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Abstract: Pharmacovigilance databases are showing evidence of injury in the context of the COVID-
19 modified mRNA products. According to recent publications, adverse event reports linked to the 
mRNA COVID-19 injections largely point to the spike protein as an aetiological agent of adverse 
events, but we propose that the platform itself may be culpable. To assess the safety of current and 
future mRNA vaccines, further analysis is needed on the risks due to the platform itself, and not 
specifically the expressed antigen. If harm can be exclusively and conclusively attributed to the 
spike protein, then it is possible that future mRNA vaccines expressing other antigens will be safe. 
If harms are attributable to the platform itself, then regardless of the toxicity, or lack thereof, of the 
antigen to be expressed, the platform may be inherently unsafe, pending modification. In this work, 
we examine previous studies of RNA-based delivery by a lipid nanoparticle (LNP) and break down 
the possible aetiological elements of harm. 

Keywords: COVID-19 vaccination; mRNA vaccines; Clinical Trials; Safety Assessment; Novel 
Technologies; Spike protein 

 

1. Introduction 

Pharmaceutical and medical device approvals are based in structured approval processes and 
historically, the track record for approval has been far from ideal. There are many examples of over-
turnings of approvals of pharmaceuticals post facto, due to emergence of oversights of particular 
safety factors that had occurred during the approval process [1]. The former examples represent 
failures in regulatory bodies to sufficiently assess safety during this process and this can be quite 
costly both in terms of potential economic and individual harms [2]. To put this ever-present issue 
into perspective, of 309 novel cardiovascular, orthopaedic and neurologic devices approved in the 
EU between 2005 and 2010, 73 (24%) were subject to either a safety alert or product recall [3], 
consistent with other reported rates [4]. Importantly, as complexities and novelties of products are 
increasing, approval success rates have been decreasing [5] and in the face of new drug approvals 
currently marred by low Phase III trial success rates (~10%), this is an issue in dire need of 
acknowledgement and remedy [6]. The precautionary principle dictates that caution must be 
exercised in the context of potential safety issues with novel drugs and technologies, and thus due to 
the low success rates of novel and unprecedented drugs [6–8], and the potential risks to the 
population, it is important to adopt the precautionary principle [9] when approving any 
pharmacological products, especially those given to large populations. COVID-19 mRNA products 
are novel with regard to their delivery system and their content as the first mRNA vaccines approved 
for use in humans, as well as the first approved coronavirus vaccine in humans. The speed at which 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2023                   doi:10.20944/preprints202301.0133.v2

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at J 2023, 6, 17; doi:https://doi.org/10.3390/j6020017

https://doi.org/10.20944/preprints202301.0133.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/https://doi.org/10.3390/j6020017


 2 

 

they were designed, developed, approved and administered is also unprecedented in pharmaceutical 
history [10] and defies traditional timelines for testing of biological products for use in humans. 

Given the approval of the mRNA platform by health regulators across the globe, industry is 
poised to develop new vaccines using mRNA, as it is a versatile platform which only requires the 
genetic sequence of the target antigen. The administration of billions of doses has resulted in great 
industry enthusiasm for the platform, and other mRNA products are being developed using the same 
core technology [11,12]. 

To assess the novelty of COVID-19 mRNA products, we look back to the history of mRNA 
vaccines, which begins with experiments on in-vitro transcribed RNA, i.e., delivering RNA to a cell 
for expression of a protein of interest. Synthetic RNA technology has a wide variety of applications, 
from the delivery of small interfering RNAs (siRNAs) to reduce gene expression, or messenger RNAs 
(mRNAs) to encode for a protein of therapeutic value, or to encode for an antigen to stimulate an 
immune response, as in the strategy of mRNA vaccination. 

Early attempts to express proteins from injected mRNA faced several challenges. First, bare RNA 
produces an inflammatory response, limiting the expression potential of the RNA, as it is broken 
down. Secondly, it is difficult for the bare RNA to enter through a cell membrane. These issues were 
addressed through the processes of pseudouridinylation and encapsulation in a lipid nanoparticle 
(LNP) respectively. The former discovery decreased the lability of RNA, enabling it to remain in the 
body for longer periods of time. The latter discovery not only shielded the RNA from the host’s 
immune response as well as RNAses, it also enabled efficient uptake by cells, where it could be 
efficiently translated by host ribosomes. Pseudouridine was later replaced by m1-methyl-
psuedouridine, owing to its greater translation fidelity, higher expression, and better evasion of the 
host immune response. 

LNP development was improved through two innovations, PEGylation, and the use of cationic 
lipids. LNP surface modifications by poly-ethylene glycol (PEG) enabled lipid nanoparticles to 
survive for longer lengths of time still, so that their package contents could be delivered to cells to 
provoke an immune response when the antigen is expressed. Another important development for 
LNPs is the use of cationic lipids; enabling efficient self-assembly and encapsulation of the mRNA. 
Cationic lipids can additionally be modified to deliver drugs to certain cell types, an important 
consideration when delivering mRNA. 

There is a prior history of drug delivery by lipid nanoparticles (LNP), and one approved drug 
for the delivery of a small interfering RNA (Onpattro [13]). Questions remain pertaining to the safety 
of mRNA vaccines, as several assumptions on which they were rapidly approved, have been either 
challenged or overturned by experimental [14] and clinical evidence [15]. Quoted theoretical safety 
advantages were the ease of production without contamination (mRNA vaccines do not require live 
virus production), and lower (in theory non-existent) risks of infection or host genome integration 
[16]. Beforehand, concerns existed over the induction of Type I interferon responses by mRNA 
vaccines [17,18], which are associated with inflammation and autoimmunity [19,20]. 

For example, the dual assumptions that LNPs remain at the injection site, and that the mRNA 
degrades quickly have been shown to be false; biodistribution and bioaccumulation data indicate that 
LNPs can enter the bloodstream [14,21–25], and peer-reviewed studies have shown durability of both 
mRNA and spike protein for in vivo [23] and up to 4 months post injection for spike protein [21]. 
Given the novelty of mRNA vaccines, and the increasing evidence of harm from clinical reports [15], 
epidemiology [26] as well as laboratory science [27], there are open safety concerns to be addressed 
by future research. 

Multiorgan vasculitis, with notable involvement of small vessels, is now emerging as a common 
theme underlying adverse events following COVID-19 vaccination. Affliction of capillaries with 
thrombus formation in brain and heart are repeatedly being observed [28–30]. This pattern of disease 
in small and smallest vessels is novel and deemed by the authors to be characteristic for the action of 
mRNA-based vaccines. 

The outcome with future mRNA vaccines against other pathogens will be much the same as we 
have witnessed with the COVID-19 vaccines. It is true that the spike protein itself can promote blood 
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clotting and inflammation without any help from the immune system [31]. Nevertheless, the 
available evidence indicates that the grave, widespread and sustained injury to tissues and to blood 
vessels is mostly caused by the immune attack on spike protein-producing cells. This attack occurs 
simply because the spike protein is a non-self antigen; and since every other mRNA vaccine will 
encode its own non-self antigen, derived from whichever particular microbe it targets, we must 
expect that it will cause harm by the same mechanism and to a similar extent. These scenarios will 
worsen with each successive booster. 

This review summarizes known mechanisms of harm specific to mRNA vaccines, where we 
examine historical data on mRNA vaccines to determine if safety signals were apparent during 
production or testing. Prior to the trials on COVID-19 vaccines involving tens of thousands of people, 
public data existed on only 285 people administered mRNA vaccines, with the earliest trials finishing 
in 2018 and exhibiting high rates (>10%) of severe adverse events (Supplementary Table S1). The 
novelty of mRNA/LNP products must be stressed in guiding their safety assessment, as current 
approvals still leave many questions unanswered, and serious risks cannot be definitively ruled out 
based on current evidence. 

 

Figure 1. Overview of mRNA-LNP vaccine components. 

In this review, we summarize what is known about the individual components of mRNA 
vaccines individually, by reviewing literature on past therapeutics. Additionally, we review the 
known safety impacts of mRNA vaccines prior to COVID-19, as well as other coronavirus vaccines 
which, while using a non-mRNA platform, inform us of safety risks when vaccinating against 
coronaviruses. 

2. mRNA Vaccine Elements and Potential for Harm 

2.1. Harms due to Lipid Nanoparticle (LNP) 

Lipid nanoparticles have been used in the delivery of drugs for decades, beginning with the 
1990 EU approval of the drug AmBisome (LNP-encapsulated Amphotericin B) for fungal infections 
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[13]. In the US environment, the first LNP administered drugs were Doxil (LNP-encapsulated 
Doxorubicin) for Kaposi’s sarcoma and Abelcet (LNP-encapsulated Amphotericin B) for asperillosis 
[13].  

The simplest form of LNP is a liposome, which is produced endogenously. This consists 
merely of a lipid bilayer which separates the contents from the outside environment. While simple 
liposomes are detected and destroyed by the body’s immune system, the addition of polyethylene 
glycol (PEG), which enables the liposome to evade the host’s immune response and last longer in 
the body to deliver the encapsulated product. 

While PEG is thought to be inert in the body, the injection of PEG does elicit anti-IgM 
antibodies, and subsequent injections are cleared faster due to this immune response [32]. 
Additionally, a small proportion of the population has an allergy to PEG, and injection can trigger 
anaphylaxis, as has happened for several people receiving COVID-19 vaccines [33–36].While PEG is 
thought to be inert in the body, the injection of PEG does elicit anti-IgM antibodies, and subsequent 
injections are cleared faster due to this immune response [e2].  

The safety of DSPC, a component of the LNP used in both the Pfizer and Moderna COVID-19 
vaccines, has been studied for its safety [37]. Animal studies in mice ruled that it was likely not 
toxic to humans, as no clinical manifestations were present. LNPs have been claimed safe for 
delivery of therapeutic agents, according to a review [38]. However, pro-inflammatory concerns 
remain over LNPs, even in isolation [39,40]. 

2.2. Harms due to Exogenous RNA 

Extracellular RNA exists as a pro-coagulant [41], and increases the permeability of the 
endothelial cells in brain microvasculature [42]. .Foreign RNA of course triggers an inflammatory 
response, as a toll like receptor (TLR) [43] and retinoic acid-inducible gene I (RIG-I) [44] are 
activated. In fact, the initial reason for modification of the RNA by pseudouridinylation was to 
bypass activation of TLR [45]. As pseudouridinylated RNA was translated at lower fidelity than 
RNA [46], the nucleosides were modified to N1-methyl-pseudouridine, which brought translation 
fidelity to near that of RNA [47]. 

The properties of both ΨRNA and N1-mΨRNA have been studied in some depth, though 
questions still remain. ΨRNA exists in nature and comprises between 0.2% and 0.6% of uridine 
content in human cell lines, and has biologically significant differences from RNA [48]. While N1-
mΨRNA exists in nature, and is found within the archaea [49], studies on its properties go back 
only as recently as 2015 [50]. Additionally, important biological differences exist between 
unmodified and modified RNA. For example, through some application of the central dogma of 
molecular biology, it is assumed that RNA vaccines cannot be incorporated into the genome. This 
statement is not supported by the research [51], and is in fact contradicted by experiments showing 
reverse transcription of the Pfizer BioNTech COVID-19 mRNA vaccine into a human liver cell line 
[27]. 

2.3. Harms due to In Vitro Transcribed (IVT) RNA 

One level of complexity over delivery of a non-expressed RNA are therapeutics which deliver 
an mRNA which is expressed by the host translational system. For these applications, typically you 
are replacing a damaged protein of interest by supplying it exogenously. Using an LNP-mRNA 
platform here is better than supplying the protein itself, as a protein expressed from IVT RNA is 
more likely to have the correct post transcriptional modifications (and subsequent conformation) 
for its cell type than an exogenously supplied protein [52]. For these applications, it is typically 
necessary for the drug to be administered repetitively over long time periods [52,53]. With 
repetitive dosing, safety is very important, as even a low per-dose AE rate can compound over the 
many doses of the treatment. 

Most studies of this therapeutic modality so far focus on drug efficacy, and limited safety data 
exists. In a 2021 review of non-immunologic application of mRNA, all studies using LNP-mRNA as 
protein replacement therapy demonstrated liver toxicity or lacked safety data [52]. Several studies 
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also saw the development of anti-drug antibodies (ADAs) [54–56], which can deactivate the drug 
and prevent treatment [57–60]. Immune-mediated toxicity is also a cause for concern [61,62]. Most 
studies of this therapeutic modality so far focus on drug efficacy, and limited safety data exists. In a 
2021 review of non-immunologic application of mRNA, all studies using LNP-mRNA as protein 
replacement therapy demonstrated liver toxicity or lacked safety data [52]. Several studies also saw 
the development of anti-drug antibodies (ADAs) [54–56], which can deactivate the drug and 
prevent treatment [57–60]. Immune-mediated toxicity is also a cause for concern [61,62].Recent 
work has demonstrated a class switch towards an IgG4 antibody response, observed after three 
doses of Pfizer BNT162b2 (COVID-19 vaccine) and not adenoviral vector COVID-19 vaccines [63], 
which raises concerns over possible immune tolerance, which is linked to an IgG4-dominated 
response [64,65]. 

With ADAs, there is also the concern of the development of cross-reactivity to endogenous 
proteins, which can occur if the endogenous protein possesses similar structural motifs to the 
protein expressed from the administered mRNA [66]. Thromboembolic events have been observed 
in ADA reactions [58]. Typically, ADA reactions are decreased in cases where the encoded protein 
is a ‘self’ protein, as opposed to an exogenous protein [67]. 

2.4. Harms of RNA Vaccination 

In addition to the other harms present in IVT RNAs, RNA vaccines also have the additional 
safety challenges of expressing an exogenous protein for the express purpose of generating an 
immune response and immune memory [68]. Of the RNA therapeutic systems introduced so far in 
this review, the mRNA vaccines are the most complex drug-like therapeutic biologic.  

Limited safety data exists on RNA vaccines against infection [69–89] (Supplementary Table S1). 
Prior to the trials for COVID-19 vaccines, there was data on 285 patients, with the earliest trials on a 
non-HIV vaccine only completed in 2018. The serious adverse event (SAE) rate of these exploratory 
trials was 14±2% (Grade 3 or above1). As a comparison, a post-marketing surveillance study of 
influenza vaccines in the UK found an SAE rate of 0.16% [90]:, almost 100 times less than the SAE 
rate for mRNA vaccines. 

In addition, study results that might capture long-term effects are not available, or limited. 
such as those mediated by the immune response with later variants of the virus. While the type of 
vaccination (i.e., attenuated live virus, inactivated virus, mRNA) should not have a significant 
impact on the IgG antibodies produced, an important consideration must be mentioned; mRNA 
vaccines, in encoding for a limited number of proteins (a single antigen in most cases), better enable 
immune escape than a broader antibody response including other proteins. Recent evidence shows 
a subclass switch from IgG1 to IgG4 in the context the Comirnaty mRNA product, which may have 
consequences with regard to cancer [91], pregnancy [92] and IgG4-related diseases [63,93]. COVID-
19 mRNA vaccines are commonly used in Europe and North America; these encode specifically and 
exclusively for the spike (S) protein [94,95]. Since the introduction of vaccines, mutations have 
occurred lessening the neutralizing capacity of these vaccines [96,97].  

2.5.  Harms of Coronavirus Vaccination 

In addition to the considerations on the novelty of mRNA vaccines, the C19 mRNA vaccines 
are also unprecedented on another quality, namely, they are the first coronavirus vaccines 
approved in humans. Following the 2002/2003 outbreak of SARS-CoV [98] and the 2012 outbreak of 
MERS-CoV [99], In addition to the considerations on the novelty of mRNA vaccines, the C19 
mRNA vaccines are also unprecedented on another quality, namely, they are the first coronavirus 
vaccines approved in humans. Following the 2002/2003 outbreak of SARS-CoV [98] and the 2012 
outbreak of MERS-CoV [99], vaccines against coronaviruses infecting humans gained more 

 
1  Event classification available at: https://rsc.niaid.nih.gov/sites/default/files/corrected-grading-

table-v-2-1-with-all-changes-highlighted.pdf 
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attention [100]. Coronavirus vaccines were tested in both animal models as well as human subjects 
[100].  

Animal trials on four SARS vaccine candidates in ferrets demonstrated an initial protective 
period against infection, followed by hypersensitivity to rechallenge with SARS-CoV. The ferrets 
developed histopathological changes in the lungs induced from virus challenge after all four 
vaccine candidates, suggesting immune mediated damage [101]. One 2004 study on ferrets given a 
vaccine against SARS-CoV-2 showed enhanced hepatitis [102].  

Mice given an inactivated virus later developed a pro-inflammatory pulmonary response upon 
challenge [103]. Furthermore, anti-spike IgG antibodies, as are produced by all of the mRNA 
vaccines, in addition to most other Covid-19 vaccines, are demonstrated to cause severe acute lung 
injury on re-exposure to the virus, suggesting a negative impact of a narrow immune response 
[104]. MERS-CoV vaccines have been tested in mice and rhesus macaques [105], revealing 
protection without visible histopathology.  

Immune mediated danger from vaccines has been widely acknowledged to be an extant issue 
in the development of coronavirus vaccines [106–112], and is supported by current evidence [113]. 
During the rapid development of Covid-19 vaccines, it was an issue of concern that sufficient long-
term monitoring for antibody-dependent enhancement (ADE) effects be put into place [114,115]. 
Unfortunately, as of this writing, there is not data available on the long term impacts of Covid-19 
vaccines, including effects resulting from rechallenge with the virus. Immune mediated danger 
from vaccines has been widely acknowledged to be an extant issue in the development of 
coronavirus vaccines [106–112], and is supported by current evidence [113].  

Other, more distantly related coronaviruses have veterinary vaccines available. These have 
been summarized in a recent review [116]. Evidence of immune dependent enhancement was 
present for cell culture experiments on vaccination against feline coronaviruses [117–119]. 
Additionally, ADE is a concern for avian infectious bronchitis virus (IBV), a coronavirus [120,121]. 
In IBV, suboptimal vaccination alters the evolutionary dynamics of the viruses and can contribute 
to the production of escape mutants [122–124]. Finding broadly neutralizing IBV vaccines remains a 
significant challenge for the poultry industry [125–129]. 

Early canine coronavirus vaccines were withdrawn due to neurological symptoms [130,131], 
though current vaccines do not carry the same safety issues [132,133]. Bovine coronavirus 
vaccinations often fail to provide immunity against subsequent reinfections [134–136]. 
Immunizations against transmissible gastroenteritis virus (TGEV) in swine have historically had 
issues in inducing immune protection [137,138], but are widely used now. Too frequent exposure to 
vaccine antigens can lower the immune response against TGEV [139].Another swine coronavirus 
porcine epidemic diarrhea virus (PEDV) is widely used. Extant safety concerns are minor, and 
mostly deal with lack of efficacy; these are summarized in a review [140].Bovine coronavirus 
vaccinations often fail to provide immunity against subsequent reinfections [134–136]. 
Immunizations against transmissible gastroenteritis virus (TGEV) in swine have historically had 
issues in inducing immune protection [137,138], but are widely used now. Too frequent exposure to 
vaccine antigens can lower the immune response against TGEV [139].Another swine coronavirus 
porcine epidemic diarrhea virus (PEDV) is widely used. Extant safety concerns are minor, and 
mostly deal with lack of efficacy; these are summarized in a review [140]. 

Human trials of coronavirus vaccines have also taken place prior to the approval of Covid-19 
vaccines. In addition to the endemic coronaviruses which infect humans, several epidemic strains of 
coronaviruses have occurred in the past two decades, namely the coronaviruses associated with 
severe acute respiratory syndrome (SARS-CoV) in 2003 [98] and middle eastern respiratory 
syndrome (MERS-CoV) in 2012 [141]. These outbreaks impelled the production of coronavirus 
vaccine candidates, summarized in a recent review [100] (Table 1). In total, before the development 
of the Covid-19 vaccines, data existed on a total of 179 human participants given a SARS or MERS 
vaccine candidate, of which, 7 (4±2%) experienced a serious adverse event (Table 1). A human trial 
of 63 adults for a MERS vaccine candidate showed no severe adverse events, but infections in 36% 
of participants [142,143].  
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Table 1. Summary of human trials of non-covid-19 coronavirus vaccines. Adapted from [100]. 

Platform Vaccine Group Status Severe 

adverse 

events 

NCT ID Study 

SARS Vaccine Clinical Trials  

Inactivated 

virus 

Inactivated 

SARS-CoV 

vaccine 

(ISCV) 

Sinovac Phase I, completed [0/24, 0%] No NCT ID [144] 

DNA 

vaccine 

VRC-

SRSDNA015-

00-VP 

NIAID Phase I, completed [0/9, 0%] NCT00099463 [145] 

MERS Vaccine Clinical Trials  

DNA 

vaccine 

GLS-5300 

(INO-4700) 

GeneOne Life Science/Inovio 

Pharmaceuticals/International 

Vaccine Institute 

Phase I, completed [0/75, 0%] 

 

*Infections in  

36% of 

participants 

NCT02670187 [143] 

DNA 

vaccine 

GLS-5300 

(INO-4700) 

GeneOne Life Science/Inovio 

Pharmaceuticals/ 

International Vaccine Institute 

Phase I/IIa, completed No results 

available 

NCT03721718  

Viral 

vector 

vaccine 

MVA-MERS-

S 

CTC North GmbH & Co. KG Phase I, completed [0/23,0%] NCT03615911 [146] 

Viral 

vector 

vaccine 

MVA-MERS-

S_DF1 

CTC North GmbH & Co. KG Phase Ib, not yet 

recruiting 

No data NCT04119440 [147] 

Viral 

vector 

vaccine 

ChAdOx1 

MERS 

University of Oxford Phase I, recruiting [1/24, 4%]  NCT03399578 [148] 

Viral 

vector 

vaccine 

ChAdOx1 

MERS 

King Abdullah International 

Medical Research 

Center/University of Oxford 

Phase I, recruiting [6/24, 25%] NCT04170829 [149] 

Viral 

vector 

vaccine 

BVRS-

GamVac-

Combi 

Gamaleya Research Institute of 

Epidemiology and 

Phase I/II, recruiting No data NCT04128059  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2023                   doi:10.20944/preprints202301.0133.v2

Peer-reviewed version available at J 2023, 6, 17; doi:https://doi.org/10.3390/j6020017

https://doi.org/10.20944/preprints202301.0133.v2
https://doi.org/https://doi.org/10.3390/j6020017


 8 

 

Platform Vaccine Group Status Severe 

adverse 

events 

NCT ID Study 

Microbiology/Acellena Contract 

Drug Research and Development 

Viral 

vector 

vaccine 

BVRS-

GamVac 

Gamaleya Research Institute of 

Epidemiology and Microbiology 

Phase I/II, recruiting No data NCT04130594  

Studies of coronavirus vaccines have a limited number of human participants and still 
represent a novel technique. The recent implementation of large-scale vaccination programs for 
Covid-19 has greatly increased the level of data available to assess the safety of human coronavirus 
vaccines.  

2.6. Harms of RNA Vaccination with SARS-CoV-2 Spike (S) Antigen 

There is reason to believe that vaccines encoding the spike (S) protein of SARS-CoV-2 have 
additional mechanisms of harm, owing to the biological impacts of S protein specifically. There is a 
wide literature [150–153], and it is beyond the scope of this review to cover this in significant depth. 
However, the addition of spike protein adds another factor in assessing the complexity of RNA 
vaccines. The complexity, as well as uncertainties about possible harms, are non-trivial and cannot 
be dismissed based on current data. This section will briefly cover some of the hypothesized 
mechanisms of harm from spike protein encoding mRNA vaccines and the evidence for each from a 
clinical/epidemiological outlook as well as any mechanistic data from laboratory work.  

Several observations have been made which contradict fundamental claims of RNA vaccine 
safety. For example, it was assumed that the RNA was relatively labile and transient in the cell. 
However, studies observe spike protein and vaccine mRNA up to 4 months post-injection [21,23]. 
Spike protein has been shown in laboratory settings to cause inflammation [154,155], vascular 
damage [156], and to act as a seed for amyloid formation [157]. 

The use of the spike protein for an immune response is also concerning as it is not only the 
pathogenic part of covid 19 but also has been shown to enter the nucleus [158]. Having both one of 
the most pathogenic and lethal proteins ever discovered found within the nucleus of human cells 
with its genetic code is a concerning discovery. It was also shown to suppress anticancer 
mechanisms in the body. Singh and Singh demonstrated Spike protein models that anticipated an 
interaction with tumor suppressor genes P53 and BRCA1 [159].  

2.6.1. Harms of Cross Reactivity and Autoimmunity 

Cross reactivity has been considered one of the original problems of any vaccination. For the 
covid spike protein it was found that 60 pentapeptides are shared by SARS-CoV-2 spike 
glycoprotein (gp) and human proteins that when altered, mutated, deficient or, however, 
improperly functioning, may cause vascular diseases, and thromboembolic complications [160,161]. 

Other concerns exist over possible immune damage. One preprint study demonstrated a 
change in both the adaptive and innate immune responses following a full series of Pfizer 
BNT162b2 [162]. Combined with the demonstration of Ig class switch to IgG4 following a 
BNT162b2 booster dose [63], immune mediated harm is a very real possibility. 

3. Discussion 

There is limited information to make a safety assessment of mRNA vaccines. In the category of 
mRNA vaccines, there are patient data for 385 patients. For mRNA vaccines against an infection, 
there was patient data for 285 patients. The rate of serious adverse events was 64 out of 385 for the 
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broad category of RNA vaccines (including cancer vaccines), or 17%; restricting the definition to 
vaccines against infection, the rate of SAEs is 41/285 or 14%. While high levels can be expected for 
trials of a novel technology where dosage levels must be determined (many of these trials are phase 
I) [163], these findings showcase the relative immaturity of mRNA vaccination as a strategy. Given 
the low efficacy and short duration of protection of SARS-CoV-2 mRNA products [164,165], and the 
low risk of many populations from COVID-19 complications [166], it may be advisable for the 
suspension of mRNA vaccines in certain risk cohorts.  

The key to the reactivity of mRNA vaccines is the fact that they express a foreign antigen, for 
which the antigen presenting cells are marked for destruction. While the lipid nanoparticle exhibits 
an acute inflammatory response by itself [39,40,167], the trials using LNPs so far have not found a 
large safety signal when using LNPs to deliver small molecules, non-expressing RNAs, or RNAs for 
endogenous proteins [39,40,167].  

In addition to there being harms attributable to the general immune response from an LNP-
RNA delivery system, there are also some harms specific to the spike protein. Several of these 
mechanisms are supported by laboratory experiments and clinical findings but need more 
investigation. Medicine is replete with cases for which safety was assumed without adequate 
evidence at the time, which later regretfully led to loss of health and life. mRNA vaccines are 
demonstrating great unintended harms, and these harms demand further investigation into 
mechanism, which is important for identifying treatment modalities. 

Novel biomedical technologies can bring relief to a wide variety of conditions and diseases. 
However, their use must take into consideration their possible harms. Here, we argue that the 
mRNA technology is novel enough that safety concerns in current and future products cannot be 
definitively ruled out, and further research must be performed to ensure their safety for current and 
future users. Considering the lack of data on the platform itself, we recommend a robust, 
independent and wide-ranging safety audit of mRNA-LNP formulations and call on regulators to 
hold manufacturers to high safety standards, especially for products used prophylactically in the 
general population. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Table S1: Safety profile of previous LNP-mRNA products. 
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