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Abstract: This paper considers the application of two selected algorithms using swarm intelligence
(Cuckoo Search CS, Firefly Algorithm FA) to determine and maximize the reliability of two complex
systems known from the literature. This system operates with resource constraints. In addition,
several classical methods for determining the reliability of systems have been applied. Although the
CS algorithm is known for its effectiveness as it uses the Lévy flight, for the presented optimization
tasks the FA firefly algorithm in the considered parameter range proved to be more effective. The
presented results broaden the existing discussion on the application of nature-inspired algorithms
for solving RRAP (Reliability Redundancy Allocation Problem) problems. From this point of view,
two described test scenarios can be considered as a suitable tool for validating other algorithms in
RRAP problems. The paper presents metrics and ways to analyse and compare the performance of
algorithms in RRAP optimisation. Not only the values of the criterion functions can be compared,
but also other introduced parameters and statistical analyse of variance (ANOVA) with post-hoc RIR
Tuckey test were discussed.

Keywords: reliability optimization; RRAP, swarm intelligence; firefly algorithm FA; cuckoo search
algorithm CS; ANOVA; Lévy flies

1. Introduction

The reliability of a non-renewable object can be defined as the ability to retain such properties
that allow it to be used for its intended purpose [1] The optimization of the considered topic may
concern increasing reliability (increasing safety) or decreasing it in order to reduce costs. Increasing
reliability may concern each component of the system or involve the introduction of redundancy
(redundancy) in individual subsystems. For a extremely reliable system, it is necessary to design the
system with redundant elements in a balance between: price, weight, volume or lifetime. This type
of non-linear design with (resource) constraints is called RRAP (Reliability Redundancy Allocation
Problem). The problem of reliability optimization considering redundancy can be qualified as a
non-linear programming problem with one or more constraints. The solution of the optimization
task consists in the optimal allocation of system components (number of elements, reliability level),
maximizing the total reliability while satisfying the existing constraints. RRAP belongs to NP-hard
problems. Such redundancy is desirable and provides protection in the event that part of the system
fails. A critical component may be duplicated or several components (even three or more) used in
parallel to avoid system breakdown. In engineering, this can be the parallel operation of several
components (e.g., temperature sensor contacts, etc.), or redundant devices in the power grid. A classic
example of increasing system reliability in computing is the use of RAID (Redundant Array of
Independent Disks) disk arrays. The objective of reliability optimization is to select (calculate) the
number of redundant components and their reliability values in each subsystem, and to maximize the
total system reliability. The criterion functions presented in the following part of the article describe the
reliability of the system (system), which has been taken as a quality indicator (criterion function) and is
subject to maximization with the introduced constraints. In an attempt to solve the discussed reliability
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optimization problems of complex systems, the results obtained using two selected heuristic algorithms
were considered and compared. These are algorithms based on the social behavior of animals, birds
or insects. Two selected optimization algorithms have been applied: Firefly Algorithm FA [2] and
Cuckoo Search CS [3]. In the analyzed class of problems, the FA firefly algorithm is known for its
effectiveness. The use of another algorithm (CS cuckoo search algorithm) allowed us to compare their
accuracy in solving two optimization problems [4-6]. Recent studies show that CS is potentially far
more efficient than PSO (Particle Swarm Optimisation), genetic algorithms, and other algorithms [2].
In the meanwhile, scientists, especially theorists, ask the question of why animals do Lévy flight,
which fascinates researchers from various disciplines from ecology to physics [7]. Application of
artificial intelligence in reliability optimization of systems successfully previously applied also in
power grid optimization (k-terminal grid model) using swarm optimization algorithms [8]. In that
work, a reliability function in the form of BDD (Binary Decision Diagram) diagrams and a combined
decomposition EED (Edge Expansion Diagrams) [9], CAE (Composition After Expansion) [10] and
fixed-sink algorithm for k-terminal networks [11].

2. Problem Definition

The issue under discussion concerns the maximization of the criterion function:

max (F.(r,n)), 1)

within constraints:
gy(r,n) < by, )
0<r<1,nez",1<y<kyeZzZ", keZz", (3)

where: F.(r,n) — system reliability function, n — vector of the number of elements in the various
subsystems, r — the reliability vector of each element in each subsystem, g, — the physical characteristics
of the element in subsystem for constraint number y, by~ upper limit for constraint number y, k-
number of constraints.

3. Models of the RRAP System

The criterion functions for the scenarios considered have been derived in detail in the literature [3,4,12].
Another—not discussed in the article—test cases are: an overspeed system for a gas turbine (Figure 1) or
a more complicated 15-unit system reliability problem with different combinations of parameters [12].
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Figure 1. The schematic diagram of an overspeed system for a gas turbine [12].
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3.1. Scenario 1—Bridge System

In the first scenario, the five—element bridge system (Figure 2) [3,4,12] was considered.

in — out

Figure 2. Diagram of the bridge system analysed in scenario 1.

The criterion function of a bridge system has been derived in detail in literature can be
formulated as:

Pcl(r,n) =R;-Ry4+R3-R4+Ry-Ryg-Rs+Ry-R3-Rs—Rq-Ry-R3z-Rg—Rq-Ryp-R3-Rs5+
—Ri-Ry-Ry-Rs—Ry-R3-R4-R5—Rp-R3-R4-R5+2-Ry-Ry-R3-Ry-Rs, (4)
where the individual reliability values R; of each subsystem are calculated as:
Ri:1—(1—1’i)ni,ViE{1,2,...,7711}. (5)

For a bridged system occurs the optimization of 10 decision variables (five variables r; and another
five variables n; with integer values). Three constraints (k1=3) scenario 1 of total weight and volume
(V), cost (C), lifetime (T) and system weight (W) were introduced (Table 1):

my
gl(r,n)zzwi~v%-nlz—V§0, (6)
i=1
(l‘ n)_ga' _L P (n,+60.25.ni)_c<0 (7)
821r, _i:1 i lﬂ(?’i) i =Y
my
g3(rn) =Y w;-n;- P —W <0, (8)
i=1
0<i<m,0<r<1,mecZt, )

where: 11 —number of subsystems in the whole system (1111 =5) at scenario 1, n; —number of elements in
i—th subsystem, r; — the reliability of each element in i-th subsystem, R; — reliability of i—th subsystem,
«;, Bi — physical characteristics of element in i—th subsystem, w;, v;, c; — weight, volume and cost of the
element in i—th subsystem.

In order to compare the results obtained with other solutions found in the literature, the parameter
settings of the bridge system were adopted as shown in Table 2 [4]. Other methods of system reliability
analysis are also used, such as optimization using the path method, for which the objective function
takes the form:

Fo(ttm) = 1—-(1—-Ry-Ry)- (1 =R3-Ry)-(1 =Ry -Ry-Rs5)-(1—-Ry-R3-Rs), (10)

or a cutting method for which the criterion function can be expressed as:

Foy(rm) = (1= (1=Ry)-(1-R3))- (1= (1=Rp)-(1-Ry))- (1= (1—Rz-(1-R3)-(1-Rs))
"(1=(1=Ry)-(1-Ry)-(1-Rs)). (11)
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Table 2. Bridge system settings.
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2

Subsystemi 10°-a; w;-v? w
1 2.330 1 7
2 1.450 2 8
3 0.541 3 8
4 8.050 4 6
5 1.950 2 9

The reliability of the system calculated with the method of minimum cuts is always smaller (11) (it
is the lower limit) than the value of reliability calculated with the method of minimal path F., (10)—it

is the upper limit. This difference can be a space for exact optimization (Figure 3).

Scenario 1 - bridge system - 5 elements
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Figure 3. System reliability for different analysis methods with n=1 (set fixed number of redundant

elements).

Analyzing the constraints adopted for the analyzed model, it can be noted that the second
constraint (g2 (r,n)) (7) significantly affects the permissible values of element reliability (Figure 4).
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Figure 4. Analysis of the second constraint g, (r,n).
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3.2. Scenario 2—System Consisting 10 Elements

The criterion function of a ten elements system (Figure 5) is more complicated than bridge
system [4,12] and can be formulated as:

Fey(tyn) =Ry Ry~ Rz - Ry + (R1- Ry Rg - Ryp) - (Q3 + Rz - Q4) + (Ry - R5 - Ro - Ryp) - (Qa+
+Ry-Q3-Q+Ra-R3-Qs-Q6) +R7-Rg-Rg-Ryg- (Q1+ Ry -Rp-Q3-Qs- Qs+
+R1-R3-Q4-Q5-Qs) +Ra-R3 Ry R5-R7-Rg- Q1 (Qo + Ro - Qo)+
+Q1-R3- Ry Rg-R7-Rg- Q1o (Q2+ Rz - Qs)+
+Q1°Q2R3 Ry Rg-R7-Rg-Rg- Qo+ R1-Q2-R3- Ry Rs-Rg - Rg - Q1o+ (Q7 + Ry - Qg)+

+Q1-R2-R5-Rg-R7-Rg-Qo-Ryg-(Q3+R3-Qy), (12)

where: R; is is defined the same as the expression (5), Q; is defined as:

Qi=1—Ri,Vi€{1,2,...,m2}. (13)
1} 2 3 { 4 }
in_ 5| & _crut
l? EJ- g 10 |

Figure 5. Diagram of the 10 elements system under analysis in scenario 2.

For scenario 2, the constraints were expressed as:

1y

gy(n) =} ey -mi < by, (14)
i=1

y=1,2,...,k2,‘ ni€Z+, (15)

where kj. is number of constraints in scenario 2. For scenario 2, k,=5 constraints were assumed.
The coefficients c,; are random numbers in the range [0, 100], the coefficient r is searched in the
range [Ib1, uby], and the parameter by is calculated as:

m

2
by = dyang - Z Cy;rs (16)
i=1

where: d,,,;—random number with uniform distribution in the range (1.5, 3.5).
In order to compare the solutions obtained, the values of these parameters are taken according to
Table 3, as in the work [2,4].
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Table 3. Parameters used in scenario 2.

i c1i Coi C3i Cai C5i
1 33.2468 35.6054 13.7848 44.1345 10.9891
2 275668 449520 96.7365 25.9855 68.0713
3  13.3800 28.6889 85.8783 19.2621 1.0164
4 0.4710 04922 63.0815 12.1687 29.4809
5 51.2555 39.6833 78.5364 23.9668 59.5441
6 829415 59.2294 11.8123 28.9889 46.5904
7 51.8804 78.4996 97.1872 47.8387 49.6226
8 779446 86.6633 45.0850 25.0545 59.2594
9 268835 7.8195 3.6722  76.9923 87.4070
10 85.8722 27.7460 55.3950 53.3007 55.3175

Table 4. Parameters used in scenario 2.

Parameters  d,;u4

o1 3.1250
Coi 3.4710
c3i 3.3247
cyi 2.6236
cs; 3.4288

4. Selected Optimization Algorithms

More than 100 OPA (optimization algorithms) are recently known which using phenomena
of different behavior observed in the world of plants and animals [13,14]. The development of
optimization methods is due to the fact that there are no universal and efficient methods of searching
for the global extreme of the analyzed function. Therefore, it is desirable to know (and use) more
than one optimization method [15]. For the purposes of this paper, in the process of searching for the
global extreme of the criteria functions: F;, (Equation (4)) and F;, (Equation (12)), two selected heuristic
algorithms [16] were used. It is worth noting that Firefly Algorithm FA is known for its efficiency in
optimizing RRAP problems [17].

4.1. Firefly Algorithm FA

In the 2007-dated FA firefly algorithm, developed by Xin-She Yang [3] of Cambridge University,
the solution to the optimization task is based on the difference in light intensity, which is proportional
to the value of the criterion function F;,. Each brighter firefly attracts other individuals to it, allowing
for an intensified and therefore more efficient exploration of the search space. In the solution space
reviewed, the k-th step during which a firefly with index i, located at position x;, attempts to approach
a “more attractive” individual with index j, located at position x; can be expressed by the equation [2]:

k—1

— —y-d; - -
xi.c:xi.( 1~|»ﬁ0'€ T ij (x;‘ 1*3(;( 1)+0‘ff'(xmnd70'5)/ (17)

where: x,,,;—random number with uniform distribution in the range [0,1], d:f]fl—distance between
fireflies with index i and j in the k-1 (previous) step.
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4.2. Cuckoo Search CS

The second algorithm chosen to search for the solution two RRAP problems is the CS Cuckoo
Search algorithm [2]. It is an algorithm from 2009, which was proposed by Xin—-She Yang and Suash
Deb [18]. The algorithm under consideration models (mimics) the behavior of some cuckoo species
that use the nests of other birds to raise their offspring. Randomly selecting the i—th cuckoo/nest and
generating a new solution xf-‘, e.g., by using Lévy flight is expressed by the relation:

xi-‘ = xf_l 4+ acs Ps, (18)
where: ©—is point-to-point multiplication (entry-wise product of two vectors), k—the step number,
that is the next iteration, xé‘—the solution obtained in the k—th step for the i—th cuckoo, acs—a
scale factor the value depends on the size of the problem, s—the step length, determined by a Lévy
probability distribution [2].

Here, acs > 0 is the step size scaling factor, which should be related to the scales of the problem
of interest. In most cases, we can use acg = O(L/10) or acg = O(L/100) in some cases, where L is the
characteristic scale of the problem of interest [19]. The exploitation mechanism of the CS algorithm
are local motions and the exploration mechanism are Lévy flights, based on the Lévy probability
distribution [2], expressed by the formula:

A-T(1+A)-sin (%) 1
L(s,A) = S s>>0,1<A<3, (19)
4 si*

and for stable Lévy distribution (&« = 0.5) probability density function:

_ | 1 0l _

L(s,a,6,7) = Emexp (—2(5_5>,a—0.5,(5<s<oo, (20)
where: a—first shape parameter 0 < o < 2, )—location parameter — — —c0 < § < oo, y;—scale
parameter 0 < y; < oo, I'(-)—the gamma function :

T(x) = / et gy, @1)
0

The step length (size) was calculated according to Mantenga’s algorithm [20] as:

s= 2 (22)
[V[*
where:
U=N (0, ag) 04,V ~N (o,ag) ) (23)
and:
T(1+4A)-sin (TA) g
op=1, 0, = - A=14a0<a<2, (24)

rig) A2

where: a—first shape parameter distribution.

Figure 6 shows an example implementation of a Lévy flight (visualization restricted to R3 space),
with the parameters listed in Table 5. Analyzing the steps generated in the CS algorithm used, it can
be seen that among the large number of small steps of the algorithm, from time to time there are large
jumps called Lévy flights, after the French mathematician Paul Pierre Lévy. A characteristic feature of
this Lévy distribution [21] is the long “tails” that occur for large values — unlike the Gauss (Normal)

d0i:10.20944/preprints202301.0124.v1
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distribution (Figure 7) [22]. In fact, the trajectory of a Lévy flight has fractal dimension d; = A [23-25].
A search for the maximum of the criterion function F, (4) and F., (12) was performed for the two
selected algorithms. For each combination of the selected control parameters of the algorithm, Ni¢pca1c
(number of repetitions) calculations were performed (Table 5). The range of control parameters of the
algorithms was chosen arbitrarily, limiting them to the most characteristic cases for the considered
algorithm. In addition, the calculation parameters for the CS algorithm (number of iterations N/
and number of repetitions N,epcq1c) were chosen so that the calculation times were comparable.

Lévy flight
30 4

—

’?»{

204

-20

-30 —

Figure 6. Visualization of an example Lévy flight (A=1.3) in Euclidean space R3.

07 Compare Stable Distributions pdf

Normal N(0,1)
— — — -Lévy L(5,0.5,1,0) |
0.6 (]

0.5 [l

Observations s

Figure 7. Compare Stable Distributions pdf.
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Table 5. Parameters of scenario 1 and scenario 2.

Parameters Values
Problem dimension Np= my - 2; sc € {1,2}; my=5, mp=10
Maximum number of iterations N/ =100 and 1000 (CS)
Number of repetitions (each case) Nyepeaic=10 and 10000 (CS)

Constraints values (lower bound, upper bound) 1b1=0.65; ub1=0.85; Ib,=1; uby=4
CS — Cuckoo Search Algorithm

Number of nests Niyests = 50
Probability of detecting a cuckoo’s egg pa = {0.25,0.26,...,0.50}
Lévy distribution parameter A={11,12,...,19}
Positive step size scaling factor cg = 1%0 -N(0,1) - (xf_1 - x?“t)
FA — Firefly Algorithm
Number of fireflies Ny¢=50

Randomization parameter wpp = {0.1,0.2,...,1.0}
Reference factor of “attractiveness’ Bo = {0.1,0.2,...,1.0}

Absorption coefficient v = {0.01,0.10,1.00}

where: xf’e“ - the best solution (nest with the best egg).

5. Calculation Results

For the control variables of the selected algorithms presented in Table 5, obtain results of
calculations and solutions for scenario 1 and scenario 2 obtained with the two analyzed algorithms.
For the CS [26] algorithm, the calculations concerned changes in the probability of detecting an egg
tossed by the cuckoo p, and Lévy distribution parameter A (Table 5). For the FA algorithm [27], all
combinations of the three parameters listed in Table 5 were considered: randomness af, reference
“attractiveness” factor By and absorption coefficient y. An improvement index is required to measure
the improvement of the best solutions found by the FA algorithm in comparison with those given by
CS. This index [12], which has been called Maximum Possible Improvement (MP]I), is as follows:

FFA _ F“lg
MPI(%) = ~“——r— (25)
1—FX¢

where: FF4, F! '8 _the best system reliability for criteria function F;, (Equation (4)) or F, (Equation (12))
obtained by the FA algorithm and other algorithm (alg ¢ FA) e.g., CS algorithm.

The correlation coefficient between the results (criterion function values) of the two scenarios
using the FA and CS algorithm was calculated according to the formulas:

g alg alg alg
)3 <ﬂ —F, >-(P ~F, )
al parl,par2,... “a “ “ “

r"8 = (26)

7
—\2 —\2
al al al al
< Z (Fclg Pclg) ) : < Z (FC4g PC4g) )
parl,par2,... parl,par2,...
alg

where: F.°, Ffjg—mean value of the criteria function F., (Equation (4)) and F.,) (Equation (12))
obtained by algorithm (alg) FA or CS, parl, par2, ... parameters algorithms, e.g.: FA: a¢f, o, y or CS:
Pa, A
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To determine the reasonable significant difference of average performance, test statistics of
ANalysis Of VAriance (ANOVA) was used. Post hoc (RIR) Tukey test Honest Significant Difference
(HSD) was conduced, to investigated which of the parameters are different from each other for
tested algorithm.

Presented values (in tables and figures) of criterion functions and constraints are unitless.

5.1. Results for FA

For both scenarios, the best results have been achieved for the FA algorithm parameter set: « f f:0.5,
Bo=1.0, ¥ =0.01. For criterion function F;, maximum value was 0.99995661 (Table 6). In scenario 2,
the best solutions have been achieved with F.,=0.99992902 (Table 7) for FA algorithm.

Table 6. The best solution for scenario 1 for FA.

Parameters aff = 0.5, 80 = 1.0, v=0.01

Solutions F!""" 0.99995653
Solutions F/"** 0.99995661
Solutions F/*¢4" 0.99995657

Solutions o

2.27604463e-08

Calc. time [s]

216.0in

Table 7. The best solution for scenario 2 has been achieved using FA.

Parameters

lef = 0.5,‘30 =1.0, ’y=0.01

Solutions F!"i" 0.99992644
Solutions F/"** 0.99992902
Solutions F/*¢4"* 0.99992773

Solutions o

9.85429365e-07

Calc. time [s]

189.3

Table 8. The best solution for scenario 2 by FA: « = 0.5, o = 1.0, v=0.01.

Parameters Values Parameters Values

1 0.8500 ny 4
> 0.8500 no 4
3 0.8500 n3 4
4 0.8500 n 4
15 0.8500 15 4
76 0.7429 ng 1
r7 0.7989 ny 2
g 0.6626 ng 2
79 0.6902 Ny 2
10 0.8295 11 2
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Table 9. Post-hoc Tuckey RIR tests for FA scenario 1 and af=0.4, Bp=0.5 and 7y =0.1.

Parameters p-values
wfr=0.1, Bp =0.1,9 =0.01 ~ 0.000116
wf=0.1, Bo =0.2,7 =0.01 0.000116
wf=02, By =0.1,7=0.01 0.000116
wfr=0.1, B9 =0.1,7=0.1  0.000116
wf=0.1, B9 =0.2,7=0.1  0.000116
wfr=0.1, Bp =0.3,7=0.1  0.000116
wfr=02, Bp=0.1,7=0.1  0.000116
wf=02, fp=0.2,7=0.1  0.000116
wfr=0.1, B9 =0.1,7=1.0  0.000116
wfr=0.1, B9 =0.2,7=1.0  0.000116
wfr=0.1, B9 =0.3,7=1.0  0.000116
wf=0.1, Bo =0.4,7=1.0  0.000116
wfr=0.1, Bp =0.5,7=1.0  0.000116
wfr=0.1, Bp =0.6,7 =1.0  0.000116
wf=0.1, Bp =0.7,7 =1.0  0.000116
wfr=0.1, B9 =0.8,7=1.0  0.000116
wfr=0.1, B9 =0.9,7=1.0 ~ 0.000116
wf=0.1, Bo =1.0,7=1.0  0.000117
wfr=02, By =0.1,7=1.0  0.000116
wfr=02, Bp =0.2,7=1.0  0.000116
wfr=0.2, Bp =0.3,7=1.0  0.000116
wf=0.2, Bp =0.4,7=1.0  0.000116
wf=0.2, Bp =0.5,7=1.0  0.000116
wfr=02, By =0.6, 7 =1.0  0.000116
wfr=03, By =0.1,7=1.0  0.000116
wfr=03, By =0.2,7=1.0  0.000116
wfr=03, B9 =0.3,7=1.0  0.000116
wfr=0.3, Bp =0.4,7=1.0  0.014025
wfr=0.3, Bp =0.5,7=1.0  0.000116
wf=0.3, Bp =0.6,7 =1.0  0.000144
wfr=03, By =0.7, 7 =1.0  0.000116

Analysing the parameter space with the ad-hoc RIR Tuckey test (ANOVA), it can be seen that for
the set of a¢=0.4, fp=0.8, ¥ =0.01 parameters, the hypothesis of no reasonable difference should be
rejected for three cases.
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Table 10. Post-hoc RIR Tuckey tests for FA scenario 2 and af¢=0.4, fp=0.8 and y =0.01.

Parameters p-values
arr=0.1, Bp=0.1  0.000047
asr=0.2, Bo=0.1  0.000047
asr=0.1, Bo=0.2  0.000047
asr=0.1, Bo=0.3  0.483894
af=0.3, fp=0.7  0.997808
af=0.1, o=0.8  0.857372
afr=0.2, Bp=0.8  0.987661
apr=0.3, Bp=0.8  0.999464
afr=0.1, Bp=0.9  0.991139
afr=0.2, B0=0.9  0.999796
asr=0.3, Bo=0.9 0.952106
asr=0.1, Bo=1.0 0.278482
afr=0.2, p=1.0  0.832396
afr=0.3, =10  0.999918

other cases 1.000000

5.2. Results for CS

Due to different solutions using the CS algorithm (Tables 11 and 12), the stopping criterion a and
the number of iterations have been changed (Table 5).
The solutions for parameter Nj;7*=1000, Ny¢pcq1c=10000 (Table 13) were also checked.

iter

Table 11. The best solution for scenario 1 by FA « = 0.5, Bp = 1.0, v=0.01.

Parameters  Values

1 0.78571
0 0.8500
3 0.8500
T4 0.7520
15 0.6601
nq 4
np 4
n3 3
ny 2
s 3



https://doi.org/10.20944/preprints202301.0124.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2023 d0i:10.20944/preprints202301.0124.v1

13 of 18

Table 12. The best solution for scenario 1 by CS: p,=0.27, A = 1.5, Nji7* = 100, Nyepcqrc = 10.

iter

Parameters Values

" 0.8298
9] 0.8380
r3 0.8500
74 0.6500
r5 0.7265
ny 4
nyp 4
ns 2
Ny 3
ns 2

Table 13. The best solution for scenario 1 by CS.

Parameters pa=0.30,A = 1.1
Niper" = 1000, Nyepeqre = 10000
Solutions F!"" 0.99921071
Solutions F/"** 0.99995645
Solutions F"¢™" 0.99984281
Solutions o 6.41364325e-05
Calc. time [s] 346.4
MPI (%) 0.0037
[[eFA —£C5 |, 0.0124
In"4 —n 0

Table 14. The best solution for scenario 1 by CS: p,=0.30, A = 1.1, Nji7* = 1000, Nypcqrc = 10000.

iter

Parameters Values

" 0.7919
o 0.8500
r3 0.8499
r4 0.7483
rs 0.6500
ny 4
ny 4
ns 3
Ny 2
ns 3

A more detailed analysis of the parameter space led to the largest values of the criterion function
in both scenarios for a =04, B0=0.8, v =0.01 and the exact maximum value was F;,=0.999956606987731.
For the second scenario, the exact maximum value of the criterion function F.,=0.999929024736168
was reached in 28 cases (white boxes Figure 8). By reviewing the control parameter space of the FA
algorithm (Figure 9) it is possible to observe a high compliance of the range of algorithm parameters
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leading to worse solutions. The highest values of correlation r (26) were achieved for (Figure 9):
asp=0.5, rF4=0.9912, a£=0.7, r#=0.9881 and a£=0.9, rF=0.9858.

By reviewing the control parameter space of the CS algorithm (Figure 8), similar (small value of
MPI)—but “worse” solutions can be obtained (Tables 13 and 15). The highest values of correlation
rCS (26) were achieved for (Figure 8): p,=0.39, r“=0.7855, p,=0.25, **5=0.7105 and p,=0.30, r*5=0.6264.

For the first scenario, the usage of FA led to (Table 6) to better results (compared to the results for
the CS), but use of the CS cuckoo algorithm led to a solution in much less time consumed (Table 16). All
calculations were performed using Matlab package R2020b (also with Statistic and Machine Learning
Toolbox) on Win 10 pro operating system and Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz. The
solutions obtained using the CS algorithm were different from those obtained using FA algorithm,
for example the number of elements (13 = 115) (Table 11 vs. Table 12) for scenario 1, number of elements
(n5) Table 10 vs. Table 17) for scenario 2 and of course values the reliability. In the investigated space of
FA control parameters, difficulties in obtaining a solution satisfying the assumed constraints occurred
in both scenarios for the set « ££=0.1; Bo=1.0; v =0.1, and additionally for second scenario « ££=0.1,
B0=0.5, v =0.1. In addition, the effect of changing the lambda parameter (1) of the Lévy distribution
on the solutions achieved was checked with an increased number of iterations (Table 5). For the CS
algorithm (first scenario), it led to the highest value of the criterion function for the parameters — p,
=0.27, A = 1.5, Nj;7*=100, Nyepcqic=10 (Table 16) and p,= 0.30, A=1.1 for Nj7*=1000, Ny¢pcqc=10000

iter iter

(Table 13). Increasing the number of iterations Nj7* and iterations of the algorithm Njpcqc in scenario

no. 1, not only increased the value of the criterion function but also reduced the Euclidean difference
(||rF4 — 155, [InFA — nC3||,) to the best solution obtained with the FA algorithm (Tables 16 and 13).
For the second scenario, the highest value of the criterion function, for the CS algorithm, was achieved
for p, = 0.33, A=1.1 (Table 15). Comparing the solutions, despite the small difference in MPI (Tables 7
and 15), different values for the sought variables were achieved (Tables 10 and 17).

Fe, Scenario 2 - system consisting 10 elements  F_,
0.5 [ [ [T 05

— 0.999856 0.99992
0.45 0.99991
0.999855

0.9999

0.4 0.4 0.99989
0.999954
m m
o o 0.99988
0.35 0.35
0.999953 0.99987
0.99986
0.3 0.3
0.999952 0199985
0.09984
0.25 0.999951 0.25
11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19
A A

Figure 8. Solutions for scenario 1 and 2 has been achieved using CS algorithm.
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Scenario 1 - bridge consisting 5 elements Fc1 Scenario 2 - system consisting 10 elements  Fcy
1 0.99995 1
0.9998
0.8 08 0.9996
0.9999
0.9994
0.6 0.6
= = 0.9992
0.4 0.99985 04
0.999
02 02 0.9988
0.9998
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
nff o

~ff
Figure 9. Solutions for scenario 1 and 2 has been achieved using FA algorithm for parameter v =0.01.

Table 15. The best solution for scenario 2 by CS.

Parameters pa=033,A =11
Nii® = 1000, Nyepeqre = 10000
Solutions F!"" 0.99550799
Solutions F/"** 0.99992758
Solutions F/*¢4" 0.99892402
Solutions ¢ 5.51629947e-04
Calc. time [s] 387.5
MPI (%) 0.0198
[£FA —£C5 ||, 0.1893
[nfA — nCS |, 1

Table 16. The best solution for scenario 1 by CS.

Parameters pa=027,A =15
Nipey" =100, Nyepeare = 10
Solutions F" 0.99972966
Solutions F/*** 0.0.99994780
Solutions F/"¢™" 0.99984451
Solutions o 7.40185829e-05
Calc. time [s] 1.7
MPI (%) 0.1688
[[£FA — £S5, 0.1300

[nFA —nCS|, 1.7321
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Table 17. The best solution for scenario 2 by CS: p,=0.33, A = 1.1, Nji7* = 1000, Nypcqrc = 10000.

iter

Parameters Values Parameters Values

1 0.8500 m 4
&) 0.8500 ny 4
3 0.8500 n3 4
T4 0.8500 ny 4
r5 0.8500 ns 3
76 0.7671 ng 1
ry 0.8453 ny 2
rg 0.8432 ng 2
r9 0.6973 ny 2
10 0.8500 1y 2

6. Conclusions

The presented results broaden the existing discussion on the application of nature-inspired
algorithms for solving RRAP problems. From this point of view, two described test scenarios (and the
Firefly Algorithm FA) can be considered as a suitable tool for validating other algorithms in RRAP
problems. Although the CS algorithm is known for its effectiveness as it uses the Lévy flight (Figure 6),
the FA firefly algorithm in the considered parameter range proved to be more effective. The use of the
FA algorithm led to solutions with a higher value of the criterion function (Tables 6 and 7). It can also
be notices that the best solutions using CS were achieved for A values different from the 1.5 - as default
value (x = 0.5) for Lévy stable distribution used. It is worth noting that in both scenarios using the FA
algorithm, the sigma value ¢ (standard deviation) was smaller than the solutions using CS.

Not only the values of the criterion functions can be compared, but also the MPI (Equation (25)),
the Euclidean distance differences of both the reliability (||r"* — r©5||;) and the number of redundant
elements (|[nf4 — n®5||,) obtained by carefully selecting the parameters of the CS algorithm.

The comparison of the values of the criterion function, the linear r-Pearson correlation coefficient
and the data from the post-hoc RIR Tuckey test leads to the selection of the same (or similar) control
parameters of the analysed algorithms. Therefore, the presented analysis methods can also be used to
compare other optimization algorithms.

Such an approach can broaden the application the well-known test function benchmarks
for global in the RRAP optimization (test functions e.g.: Michalewicz’s, Rosenbrock’s, De Jong's,
Schwefel’s, Ackley’s, Rastring’s, Easom’s, Griewank’s, Shubert’s [18,28], Bohachenoticed Matyas’s,
Zakharov's, Goldstein-Prices [29], other functions [30,31] or other Tallard’s test functions [32]). From
the compilation of literature data [3,4], the use of algorithms: PSO, MPSO, ABC, CS-GA, BAT, ACO
led to obtaining worse solutions than FA. The question remains open: are other algorithms lead to
obtaining a different global maximum of the considered (or other RRAP) criterion functions?
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