Delta (0.5− 4 Hz), Theta (4− 8 Hz), Alpha (8− 16 Hz), Beta 338

(16− 32 Hz), and Gamma (32− 45 Hz), and the total power over all frequency bands were 339

extracted. Moreover, the power ratio between each pair of frequency bands was obtained. 340

Therefore, total 16 power related features (5 frequency bands + 1 total power + 10 power 341

ratios) were extracted from each channel resulting different number of features per device 342

as depicted in Table 2. 343
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Figure 6. The incoming data stream is processed in tumbling windows (grey rectangles). One
window includes all samples xi, xi+1, ... arriving during a specified time period, e.g., 1 second. The
pipeline extracts one feature vector Fi per window. Windows during a stimulus (video) are marked
in dark grey. Participants rated each video with one label per affect dimension Yj. All feature vectors
extracted from windows that fall into the time frame of a video (between tstart and tend of that video)
receive a label yi corresponding to the reported label Yj of that video. If possible, the windows are
aligned with the end of the stimulus, otherwise, all windows that lie completely inside a video’s time
range are considered.

Table 2. Number of channels and derived features for each device: Muse Headband: 64 features;
Neurosity Crown: 128 features; Emotiv EPOC: 224 features.

Device # Channels # Derived Features

Muse Headband 4 64
Neurosity Crown 8 128
Emotiv EPOC 14 224

2.3.4. Labelling 344

During the live streaming in Experiment II, labels had to be mapped to their corre-
sponding sample. Therefore, the labels were send in a stream of tuples L1, A,L1, V ,L2, A,
L2, V , ..., where

Lj, dimension = (Yj, dimension, tstart, tend). (1)

A and V stand for arousal and valence respectively, and Yj, dimension represents AS label by 345

the participant after each video of two timestamps, tstart and tendȮne label tuple Lj, dimension 346

per video and dimension was sent from the PC running the PsychoPy experiment to the PC 347

training the classification model.The included timestamps were used to match the incoming 348

ratings Yj, dimension as labels to the samples that the model had classified before. This was 349

done in a way that all the samples that fell into the time period between tstart and tend 350

received the respective class label for each dimension. The model could then be updated 351

with these labels. 352

2.4. Evaluation 353

2.4.1. Online learning and Progressive validation 354

This paper aims at building a classification pipeline from evolving data streams. 355

Several different online learning, or stream learning, algorithms have been proposed in the 356

literature to deal with evolving data streams in supervised [53,54], unsupervised [55] and 357

semi-supervised settings [56]. The static data from AMIGOS and from Experiment I was 358

streamed using a library for online learning: river [57]. Progressive validation, also called 359
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Figure 7. 7a Progressive validation incorporated into the basic flow of the training process (‘test-then-
train’) of an online classifier in an immediate label setting. (xi, yi) represents an input feature vector
and its corresponding label. 7b Evaluation incorporated into the basic flow of the training process of
an online classifier when labels arrive delayed.

test-then-train evaluation [58] is used for model evaluation in the supervised immediate label 360

setting, when the labels for all samples are present at processing time [59]. Figure 7a shows 361

the training process of an online classifier including progressive validation. Every time the 362

model sees a new sample xi it first classifies this sample as the test-step of the test-then-train 363

procedure. In the training process, the model will calculate the loss by comparing the true 364

label, yi which might come from a different data source than the samples. The updated 365

model will go on to classify the next incoming sample, xi+1 before seeing its label, yi+1 and, 366

again, do the training and performance metric updating step. This continues as long as 367

data is streamed to the model. In this way, all samples can be used for training as well as 368

for validation without corrupting the performance evaluation. 369

In the Experimental setup II, the labels are available after the prediction opposing the 370

’immediate labelling setting’ [54] described as progressive evaluation. Therefore, a delayed 371

progressive validation is performed with the delayed labels, which is mostly the case for 372

real-life scenario. Figure 7b depicts the delayed progressive validation procedure, where 373

the samples are classified by the model until an unseen labels are available. However, the 374

the model can be updated as in the immediate label setting. Whenever new labels become 375

available, the performance metric is updated without any further calculations [60]. Once 376

the model has been updated with all available labels, the classification of further samples 377

continues with the now updated model. This can, of course, be implemented in parallel, as 378

well. These steps continue as long as there is incoming data. 379

2.5. Machine Learning Classifiers 380

In this paper, three different algorithms: Adaptive Random Forest (ARF) [54], Stream- 381

ing Random Patches (SRP) [61], and Logistic Regression (LR), have been evaluated and 382

compared on the AMIGOS dataset and the data from Experiment I to find the best perform- 383

ing setup for the live emotion classification conducted in Experiment II. The ARF and and 384

the SRP with a Hoeffding Adaptive Tree (HAT) [62] are two ensemble architectures with 385

integrated drift detection algorithms. Ensemble learners, which combine multiple weak 386

learners, are popular in online learning not only because they tend to achieve high accuracy 387

rates but also because the individual learners of the ensemble can be trained in parallel. 388

Furthermore, the structure of ensemble learners innately supports drift adaption as drift 389

detection algorithms can be easily incorporated and component learners can be reset [56,61]. 390

The LR was included in the comparison as a sort of naïve baseline model by training on 391

mini-batches (with partial fit) of 1 sample (i.e., a feature vector extracted from one window), 392

to resemble the online learning process. Furthermore, it uses stochastic gradient descent 393

for optimization with a learning rate of 0.1; no regularization was applied. For all models, 394

the implementations from the river library [57] are used with default parameters if not 395

specified otherwise. 396
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2.5.1. Evaluation Metrics 397

The participants’ self-reported assessment of their valence and arousal levels was used
as the ground truth in all training and evaluation processes in this paper. Among the differ-
ent metrics of reporting the classifier’s performance [19], the commonly reported metrics
Accuracy, and F1-Score will be disclosed in this work. They are defined as follows [63]:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1-Score =
TP

TP + 1
2 (FP + FN)

. (3)

(4)

Where TP denotes the number of true positives classified by the model, and TN is the 398

number of true negatives classified by the model. Accordingly, FP stands for the number 399

of false positives classified by the model, and FN signifies the number of false negatives 400

classified by the model. ‘The higher, the better’, can be said for both accuracy and F1-Score, 401

i.e., a perfect model has an accuracy of 1 (100%) and an F1-Score of 1. 402

To determine whether the performance differences between the different setups were 403

significant, two-sided t-tests with a significance level of α = 0.05 were conducted over the 404

respective dataset. When important, the results of these tests will be reported by either a 405

p > 0.05, meaning that no significant differences could be determined at this significance 406

level, or by a p < 0.05, denoting that the test showed the results of the two compared 407

groups to be significantly different under this test setup. 408

3. Results 409

3.1. Immediate Label Setting 410

In this paper, first the real-time emotion classification pipeline was built by immediate 411

label setting first and applied to data from AMIGOS dataset and Experiment I. The data 412

were streamed to preprossses and to extract features from tumbling windows with a 413

window length of 1 second. To perform binary classification for both dimensions of AS: 414

valence and arousal, the self-rating of the participant was used by applying a threshold at 415

0.5 and defining high and low classes for both valence and arousal models. For evaluation, 416

as mentioned earlier, ARF, SRP, and LR classifiers were employed on 1 second window. The 417

setting of 5 tress, and 4 tress for SRP worked best for AMIGOS dataset and for Experiment I, 418

respectively. ARF included 5 tress for both datasets. A subject-dependent model was 419

trained with 10-fold cross-validation, and the performance were evaluated with progressive 420

validation. 421

Considering the data of established quality, we first validated the classification pipeline 422

on the AMIGOS dataset. Table 3 presents the mean total calculated average of the F1- 423

Score and accuracy over all the subjects achieved by each classifier with respect to affect 424

dimensions. As depicted in "gray", both evaluation matrices reaches to more than 80% for 425

both the ensemble models: ARF and SRP, whereas the performance of LR is relatively poor. 426

Additionally, Table 3 also shows the comparison to the evaluation of the baseline results by 427

Miranda-Correa et al. [21] and reported approximately 50% of F1-Score with no accuracy 428

score reported. Siddharth et al. [64] reports more than 70% F1-Score and accuracy, and 429

Topic et al. [65] achieves the current benchmark for this dataset by reporting 90% accuracy. 430

However, all the related work mentioned were were obtained by using a hold-out or k-fold 431

cross-validation with offline classifiers and the available labels at training time. 432

Figure 8 presents the overall model performances for individual subjects to showcase 433

the subject-wise distribution of the evaluation matrix. The mean F1-Score for the positive 434

and negative class of valence and arousal recognition, respectively were shown only for 435

ARF and SRP, since the LR showed poor performance in comparison. The consistent higher 436

F1-score mostly between 0.7 and 0.95 with two outliers validates the emotion classification 437
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Table 3. Comparison of mean F1-Scores and accuracy of Valence and Arousal recognition on the
AMIGOS dataset for short videos over all participants for different classifiers. Gray color represents
the results from this paper. NR stands for not reported.

Study or Classifier F1-Score Accuracy
Valence Arousal Valence Arousal

LR 0.669 0.65 0.702 0.688
ARF 0.825 0.826 0.82 0.846
SRP 0.834 0.831 0.826 0.847

Miranda-Correa et al. [21] 0.576 0.592 NR NR
Siddharth et al. [64] 0.8 0.74 0.83 0.791
Topic et al. [65] NR NR 0.874 0.905

pipeline built in this paper. Two outliers are visible from subjects 11 and 30 might be due to 438

a label imbalance (high/low) in the data or a bad data quality.

Figure 8. F1-Score for Valence and Arousal classification achieved by ARF and SRP per participant in
the AMIGOS dataset.

439

After validating the classification pipeline on AMIGOS dataset, we evaluate the 440

pipeline on the data from Experiment I. Table 4 presents the mean F1-Score of the subject- 441

dependent models with the three classifiers for the positive and negative class of arousal 442

and valence recognition, respectively. The F1-Score from both employed EEG device are 443

shown with the best highlighted in bold. As depicted, all classifiers achieved higher 444

performances on arousal recognition than on valence, which is in line with the literature [19, 445

21]. Furthermore, the two ensemble methods: ARF and SRP showed better performance 446

with the mean F1-Score of more than 82% with no statistically significant difference (p > 447

0.05) in between. LR models showed poor performance similar to the performance on 448

AMIGOS dataset. Moreover, the mean F1-Score over all subject-dependent models using 449

Crown data led to a better performance (by at least 2% and up to 7.6%) in most cases 450

than using Muse data. However, the differences are not statistically significant (p > 0.05) 451

because 4 out of 11 cases for valence and 5 out of 11 cases for arousal recognition were 452

showing the F1-Score for this dataset. Thus, the distribution of which device’s data leads to 453

the best performance per subject is actually rather balanced on this dataset. 454

3.2. Effects of Window Size 455

To find the optimum window length for online prediction, this paper extract features 456

from different tumbling window length of l ϵ [1 s, 2 s, 3 s, 4 s, 5 s] as depicted in Figure 6. 457
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Table 4. Comparison of mean F1-Scores of Arousal and Valence recognition per participant and
device from Experiment I with three classifiers using progressive validation. Bold values indicate
the best performing model per participant and dimension. The mean total represents the calculated
average of all models’ F1-Scores.

Subject ID ARF SRP LR
Crown Muse Crown Muse Crown Muse

A
ro

us
al

3 0.902 0.885 0.895 0.898 0.8 0.785
4 0.836 0.794 0.838 0.845 0.793 0.604
5 0.651 0.812 0.699 0.827 0.764 0.682
6 0.836 0.843 0.863 0.889 0.771 0.62
7 0.958 0.833 0.933 0.878 0.841 0.725
8 0.889 0.749 0.893 0.783 0.683 0.584
9 0.888 0.921 0.836 0.931 0.756 0.703

10 0.969 0.903 0.951 0.915 0.816 0.898
11 0.938 0.768 0.955 0.861 0.765 0.908
12 0.864 0.871 0.884 0.878 0.669 0.697
13 0.792 0.913 0.8 0.887 0.701 0.734

Mean 0.866 0.845 0.868 0.872 0.76 0.722

V
al

en
ce

3 0.837 0.887 0.811 0.876 0.716 0.712
4 0.841 0.69 0.773 0.859 0.804 0.524
5 0.546 0.734 0.639 0.748 0.781 0.58
6 0.713 0.687 0.785 0.778 0.73 0.393
7 0.935 0.666 0.926 0.757 0.776 0.616
8 0.813 0.551 0.819 0.623 0.594 0.444
9 0.812 0.844 0.721 0.863 0.72 0.561

10 0.982 0.859 0.979 0.871 0.74 0.874
11 0.924 0.653 0.957 0.811 0.64 0.884
12 0.889 0.756 0.914 0.784 0.633 0.663
13 0.584 0.826 0.6 0.775 0.543 0.595

Mean 0.807 0.735 0.819 0.787 0.698 0.622
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(a) AMIGOS. (b) Experiment I, Muse. (c) Experiment I, Crown.
Figure 9. Mean F1-Score achieved by ARF, SRP, and LR over the whole dataset for both affect
dimension with respect to window length.

As detailed in Section 2.3, the pipeline processes the incoming data and extracts the features 458

that are used to train the model in tumbling windows of a specified length l. With 10- 459

fold cross-validation and progressive validation, the mean F1-Scores from ARF and SRP 460

classifiers are depicted for AMIGOS dataset and datasets from Muse (Figure 9b) and Crown 461

(in Figure 9c) from Experiment I. The Figure 6 shows that the best predictive performance 462

was achieved with a window length of 1 second irrespective of the affect dimensions, 463

classifiers and devices. Moreover, in most cases the classification performance is decreasing 464

with increasing window sizes emphasizing the need of more data points. Furthermore, 465

these plots showcase again, that the ensemble methods achieved overall higher F1-Scores 466

than logistic regression and that all classifiers performed better on arousal recognition than 467

on valence. 468

3.3. Delayed Label Setting: Live Classification 469

In order to validate the streaming setup of the emotion classification pipeline from 470

Experiment I, live predictions and live online training was performed in Experiment II. 471

The participants wore the same EEG device for both parts of the experiment: participant 472

14 and 17 wore the Muse headband and participant 15 and 16 wore the Crown. For 473

each participant, an ARF with 4 trees was trained on the data recorded in part 1 of the 474

experiment using a window length of 1 second and progressive delayed validation. With 475

the pre-trained model, live predictions were performed with the data streaming in the part 476

2 of Experiment II. The prediction is only available to the experimenter and the model was 477

continuously updated, whenever new true labels became available from the participant. 478

Therefore, the labels arrived with a certain delay depending on the length of the video. 479

Table 5 shows that the highest F1-Score (in bold) obtained from each category during the 480

live predictions in 73% for arousal and 60% for valence. However, most of the reported 481

accuracy in Table 5 barely reached chance level. The lower predictive performance led us to 482

investigate more on the delayed labels. To imitate production settings, we induced delay on 483

the into the pipeline and applied progressive delayed validation on the subject-dependent 484

model from Experiment I. Since the data from Experiment I was not a live stream, the 485

model was updated with the true label for a sample after it had seen the next 86 samples 486

i.e., the mean length of the video stimuli was 86 seconds. Table 6 displays the F1-Scores of 487

both the models for valence and arousal recognition with a label delay of 86 s using an ARF 488

with 4 trees and a window length of 1 s. The F1-score for individual participant reached to 489

77% for valence and 78% for arousal. However, the mean F1-Score across all participants 490

achieved 63% for arousal and did not reach chance level for the valence classification. The 491

performance declines verily compared to Table 4), when a delay is induced. However, the 492

findings justifies the poor performance in the live settings and validates the pipeline as a 493

useful one with the possibility of modifications in future work. Furthermore, the binary 494

arousal classification with the induced label delay outperforms the baseline results obtained 495

by Miranda-Correa et al. [21] by 4.5% with a immediate label settings. However, the results 496
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reported by Siddharth et al. [64], and Topic et al. [65] outperforms with the immediate 497

labels. 498

Table 5. F1-Score and accuracy for the live affect classification in Experiment II (part 2). Subject 14 &
17 wore Muse, subject 15 & 16 wore the Crown for data collection.

Subject ID F1-Score Accuracy
Valence Arousal Valence Arousal

14 0.521 0.357 0.562 0.385
15 0.601 0.64 0.609 0.575
16 0.353 0.73 0.502 0.575
17 0.512 0.383 0.533 0.24

Table 6. Mean F1-Scores for Valence and Arousal recognition of Experiment I, relayed per participant
and device. Obtained using ARF (with 4 trees), a window length of 1 second, and progressive delayed
validation with a label delay of 86 seconds. The last row shows the mean F1-Score of all participants.

Participant ID Valence Arousal
Crown Muse Crown Muse

3 0.338 0.584 0.614 0.718
4 0.674 0.429 0.551 0.575
5 0.282 0.554 0.355 0.69
6 0.357 0.27 0.608 0.619
7 0.568 0.574 0.698 0.769
8 0.266 0.286 0.561 0.574
9 0.553 0.53 0.719 0.749

10 0.767 0.561 0.784 0.691
11 0.469 0.207 0.676 0.418
12 0.443 0.51 0.575 0.679
13 0.335 0.451 0.646 0.711

Mean 0.476 0.46 0.637 0.637

4. Discussion 499

In this paper, firstly, a real-time emotion classification pipeline was built for binary clas- 500

sification (high/low) of the two affect dimensions Valence and Arousal. Adaptive Random 501

Forest (ARF), Streaming Random Patches (SRP), and Logistic Regression (LR) classifiers 502

with 10-fold cross-validation were applied to the EEG data stream. The subject-dependent 503

models were evaluated with progressive and delayed validation, respectively, when im- 504

mediate and delayed labels were available. The pipeline was validated on the existing 505

data of ensured quality from the state-of-the-art AMIGOS [21] dataset. By streaming the 506

recorded data to the pipeline, the mean F1-Score achieves more than 80% for both ARF and 507

SRP models. The results outperform the authors’ baseline results by approximately 25% 508

and are also slightly better than the work reported by [64] using the same dataset. Topic 509

et al. [65] shows a better performance; however, due to the reported complex setup and 510

computationally costly methods, the system is unsuitable for real-time emotion. Neverthe- 511

less, the results mentioned in the related work apply offline classifiers with a hold-out or a 512

k-fold cross-validation technique. In contrast, our pipeline applies an online classifier by 513

employing progressive validation. To the best knowledge, no other work tested an online 514

EEG-based emotion classification framework on the published AMIGOS dataset. 515

Secondly, a similar framework from the AMIGOS dataset was established within this 516

paper which can collect neurophysiological data from a wide range of neurophysiological 517

sensors. In this paper, two consumer-grade EEG devices were used to collect data from 518
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15 participants while watching 16 emotional videos. The framework available in the 519

mentioned repository can be adapted for similar experiments. 520

Thirdly and most importantly, we curated data in two experiments to validate our 521

classification pipeline using the mentioned framework. 11 participants took part in Experi- 522

ment I, where EEG data was recorded while watching 16 emotion elicitation videos. The 523

pre-recorded data is streamed to the pipeline and showed a mean F1-Score of more than 524

82% with ARF and SRP classifiers using progressive validation. The finding validates the 525

competence of the pipeline on the challenging dataset coming from consumer-grade EEG 526

devices. Additionally, the online classifiers consistently showed better performance for 527

ARF and SRP than LR on all compared modalities. However, internal testing verifies that 528

the run-time on the training step of the pipeline of ARF is less than that of SRP, concluding 529

to use of ARF in live prediction. The analysis on window length shows a clear trend 530

of increasing performance scores with decreasing window length; therefore, a window 531

length of 1 second is chosen for further analysis. Although the two employed consumer- 532

grade devices possess a different number of sensors at contrasting positions, there were 533

no statistically significant differences between the achieved performance scores on their 534

respective data found. Therefore, we used both devices for live prediction, and the pipeline 535

was applied to a live incoming data stream in Experiment II with the above-mentioned 536

features of the model. In the first part of the experiment, the model is trained with the 537

immediate labels from the EEG data stream. In the second part, the model is used to 538

predict affect dimensions while the labels are available after a delay of the video length. 539

The model is continuously updated whenever a new label is available. The performance 540

scores achieved during the live classification with delayed labels are much lower than with 541

immediate labels in Experiment I, motivating to induce artificial delay to the data stream 542

from Experiment I. The results are compatible with the results from the live prediction. The 543

literature reports better results for real-time emotion classification frameworks [23,24,26] 544

with the assumption of knowing the true label immediately after a prediction. The novelty 545

of this paper is to present a real-time emotion classification pipeline close to the realistic 546

production scenario from daily life with the possibility of including further modifications 547

in future work. 548

As a future work, the selected stimuli can be shortened to reduce the delay of the 549

incoming labels so that the model is updated more frequently. Otherwise, multiple inter- 550

mediate labels can also be included in the study design to ensure the inclusion of short 551

time emotions felt while watching the movies. Furthermore, more dynamic preprocessing 552

of the data can be included with feature selection algorithms for better prediction in live 553

settings. Moreover, the collected data from the experiments reveal a strong class imbalance 554

in the self-reported affect ratings for arousal, with high arousal ratings making up 82.96% 555

of all ratings in that dimension.This general trend towards more high arousal ratings is 556

also visible in the AMIGOS dataset, albeit not as intensely (62.5% high arousal ratings). In 557

contrast, Betella et al. [46] found “a general desensitization towards highly arousing content” 558

in participants. The underrepresented class can be upsampled in the model training in the 559

future, or the basic emotions can be classified instead of arousal and valance, solving a 560

multiclass problem [66]. Including more participants in the future for live prediction, the 561

prediction can be visible to the participant as well to include neurofeedback. It will also be 562

interesting to see if the predictive performance improves by utilizing additional modalities 563

other than EEG, for example, Heart rate, Electrodermal activity [19,22,28]. 564
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586

MDPI Multidisciplinary Digital Publishing Institute
ARF Adaptive Random Forest
AS Affective Slider
EEG Electroencephalography
HCI Human-Computer Interaction
HVLA High Valence Low Arousal – different combinations are possible
LR Logistic Regression
OSC Open Sound Control
PANAS Positive And Negative Affect Schedules
PSD Power Spectral Density
SRP Streaming Random Patches
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Appendix A 588

Input: Unlabelled EEG data stream S = {x1, x2, ..., xi, ...}
Stream of true class labels including corresponding stimulus start- and
end-times L = {(Yj, startTimej, endTimej), (Yj+1, ...), ...}
Sampling frequency sf
Window length |w|
Optional: model

Output: Predicted binary affect class (valence: 0/1, arousal: 0/1) per window
predictions← Dict();
extractedData← Dict();
window← emptyWindow();
windowSize← sf * |w|;
windowCounter← 0;
if no model exists

model← initialise-model();
while Stream S has next tuple x do

timestamp← current-time();
window.add(x);
windowCounter += 1;
if windowCounter == windowSize

preprocess(window);
features← extract-features(window);
predictedClass← predict-one(model, features);
display(predictedClass);
predictions[timestamp]← predictedClass;
extractedData[timestamp]← features;
windowCounter← 0;
window← emptyWindow();

if unseen labels available
foreach unseen label tuple (Y , startTime, endTime) do

matchedWindows← match-timestaps(startTime, endTime,
extractedData);

matchedPredictions← match-timestaps(startTime, endTime,
predictions);

for index in length(matchedWindows) do
performance-metric-update(Y , matchedPredictions[index]);
train-one(model, Y , matchedWindows[index]);

Algorithm 1: Live Emotion Classification from an EEG Stream
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