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How "Berry phase" analysis of non-adiabatic 
non-Hermitian systems reflects their geometry 
C.Jeynes, University of Surrey Ion Beam Centre, Guildford  

Abstract:    

There is great current interest in systems represented by non-Hermitian Hamiltonians,  including a 

wide variety of real systems that may be dissipative and whose behaviour can be represented by a 

"phase" parameter that characterises the way "exceptional points" (singularities of various sorts) 

determine the system.  These systems are briefly reviewed with an emphasis on their geometrical 

thermodynamics properties. 
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Overview 

One can use a descriptive nomenclature for things (“quantum wave equation” for example),  or instead 

an eponymous nomenclature (“Schrödinger equation” for the same example). The latter fits a 

storytelling approach better,  although one always must give the description somewhere! 

As Gu et al. [1] point out: “when a classical or quantum system undergoes a cyclic evolution governed 

by slow change in its parameter space, it acquires a topological phase factor known as the geometric or 

Berry phase, which reveals the gauge structure in quantum mechanics”. “Hannay’s angle” is the 

classical counterpart of this additional quantum phase [2] as is clear from the elegant treatment of a 

spinning top [3]. The quantum geometric-phase and the classical Hannay’s angle really are closely 

related,  an assertion confirmed by more recent work [4].  

The Aharonov-Bohm effect is by now well studied,  and has even been observed as a phase shift in the 

proper timing of matter waves in response to a gravitational field [5].  Such phase shifts are known as 

“Berry phases” (after Berry 1984 [6]) or “geometrical phases” (using Berry’s preferred descriptive 

nomenclature since he points to many illustrious contributors to the idea,  including Pancharatnam 

[7]).  Berry originally treated adiabatic systems,  but realised later that generalisation  to the non-

adiabatic case was “straightforward” [8]:  this was also explained elegantly by Moore [9] in terms of 

the Floquet Theorem (which solid state physicists know as the Bloch Theorem).  Moore points out that 

the “Berry phase” has also been known as the “Aharonov-Anandan phase” since their treatment was 

actually the first to remove the adiabatic restriction [10], although it seems that the (non-adiabatic) 

Aharonov-Anandan phase may not be the same in the adiabatic limit as the (adiabatic) Berry phase 

[11]. The Pancharatnam phase (a special case of the Berry phase) is used in atom interferometry [12],  

a rapidly growing field:  Ben-Aryeh has reviewed both the mathematical formalism and applications to 

optical, atomic, neutron and molecular systems [13].  

This abstract approach to system classifications has been very fruitful, resulting in an enormous 

literature.  The Topical Review of Ghatak & Das [14] concentrates on non-Hermitian systems but 

underlines the general applicability of the ideas.  The canonical representation of the energy of a 

system classically uses the Hamiltonian formalism (where the energy balance is classically given by the 

Lagrangian): roughly speaking the Hamiltonian specifies total energy and the Lagrangian specifies the 
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changes between potential and kinetic energy as the system evolves.  The Schrödinger equation is 

most simply given as H = E where H is the Hamiltonian operator,   is the “wavefunction” and E 

are the eigenvalues of the operator;  the point being that real eigenvalues are only guaranteed for a 

Hermitian operator.   

Again,  Gu et al. [1] point out that “in standard quantum theory, observable quantities are associated 

with Hermitian operators, and time evolution is generated by a Hermitian Hamiltonian, where the 

Hermiticity (or more precisely self-adjointness) of the Hamiltonian ensures both the real-valuedness of 

the energy spectrum and more importantly the unitarity” (that is, losslessness, or lack of dissipation) of 

time evolution.   It therefore came as a surprise when Bender & Boettcher showed in 1998 [15] that 

non-Hermitian Hamiltonians can still possess real and positive eigenvalues.  They claimed that the real-

valuedness of the spectrum is due to parity-time (PT) symmetry of the Hamiltonian:  Gu et al. [1] also 

studied PT-symmetric (or near-PT-symmetric) systems where the Hamiltonian is not Hermitian and 

where the Berry phases are non-adiabatic.  

The appearance of the PT-symmetry was initially considered as a mathematically interesting finding, 

with which many new Hamiltonians can be constructed (instead of just relying on Hermiticity). But it 

turns out that non-Hermitian Hamiltonians are required for many cases,  a certain class of which (so-

called “pseudo-Hermitian”) continue to yield real eigenvalues. However,  in the real world (the 

“general case”),  the representation usually becomes complex.   

Immediately we see a prejudice against energy having an “imaginary” component.  But just because 

Descartes could not imagine that complex numbers could treat real things does not mean that a good 

representation of reality cannot rely on complex analysis.  Indeed,  complex analysis is now essential 

throughout the quantitative sciences. 

 

Figure 1: Caustics produced by a glass of 

water (wikimedia commons; © Heiner 

Otterstedt, Jan.2006; CC BY-SA 3.0) 

 

“Caustics” are common in simple optical systems (see Fig.1, and Berry & Upstill’s review [16]):  the 

engineering of high-quality optics goes to much trouble to eliminate them. It turns out that although 

such effects are ubiquitous their physics is rather intricate, often turning on the geometry (or topology) 

of how the eigenvalues (and eigenfunctions) can coalesce.  Such points of coalescence yield certain 

sorts of singularities in the formalism:  these are usually called “Exceptional Points”, although Berry 

prefers “nonhermitian degeneracies” [17],  saying: “Nonhermitian models arise in physics as 

approximate descriptions of systems that are regarded as isolated,  even though they exist in a larger 

environment” [18] (of course, in reality all systems are open strictly speaking:  only idealised systems 

can be considered “closed”).   It may be more correct to say that “nonhermitian models have arisen in 

physics as approximations …” but we must approximate to make any progress in physics at all: it is the 
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Hermitian models that are an idealisation of reality!  Berry points out that “caustics” and 

“nonhermitian degeneracies” are not directly related:  for example,  for diffraction in volume gratings 

with imaginary potentials “diffraction is strongly affected by degeneracies of the non-Hermitian matrix 

generating the ‘Bloch waves’ in the grating … the asymptotic distribution of intensities among the 

diffracted beams … is … dominated by a single set of complex rays; this is very different from the 

semiclassical limit for transparent gratings, where the rays form families of caustics …” [19].   

However,  the very general treatment of de Almeida and others [20], [21] shows that phenomena that 

look like caustics from one point of view can be treated as non-Hermitian from another.  In general, as 

Fan et al. comment [22]:  “the non-Hermiticity of a system implies that the energy bands are complex” 

pointing out that the “band gaps exhibit exceptional degeneracy that can induce rich new 

phenomena”. 

The quantum Hall effect and quantum spin Hall effects can be understood in terms of the topological 

Chern classes [22]: these are topological invariants associated with vector bundles on a smooth 

manifold,  and can feasibly be expressed as polynomials in the coefficients of the curvature form. In 

particular, non-Hermiticity appears in non-equilibrium open systems with dissipative phenomena (or 

even perhaps the local non-conservation of probability associated with electron currents: see Chernyak 

et al. [23],  and Modanese [24]).  Recently, Fan et al. [22] proposed a complete topological 

classification of non-Hermitian systems which generalizes the ten-fold topological classification of 

Hermitian systems to a 38-fold classification scheme, characterized by the winding number, vorticity, 

Berry curvature (the gauge field associated with the Berry phase), and Chern number of their quantum 

states.  We should note that there is intense interest today in spintronics applications of the 

“topological Hall effect”:  one useful example might be the very general discussion by Ishizuka & 

Nagaosa [25] of “chiral spin-cluster scattering”. 

Fan et al. [22] note that “the complex energy band gap for non-Hermitian systems can form a point or 

line gap that preserves its topological invariants under unitary transformations, but the energy band 

gap close to form “exceptional points” (or lines; that is, non-Hermitian degeneracies) which act as 

reference points (or lines) associated with topological phases”. They determine the Berry phase and the 

complex Berry curvature for the two-dimensional non-Hermitian Dirac model. 

In Hermitian quantum systems, the real-valued Berry phase is known to be quantized in the presence 

of certain symmetries, and this quantized Berry phase can be regarded as a topological order 

parameter for gapped quantum systems. Tsubota et al. [26] establish that the complex Berry phase is 

also quantized in the systems described by a family of non-Hermitian Hamiltonians.  It seems that the 

quantized complex Berry phase is capable of classifying non-Hermitian topological phases. 

Gu et al. [1] propose a gauge transformation method to solve the time-dependent (periodically driven) 

Schrödinger equation whose Hamiltonian is a non-Hermitian (non-unitary) but PT-symmetric operator. 

Quantum wave functions are obtained analytically along with the non-adiabatic Berry phase for the 

system. Then the classical counterpart of the non-Hermitian Hamiltonian is solved in terms of the 

gauge transformation in classical mechanics. The explicit relation of Hannay’s angle and Berry phase is 

presented for the PT-symmetric non-Hermitian Hamiltonian. 

The Geometry of Irreversibility 

The first obvious thing to say is that even in the adiabatic case, Hermitian and non-Hermitian 

Hamiltonian operators behave qualitatively differently, as explained in detail by Berry & Uzdin [27].  

For a Hermitian operator, a degeneracy is a “diabolical” point (so-called after the “diabolo”, a juggling 

prop: see the helpful review by Yarkony [28]) at which the two eigenvalues are connected at the 
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surface intersection point which has the form of a double cone, and the two eigenstates are always 

orthogonal. By contrast, a degeneracy of a non-Hermitian operator is a branch-point (commonly called 

an “exceptional point”), around which each eigenstate can “flip” into the other.  Berry & Uzdin point 

out further subtle differences between the two cases:  “the eigenstate … occupation amplitudes [may] 

change drastically” (and differently for the Hermitian and non-Hermitian cases) “around the cycle”.  

Such a behaviour discontinuity between idealised and real systems is widely observed: as a random 

example, in 1967 Charles Frank explained Hertzian fracture in an ideal case [29] but the formal 

description of the general case looks quite different [30]. 

It is important to recognise that the "system records its history in a deeply geometrical way [involving] 

phase functions hidden in ... regions which the system has not visited” as Berry points out [6].  This is 

intrinsic to the holomorphism (and meromorphism: that is, piecewise holomorphic) central in the 

quantitative geometrical thermodynamics (QGT) of Parker & Jeynes [31].  This geometrical 

thermodynamics uses all the properties deriving from analytic functions, but Parker & Walker [32] 

explicitly demonstrate that "Points of non-analyticity are inimical to any assumptions of ‘smoothness’, 

such that in general, when the system is allowed to dynamically evolve in time, assumptions of 

adiabaticity are not tenable, and one would expect the entropy to increase.”   

However, even though some systems are stable (that is, trivially reversible in time) their geometry can 

still encode the Second Law of Thermodynamics.  This is observed with the DNA double helix backbone 

whose chirality is a consequence of the Second Law [33], Buckminsterfullerene [34], and the alpha 

particle [35].  That this encoding is not trivial is shown by the correct calculation not only of the matter 

radius of the alpha particle [28] but also of the Gibbs free energy difference between two forms of 

DNA [31]. 

As an example here of an irreversible geometrical system, we consider Berry & Dennis’ detailed 

analysis of optical singularities in birefringent dichroic chiral crystals [36].  Optical systems are 

“simpler” than mechanical ones since there are fewer “practical details”:  the treatment of friction and 

similar dissipative effects is notoriously complicated.  But photons obey Maxwell’s equations,  which 

are nice and “simple”, enabling the consideration of  optical examples of irreversibility to be 

particularly informative.  As with the case of caustic curves (see Figure 1),  such complex examples are 

systematically avoided by the optics industry, which uses a variety of sophisticated methods to “keep 

things simple”.  But the effort of understanding the “ordinary” turns out to reveal the underlying 

physical complexities that may be grasped only by using sophisticated geometrical representations. 

Dichroic materials exhibit irreversibility since they absorb light.  Formally,  the reciprocal dielectric 

tensor   is defined by the relation between the electric field (E) and the displacement (D) vectors: 

E =  ∙ D.  Then the symmetric part of  is the anisotropy tensor and the antisymmetric part is 

determined by the optical activity vector.  For a dichroic crystal the anisotropy tensor is complex (for a 

transparent crystal it is real).  By formally considering all the possibilities (only touched on here), Berry 

& Dennis [36] show how the strange behaviour of such “simple” systems can be elegantly modelled in 

the general case. 

In particular,  the electric displacement vector D can be represented in a type of “Schrödinger 

equation”: 

 M ∙ D =  D (1) 

where  are the eigenvalues of the matrix M.  This matrix is real symmetric for a transparent non-chiral 

crystal,  but complex non-Hermitian for a dichroic chiral crystal.  Examination of Figure 2 illustrates 

discontinuities of various sorts in the phase solutions of this equation in a general case.  It is the 

behaviour of these discontinuities that characterises the system behaviour. 
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Figure 2: A representation of the (colour-coded) phase of the 

real part of the eigenvalues of M (Eq.1) calculated in a certain 

simplification,  for chiral dichroic (absorbing) crystals.  

(Figure 2c of Berry & Dennis [29], reproduced by permission.) 

 

 

 

Other examples of Berry phase treatments of Irreversibility 

Grover et al. [37] observe an irreversible hysteretic anomalous Hall resistance in graphene (interpreted 

in terms of Chern number and Berry curvature) which they resolve at the nanoscale as domains of 

magnetisation.  This is an interesting experimental example of an irreversible system interpreted in 

terms of Berry phases.  Similarly,  Jiang et al. [38] also study an unusual chirality-dependent Hall effect 

in a tilted Weyl semimetal in the context of a treatment in terms of the Onsager-Casimir reciprocal 

relations,  pointing out that these reciprocal relations imply the involvement of the Berry curvature. 

The Berry curvature is also deeply implicated in a systematic treatment by Bian et al. [39] aimed at 

“simulating photochemical and spin processes concomitantly” relevant to “spin−lattice relaxation 

dynamics”.  Culpitt et al. [40] point out that the Berry curvature is “crucial” in calculating the 

“molecular dynamics in the presence of a magnetic field”: it is “used to calculate a screening force due 

to the electrons in the molecular system”.  The calculation of (non-adiabatic) Berry phases has been 

reviewed by Moore [41] and specifically for molecular systems by Mead [42]. 

Mesaros et al. [43] also consider the implications of the Onsager-Casimir reciprocal relations as applied 

in the case of dislocated graphene.  They say that “we stumbled on this story in trying to find out how 

to turn a topological phase that is most natural to graphene Dirac electrons into an observable 

quantity”.  In a very general treatment they show that in certain sorts of quantum transport the 

effective conservation of some quantum numbers has “the net effect that these coherent currents feel 

an “arrow of time” negating the Onsager relations associated with true equilibrium”.  The point is that 

dislocations are a topological (and non-local) feature of all atomic lattices,  and they are also expected 

to be important in graphene.  Saslow [44] also investigates “spin-pumping” using irreversible 

thermodynamics:  he says: “The irreversible nature of these quantities is not clear from Berry-phase 

approaches, where one employs current fluxes as primary variables, as if they were driven by a vector 

potential. However, in considering experimental quantities, which correspond to thermal averaging, 

these terms must be considered to be driven by non-uniform chemical potentials.”  That is,  even 

“adiabatic spin-pumping” is irreversible. 

Farag et al. [45] have investigated light-matter interactions in a “diabatic” representation (which is 

used in physical chemistry when the Born-Oppenheimer approximation breaks down,  that is,  the 

assumption that nuclear motion is negligible compared to electrons).  They considered the coupling of 

a LiF molecule in an optical cavity “to investigate the polariton quantum dynamics of the hybrid 

system” with the general aim of finding new ways “to manipulate photochemical reactivities of 

molecules with optical cavities”. 
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Li [46] proposes “Geometric quantum computation” utilizing the “geometric phase depending only on 

the global geometrical feature of a cyclic evolution … for quantum control … maintaining the 

robustness against local disturbances during the evolution” and demonstrates that robust operation is 

feasible for nonadiabatic operation.  The point here of course is that adiabatic evolution is necessarily 

slow:  a useful gate cannot be adiabatic.  

Some extraordinary developments are taking place.  A qubit can be constructed using the electronic 

levels of a nitrogen/vacancy (“NV”) centre in diamond (where the nitrogen is substitutional and 

associated with a vacancy). Using a static magnetic field aligned with the symmetry axis of the NV 

centre both the NV electron spin and the 14N nuclear spin may be “polarised by optical excitation”.  The 

qubit readout is from the fluorescence generated by the excitation.  Ma et al. [47] demonstrate that 

this device is capable of pumping charge,  and they interpret it as a “generalised Thouless pump”, after 

Thouless [48] who first showed how such a charge pump would work.  Takahashi et al. [49] explains 

that such “geometrical pumping” is a topological phenomenon to be interpreted in terms of the Berry 

phases of the system,  and that it is not restricted to adiabatic processes but is quite general. 

Tokura & Nagaosa [50] helpfully review “functional topological materials” in terms of the Berry phase 

and the ubiquitous chirality of these materials. 

Conclusions 

Physics has traditionally treated simplified systems,  mainly because the simplified cases are the 

tractable ones.  There has consequently been a bias in favour of either ‘engineering’ the governing 

equations to only yield real solutions which therefore have an ‘unambiguous’ physical interpretation, 

or only considering the real part of complex solutions as the “real” solution desired.  In particular,  the 

Schrödinger equation has been thought to require an Hermitian Hamiltonian operator to guarantee 

real solutions – a move that essentially builds reversibility (and hence, implies adiabaticity) into the 

representation.  But the intense recent interest in “Berry phase” analyses for a variety of systems has 

highlighted the complexity that obtrudes even in “simple” cases; but also highlights that the “Berry 

phase” analysis is also applicable to ‘realistic’ and essentially dissipative systems, and yields new 

insights into the underlying symmetries governing the physical behaviour of phenomena featuring a 

non-Hermitian Hamiltonian. 

Reality is elusive.  And the Second Law of Thermodynamics guarantees that it is usually irreversible!  

The irreversible cases have usually been treated by perturbation methods – as an “exception” of 

reversibility.  Systematic approaches to irreversibility championed by Onsager and Prigogine and their 

schools have only slowly seeped into physics practice,  and irreversibility is still seen as awkward to 

handle (and in any case less “fundamental” than reversibility).  However,  it is becoming clear that such 

an approach is wrong-headed.  It is the irreversible case that is fundamental (just as it is the Second 

Law that is fundamental),  and the Berry phase analysis makes an analytical treatment available that 

handles both reversible and irreversible cases on the same basis. 

In this Review we have tried to explain how such an approach (which is deeply geometrical) is 

connected to other more explicitly thermodynamical approaches (also deeply geometrical).  This is of 

great importance since the geometry of a system embodies its non-local properties,  which are usually 

expressed in terms of the variational Principles (Least Action,  Maximum Entropy etc). Reality is elusive 

precisely because it can be handled correctly only in a fully complexified theoretical framework in 

which eigenvalues are not real in the general case.  Recent work [51] has shown that for a more 

satisfactory and unified explanation for many physical phenomena even the description of time should 

be complexified. 
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We need to become more aware of the variety of sophisticated analytical tools that are becoming 

available to consistently treat an ever wider and more thermodynamically diverse set of physical 

phenomena,  and of the connections between them. 
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