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Abstract: Emotions are indicators of affective states and play a significant role in human daily life,
behavior, and interactions. Giving emotional intelligence to the machines could, for instance, facilitate
early detection and prediction of (mental) diseases and symptoms. Electroencephalography (EEG)
-based emotion recognition is being widely applied because it measures electrical correlates directly
from the brain rather than the indirect measurement of other physiological responses initiated by
the brain. The recent development of non-invasive and portable EEG sensors makes it possible to
use them in real-time applications. Therefore, this paper presents a real-time emotion classification
pipeline, which trains different binary classifiers for the dimensions of Valence and Arousal from an
incoming EEG data stream. After achieving a 23.9% (Arousal) and 25.8% (Valence) higher f1-score on
the state-of-art AMIGOS dataset, this pipeline was applied to the dataset achieved by an emotion
elicitation experimental framework developed within the scope of this thesis. Following two different
protocols, 15 participants were recorded using two different consumer-grade EEG devices while
watching 16 short emotional videos in a controlled environment. For an immediate label setting, the
mean fl-score of 87% and 82% were achieved for Arousal and Valence, respectively. In a live scenario,
while continuously being updated on the incoming data stream with delayed labels, the pipeline
proved to be fast enough to achieve predictions in real time. However, the significant discrepancy
from the readily available labels on the classification scores leads to future work to include more data
with frequent delayed labels in the live settings.

Keywords: Online Learning; Emotion Classification; AMIGOS dataset; Wearable-EEG (Muse and
Neurosity Crown); Psychopy Experiments

1. Introduction

Emotions are part of everyone’s daily life as they are crucial to many aspects: They are
a significant factor in human interactions, influence decision-making, and are involved in
mental health. Emotions play a crucial role in human communication and cognition, which
makes comprehending them significant to understanding human behaviour [1]. The field
of affective computing strives to build systems that can recognize and interpret human
affects [1,2], offering exciting possibilities for education, entertainment, and healthcare.
Giving machines emotional intelligence could, for instance, facilitate early detection and
prediction of (mental) diseases or their symptoms since specific emotional and affective
states are often indicators thereof [3]. For example, long-term stress is one of today’s
significant factors causing health problems, including high blood pressure, cardiac diseases,
and anxiety [4]. Notably, some patients with epilepsy (PWE) report premonitory symptoms
or auras as specific affective states, stress, or mood changes, enabling them to predict an
oncoming seizure [5]. The association of premonitory symptoms and seizure counts has
been analyzed from patient reported diaries [6], and the non-pharmacological interventions
proved to reduce the seizure rate [7]. However, many PWE can not consistently identify
their prodromal symptoms, and many do not perceive prodromes [8], emphasizing the ne-
cessity of objective prediction of epileptic seizures. In previous work, the authors proposed
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developing a system to predict seizures by continuously monitoring their affective states [9]. 30
Therefore, measuring and predicting affective states in real-time through neurophysiologi- 4o
cal data could aid in finding pre-emptive therapies for epilepsy patients by identifying the
pre-ictal state to predict a seizure onset. That would be incredibly beneficial, especially to 22
people with drug-resistant epilepsy, and improve their quality of life by enabling them to 2
anticipate and mitigate possibly violent seizures [3,8]. Consequently, emotion detectionin 44
this paper is motivated by the idea that allowing computers to perceive and understand s
human emotions could improve human-computer interaction (HCI) and enhance their 4
abilities to make decisions by adapting their reactions accordingly. a7

Since emotional reactions are seemingly subjective experiences, neurophysiological s
biomarkers, such as heart rate, respiration, or brain activity [10,11] are inevitable. Ad- 4
ditionally, for continuous monitoring of affective states and thus detecting or predicting  so
stress-related events reliably, low-cost consumer-grade devices rather than expensive and s
immobile hospital equipment would be more meaningful [12]. It is an important area of 2
interest in cognitive science and affective computing, with use cases varying from designing  ss
brain-computer interfaces [13,14] to improving healthcare for patients suffering from neu- s
rological disorders [15,16]. Among these, Electroencephalography (EEG) has proven tobe s
an accurate and reliable modality without needing external annotation [17,18]. With recent  se
advancements in wearable technology, consumer-grade EEG devices have become more sz
accessible and reliable, opening possibilities for countless real-life applications. Wearable  ss
EEG devices like the Emotiv EPOC Neuroheadset or the Muse S headband have become s
quite popular tools in emotion recognition [19-21]. Muse S headband has also been used  eo
for event-related potential (ERP) research [12] and for the challenge of affect recognition e
in particular. More specifically, Muse S has already been used in experimental setups to 2
obtain EEG data from which the mental state (relaxed /concentrated /neutral) [13], and the s
emotional state (using the valence-arousal space) [22], could be reliably inferred through e
the use of a properly trained classifier. o5

However, a challenging but important step to identifying stress-related events or es
improving HCI in real-life settings is to recognise changes in peoples’ affect by leveraging e
live data. The EEG-based emotion classification mentioned in the literature has nearly s
exclusively employed traditional machine learning strategies, i.e., offline classifiers, often o
combined with complex data preprocessing techniques, on static datasets, making it un- 7
suitable for daily monitoring. Therefore, researchers are interested in building a real-time 7
emotion classification pipeline since lately, where the classification results are obtained from 7
pre-recorded (and already preprocessed) data, often utilizing a pre-trained model [23,24]
rather than working with (live) data streams. Li et al. [25] address the challenges whena 7
model can see the data only once by leveraging cross-subject and cross-session data but 7
does not apply live incoming data stream to their work. Whereas Lan et al. [26] analyse 76
stable features for real-time emotion recognition and implement their proposed algorithm 77
in two emotion-monitoring applications where computer avatars reflect a person’s emotion 7
based on live EEG data. However, the live emotion classification is based on a static model, 7
which has to be trained in a prior training session and is not updated afterward. To the =0
best of our knowledge, only Nandi et al. [27] have employed online learning to classify s
emotions from an EEG data stream from the DEAP dataset and proposed an application
scenario in e-learning but did not report on undertaking any such live experiments. Indeed, s
more research is needed on using online machine learning for emotion recognition. oa

Moreover, multi-modal labeled data for the prediction of affective states have been s
made freely available through annotated affective databases, like DEAP [28], DREAMER [29], 6
ASCERTAIN [30], and AMIGOS [21], which play a significant role in further enhancing the -
research of this field. They include diverse data from experimental setups using differing s
emotional stimuli like music, videos, pictures, or cognitive load tasks in an isolated or s
social setting. Such databases enable the development and improvement of frameworks s
and model architectures with existing data of ensured quality. However, none of the o
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datasets have published the data collection framework to be reused in curating the data 2
from wearable EEG devices in live settings. 93

Therefore, firstly, the key contribution of this paper is the establishment of a lightweight s
emotion classification pipeline that can provide predictions on a person’s affective state o5
based on an incoming EEG data stream in real-time, efficiently enough to be used in real o6
applications i.e., seizure prediction. The developed pipeline leverages online learning o
to train subject-specific models on data streams by implementing binary classifiers for s
the affect dimensions: Valence and Arousal. The pipeline is validated by streaming the oo
existing datasets of established quality, AMIGOS, with better predictive performance than 100
state-of-the-art contributions. Secondly, an experimental framework is developed, similar 10
to the AMIGOS dataset, which can collect neurophysiological data from a wide range of 102
commercially available EEG devices and show live prediction of the subjects” affective 103
states even when labels arrive with a delay. Data from 15 participants were captured by ios
using two consumer-grade devices. Thirdly, the most novel contribution of this paperis to 1os
validate the pipeline on the curated dataset by wearable EEG devices in the first experiment 10
with consistent prediction performance with the AMIGOS dataset. Following this, the 1o
live prediction was performed successfully on an incoming data stream in the second 10
experiment with delayed incoming labels. 100

The curated data from the experiments and metadata is accessible to the designated 110
researchers as per the participants’ consent; therefore, the dataset is available upon request 111
for scientific use via a contact form on Zenodo (https://doi.org/10.5281/zenodo.7398263). 112
The Python code for loading the dataset and implementations of the developed pipeline 11
are made available on GitHub (https://github.com/HPI-CH/EEGEMO). The next section 114
will explain the material and methods utilized within this paper following the results and s

discussion sections. 116
2. Materials and Methods 117
2.1. AMIGOS dataset 118

The emotion classification pipeline developed within the scope of this paper was eval- 11
uated on the state-of-art dataset for affect, personality, and mood research on individuals 120
and groups (AMIGOS) published by Miranda-Correa et al. [21]. Upon following the data 12
receiving protocol, all data from the AMIGOS dataset that is used in this work stems from 122
the short video individual experiments where 40 healthy participants (13 female), aged 12s
between 21 and 40 (mean age 28.3) were asked to watch 16 videos from defined movie 12
clips. The EEG data was recorded using the Emotiv EPOC Neuroheadset ! with a sampling 12
frequency of 128 Hz with 14 bit resolution. This device records EEG data from 14 channels 126
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) of the brain according to the 127
10-20 system as depicted in Figure 1a. 128

Additionally, AMIGOS dataset reports the Self-Assessment Manikin [31] with a scale 120
from 1 to 9 as recording participants” affect ratings of the dimensions valence, arousal, and 130
dominance. The participants were also asked to rate their familiarity with the videos, and 13
their liking of them and had to select at least one option from a list of basic emotions that 1s:
they felt after watching each video. However, only the obtained valence and arousal ratings  1ss
are considered as the ground truth for the classifier while working with AMIGOS dataset 13a
within this paper. Furthermore, the participants answered the Positive and Negative Affect 1
Schedules (PANAS) [32] questionnaire at the beginning of the experiment and a second 136
time in the days after the experiment; only one overall calculated PANAS score is reported. 1s7
To evaluate the classification pipeline, the preprocessed data files were used where the EEG  13s
data was downsampled to 128 Hz, averaged to common reference, and applied a band pass  13s
frequency filter from 4.0 — 45.0 Hz as described in the AMIGOS dataset description website 140

1 https:/ /www.emotiv.com/epoc-x/
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2. The files containing electrocardiogram (ECG) and galvanic skin response (GSR) data s
have been remmoved for the analysis of this paper.
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(a) Emotiv EPOC (b) Muse S Headband (c) Neurosity Crown
Figure 1. Different electrode positions, according to the international 10-20 system, of the EEG devices
used in AMIGOS dataset: 1a, and in Experiments I and II: 1b, 1c . Sensor locations are marked in
blue, references in orange.

2.2. Experimental Setup 143

This paper establishes a lightweight emotion classification pipeline that can provide 1ss
predictions on a person’s affective state based on an incoming EEG data stream in real-time 1as
efficiently enough to be used in a live setting. Two different experimental protocols, named 14
Experiment I and Experiment II, were designed with the description of participants, data 1
acquisition, and experimental protocols mentioned below. 148

2.2.1. Participants 149

For Experiment I, 13 participants were recruited including two test participants. There- 1so
fore, the data analysis cohort consists of 11 participants (6 females and 5 males) between s
the age of 25 and 42 (¢ = 29.27, ¢ = 5.41 years). Experiment II was conducted with 4 1s:
participants (1 female and 3 males) between the age of 25 and 34 (y = 28.5, 0 = 3.5 years). 1ss
Exclusion criteria for the study included being pregnant, being older than 65 years, and had s
taken part in Experiment II. All participants had normal or corrected vision and reported  1ss
no history of neurological or mental illnesses or head injuries. 156

2.2.2. Data Acquisition 157
Hardware: During the experiments, two consumer-grade devices: Muse S Headband Gen 1°  1ss
and Neurosity Crown *, were used to collect the EEG data from the participants as depicted s
in Figure 2. While both devices operate with the sampling rate of 256 Hz, the EEG data 1e0
is collected with 4 and 8 channels, respectively. According to the international 10-20

= P

(a) Muse S Headband (b) Neurosity Crown

Figure 2. Two consumer-grade EEG devices with integrated electrodes used in the experiments.
161

system [33], the channels on the Muse S Headband correspond to AF7, AF8, TP9, and TP10  1e2
(see Figure 1b), with a reference electrode at Fpz [12]. The channel locations of Neurosity e

2
3
4

http:/ /www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
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https:/ /neurosity.co/crown
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Crown are C3, C4, CP3, CP4, F5, F6, PO3, and PO with the reference sensors located at T7 164
and T8 as shown in Figure 1c. Using Mind Monitor App °, the raw EEG data was streamed e
from Muse to a phone via Bluetooth. The app sends the data to a laptop via the open sound 166
control (OSC) protocol, and the python-osc library © on the receiving end. As the incoming 1er
data tuples from the Muse Monitor App did not include timestamps, one was added by  1es
the pipeline upon arrival of each sample. Similarly, the Crown uses the python-osc library e
to stream the raw EEG data to a laptop without enabling any preprocessing settings. In 170
contrast to the Muse Headband, the Crown includes a timestamp when sending data. in
In order to compare the data from the different devices and have consistent results, the 172
pipeline also added a timestamp to each sample when receiving the data. 173
Software: In this paper, the experiment was implemented using the software PsychoPy (v 17e
2021.2.3) [34] in a way that guided the participants through instructions, questionnaires, 17s
and stimuli. The participants are allowed to go through their own pace by clicking on 17
the ‘Next’ (in German “Weiter’) button, as shown in the screenshots of PsychoPy in figure 177
Figure 4. 178

2.2.3. Stimuli Selection 179

Inducing (specific) emotional reactions, even in a fully controlled experimental set- 1s0
ting, is a challenge. Several datasets are trying to solve it with different modalities like 1s
pictures [35-37], music [38,39], or (music-) videos [28,40,41] or combinations of them [42]. 12
In this work, videos depicting short movie scenes were used as stimuli, based on the 1es
experimental setup Miranda-Correa et al. used for AMIGOS dataset [21]. Therefore, 16 1z
short clips (51-150s long, i = 86.7s, 0 = 27.8s) depicting scenes from 15 different movies 1es
were used in the experiments for emotion elicitation. 12 of these videos stem from the 1ss
DECAF dataset [40], and 4 movie scenes were taken from the MAHNOB-HCI [41] dataset. 1s7
According to Miranda-Correa et al., these specific clips were chosen because they “lay  1es
further to the origin of the scale” than all other tested videos. It means they represent the s
most extreme ratings in their respective category according to the labels provided by 72 100
volunteers [21]. The labels were provided in the two-dimensional plane spanned by the 10
two dimensions Valence and Arousal according to Russell’s circumplex model of affect [43]. 102
Valence, the dimension describing one’s level of pleasure, ranges from sad (unpleasant, 193
stressed) to happy (pleasant, content), and can be seen on the horizontal axis, whereas 104
Arousal, which ranges from sleepy (bored, inactive) to excited (alert, active), is placed on 105
the vertical axis. Experienced affective states can be objectively described by assigning a 196
rating in both dimensions. As depicted in Figure 3, the model divides the plane into four 1e7
quadrants. Independent of the employed scale, everything greater than the middle of each 108
axis (i.e., above or to the right of it) respectively is usually deemed as a high level of feelings 190
in the corresponding dimension and everything under that threshold is deemed as low. 200
Following this, the four quadrants are called: High Arousal Low Valence (HALV), High 20
Arousal High Valence (HAHYV), Low Arousal High Valence (LAHV), and Low Arousal Low 202
Valence (LALV). The selected movie scenes described in Table 1 are balanced between each 203
of the valence-arousal space quadrants (HVHA, HVLA, LVHA, LVLA). The video ID 19 204
corresponded to a scene from the movie Gandhi, which differs from the AMIGOS dataset  zos
but falls into the same LALV quadrant. 206

2.2.4. Behavioral Data 207

PANAS: During the experiments, participants were asked to assess their baseline levels of 208
affect, also referred to as mood, in the PANAS scale. As depicted in one of the screenshots 200
from PsychoPy in figure Figure 4a, the total 20 questions (10 question from each of the =210
Positive Affect (PA), and Negative Affect (NA) dimension) were asked to rate in a 5-point 211
Likert scale with the options ranging from “very slightly or not at all” (1) to “extremely” 212

https:/ /mind-monitor.com/

6 https://pypi.org/project/python-osc/
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Figure 3. Figure 3a Russell’s Circumplex Model of Affect in multidimensional scaling [43], 28 affect
words are placed on the plane spanned by two axes without explicit title. Figure 3b is a reduced
version of Russell’s Circumplex Model of Affect [44] depicting the valence-arousal space as it is used
in this work with the four quadrants: HALV, HAHV, LAHV, LALV. H, L, A, and V stand for high,
low, arousal and valence respectively.

Table 1. The source movies of the videos used in the experiments are listed per quadrant in the
valence-arousal space. Video IDs are stated in parentheses, sources marked with a T were taken from
the MAHNOB-HCI dataset [41]; all the others stem from DECAF [40]. In the category column, H, L,
A, and V stand for high, low, arousal, and valence respectively. This table has been adapted from
Miranda-Correa et al. [21].

Category ‘ Source Movie

HAHV | Airplane (4), When Harry Met Sally (5), Hot Shots (9), Love Actually (80)*
LAHV August Rush (10), Love Actually (13), House of Flying Daggers (18),

Mr Beans’ Holiday (58)"

LALV Gandhi (19), My Girl (20), My Bodyguard (23), The Thin Red Line (138)*
HALV Silent Hill (30)*, Prestige (31), Pink Flamingos (34), Black Swan (36)

(5). To see if the participants’ moods generally changed over the course of the experiments, 21
they were asked to answer the PANAS once at the beginning of the experiment and then 21
once again at the end. For the German version of the PANAS questionnaire, the translation 2:s
of Breyer and Bluemke [45] was used in the experiments. 216
Affect Self-Assessment: The Affective Slider (AS) [46] was used in the experiment to 27
capture participants” emotional self-assessment after presenting each stimulus as depicted 21.
in the screenshot in Figure 4b 7. AS is a digital self-reporting tool composed of two slider 21
controls for the quick assessment of pleasure and arousal. The two sliders show emoticons 220
at their ends to represent the extreme points of their respective scales, i.e. unhappy/happy 22
for pleasure (valence) and sleepy/wide-awake for arousal [43]. To rate the experienced =zz:
level of one of these dimensions, the corresponding slider can be moved to the appropriate 223
point on the scale. For the experiments, AS was designed in a continuous normalised 224
scale with a step size of 0.01 (i.e., a resolution of 100) and the order of the two sliders were 225
randomized each time. 226
Familiarity: The participants were asked to indicate their familiarity with each videoona 27
discrete 5-point-scale ranging from “Have never seen this video before” (1) to “Know the  22s
video very well” (5). The PsychoPy slide with this question used in the experiments and 22
was always shown after the affect self-assessment. 230

7 https://github.com/albertobeta / AffectiveSlider
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How do you feel right now?
Very slightly or notatall A little Moderately Quite a bit Extremely
[ ] O o [ ] [ ] Move the slider to rate your level of Pleasure
@ o

[ |

Ashamed
Move the slider to rate your level of Arousal

Inspired
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(a) PANAS questionnaire. (b) Affective slider.
Figure 4. Screenshots from the PsychoPy [34] experimental setup of self-assessment questions the
participants were shown in Experiment I and II. 4a is one part of the PANAS questionnaire with 5
different levels represented by clickable radio buttons with levels explanation on top. 4b shows the
AS for valence displayed on top and the slider for arousal on the bottom.

2.2.5. Experiment I 231

Briefing Session: At the beginning of the experiment, the participant went through a 232
briefing session from the experimenter. In this session, the experimenter explained the =3
study procedure after leading the participant into the study room. The participants were  23s
informed that the experiment would entail two parts of approximately 20 minutes each with 235
a small intermediate break. The participant will then receive and read the data information =236
sheet, fill out the personal information sheet, and sign the consent to participate in the 237
study. Personal information includes age, nationality, biological sex, handedness (left 2:s
or right-handed), education level, and neurological or mental health-related problems. =230
The documents and the study platform (i.e., PsychoPy) were provided according to the 240
participant’s choice of study language between English and German. Afterward, the 2a
experimenter explains the three scales mentioned in and allows the participant to accustom  za2
to the study platform, PsychoPy. This ensures the understanding of the different terms and 24
scales used for the experiment without having to interrupt the experiment afterwards. The 24
participant can refrain from participating at any moment during the experiment. 245
Data Collection: After briefing, the experimenter put either the Muse Headband or the 246
Neurosity Crown on the participant by a random choice. Putting headphones over the 247
device, the participants was asked to refrain from strong movements, especially with the 248
head. The experimenter then checks the incoming EEG data and let the participant begin  zas
with the experiment. After greeting the participant with a welcome screen, a relaxation  2so
video were shown to the participant ®.They answered the PANAS questionnaire to rate 2s:
their current mood and close their eyes for half a minute to get a baseline measure of EEG  zs:
data. Afterwards, they were asked to initially rate their valence and arousal state with 2ss
the AS. Following this, an instruction about watching 8 short videos is provided. Each of  2s4
those was preceded by a video counter and followed by two questionnaires,the AS and the =zss
familiarity with each video. The order of the videos and the order of the two sliders of As  2se
were randomized over both parts of the experiments, fulfilling the condition that the label 257
of the videos are balanced. The first part of the experiment ended after watching 8 videos  2se
and answering corresponding questionnaire. The participants were allowed a short break 2so
after taking the EEG device and the headphone off. 260

In the second part of the experiment, the experimenter put the device that had notbeen 26
used in the first part (Muse or Crown, respectively) and the headphones on the participant. e
Subsequently, the experimenter started the second part of the experiment, again after 2es
ensuring that the data collection was running smoothly. The participants followed exact zes
same protocol, watching relaxation video, answering PANAS, closing eyes and watching 8  zes
more movie scenes with the AS and familiarity question in between. Lastly, they were asked 266

8 https:/ /www.youtube.com/watch?v=56jCd2hSVKA
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for a final mood self-assessment via a second PANAS questionnaire to capture differences 2oz
before and after the experiment. 2608

In Experiment I, one PC (with a 2,4 to 3,0 GHz Dual Intel Core i5-6300U and 12GB 260
RAM) was used to present the stimuli and obtain the subjects’ self-assessments through 27
PsychoPy, as well as receive the signals from the EEG measuring devices. All data was 2n
stored and only used after the experiment session. 272

2.2.6. Experiment II : Live Training and Classification 273

In Experiment 1II, the participants received the same briefing as mentioned in Sec- 274
tion 2.2.5. For both part of the experiment same device has been used in this experiment. =7
The protocol for the stimuli presentation in the first part (before the break) was also fol- 27
lowed according to Experiment I: relaxation video, PANAS, eye closing, 8 video stimuli 277
with the AS and familiarity question. One additional instruction after each AS was shown, 27
which includes the original label of the videos. This additional information was given to the 27
participant, since the arousal ratings given in Experiment I were very imbalanced. During  2s0
the break, the recorded EEG data was preprocessed and used to train a initial model in an  zs:
online way. This initial model training was necessary because the data needed to be shuf- e
fled, as explained in Section 2.3.2. The initial model is continuously trained and updated  zes
during the second part of the experiment where the live prediction of affect is available. 2es
The second part of the experiment is conducted according to the first part: relaxation video, =zss
PANAS, eye closing, 8 video stimuli with the AS and familiarity question. However, one  zs6
additional prediction is performed and available to the experimenter before the AS label ez
from the participant. Furthermore, the AS label was used to update the model training and  zss
the prediction was running in parallel. Figure 5 displays the initialised model in the bottom  2ee
grey rectangle to do live emotion classification on the incoming EEG data stream. However, 200
the prediction results were only displayed to the experimenter to avoid additional bias. ze:
Since the objective of Experiment II was live online learning and classification, the data 202
coming in a online stream, however, the data was also stored for later evaluation and  2es
reproducibility. 208

In Experiment II, the same PC that was employed in ExperimentI (2,4 to 3,0 GHz Dual 205
Intel Core i5-6300U and 12 GB RAM) was used to present the stimuli through PsychoPy, 206
and send the AS label to a second PC. This second machine was a MacBook Pro (2019) with  2e7
a 2,8 GHz Quad-Core (Intel Core i7) and 16 GB of memory. It was used to receive the signals  2e8
from the EEG devices and the labels from the first PC, as well as for data preprocessing, =zes

online model training and live emotion classification. 300
2.3. Emotion Classification Pipeline 301
2.3.1. Data Preprocessing 302

In this paper, no additional preprocessing was performed in AMIGOS dataset, since o3
the preprocessed data provided by the author was used. However, the EEG data collected  so0s
during Experiment I and II went through significant preprocessing to remove artifacts from  sos
the data [47,48]. Figure 5 depicts all the similar preprocessing steps applied on both shows 06
the immediate labelling setting (top) and in a live application (bottom). To remove the o
powerline interference visible on raw EEG recordings as a sinusoidal at 50 Hz (in Europe) soe
[49], a second-order IIR notch digital filter was applied to the data [50]. Furthermore, 1o
a fifth-order Butterworth bandpass frequency filter from 0.5 to 45.0 Hz was applied to 310
remove noise on frequencies that were not relevant (see ??). Additionally, the data was su
average-referenced after filtering, i.e., the overall average potential is subtracted from each s
channel [21,28? ]. This method “relies on the statistical assumption that multichannel EEG 31
recording are uncorrelated” [51] and assumes an even potential distribution across the = sia
scalp. The preprocessing had to be minimum instead of computation-heavy steps, since s
the live prediction had to be time efficient. 316
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Figure 5. Overview of pipeline steps for affect classification. The top grey rectangle shows the
pipeline steps employed in an immediate label setting with prerecorded data. For each extracted
feature vector the model (1) first predicts its label before (2) being updated with the true label for
that sample. In the live setting, the model is not updated after every prediction, as the true label of a
video only becomes available after the stimuli has ended. The timestamp of the video is matched to
the samples’ timestamps to find all samples that fell into the corresponding time frame and update
the model with their true labels.

2.3.2. Data Windowing and Shuffling 317

Since EEG data is considered stationary only over short time intervals, the prepro- s
cessing and the feature extraction were performed in tumbling windows with a fixed size 1
and no overlap. Figure 6 shows that one window of the incoming data stream includes all 20
samples x;, X1, ... arriving during the specified window length. The pipeline extracts one sz
feature vector, F;, per window. All feature vectors extracted from the windows of a video  sz:
duration (between tss4+ and t,,,) receive a label y; corresponding to the reported label, Y; by 32
the participants. Different window length, [ € [1s, 2s, 3s, 4s, 55] were tested on the AMIGOS 324
dataset and the dataset from Experiment I to find the optimal one for the classification s2s
pipeline. As mentioned in the algorithm in Appendix A, a window, |w| includes [ *sf sz
samples with the sampling frequency denoted by sf. 327

Figure 6 shows that a lot of samples in a row received the same label of the duration of s2s
each video upto several minutes. Through an internal testing implies that training a model 20
by streaming the data resulted in classifiers that did not learn from features but only always 330
predicted the same value until seeing a different one. Therefore, the time windows are = sa
shuffled among one another with the corresponding labels. Since shuffling needs all data 32
and labels present before feature extraction, it was not performed during the live training  sss
and classification. 334

2.3.3. Feature Extraction 335

Similar to [21], power spectral density (PSD) features per challen were derived from s3s
the raw EEG data by using Welch method [52] on each window. The PSD from each of s
the five frequency bands: Delta (0.5 — 4Hz), Theta (4 — 8 Hz), Alpha (8 — 16 Hz), Beta 3.
(16 — 32 Hz), and Gamma (32 — 45 Hz), and the total power over all frequency bands were 3o
extracted. Moreover, the power ratio between each pair of frequency bands was obtained. 340
Therefore, total 16 power related features (5 frequency bands + 1 total power + 10 power s
ratios) were extracted from each channel resulting different number of features per device a2
as depicted in Table 2. 343
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Figure 6. The incoming data stream is processed in tumbling windows (grey rectangles). One
window includes all samples x;, X; 1, ... arriving during a specified time period, e.g., 1 second. The
pipeline extracts one feature vector F; per window. Windows during a stimulus (video) are marked
in dark grey. Participants rated each video with one label per affect dimension Y;. All feature vectors
extracted from windows that fall into the time frame of a video (between fgt,,+ and t,,,; of that video)
receive a label y; corresponding to the reported label Y; of that video. If possible, the windows are
aligned with the end of the stimulus, otherwise, all windows that lie completely inside a video’s time
range are considered.

Table 2. Number of channels and derived features for each device: Muse Headband: 64 features;
Neurosity Crown: 128 features; Emotiv EPOC: 224 features.

Device ‘ #Channels #Derived Features
Muse Headband 4 64
Neurosity Crown 8 128
Emotiv EPOC 14 224
2.3.4. Labelling 344

During the live streaming in Experiment II, labels had to be mapped to their corre-
sponding sample. Therefore, the labels were send in a stream of tuples £1 4, L1,v, L2, 4,
Ly vy,..., where

Ej,dimension = (Y], dimensions Estart, tend)~ (1)

A and V stand for arousal and valence respectively, and Y; gipension T€presents AS label by sas
the participant after each video of two timestamps, tst4,¢ and t,,;One label tuple £ j, dimension 34
per video and dimension was sent from the PC running the PsychoPy experiment to the PC s
training the classification model. The included timestamps were used to match the incoming  sas
ratings Y gimension as labels to the samples that the model had classified before. This was 34
done in a way that all the samples that fell into the time period between ts,+ and t,,,5 350
received the respective class label for each dimension. The model could then be updated s

with these labels. 352
2.4. Evaluation 353
2.4.1. Online learning and Progressive validation 354

This paper aims at building a classification pipeline from evolving data streams. sss
Several different online learning, or stream learning, algorithms have been proposed in the  ss6
literature to deal with evolving data streams in supervised [53,54], unsupervised [55] and s
semi-supervised settings [56]. The static data from AMIGOS and from Experiment I was  ss
streamed using a library for online learning: river [57]. Progressive validation, also called  sse
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Figure 7. 7a Progressive validation incorporated into the basic flow of the training process (‘test-then-
train’) of an online classifier in an immediate label setting. (x;, y;) represents an input feature vector
and its corresponding label. 7b Evaluation incorporated into the basic flow of the training process of
an online classifier when labels arrive delayed.

test-then-train evaluation [58] is used for model evaluation in the supervised immediate label  ss0
setting, when the labels for all samples are present at processing time [59]. Figure 7a shows e
the training process of an online classifier including progressive validation. Every time the e
model sees a new sample X; it first classifies this sample as the test-step of the test-then-train = ses
procedure. In the training process, the model will calculate the loss by comparing the true ses
label, y; which might come from a different data source than the samples. The updated e
model will go on to classify the next incoming sample, x; 1 before seeing its label, y;,1 and, ses
again, do the training and performance metric updating step. This continues as long as ez
data is streamed to the model. In this way, all samples can be used for training as well as  ses
for validation without corrupting the performance evaluation. 369

In the Experimental setup II, the labels are available after the prediction opposing the s
‘immediate labelling setting” [54] described as progressive evaluation. Therefore, a delayed 37
progressive validation is performed with the delayed labels, which is mostly the case for sz
real-life scenario. Figure 7b depicts the delayed progressive validation procedure, where sz
the samples are classified by the model until an unseen labels are available. However, the 37
the model can be updated as in the immediate label setting. Whenever new labels become 375
available, the performance metric is updated without any further calculations [60]. Once 76
the model has been updated with all available labels, the classification of further samples 77
continues with the now updated model. This can, of course, be implemented in parallel, as sz
well. These steps continue as long as there is incoming data. 379

2.5. Machine Learning Classifiers 380

In this paper, three different algorithms: Adaptive Random Forest (ARF) [54], Stream- 362
ing Random Patches (SRP) [61], and Logistic Regression (LR), have been evaluated and s
compared on the AMIGOS dataset and the data from Experiment I to find the best perform- s
ing setup for the live emotion classification conducted in Experiment II. The ARF and and a4
the SRP with a Hoeffding Adaptive Tree (HAT) [62] are two ensemble architectures with  ses
integrated drift detection algorithms. Ensemble learners, which combine multiple weak s
learners, are popular in online learning not only because they tend to achieve high accuracy e
rates but also because the individual learners of the ensemble can be trained in parallel. ses
Furthermore, the structure of ensemble learners innately supports drift adaption as drift s
detection algorithms can be easily incorporated and component learners can be reset [56,61]. 300
The LR was included in the comparison as a sort of naive baseline model by training on  se:
mini-batches (with partial fit) of 1 sample (i.e., a feature vector extracted from one window), e
to resemble the online learning process. Furthermore, it uses stochastic gradient descent ses
for optimization with a learning rate of 0.1; no regularization was applied. For all models, 04
the implementations from the river library [57] are used with default parameters if not e
specified otherwise. 396
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2.5.1. Evaluation Metrics 307

The participants’ self-reported assessment of their valence and arousal levels was used
as the ground truth in all training and evaluation processes in this paper. Among the differ-
ent metrics of reporting the classifier’s performance [19], the commonly reported metrics
Accuracy, and F1-Score will be disclosed in this work. They are defined as follows [63]:

Accuracy = TP+ 1IN (2)
Y= TP { IN 1 FP + FN
TP
F1-Score = T . 3)
TP + 5 (FP + EN)
4)

Where TP denotes the number of true positives classified by the model, and TN is the s0s
number of true negatives classified by the model. Accordingly, FP stands for the number o0
of false positives classified by the model, and EN signifies the number of false negatives o0
classified by the model. ‘The higher, the better’, can be said for both accuracy and F1-Score, 401
i.e., a perfect model has an accuracy of 1 (100%) and an F1-Score of 1. a02

To determine whether the performance differences between the different setups were 403
significant, two-sided t-tests with a significance level of & = 0.05 were conducted over the 04
respective dataset. When important, the results of these tests will be reported by either a  4os
p > 0.05, meaning that no significant differences could be determined at this significance s
level, or by a p < 0.05, denoting that the test showed the results of the two compared 407

groups to be significantly different under this test setup. a08
3. Results 400
3.1. Immediate Label Setting 410

In this paper, first the real-time emotion classification pipeline was built by immediate 412
label setting first and applied to data from AMIGOS dataset and Experiment I. The data a2
were streamed to preprossses and to extract features from tumbling windows with a 4
window length of 1 second. To perform binary classification for both dimensions of AS: s
valence and arousal, the self-rating of the participant was used by applying a threshold at a1
0.5 and defining high and low classes for both valence and arousal models. For evaluation, 416
as mentioned earlier, ARF, SRP, and LR classifiers were employed on 1 second window. The a7
setting of 5 tress, and 4 tress for SRP worked best for AMIGOS dataset and for Experiment I, s
respectively. ARF included 5 tress for both datasets. A subject-dependent model was 419
trained with 10-fold cross-validation, and the performance were evaluated with progressive 420
validation. a2

Considering the data of established quality, we first validated the classification pipeline 422
on the AMIGOS dataset. Table 3 presents the mean total calculated average of the F1- 423
Score and accuracy over all the subjects achieved by each classifier with respect to affect 24
dimensions. As depicted in "gray", both evaluation matrices reaches to more than 80% for azs
both the ensemble models: ARF and SRP, whereas the performance of LR is relatively poor. sz
Additionally, Table 3 also shows the comparison to the evaluation of the baseline results by 427
Miranda-Correa et al. [21] and reported approximately 50% of F1-Score with no accuracy azs
score reported. Siddharth et al. [64] reports more than 70% F1-Score and accuracy, and  2e
Topic et al. [65] achieves the current benchmark for this dataset by reporting 90% accuracy. 430
However, all the related work mentioned were were obtained by using a hold-out or k-fold 43
cross-validation with offline classifiers and the available labels at training time. 432

Figure 8 presents the overall model performances for individual subjects to showcase 433
the subject-wise distribution of the evaluation matrix. The mean F1-Score for the positive a3a
and negative class of valence and arousal recognition, respectively were shown only for ass
ARF and SRP, since the LR showed poor performance in comparison. The consistent higher a3
F1-score mostly between 0.7 and 0.95 with two outliers validates the emotion classification 437
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Table 3. Comparison of mean F1-Scores and accuracy of Valence and Arousal recognition on the
AMIGOS dataset for short videos over all participants for different classifiers. Gray color represents
the results from this paper. NR stands for not reported.

o F1-Score Accuracy

Study or Classifier Valence Arousal ‘ Valence Arousal
LR 0.669 0.65 0.702 0.688
ARF 0.825 0.826 0.82 0.846
SRP 0.834 0.831 0.826 0.847
Miranda-Correa et al. [21] 0.576 0.592 NR NR
Siddharth et al. [64] 0.8 0.74 0.83 0.791
Topic et al. [65] NR NR 0.874 0.905

pipeline built in this paper. Two outliers are visible from subjects 11 and 30 might be due to  4ss
a label imbalance (high/low) in the data or a bad data quality.

0.8
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L
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Figure 8. F1-Score for Valence and Arousal classification achieved by ARF and SRP per participant in
the AMIGOS dataset.

439

After validating the classification pipeline on AMIGOS dataset, we evaluate the 40
pipeline on the data from Experiment I. Table 4 presents the mean F1-Score of the subject- s
dependent models with the three classifiers for the positive and negative class of arousal s
and valence recognition, respectively. The F1-Score from both employed EEG device are 443
shown with the best highlighted in bold. As depicted, all classifiers achieved higher ass
performances on arousal recognition than on valence, which is in line with the literature [19, aas
21]. Furthermore, the two ensemble methods: ARF and SRP showed better performance s
with the mean F1-Score of more than 82% with no statistically significant difference (p > s
0.05) in between. LR models showed poor performance similar to the performance on 4
AMIGOS dataset. Moreover, the mean F1-Score over all subject-dependent models using 40
Crown data led to a better performance (by at least 2% and up to 7.6%) in most cases aso
than using Muse data. However, the differences are not statistically significant (p > 0.05) 45
because 4 out of 11 cases for valence and 5 out of 11 cases for arousal recognition were s2
showing the F1-Score for this dataset. Thus, the distribution of which device’s data leads to  4s3
the best performance per subject is actually rather balanced on this dataset. 454

3.2. Effects of Window Size ass

To find the optimum window length for online prediction, this paper extract features ase
from different tumbling window length of € [1s, 2, 3, 45, 55] as depicted in Figure 6. sz
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Table 4. Comparison of mean F1-Scores of Arousal and Valence recognition per participant and
device from Experiment I with three classifiers using progressive validation. Bold values indicate
the best performing model per participant and dimension. The mean total represents the calculated
average of all models” F1-Scores.

ARF SRP LR
Crown Muse | Crown Muse | Crown Muse

3] 0902 0885 | 0.895 0.898 0.8 0.785
4| 0836 0794 | 0838 0.845 | 0.793  0.604
51 0651 0812 | 0.699 0.827 | 0764 0.682
6| 0836 0843 | 0.863 0.889 | 0.771 0.62
7
8
9

Subject ID

0958 0.833 | 0933 0878 | 0.841 0.725

g 0.889 0749 | 0.893 0783 | 0683 0.584
° 0.888 0921 | 0.836 0931 | 0756 0.703
< 10| 0969 0903 | 0951 0915 | 0816 0.898
11| 0938 0768 | 0955 0861 | 0765 0.908

12| 0864 0871 | 0.884 0878 | 0.669 0.697

13| 0792 0913 | 08 0887 | 0701 0.734

Mean | 0.866 0.845 | 0.868 0872 | 076 0722

3] 0837 0887 | 0811 0876 | 0716 0.712

4] 0841 069 | 0773 0859 | 0.804 0524

5| 0546 0734 | 0639 0748 | 0.781 058

6| 0713 0687 | 0785 0778 | 073 0393

o 7| 0935 0666 | 0926 0757 | 0776  0.616
2 8| 0813 0551 | 0819 0623 | 0594 0.444
= 9| 0812 0844 | 0721 0863 | 072 0561
= 10| 0982 0859 | 0979 0871 | 074 0874
11| 0924 0653 | 0957 0811 | 0.64  0.884

12| 0889 0756 | 0914 0784 | 0.633 0.663

13| 0584 0826 | 06 0775 | 0543 0595

Mean | 0807 0735 | 0.819 0787 | 0.698 0.622
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Figure 9. Mean F1-Score achieved by ARF, SRP, and LR over the whole dataset for both affect
dimension with respect to window length.

As detailed in Section 2.3, the pipeline processes the incoming data and extracts the features ase
that are used to train the model in tumbling windows of a specified length /. With 10- ase
fold cross-validation and progressive validation, the mean F1-Scores from ARF and SRP  4s0
classifiers are depicted for AMIGOS dataset and datasets from Muse (Figure 9b) and Crown 46
(in Figure 9c¢) from Experiment I. The Figure 6 shows that the best predictive performance
was achieved with a window length of 1 second irrespective of the affect dimensions, aes
classifiers and devices. Moreover, in most cases the classification performance is decreasing  sss
with increasing window sizes emphasizing the need of more data points. Furthermore, aes
these plots showcase again, that the ensemble methods achieved overall higher F1-Scores  4s6
than logistic regression and that all classifiers performed better on arousal recognition than  4e7
on valence. a68

3.3. Delayed Label Setting: Live Classification 269

In order to validate the streaming setup of the emotion classification pipeline from 7o
Experiment I, live predictions and live online training was performed in Experiment I. a7
The participants wore the same EEG device for both parts of the experiment: participant 472
14 and 17 wore the Muse headband and participant 15 and 16 wore the Crown. For 47
each participant, an ARF with 4 trees was trained on the data recorded in part 1 of the a7
experiment using a window length of 1 second and progressive delayed validation. With 475
the pre-trained model, live predictions were performed with the data streaming in the part 47
2 of Experiment II. The prediction is only available to the experimenter and the model was 477
continuously updated, whenever new true labels became available from the participant. a7s
Therefore, the labels arrived with a certain delay depending on the length of the video. a7
Table 5 shows that the highest F1-Score (in bold) obtained from each category during the 4so
live predictions in 73% for arousal and 60% for valence. However, most of the reported se
accuracy in Table 5 barely reached chance level. The lower predictive performance led us to ez
investigate more on the delayed labels. To imitate production settings, we induced delay on  4ss
the into the pipeline and applied progressive delayed validation on the subject-dependent  sss
model from Experiment I. Since the data from Experiment I was not a live stream, the a4ss
model was updated with the true label for a sample after it had seen the next 86 samples s
i.e., the mean length of the video stimuli was 86 seconds. Table 6 displays the F1-Scores of ez
both the models for valence and arousal recognition with a label delay of 86 s using an ARF  4ss
with 4 trees and a window length of 1s. The Fl-score for individual participant reached to  4es
77% for valence and 78% for arousal. However, the mean F1-Score across all participants s
achieved 63% for arousal and did not reach chance level for the valence classification. The 401
performance declines verily compared to Table 4), when a delay is induced. However, the 22
findings justifies the poor performance in the live settings and validates the pipeline asa 4es
useful one with the possibility of modifications in future work. Furthermore, the binary as.
arousal classification with the induced label delay outperforms the baseline results obtained  4ss
by Miranda-Correa et al. [21] by 4.5% with a immediate label settings. However, the results 4o6
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reported by Siddharth et al. [64], and Topic et al. [65] outperforms with the immediate o7
labels. 498

Table 5. F1-Score and accuracy for the live affect classification in Experiment II (part 2). Subject 14 &
17 wore Muse, subject 15 & 16 wore the Crown for data collection.

. F1-Score Accuracy
Subject ID Valence Arousal ‘ Valence Arousal
14 0.521 0.357 0.562 0.385
15 0.601 0.64 0.609 0.575
16 0.353 0.73 0.502 0.575
17 0.512 0.383 0.533 0.24

Table 6. Mean F1-Scores for Valence and Arousal recognition of Experiment I, relayed per participant
and device. Obtained using ARF (with 4 trees), a window length of 1 second, and progressive delayed
validation with a label delay of 86 seconds. The last row shows the mean F1-Score of all participants.

Participant ID Valence Arousal
Crown Muse ‘ Crown Muse

3| 0338 0584 | 0614 0.718
4| 0.674 0429 | 0551 0.575
5| 0282 0554 | 0355 0.69

6 | 0357 0.27 0.608  0.619
7

8

9

0568 0574 | 0.698  0.769
0266 0.286 | 0.561 0.574
0.553 0.53 0.719  0.749
10 | 0.767 0561 | 0.784  0.691
11 | 0469 0207 | 0.676  0.418
12 | 0.443 0.51 0575  0.679
13 | 0335 0451 | 0.646 0.711

Mean | 0476 046 | 0.637  0.637

4. Discussion 490

In this paper, firstly, a real-time emotion classification pipeline was built for binary clas- seo
sification (high/low) of the two affect dimensions Valence and Arousal. Adaptive Random s
Forest (ARF), Streaming Random Patches (SRP), and Logistic Regression (LR) classifiers soz
with 10-fold cross-validation were applied to the EEG data stream. The subject-dependent  sos
models were evaluated with progressive and delayed validation, respectively, when im-  sos
mediate and delayed labels were available. The pipeline was validated on the existing sos
data of ensured quality from the state-of-the-art AMIGOS [21] dataset. By streaming the sos
recorded data to the pipeline, the mean F1-Score achieves more than 80% for both ARF and  sor
SRP models. The results outperform the authors’ baseline results by approximately 25%  sos
and are also slightly better than the work reported by [64] using the same dataset. Topic sos
et al. [65] shows a better performance; however, due to the reported complex setup and s
computationally costly methods, the system is unsuitable for real-time emotion. Neverthe- s
less, the results mentioned in the related work apply offline classifiers with a hold-outora s
k-fold cross-validation technique. In contrast, our pipeline applies an online classifier by s
employing progressive validation. To the best knowledge, no other work tested an online s
EEG-based emotion classification framework on the published AMIGOS dataset. 515

Secondly, a similar framework from the AMIGOS dataset was established within this s
paper which can collect neurophysiological data from a wide range of neurophysiological s
sensors. In this paper, two consumer-grade EEG devices were used to collect data from  sis
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15 participants while watching 16 emotional videos. The framework available in the s
mentioned repository can be adapted for similar experiments. 520

Thirdly and most importantly, we curated data in two experiments to validate our s
classification pipeline using the mentioned framework. 11 participants took part in Experi- sz
ment I, where EEG data was recorded while watching 16 emotion elicitation videos. The sz
pre-recorded data is streamed to the pipeline and showed a mean F1-Score of more than  s2s
82% with ARF and SRP classifiers using progressive validation. The finding validates the sz
competence of the pipeline on the challenging dataset coming from consumer-grade EEG sz
devices. Additionally, the online classifiers consistently showed better performance for s
ARF and SRP than LR on all compared modalities. However, internal testing verifies that szs
the run-time on the training step of the pipeline of ARF is less than that of SRP, concluding  sze
to use of ARF in live prediction. The analysis on window length shows a clear trend sso
of increasing performance scores with decreasing window length; therefore, a window  sa
length of 1 second is chosen for further analysis. Although the two employed consumer- ss:
grade devices possess a different number of sensors at contrasting positions, there were sss
no statistically significant differences between the achieved performance scores on their ssa
respective data found. Therefore, we used both devices for live prediction, and the pipeline sss
was applied to a live incoming data stream in Experiment II with the above-mentioned sss
features of the model. In the first part of the experiment, the model is trained with the ss7
immediate labels from the EEG data stream. In the second part, the model is used to sss
predict affect dimensions while the labels are available after a delay of the video length. s
The model is continuously updated whenever a new label is available. The performance sao
scores achieved during the live classification with delayed labels are much lower than with = ss
immediate labels in Experiment I, motivating to induce artificial delay to the data stream a2
from Experiment I. The results are compatible with the results from the live prediction. The sas
literature reports better results for real-time emotion classification frameworks [23,24,26]  saa
with the assumption of knowing the true label immediately after a prediction. The novelty sas
of this paper is to present a real-time emotion classification pipeline close to the realistic sss
production scenario from daily life with the possibility of including further modifications sa
in future work. sa

As a future work, the selected stimuli can be shortened to reduce the delay of the se
incoming labels so that the model is updated more frequently. Otherwise, multiple inter- sso
mediate labels can also be included in the study design to ensure the inclusion of short ss:
time emotions felt while watching the movies. Furthermore, more dynamic preprocessing  ss:
of the data can be included with feature selection algorithms for better prediction in live  sss
settings. Moreover, the collected data from the experiments reveal a strong class imbalance ssa
in the self-reported affect ratings for arousal, with high arousal ratings making up 82.96% sss
of all ratings in that dimension.This general trend towards more high arousal ratings is sse
also visible in the AMIGOS dataset, albeit not as intensely (62.5% high arousal ratings). In  ss7
contrast, Betella et al. [46] found “a general desensitization towards highly arousing content”  sss
in participants. The underrepresented class can be upsampled in the model training in the sso
future, or the basic emotions can be classified instead of arousal and valance, solving a  seo
multiclass problem [66]. Including more participants in the future for live prediction, the se:
prediction can be visible to the participant as well to include neurofeedback. It will also be  se2
interesting to see if the predictive performance improves by utilizing additional modalities  ses
other than EEG, for example, Heart rate, Electrodermal activity [19,22,28]. 564
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Appendix A

Input: Unlabelled EEG data stream S = {xq, X2, ..., X;, ... }
Stream of true class labels including corresponding stimulus start- and
end-times £ = {(},startTime;, endTime;), (V1 1,--), -}
Sampling frequency sf
Window length |w|
Optional: model
Output: Predicted binary affect class (valence: 0/1, arousal: 0/1) per window
predictions <— Dict ();
extractedData < Dict();
window <— emptyWindow();
windowSize < sf * |w|;
windowCounter < 0;
if no model exists
model < initialise-model();
while Stream S has next tuple x do
timestamp < current-time();
window.add (x);
windowCounter +=1;
if windowCounter == windowSize
preprocess (window);
features < extract-features (window);
predictedClass < predict-one (model, features);
display (predictedClass);
predictions|timestamp| < predictedClass;
extractedData[timestamp] < features;
windowCounter < 0;
window <— emptyWindow();
if unseen labels available
foreach unseen label tuple (), startTime, endTime) do
matchedWindows <— match-timestaps (startTime, endTime,
extractedData);
matchedPredictions <— match-timestaps (startTime, endTime,
predictions);
for index in length (matchedWindows) do
performance-metric-update (), matchedPredictions|index]);
train-one(model, ), matchedWindows[index]);

Algorithm 1: Live Emotion Classification from an EEG Stream
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