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%
Abstract: Variational Auto-Encoders (VAEs) are deep generative models used for unsupervised 1
learning, however their standard version is not topology-aware in practice since the data topology =
may not be taken into consideration. In this paper, we propose two different approaches with the aim s
to preserve the topological structure between the input space and the latent representation of a VAE. 4
Firstly, we introduce InvMap-VAE as a way to turn any dimensionality reduction technique, given s
an embedding it produces, into a generative model within a VAE framework providing an inverse
mapping into original space. Secondly, we propose the Witness Simplicial VAE as an extension 7
of the Simplicial Auto-Encoder to the variational setup using a witness complex for computing s
the simplicial regularization, and we motivate this method theoretically using tools from algebraic  »
topology. The Witness Simplicial VAE is independent of any dimensionality reduction technique 1o
and together with its extension, Isolandmarks Witness Simplicial VAE, preserves the persistent Betti 11
numbers of a data set better than a standard VAE. 12

Keywords: Variational Auto-Encoder; topological machine learning; nonlinear dimensionality reduc- 13
tion; Topological Data Analysis; data visualization; representation learning; Betti number; persistence 14
homology; simplicial complex; simplicial regularization 15

1. Introduction 16

Topological Data Analysis (TDA) is a recent field in data science aiming to study the 17
"shape" of data, or in other words to understand, analyse and exploit the geometric and s
topological structure of data, in order to get relevant information. For that purpose, it com- 1o
bines mathematical notions essentially from algebraic topology, geometry, combinatorics, 2o
probability and statistics, with powerful tools and algorithms studied in computational =
topology. Algebraic topology identifies homeomorphic objects, that is for example objects 22
that we can deform continuously (without breaking) from one to the other, and com- s
putational topology studies the application of computation to topology by developing 2.
algorithms aiming to construct and analyse topological structures. 25

Nowadays, the two most famous deep generative models are the Generative Adversar- 26
ial Network [1] and the Variational Auto-Encoder (VAE) [2] [3]. In this paper we focus on 27
the latter. Merely said the VAE, like its deterministic counter-part the Auto-Encoder (AE), =z
allows to compress high dimensional input data into a lower dimensional space called 2o
the latent space, and then reconstructs the output from this compressed representation. In o
addition to its ability to generate new data, the VAE can thus be used for many applica- s
tions, especially for dimensionality reduction which is useful for signal compression, high 2
dimensional data visualisation, classification tasks or clustering in a lower dimensional s
space etc. 34

We investigate here ' the use of TDA in order to modify the VAE with the hope that s
it will lead to an improvement of its performances. In particular, we try to improve its e

1" This paper presents in a more concise way our main work developed during Medbouhi’s master thesis [4] and

provides an extension of the Witness Simplicial VAE method.
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latent representation. A large part of this work is at the intersection between machine s
learning and TDA, this bridge is an emerging field referred to as "topological machine s
learning” [5]. Thus, this paper is part of the cross-talk between topologist and machine o
learning scientist [6]. Although the research carried out here is quite theoretical, it can 40
potentially lead to many concrete applications in very different fields and in particularin =~ =
robotics. For example, in a robotic context the latent space of a VAE could represent the 4
space of configurations of a robot or the states of a system composed by a robot and its 43
environment. In such case, an interpolation between two points in the latent space can 44
represent a trajectory of the robot. As the input space is generally high dimensional, it 4
might be hard to realize interpolations there. However, with a VAE one can represent the 46
data in the latent space with less dimensions, perform interpolations in this latent space, o~
and then generate the trajectories for motion planning. Thus, having a VAE which takes s
into account the data topology could help to better perform interpolations in its latent space 4o
in order to do robotics motion planning. On one side, preserving 0-homology would allow  so
one to avoid to perform "meaningless" interpolations between two points from different s
connected components. On the other side, preserving 1-homology enables to keep track of s
possible "loops" or cyclic structures between the input and the latent space. That is why we s
are interested in preserving several homology orders. 54

The question we try to answer is: how to preserve the topology of data between =5
the input and the latent spaces of a Variational Auto-Encoder? Our assumption is that e
preserving the topology should lead to a better latent representation and this would help s
to perform better interpolations in the latent space. This rises many underlying questions:  ss
what exactly do we want to preserve? What kind of topological information should we s
keep? How do we find relevant topological information in the data? Does that depend on <o
the problem and the data? How to preserve such topological information in a Variational e
Auto-Encoder framework? Algebraic topology gives topological invariants like the Betti o2
numbers which are discrete whereas training a VAE implies to optimize a loss which
needs to be differentiable and thus continuous. So how can we incorporate such discrete s
topological invariant in a continuous function? o5

2. Notions of Computational Topology 66

In this section, we present briefly some notions of Computational Topology that are e~
relevant to our work. For a complete introduction, we refer the reader to any book of s
Computational Topology like the one by Edelsbrunner and Harer [7], or to the theoretical e
background of our master thesis [4] which is self-contained. Computational Topology aims 7o
to compute and develop algorithms in order to analyse topological structures, that is the 7.
shapes of considered objects. For that purpose, we introduce some notions related to sim- 7
plicial complexes. The latter allow us to decompose a topological space into many simple
pieces, namely the simplices, well suited for computation. In particular, we present the s
simplicial map and the witness complex which provides a topological approximation, both 75
notions are used in our Witness Simplicial VAE. Then, we give high-level understanding of 7
algebraic topological invariants in which we are interested: the Betti numbers. Finally, we 7~
see how these notions can be used in Topological Data Analysis, that is when the considered  7s
objects are data sets, through the concept of filtration in Persistent Homology which leads 7
to the notion of persistent Betti numbers. 80

2.1. Simplicial complexes o1

The smallest pieces from which we build upon are the simplices, as illustrated in e
Figure 1. a3

Definition 1. Let ug, uy, ..., uy be points in RY. A k-simplex o (or k-dimensional simplex) is the  sa
convex hull of k + 1 affinely independent points. We denote o = [ug, u1, ..., | the simplex spanned  ss
by the listed vertices. Its dimension is dim (o) = k and it has k + 1 vertices. 86
A face of a simplex is the convex hull of an arbitrary subset of vertices of this simplex. o7
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Figure 1. Examples of simplices: a point (dimension equal to 0, or 0-simplex), a line segment
(dimension equal to 1, a 1-simplex), a triangle (dimension equal to 2, a 2-simplex) and a tetrahedron
(dimension equal to 3, a 3-simplex). Image from [7].

Under some conditions, several simplices put together can compose a greater structure s
called simplicial complex. The latter is very practical because it can be complex enough to s
approximate a more complex topological space, while it is composed by simple pieces (the oo
simplices) which is beneficial for efficient computations. Examples of valid and non-valid e
geometric simplicial complexes are given in Figure 2. 92

Definition 2. A (geometric) simplicial complex K is a non-empty set of simplices respecting the o3

following conditions: 0s
e Each face of any simplex of K is also a simplex of K. o
»  The intersection of any two simplices of K is either empty or a face of both simplices. %

The dimension of K is the maximum dimension of any of its simplices. The underlying topological e
space is denoted |K| and is the union of its simplices together with the induced topology (the open  os
sets of R%) inherited from the ambient Euclidian space in which the simplices belong. 99

' A‘v m‘
A

(a) A valid (geometric) simpli- (b) A non-valid (ge-
cial complex ometric) simplicial
complex

Figure 2. On the left we can see a valid geometric simplicial complex of dimension three (image from
[8]), on the right we can see a non-valid geometric simplicial complex (image from [9]) because the
second condition of the definition 2 is not fulfilled.

Now, we introduce the simplicial map which is a key notion used for the simplicial 100
regularization of our Witness Simplicial VAE method. 101

Definition 3. A simplicial map f : K — L between simplicial complexes K and L is a function 1oz
f : VertK — VertL from the vertex set of K to that of L such that, if [ug, uy, ..., ug] span a simplex 10
of K then [f(uo), f(u1), ..., f(ugq)] span also a simplex of L. 104

It is important to note here that a simplicial map f between two simplicial com- 105
plexes K and L induces a continuous map f between the underlying topological spaces 16
|K| and |L|. Indeed, for all points x in |K|, because x belongs to the interior of exactly o7
one simplex in K, we can express this simplex by [uy, ..., #;] using its vertices and x can 10
be written as x = Z?:o Aju; with (A, ..., Aq) € ]Rﬂ such that Z?:o A; = 1. With these 100
notations, the continuous map f induced by the simplicial map f can be defined as: 110
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frxm f(x) = f(Z? o Aitti) = 1o Aif (u;). It follows that the induced continuous map f om

is completely determined by f so fand f can actually be identified. The reader can refer to 112
"Section 5: Simplicial Complexes" of the course [10] for the proofs of the continuity of this 1
induced continuous simplicial map. Finally, we can highlight here that a simplicial map 114
between two simplicial complexes is a linear map on the simplices. 115

If we think about the topology of a data set, we can notice that usually not all the 1~
points are needed to know the underlying topology. Moreover, constructing simplices 1
from just a subset of the data points is less computationally expensive than considering 11s
the whole data set. These ideas motivated Vin de Silva and Gunnar Carlsson when they 120
introduced the witness complex in [11]: a subset of the data points, called the landmarks 12
points, is used to construct the simplices "seen" by the witnesses which are the rest of the 122
points of the data set. 123

Definition 4. Let S be a finite set of points in R¥ and write B, (x) for the closed d-dimensional ball 12
with center x € RY and radius r € R. Let L C S be a subset of the points in S, that we call the 12
landmarks. We define’ the witness complex of S, L and r € R as: 126

W,(S,L) = {(7 = [ug, ..., ug] with {ug, ..., ux} C L |Jw € Ss.t. Vi € [0;k], u; € Br(w)}. 127

/ Simplicial complex

(1-NN>t§ph, all the points r{re used)

\\

\Witness Com pliéx Wr(S,L)

(onI;Jt’He landmarks are used)

point of the data

point of the data which is a witness

point of the data which is a landmark

point of the data which is a landmark and a witness
— 1-simplices

W 2-simplex

Figure 3. Example of the construction of a witness complex W, (S, L) for a data set S C R? of eleven
points using a subset L C S of five landmarks points and for a given radius r € R.

An example of the construction of a witness complex is given in Figure 3 and we 12
explain it here: 120
On the left we can see the eleven points with the landmarks points in green. The landmarks 130
points are chosen arbitrarily here. Then for a given radius » we check if any of the balls (here 1

2 The reader is invited to look at the mentioned paper [11] for a complete view on witness complexes, because

here we make some simplifications and define the witness complex as a particular case of the original definition.
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the 2-dimensional balls are disks) centered at the points of S contains a set of landmarks. 132
In that case the center of the disk is called a witness (encircled in red), and the set of the 113
corresponding landmarks points form a simplex which is added to W, (S, L). Here only the 13
balls around the witnesses are represented. 135
On the top right in blue, we can see a simplicial complex built by joining all the points. Itis 136
actually the 1-nearest neighbour graph and consists of eleven 0-simplices (all the points a7
of the data set), and eleven 1-simplices (the edges). On the bottom right in green, we can  13s
see the Witness complex W, (S, L) constructed as explained above. This one consists of 130
five O-simplices (the landmarks points), six 1-simplices (the edges), and one 2-simplex (the 140
triangle). 141

As we see in this example of Figure 3, it is important to note that the witness complex, 1s2
although being composed of simplices corresponding to vertex sets of only a subset of 143
landmarks points L C S, can still capture the topology of the whole data set S. However, 14
this is true in this example but it may not be always the case and it mainly depends on 14
the choice of the landmarks L and the radius r. In order to construct a Witness Complex, 146
the landmarks can be chosen for example arbitrarily or randomly (another method called 147
"maxmin" is also given in [11] to select the landmarks in an iterative way). Regarding the 14
choice of the radius 7, this is addressed below when we mention the concept of filtration 1
used in Persistent Homology. 150

2.2. Betti numbers 151

A topologist is interested in classifying different objects (topological spaces to be sz
more precise) according to their shape. Two objects are topologically equivalent if there 1ss
exists a homemorphism between them, that is a continuous map with continuous inverse. 1sa
Algebraic topology provides the mathematical theory for such classification thanks to 1ss
algebraic topological invariants. As suggested by their name, the latter do not change 1se
between topologically equivalent spaces. Computational topology allows us to compute  1sz
efficiently such topological invariants, in particular with the help of previously defined  1ss
notions of simplicial complexes. Examples of algebraic topological invariants in which 1se
we are interested are the Betti numbers. We give here the intuition, for the mathematical 10
formalism (rank of the p-th homology group etc.) the reader is invited to look at the 1e
references mentioned in the introduction of this section. 162

We can say that the p-th Betti number, denoted f,, counts the number of p-dimensional 163
holes: By is the number of connected components, 8; the number of tunnels, 8, the number  1es
of voids etc. It is indeed a topological invariant and one can intuitively notice that the 1es
Betti numbers of an object do not change when we deform this object continuously, like 166
changing its scale. Thus, they can be used to classify objects of different topologies. For ier
a topologist, a sphere and the surface of a cube are identified to be the same object and  1es
their Betti numbers are equal, but the torus is different since it has a different topological 1es
structure. This is illustrated in Figure 4.

Space o P1 P2

Point 1 0 O

Cube 1 0 1

O Sphere 1 0 1
= Torus 1 2 1

Figure 4. Different objects and their first Betti numbers (the cube, sphere and torus are empty).
Figures from [12].

When it comes to analysing data, since the latter is usually discrete and represented as 171
points in a space, we need to take into account the different possible topologies of a data 172
set accross different scales. This leads us to the concept of filtration in persistent homology. 173
We illustrate this notion in Figure 5 through a simple example where the data is a set of 174
8 points sampled from a circle in a 2-dimensional space. This is a simple example of a 175


https://doi.org/10.20944/preprints202301.0093.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2023 d0i:10.20944/preprints202301.0093.v1

"(Vietoris-Rips) filtration" where we can see that the values of the Betti numbers By and f1 176
change depending on the scale from which we consider the data. We can wonder which 177
scale, and thus which values of the Betti numbers, is appropriate to describe the topology 17s
of this data set. Persistent homology aims to answer to this question through this notion of 17

filtration.
. = e
. . . . ; \\
. L] L] L] j
/
L] L] - - ey J
. . T

Figure 5. (Vietoris-Rips) filtration of points sampled from a circle. Images from [12].
180

B1

T T T
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 6. 3 barcode of the circle data set of Figure 5. Figure from [12].

As illustrated in the above Figure 5, for the simplices of dimension 1 (the edges) and e
simplices of dimension 2 (the triangles), the process of the "(Vietoris-Rips) filtration" is as  1e2
follows: around each point we draw disks of a growing diameter € (from left to rightin = 1es
Figure 5 the diameter € is increasing), as soon as two disks have a common non-empty iss
intersection we draw an edge between their center, and as soon as three centers form a s
triangle with the drawn edges then we draw the triangle. Finally we look at the Betti 1s6
numbers at each step of the filtration depending on the scale €. In this example of Figure s
5, we can see that By, which counts the number of connected components, is decreasing s
from 8 to 1 when € increases. For 1, which counts the number of 1-dimensional holes, it  1s0
is different: it goes from 0 to 1 and to 0 again while € is increasing. The values of f1 in  1e0
function of € are represented in the barcode given in Figure 6. When € is equal to 1, the 101
drawn edges form a fully connected graph and By and 1 will not vary anymore. Then 12
we can look at this barcode for € between 0 and 1, and see the values of 81 which persist 10
the most. In this case the "persistent 31" is f1 = 1 since it persists between € = 0.2 and 104
€ = 1. Indeed, for this interval of € € [0.2;0.5], we can recognize the circle from which 1es
the points were sampled: the drawn edges or triangles all together form an object with 196
one 1-dimensional hole, which is topologically equivalent to a circle since we can deform o7
continuously this object to get a circle. 108

All the information present in a barcode can be equivalently represented in a persis- 100
tence diagram where can also be visualized the birth and death of different classes. Finally, 200
the witness complex filtration is a similar concept than Vietoris-Rips filtration presented 201
above, except that we consider a witness complex. What that means is that during the 2o
filtration, we increase the radius of the balls centered at the witnesses and we connect only 20
the landmarks "seen" by a witness to form the simplices of the witness complex. 208

To conclude, the Betti numbers allow one to analyse and describe the topology of 08
an object, and persistent homology leads to the notions of filtration and persistent Betti 206
numbers to better analyse a data set. Indeed, the filtration process provides a way to  zor
recover its underlying topological structure that can be approximated by a witness complex  zos
built with a radius corresponding to a persistent Betti number. 200
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3. Related work 210
3.1. Nonlinear dimensionality reduction 211

In order to analyse high dimensional data, it might be convenient to reduce its di- 212
mensionality, in particular for visualization. The traditional methods were based on linear 213
models, the well known archetype being the Principal Component Analysis [13][14]. How- =21
ever, by construction these methods are not efficient to reduce highly nonlinear data =zis
without loosing too much important information. That is why, to deal with complex data  21e
sets, nonlinear dimensionality reduction methods were developed, this field is known as 217
"manifold learning". An overview of such methods with their advantages and drawbacks is  21s
given in [15]. We introduce in this section some famous nonlinear dimensionality reduction 21e
methods, among them the ones that inspired us for our work. 220

A classical nonlinear dimensionality reduction method is Isomap (from Isometric 22
mapping) which was introduced in 2000 by Tenenbaum et al. [16]. It maps points of a  ze2
high-dimensional nonlinear manifold to a lower dimensional space by preserving graph 2zs
distances. In particular, it consists first of constructing a graph on the manifold of the 224
data considering points which are neighbors regarding some euclidean distance (i.e. the 225
euclidean distance between two neighboring points should be smaller than a threshold, =z
or an alternative is to apply a k-nearest neighbors algorithm). Then, the shortest path on 227
the graph between any pair of points is computed using for example Dijkstra’s algorithm. 22s
This gives an approximation of the geodesic distance between any pair of points. Finally, 2z
classical multidimensional scaling (MDS) method (see [17][18][19] for references) is applied =230
to the matrix of graph distances in order to embed the data in a smaller dimensional space =231
while preserving these approximated geodesic distances. The advantage of this method  2s:
is that the geometry of the manifold is generally well preserved under some hypothesis 233
(for some class of manifolds, namely the "developable manifolds" [15]). However, the 23
drawbacks is the costly computation of the (approximated) geodesic distances. 235

Another famous method used in data visualization is t-SNE [20] which allows one to 236
perform nonlinear dimensionality reduction. It was developed in 2008 by van der Maaten 23
and Hinton as a variation of Stochastic Neighbor Embedding [21]. t-SNE aims to better 2:s
capture global structure, in addition to the local geometry, than previous nonlinear dimen-  =zso
sionality reduction techniques for high dimensional real world data sets. It is also based on 240
pairwise similarities preservation between the input data space and the embedding. The 2a
particularity of this method is that it starts by converting Euclidean pairwise distances into  2a2
conditional probabilities using Gaussian distributions, that is the similarity of a pointtoa 243
given point is the conditional probability of being its neighbor under a Gaussian distribu- 24
tion centered at the given point. For the embedding lower dimensional space, the pairwise zas
similarity is constructed in an analogue way except that the authors of [20] use a Student 246
t-distribution instead of a Gaussian. They actually consider the joint probabilities defined as 247
being the symmetrized conditional probabilities. Then, they minimize the Kullback-Leiber zas
divergence between the joint probability distribution of the input data space and the one of = 240
the embedding. 250

UMAP (Uniform Manifold Approximation and Projection) is a more recent nonlinear s
dimensionality reduction method developed in 2018 by McInnes, Healy and Melville [22].  2s2
It is based on three assumptions about the data: it should be uniformly distributed ona  2ss
Riemannian manifold, the Riemannian metric should be approximated as locally constant, 2s
and the manifold should be locally connected. The first step of the method is to construct 2ss
a fuzzy simplicial complex of the data, which is a simplicial complex with probabilities s
assigned to each simplex. Then, the data is embedded in a lower dimensional space by  2s
minimizing an error function (namely the fuzzy set cross entropy [22]) between the fuzzy =ss
topological structures of the original data and the embedded data, through a stochastic 2se
gradient descent algorithm. Like with Isomap, varying the parameters of the method 260
allows us to choose if we want to preserve more global versus local structure of the data. 26
The advantages of UMAP are that it is scalable to high dimensional data sets and it is fast. ze2
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Drawbacks might be that there are two parameters to tune, and that the relative distances zes
between different clusters of a UMAP embedding are meaningless. 264

3.2. Variational Auto-Encoder 265

The Variational Auto-Encoder (VAE) not only allows us to do nonlinear dimensionality  zss
reduction, but it has also the particularity to be a generative model. It was simultaneously  zes
discovered in 2014 by Kingma and Welling in [2] and Rezende, Mohamed, and Wierstra in  zes
[3]. Although it could be seen as a stochastic version of the well known Auto-Encoder, the 26
motivation behind the VAE is completely different since it comes from Bayesian inference. 270
Indeed, the VAE has a generative model and a recognition model or inference model, and 27
both are Bayesian networks. The original papers cited above provide a method using 27
stochastic gradient descent to learn jointly latent variable models whose distributions are 273
parameterized by neural networks and corresponding inference models. The VAE can be 274
used for many different applications like generative modelling, semi-supervised learning, 27s
representation learning etc. We refer the reader to the recent introduction to VAEs made by 276
Kingma and Welling in [23] for more complete details. 277

Following the notations of [2], let X = {x(i) }N . be the data set consisting of N  27s
ii.d. observed samples of some variable x, generatlgd by a random process involving 27
unobserved random variables z called the latent variables. This process consists of two steps:  zs0
generation of latent variables from a prior distribution py«(z) (the prior), and generation of ze
the observed variables from a conditional distribution py«(x|z) (the likelihood); the true  zs:
parameters 6* and the latent variables are unknown. We assume that the prior and the 2
likelihood are parameterized by 6 and their probability distribution functions are almost  zes
everywhere differentiable. 6* is the optimal set of parameters § maximizing the probability zss
of generating real data samples x(1), Also, the true posterior density pg(z|x) is assumed to  zss
be intractable. That is why Kingma and Welling [2] introduced a recognition model gy (z|x)  2e7
parameterized by ¢ to approximate the true posterior py(z|x). The latent variables z, also s
called "code", are latent representations of the data. g4 (z|x) is then called the probabilistic  2es
"encoder" because it gives a probability distribution of the latent variables from which the 200
data X could have been generated. This leads us to pg(x|z) which is called the probabilistic ~ ze1
"decoder" because it gives a probability distribution of the data x conditioned on a latent 2e2
representation z. In our case, § and ¢ are parameters of artificial neural networks, and  zes
the method presented in [2] allows the model to jointly learn 6 and ¢. On one side, the 204
encoder learns to perform nonlinear dimensionality reduction if we take, for the latent zes
representations z, a lower dimension than the original data. On the other side, the decoder =206
allows us to do generative modelling in order to create new realistic data from latent 2oz
representations. 208

As it is typically done in variational Bayesian methods, a good generative model
should maximize the "log-evidence" which is here the marginal log-likelihood log pg(x).
The latter is intractable and we have log pg(x) = Lg4(x) + Dxr(q¢(z|x)||pe(z]x)) with

Loy(x) =E, o(z]x) 108 f;: glig the ELBO (evidence lower bound or variational lower bound)

and Dkr (q¢(z|x)||pe(z]x)) = By, (1) log Z‘:Eim the Kullback-Leibler (KL) divergence be-
tween gy (z|x) and py(z|x) (see appendix A.1 for the derivation). The ELBO is indeed a
lower bound of the marginal log-likelihood (Lg,(x) < pg(x)), and maximizing it allows
us to 1) approximately maximize py(x) to get a better generative model, and 2) minimize
the KL divergence to get a better approximation g4 (z|x) of the intractable true posterior
po(z|x). Hopefully, the ELBO can be explicited (see appendix A.2 for the derivation) and is

actually the objective function of the VAE:

Lyag = Loy(x) = By, (z|x) log po(x|z) — Dkr(q9(z]x)][pe(2)) M

Equation 1 shows that the loss of the VAE can be computed through the expected recon- 200
struction error ;). log pg (x|z), and the KL divergence between the encoder g¢(z|x) and 300
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the prior py(z). Typically, the terms in the KL divergence are chosen as Gaussians so that s
it can be integrated analytically. Otherwise, if the integration is not possible we can do a = o2
Monte Carlo estimation. Finally, it was introduced the "reparameterization trick" (Kingma o3
and Welling [2], and Rezende et al. [3]) to efficiently optimize the objective function Lg(x) s0s
with respect to the parameters 6 and ¢ using stochastic gradient descent. 305

3.3. Topology and Auto-Encoders 306

The use of topology in machine learning is quite new with the development of Topo- 3oz
logical Data Analysis. Some recent work like the "topology layer" proposed by Gabrielsson  sos
et al. [24] focus on preserving the topology of single inputs which can be cloud points o
or images. However, we want to preserve the topology of the whole data set between 10
the input and the latent space, and particularly in a Variational Auto-Encoder framework. s
The ability of a standard Auto-Encoder to preserve the topology for data sets composed 312
by rotations of images was investigated by Polianskii [25]. We are now interested in an 1
active control of the topology instead of a passive analysis. The main difficulty is that 1
algebraic topological invariants like the Betti numbers are discrete whereas we need some 15
differentiable function with respect to the neural network parameters in order to be able to 316
perform backpropagation of the gradient. At the time we were working on this problematic, sz
to the best of our knowledge, no previous work was made in the direction of adding to  s1s
the loss of a VAE a term to preserve the topology except in the appendix of [26] where the 310
authors Moor et al. sketched an extension of their Topological Auto-Encoder to a variational 320
setup. Their Topological Auto-Encoder presents in the loss a differentiable topological con- 2
straint term added to the reconstruction error of an Auto-Encoder. Although this method is 22
generalizable to higher order topological features, they focused on preserving 0-homology. s2s
Through persistent homology calculation using Vietoris—Rips complex, their topological  s2a
constraint aims to align and preserve topologically relevant distances between the input = s2s
and the latent space. The authors present this "topological loss" as a more generic version szs
than the "connectivity loss" proposed by Hofer et al. [27]. Although the connectivity loss  sz7
is also obtained by computing persistent 0-homology of mini-batches, on the contrary to sz
the topological loss it operates directly on the latent space of an Auto-Encoder to enforce a 320
single scale connectivity through a parameter denoted 7 [27]. 330

Another interesting approach combining topology and Auto-Encoders is the "simpli- 332
cial regularization" introduced recently by Gallego-Posada [28][29] as a generalization of a2
the "mixup" regularization ([30] and [31]). Gallego-Posada in his master thesis [28] applies  sss
UMAP to the data and computes the Fuzzy simplicial complexes of both the input data and s34
the embedding, and uses these simplicial complexes to compute simplicial regularizations sss
of both the encoder and the decoder, that he adds to the Auto-Encoder loss. The simplicial 36
regularizations aim to "force" the encoder and the decoder to be simplical maps, thatis to a7
be linear over the simplices. We wanted to explore this idea in a variational setup with 3.
our Witness Simplical VAE (see section 20 for the proposed method) which uses similar 3o
simplicial regularizations but computed using a Witness Complex. The latter simplicial a0
complex was introduced by De Silva and Carlsson [11] and allows one to get a topological  sa
approximation of the data with a small number of simplices. Lastly, we can mention that = ss
the idea of using such Witness Complex came from the "geometry score" developed by a3
Khrulkov and Oseledets [32], which is a method for evaluating a generative model by  z4
comparing the topology of the underlying manifold of generated samples with the original s
data manifold through the computation of witness complexes. 346

Finally, we can mention a completely different approach aiming to capture geometric sz
and topological structure with a VAE that is by having a latent space which is a specific = s
Riemannian manifold instead of an Euclidean space. In this direction Pérez Rey et al. 4
proposed the Diffusion VAE [33] which allows one to choose an arbitrary Riemannian sso
manifold as a latent space like a sphere or a torus for example. However, this approach s
implies a strong inductive bias on the geometric and topological structure of the data. 352
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4. Implementation details 353

Regarding the implementation we used PyTorch for fast tensor computing via graphics = sss
processing units (GPU) and for automatic differentiation of the objective function of the sss
neural networks [34]. In particular, we used the Adam algorithm [35] (with by default sse
learning rate parameter equal to 10~2) provided with PyTorch for the stochastic optimiza- ss7
tion of the objective function. The implementation for the witness complex construction s
uses the code from [36] built on top of the GUDHI library [37] for the provided simplex sso
tree data structure [38]. 360
All the code is publicly available at: https://github.com/anissmedbouhi/master-thesis s

5. Problem formulation 362

Our research question can be summarized as follows: How to preserve the topology e
of data between the input and the latent spaces of a Variational Auto-Encoder? 364
We particularly focus on preserving the persistent Betti numbers which are topological in-  ses
variants. Indeed, although all the topological information is not contained in the persistent ses
Betti numbers, they do provide relevant information regarding the topological structure of ez
the data. Our goal is thus to have a VAE such that the persistent Betti numbers are equal, ses
between the input data, its latent representation given by the encoder, and ideally also its  see
reconstruction given by the decoder. 370

After showing that this is not the case for a vanilla VAE, we modify the loss of the sn
VAE in order to encourage such preservation. Since we focus on a 2-dimensional latent 372
space, we can directly evaluate visually if this goal is achieved for the two first persistent s7s
Betti numbers, namely g and 1, without needing to compute the persistent diagrams. In 37
summary, for the two data sets we consider, our goal is to preserve both 0-homology and 7
1-homology. 376

5.1. Data sets 377

For the purpose of our problem, we focus on two synthetic data sets with interesting sz
geometry and topology, embedded in 3 dimensions. We reduce their dimension to a 2- 7
dimensional latent space to visualize directly the impact of our methods. We call the two e
data sets we used the open cylinder and the swissroll as illustrated in Figure 7. For both we e
sampled 5000 points: 60% for training, 20% for validation and 20% for testing. 382

To generate the points (x,v,z) € R3 of the open cylinder, we sampled from uniform  sss
distributions: z ~ U_y /21721 T ~ Ur—w/2r4ws2)5 0 ~ Ug2r); With h for "height”, r for  3s
"radius", and w for "width"; and then we define x = rsin6, y = rcos 0 and z = z. For this s
open cylinder we used the following parameters: 20 for the height, 1 for the width, and 7  sss
for the radius. 387

For the swissroll, its points (x,y,z) € R3 were generated with scikit-learn [39] using an  sss
algorithm from [40]. It also works with sampling from uniform distributions: ¢ ~ 15”[71,371] ; 380

y ~ 21U 1}; and then are defined x = fcost, y = y and z = tsint. 390
As we can visualize in Figure 7, since By counts the number of connected components  so:

and f; the number of 1-dimensional holes, we can say that ,Bg)pencyhnder = powissroll — -,
(1)penCyhnder = 1 and B$Vissoll = 0. The goal is to preserve these persistent Betti numbers 303
in the latent space of a VAE. 304
5.2. lllustration of the problem 305

In this section we present some results obtained with a standard VAE to illustrate the 306
problem and to have a baseline with which we can compare the methods. By "standard s
VAE" we mean a VAE with a Gaussian prior which has a standard loss that consists of the  s0s
reconstruction and the KL-divergence terms. 399

Figures 8, 9, 10 and 11 provide representative results of the standard VAE applied to 40
the open cylinder data set, for different random initializations ("pytorchseed") of the neural 4o2
network weights and a batch size equal to 128. We do not always show the losses since 403
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(a) Data set 1: Open cylinder (b) Data set 2: Swissroll
Bo=1pB1=1 Bo=1,61=0

Figure 7. Open cylinder (left) and swissroll (right) training data sets

they look similar for different initializations, but it should be noted that after 500 epochs  40s
the learning process is always converging like in Figure 8 (f). The trained VAEs perform 4os
similarly on both train and test data leading to the same conclusions. In the figures below, a0s
we show the results for the training sets for a better visualization due to larger point set size. oz
We can see that for the standard VAE, there is not much consistency of the representation  aos
learning when the random initialization of the neural network weights is changed since 400
the latent representations can appear in very different ways. Most of the time, we observe 410
the first persistent Betti number as 8; = 0 like in Figure 9 or f; = 2 like in Figure 8, instead 411
of B1 = 1 as it should be for the open cylinder. Sometimes, we can get f; = 1 butitis -
not satisfactory from the point of view of latent space interpolation: either because some 41
regions may be separated (see Figure 10), or because the 1-dimensional hole in the latent 414
representation does not really make sense and is not useful for interpolating in the latent a5
space since the "color order" is not preserved (see Figure 11). 416

For the swissroll data set, we also get completely different latent representations when s
the random initialization of the neural network weights is changed, as we can see in Figures 410
12, 13 and 14. Indeed, when different network initializations are used, we can have different 420
persistent Betti numbers which are not the same as the original data set, and we get similar 421
discontinuity problems as for the examples of the open cylinder data set. a22

Our testing concludes that in practice the standard VAE does not take the topology of 424
data into account when it learns the latent representation of input data. Moreover, learnt 425
embeddings are not consistent with respect to different weight initialization. a26
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Figure 8. Standard VAE applied to the open cylinder dataset - pytorchseed=1, trained for 500 epochs.
(a) is the latent representation of the open cylinder in a 2-dimensional space of a standard VAE. We
can see two 1-dimensional holes so 81 = 2 (Betti number 1 is equal to 2) instead of 1. (b), (c), (d) and
(e) are different views of the reconstruction in the original 3-dimensional space.
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(a) Latent space (b) Reconstruction (view from above)

Figure 9. Latent representation (left) and reconstruction (right) of the Standard VAE applied to the
open cylinder - pytorchseed=6, trained for 500 epochs.

In this case we can see that for the latent representation (a) we have f; = 0 instead of 1. This means
for example that from the latent representation we would not know that it is actually possible to go
from the yellow part to the blue part without passing through the red part, because in this bad latent
representation there is a discontinuity in the green region. In addition to that, the discontinuity in the
green region of the latent space (a) implies a discontinuity in the green region of the reconstructed
cylinder (b) so the reconstruction is also bad.

-2 -1 0 1 2

(a) Latent space (b) Reconstruction (view from a side)

Figure 10. Latent representation (left) and reconstruction (right) of the Standard VAE applied to the
open cylinder - pytorchseed=2, trained for 500 epochs.

We can see that for the latent representation (a) we have 1 = 1 like to the original open cylinder data
set. However we can see three distinct parts for the blue region which is problematic if we want to
interpolate in this region in the latent space, and as we can see in the reconstruction (b) it implies
discontinuities in the blue region of the reconstructed cylinder.
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embedding of the training set by VAE
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—— validation
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(a) Latent space (b) Loss after 500 epochs

(c) Reconstruction (view from a side) (d) Reconstruction (view from above)

Figure 11. Latent representation (top left) and reconstruction (down) of the Standard VAE applied to
the open cylinder, trained for 500 epochs.

We can see again that for the latent representation (a) we have B1 = 1 like to the original open cylinder
data set. However, the latent representation is bad because the "color order" is not preserved so this
latent representation would not be useful for interpolations, it is like dividing the cylinder in top and
down regions. Indeed, we can see in (c) that this implies a discontinuity between top part and down
part for example with the orange region. In addition to that, we have also a longitudinal discontinuity
in the green region as shown in (d).
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(c) Reconstruction (view from a side) (d) Reconstruction (view from the other side)

Figure 12. Latent representation (top left) and reconstruction (down) of the Standard VAE applied to
the swissroll - pytorchseed=1, trained for 500 epochs.

We can see that after 500 epochs, for the latent representation (a) we have f; = 2 whereas it is
equal to 0 for the original swissroll data set. Moreover, we can visualize a discontinuity in the latent
representation (a) for all the colors except for the yellow region. This discontinuity is retrieved again
for the reconstruction as seen in (c) and (d).


https://doi.org/10.20944/preprints202301.0093.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2023 d0i:10.20944/preprints202301.0093.v1

16

embedding of the training set by VAE

(a) Latent space after 100 epochs (b) Reconstruction after 100 epochs

embedding of the training set by VAE

-05

-5 - ‘ 20

(c) Latent space after 500 epochs (d) Reconstruction after 500 epochs

embedding of the training set by VAE

5 -1 0 i H
(e) Latent space after 10000 epochs (f) Reconstruction after 10000 epochs

Figure 13. Latent representation (left column) and corresponding reconstruction (right column) of
the Standard VAE applied to the swissroll - pytorchseed=2, trained for 100, 500 and 10000 epochs.

After 100 epochs we can see an overlapping between the beginning and the end of the swissroll in
the latent representation (a) which has 1 = 1 instead of 0, and the reconstruction is bad (b). Then,
the more the model is trained, the better is the reconstruction as we can see after 10000 epochs for
example (f), but the latent representation (e) is separated in many connected components whereas the

original swissroll has By = 1.
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embedding of the training set by VAE
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(a) Latent space (after 500 epochs) for a ran-
dom initialization with pytorchseed=3
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(c) Latent space (after 500 epochs) for another
random initialization with pytorchseed=4

15 7

(b) Reconstruction (after 500 epochs) for a ran-
dom initialization with pytorchseed=3

10 -

10 ~ T 50

(d) Reconstruction (after 500 epochs) for the
other random initialization with pytorch-
seed=4

Figure 14. Latent representation (left) and corresponding reconstruction (right) of the Standard VAE
applied to the swissroll for different initializations - pytorchseed=3 (top) and pytorchseed=4 (top),

trained for 500 epochs.

Again, discontinuities in the latent representation are transferred to the reconstructed swissroll. These
representations are not useful for interpolating in the latent space.


https://doi.org/10.20944/preprints202301.0093.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2023 d0i:10.20944/preprints202301.0093.v1

18

6. InvMap VAE 427
6.1. Method 428

Here, we propose our first method called InvMap-VAE. Given an embedding of the 20
data, this method allows us to get a VAE with a latent representation that is geometri- 30
cally and topologically similar to the given embedding. So this method depends on an 43
embedding which can be given arbitrarily or by any dimensionality reduction technique. 432
The main advantages of InvMap-VAE are that the learned encoder provides a continuous  4ss
(probabilistic) mapping from the high dimensional data to a latent representation with ass
a structure closed to the embedding, and the decoder provides the continuous inverse a3s
mapping, which are both lacking in manifold learning methods like Isomap, t-SNE, UMAP. 436
Below, we present the results of an Isomap-based InvMap-VAE, where we use an embed- 437
ding provided by Isomap, although any other fitting dimensionality reduction technique 3s
could be used. 439

Let X be the original data, and Z,,,;, the given embedding, for example obtained when
applying a dimensionality reduction technique to X. Let us call Z the latent representation
of a VAE applied to X. Then, to get the loss of the InvMap-VAE, we simply add to the VAE
loss (see equation 1 page 8), the Mean Square Error (MSE) between Z and Z,,,;, multiplied
by a weight denoted wyp:

LinoMapvaE = LVAE + Wim X MSE (Z, Z ) )
In practice, we compute this loss on a batch level as it is done with the Standard VAE to 4
perform "batch gradient descent" [23]. aa2
6.2. Results aa3

The results of an Isomap-based InvMap-VAE are given in Figure 15 for the open s
cylinder and Figures 16 and 17 for the swissroll. The neural network weights initializations sss
does not affect these results, meaning that this method is consistent. As we can see, both 446
for the open cylinder and for the swissroll data set, the topology is preserved. This is 47
because Isomap preserved the topology as we can visualize it with the Isomap embed- 44
dings. Furthermore, depending on the parameters chosen for Isomap, Isomap and thus the s
corresponding InvMap-VAE can either flatten the swissroll like in Figure 16 or preserve aso
the global spiral structure like in Figure 17. See appendix B for extended results with a  4s:
UMAP-based InvMap-VAE where same conclusions can be drawn. as2

We can conclude that InvMap-VAE is consistent, and more importantly, if the given  sa
embedding preserves the topology, then the corresponding InvMap-VAE is also topology- ass
aware. This method is a simple way to turn a dimensionality reduction technique into a  ase
generative model since the VAE framework allows one to sample from the latent space and sz
generate new data. In the next section, we wanted to develop a topology-aware VAE that ase
does not need any embedding as input. as0


https://doi.org/10.20944/preprints202301.0093.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 January 2023

d0i:10.20944/preprints202301.0093.v1

19

(a) Original open cylinder data set
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Figure 15. Isomap-based InvMap-VAE applied to the open cylinder data set, weight;y; = 1 and

trained for 500 epochs

Betti numbers By = 1 and B1 = 1 are preserved between the original data set (a), the latent repre-
sentation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test).
Moreover, on the contrary to the Isomap embedding (b), the latent representations are not too thin or

"compressed", which is better for interpolations.
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embedding of the training set by Isomap
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(a) Original swissroll data set (b) Isomap embedding (nearest neighbours
parameter set to 10)
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Figure 16. Isomap-based InvMap-VAE applied to the swissroll data set, weightrys = 1 and trained for

500 epochs
Betti numbers By = 1 and f; = 0 are preserved between the original data set (a), the latent representa-

tion ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test). Moreover,
on the contrary to the Isomap embedding (b), the latent representations do not have empty regions,
which is better for interpolations, although lines appear and are retrieved in the reconstructions. We
can notice that the spacing between these lines is actually related to the curvature of the manifold.
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Figure 17. Isomap-based InvMap-VAE applied to the swissroll data set, weighty; = 10 and trained

for 1000 epochs

Betti numbers By = 1 and 1 = 0 are preserved between the original data set (a), the latent repre-
sentation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test).
Moreover, on the contrary to the Isomap embedding (b), the latent representations are not too thin or

"compressed", which is better for interpolations.
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7. Witness Simplicial VAE 460

We present in this section our second method called "Witness Simplicial VAE", on the 62
contrary to our previous method, this one does not depend on any other dimensionality 42
reduction technique or embedding. It has a pre-processing step where a witness complex is 463
built considering the topological information that should be kept. Then, comes the learning  4ss

process with a VAE regularized using the constructed Witness Complex. a65
7.1. Method 466
7.1.1. Witness complex construction a67

We propose here to build a witness complex in the original data space, and then aes
try to preserve this simplicial complex structure of the data when going to the latent 4eo
space of a VAE. Thus, the topology of the witness complex would be preserved. Since the 70
witness complex allows us to do topological approximation, we should build a witness
complex relevant to the topological information we want to keep. Also, to construct the a7
witness complex, one should consider only the simplices of dimension lower or equal a7
to the dimension of the latent space, which is good since computations of higher order a7
dimensional simplices are thus avoided. a75

At first, we choose randomly a number of landmarks points and we define all the 476
points of the data as witnesses. The choice of the landmarks is made randomly as suggested 477
in [11], also, a subset of the data could be used for the witnesses for less computations. a7s
Then, a witness complex can be built given a radius. To choose a relevant radius, we first a7
perform a witness complex filtration to get a persistence diagram. After that, we choose 40
a radius such that the Betti numbers of the witness complex constructed with this radius, s
are the persistent Betti numbers given by this persistence diagram. Indeed, we know ez
from Topological Data Analysis that the relevant topological information is given by the  4s:
persistent Betti numbers. 484

lustrations of this process are given in Figure 18. At first in (a), we perform a witness s
complex filtration choosing randomly 10 landmarks points (in practice we stopped the 4s7
filtration after a high enough radius filtration). Then, we look at the persistence diagram  sss
(a) and we choose a radius relevant to the problem, that is a filtration radius such that the 4ss
topological information we want to preserve is present in the witness complex. In this case, 4s0
we see in (a) at x ~ 5.9 a blue point corresponding to Betti 1 which persists (because far o
from the diagonal y = x). This point represents the topology we want to preserve: the e
"cycle" structure of the open cylinder (the 1-dimensional hole). That is why in (b) we choose 403
a witness complex built from this filtration stopping at 7jjtration = 6 and for which we s
have 1 = 1. (c) and (d) are different views of the 1-simplices (grey edges) of this witness 4ss
complex. (e) and (f) show the impact of increasing the number of landmarks: we get more 406
simplices which implies more computations and possibly not relevant 1-dimensional holes. o7
However, increasing the number of landmarks should help to get a topological structure ass
more robust to noise and outliers. 499

See appendix C for examples of bad witness complex constructions that should be oo
avoided by being careful to the parameters chosen (landmarks and radius) and by visualiz- s
ing it if possible. s02
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Figure 18. Open cylinder Witness Complex (WC) construction for different filtration parameters

For the persistence diagrams (a, b and d), on the x and y axis are the radius filtration, red points
represent Betti 0 (conected components) and blue points represent Betti 1 (1-dimensional holes). In
images c, d and f are shown only the 1-dimensional simplices (grey edges) of the Witness Complexes.
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7.1.2. Witness complex simplicial regularization 503

Once we have a witness complex built from the original input data, we can definea  sos
simplicial regularization by adding a term to the VAE loss. The idea of a simplicial regu- sos
larization combined to an auto-encoder framework was recently introduced first by Jose sos
Gallego-Posada in his master thesis [28] as a generalization of the "mixup" regularization sor
([30] and [31]). We incorporate the simplicial regularization in a Variational Auto-Encoder sos
framework, however, here we use it in a different way than [28] for at least two aspects:  soo

1. It does not depend on any embedding whereas in [28] the author was relying ona s
UMAP embedding for his simplicial regularization of the decoder. s11
2. We use only one witness simplical complex built from the input data whereas the s
author of [28] was using one fuzzy simplicial complex built from the input data and s
a second one built from the UMAP embedding and both were built via the fuzzy s
simplicial set function provided with UMAP (keeping only simplices with highest s
probabilities). s16

Below is how we define the simplicial regularizations (largely) inspired by [28], for sz
the encoder and the decoder, using a unique simplicial complex which is here a witness s
complex: 510

dim(0) dim(o
ESE(e/K D‘ Z E), j~Dir(dim(c)+1,4) MSE ( < 2 Aj U]) 2 A i€ U] ) 3)

ek

dim(o) dim(0)
Lsp (d/K D‘ Z E). j~Dir(dim(c)+1, vc)MSE < ( Z A 6 > Z A d > 4)

gek

With: 520
*  Lgf the simplicial regularization term for the encoder. s21
*  [gp the simplicial regularization term for the decoder. 522
e ¢and d respectively the (probabilistic) encoder and decoder. 523
*  Ka (witness) simplicial complex built from the input space. 524
¢ ¢ asimplex belonging to the simplicial complex K. 525
*  0j the vertex number j of the dim(¢)-simplex ¢ which has exactly dim(c) + 1 vertices. sz

0 is thus a data point in the input space X. 527
*  MSE (a,b) the Mean Square Error between a and b. 528

e E, ~Dir(dim(c)+1,4) the expectation for the ()t ); j)j=0,....dim(c") following a symmetric Dirich- s2s
let dlstrlbutlon with parameters dim(c) + 1 and a. When a = 1, which is what we  ss0
used in practice, the symmetric Dirichlet distribution is equivalent to a uniform distri- s
bution over the dim(c)-simplex ¢, and as « tends towards 0, the distribution becomes  ss2
more concentrated on the vertices. 533

Finally, if we note wsg and wsp the weights of the additional terms, the loss of the
Witness Simplicial VAE is:

Lwsvae = Lyag + wsg X Lsg +wsp X Lsp 5)

The motivation is actually, by minimizing Lsr and Lsp in equation 5, to "force” both sz
the encoder and the decoder to become (continuous) simplicial maps. Indeed, minimizing  sss
Lsg forces the encoder to be a simplicial map between the witness complex of the input  sse
data space and its image by the encoder, and minimizing Lsp forces the decoder to be  ss7
a simplicial map between the latent space and the output reconstruction space. We can  s:s
actually see that the MSE term both in 3 and 4 measures respectively "how far the encoder s
and the decoder are from being simplicial maps" [28]. Indeed, if they were simplicial maps sao
then the MSE would be equal to zero by definition of a simplicial map. This should be s
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true for any (Ao, -, Agim(o)) € Riim(g)ﬂ such that Z?i"é(a) A; = 1 with o being any simplex  sa

of K. In practice, we do a Monte Carlo estimation, that is we sample a certain number of sas
times (denoted Npampdassamples) the lambdas from a uniform distribution (i.e. a Dirichlet = ss
distribution with parameter « = 1) over the simplex ¢ and we take the expectation. Given s
a simplex o € K, sampling the lambdas coefficients (Ao, ..., Agim(s)) is equivalent to sample  sas
a point in the convex hull spanned by the vertices of o. Thus, minimizing Lgg is equivalent sa7
to do data augmentation and "forcing" the image of this point by the encoder to be in the  sss
convex hull spanned by the images of the vertices of ¢ by the encoder and with the same s
lambdas coefficients. So this "forces" the encoder to be a linear map on the simplices of sso
K, exactly like a simplicial map. The same reasoning can be applied to the decoder when ss:
minimizing Lgp. s52

In addition to that, we know from algebraic topology that a simplicial map induces sss
well-defined homomorphisms between the homology groups (for details see lemma 6.2  ssa
page 65 of the Section 6 on "Simplicial Homology Groups" of the course [10]). Further- sss
more, minimizing Ly4r in equation 5 implies to minimize the reconstruction error which sse
allows one to get injective encoder and decoder, if we neglect their probabilistic aspect ssz
(for example by considering the means instead of the probability distributions). Thus, this  sss
should give a bijective simplicial map. So finally the encoder (and decoder) would induce sso
isomorphisms between the homology groups given the simplicial complex, implying that seo
the Betti numbers, and thus the persistent Betti numbers, between the latent representation  se:
and the witness complex built from the input data would be the same when the loss Ly syar  se2
is converging. 563

To conclude, this should make the Witness Simplicial VAE topology-aware by preserv- ses
ing relevant topological information (i.e. the persistent Betti numbers) between the input  ses

data and its latent representation. 566
7.1.3. Witness Simplicial VAE s67
We can summarize the method of the Witness Simplicial VAE as follows: s68

1.  Perform a witness complex filtration of the input data to get a persistence diagram (or ses
a barcode). 570
2. Build a witness complex given the persistence diagram (or the barcode) of this filtra- sz
tion, and potentially any additional information on the Betti numbers which should be sz
preserved according to the problem (number of connected components, 1-dimensional sz
holes...). 574
3. Train the model using this witness complex to compute the loss Lyysyag of equation 5.  s7s

Steps one and two are pre-processing steps to compute the witness complex, then sz
this same witness complex is used during the whole training process for the learning part s
which is step three. s78

For the step one we need to choose the landmarks points. The more landmarks we s
have the more the witness complex will capture the topology of data, but the more the sso
model will be computationally expensive because of a high number of simplices to consider ss:
in the summations over simplices when computing the simplicial regularizations. So this  se
choice is a trade-off between "topological precision" and computational complexity. 583

Then for the step two comes the choice of the filtration radius 7 fisyation, this depends on  sss
the problem and which Betti numbers are important to preserve. We assume that the latter sss
are actually the persistent Betti numbers. In our experiments we focused on preserving sss
0-homology and 1-homology since our latent space is 2-dimensional, but the method is not  ss
limited to that: any dimensional topological features could in theory be preserved. s88

Lastly, the step three is performed through stochastic gradient descent as for the ses
standard VAE. The correct weights wsr and wgp should be found by grid search, in our seo
experiments we kept wsr = wgp for less possible combinations. The number of samples  so:
NLambdassamples for the estimation of the expectation with the Dirichlet distribution needs s
also to be chosen, we assumed that Npmpdassampies = 10 should be enough. The choice of e
NLambdassamples 1S also a trade-off between the performance and the computational com-  ses
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plexity. Also, if the number of simplices in the witness complex is too high and cannot ses
be reduced, then for less computations one can consider only a subset of the simplices at sos
each batch instead of considering them all, but making sure that (almost) all the subsets are  sor
considered within one epoch. 508

Finally, we can highlight that we chose to use a Witness complex for its computational oo
efficiency, compared to other usual simplicial complexes like the Cech or Vietoris-Rips ~eo:
complexes. These ones could also be used in theory but would have too many simplices oz
to process in practice for computing the simplicial regularizations whereas the witness eos
complex has less simplices as it provides a topological approximation. 604

7.1.4. Isolandmarks Witness Simplicial VAE 605

Given the results presented in the next section, we developed an extension of the Wit-  eos
ness Simplicial VAE to get better latent representations. It consists of adding another term ooz
to the loss in order to preserve some distances. Since the witness complex is constructed  eos
such that the landmarks points and their edges incorporate the relevant topology, it makes oo
sense to add a term in order to preserve the pairwise approximate geodesic distances o0
between the landmarks points only, instead of considering all the points of the data setto e
avoid too many computations. We were inspired by the Isomap algorithm [16] and called  e:2
this new approach "Isolandmarks Witness Simplicial VAE". It can be seen as a Witness 13
Simplicial VAE, combined with Isomap applied to the landmarks points considered in the 614
1-skeleton of the witness complex. More precisely, it consists of the following additional e1s
pre-processing step after having constructed the witness complex: compute the approxi- s
mate geodesic distances between any two landmarks points using the graph of the witness er
complex (the 1-skeleton) by summing the edges euclidean distances of the shortest path  e1.
between these two points. Then, we add to the loss of the Witness Simplicial VAE a term to 610
minimize the distance between this approximate geodesic distance matrix of the landmarks ezo
points (i.e. in the input space), and the Euclidean distance matrix of the encodings of the e
landmarks points (i.e. in the latent space). 622

Finally, if we note w;s, the weight of the additional term, the loss of Isolandmarks
Witness Simplicial VAE can be written as:

IK(D*) — K(D)|[F

Liwsvae = LWSVAE + Wisp X i (6)
With: 623
*  Lwsyat the loss of the Witness Simplicial VAE. 624
* [ the number of landmarks. 025
e ||| the Frobenius norm. 020
¢ D* the approximate geodesic distance matrix of the landmarks points in the input e2r
space computed once before learning. 628
¢ D the Euclidean distance matrix of the encodings of the landmarks points computed 20
at each batch. 630
e K the Isomap kernel defined as K(D) = —0.5(I — %A)DZ(I — %A) with [ the identity s
matrix and A the matrix composed only by ones. 632
7.2. Results 633

This method is quite consistent when changing the neural network weights initializa- ess
tion as we can see in Figure 19 which shows the results for a model applied to the open 35
cylinder data set trained for only 100 epochs. We can see that the Betti numbers are pre- ess
served (one connected component and one 1-dimensional hole). However there are some o3z
discontinuities in the latent representation so the whole topology is not preserved. The s
impact of this discontinuity on the reconstruction is much less important when the model is 630
trained more like in the Figure 20 (see the blue region). This figure is a representative result o
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given by a Witness Simplicial VAE trained on 1000 epochs. We can see that the results are  es
similar between the training set and the unseen test set. 642

However, in rare cases with the same hyperparameters than Figures 19 20, we can  ess
get much less satisfactory results for some other neural network weights initialization as  ess
exposed in appendix D. Although the latent representation and the reconstruction can have s
discontinuities, the persistent Betti numbers are still preserved (8o = 1and 8; = 1). 646

For the swissroll data set, the Witness Simplicial VAE with the hyperparameters we s
have tried fails to preserve the persistent Betti numbers. The best results are similar and  ess
look like the ones in Figure 21 which are not satisfactory: the latent representation has eso
Bo = 1 as expected but 1 = 1 instead of 0. Indeed, because of an overlapping between the s
beginning and the end of the swissroll, we can see that a 1-dimensional hole appeared in the  es2
latent representation although the input data does not have that. The reconstruction is bad  ess
but this can be explained by the small number of epochs used here. However, we can say esa
again that the method is also consistent with the swissroll data set since the results are not ess
really affected when changing only the neural network weights initialization. Furthermore, ese
the results are very similar to the best we can get with a standard VAE (like in Figure 13).  es7

Regarding the overlapping problem encountered with the swissroll data set, we can  ese
see in Figure 22 that Isolandmarks Witness Simplicial VAE manages to solve it. Indeed, eso
geometric information can help for retrieving the correct topology and with this approach e
the previously encountered overlapping in the latent representation of the swissroll is better  ee2
avoided although the reconstruction is not perfect. 663

Finally, the main conclusion from these results is that with the Witness Simplicial ess
VAE, the persistent Betti numbers, between the input and the latent space, do not decrease sss
although they can increase. In other words, the holes in the input space are recovered in the sz
latent space, but new holes can appear in the latent space although they were not existing ess
in the input space. However, the extended version, that is Isolandmarks Witness Simplicial eso
VAE, manages to preserve the persistent Betti numbers for the data set considered. 670
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embedding of the training set by VAE
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(a) Latent representation (b) Reconstruction

embedding of the training set by VAE
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(c) Latent representation (d) Reconstruction

embedding of the training set by VAE
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(e) Latent representation (f) Reconstruction

Figure 19. Witness Simplicial VAE applied to the open cylinder after 100 epochs, each row is a
different neural network initialization: latent representations of the training set on the left and

corresponding reconstruction on the right.
Hyper parameters: batch size = 128, 10 landmarks, 7 ¢jjtation = 6, weights wsg = wsp = 10.
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Figure 20. Witness Simplicial VAE applied to the open cylinder after 1000 epochs: training set (left)
and test set (right), latent representation (1st row) and reconstruction (2nd and 3rd rows).

Hyper parameters: batch size = 128, pytorchseed = 6, 10 landmarks, T filtration = 6, weights wgg =

Wsp = 10.
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Figure 21. Witness Simplicial VAE applied to the swissroll after 100 epoch: loss (a), latent representa-
tion of the training set (b), and reconstruction of the training set (c) and (d) from different views.
Hyper parameters: batch size = 128, pytorchseed = 1, 32 landmarks, 7fjjparion = 6, weights
Wsg = Wsp = 10.
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embedding of the training set by VAE
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Figure 22. Isolandmarks Witness Simplicial VAE applied to the swissroll after 500 epoch: loss (a),
latent representation of the training set (b), and reconstruction of the training set (c) and (d) from
different views.

Hyper parameters: batch size = 128, pytorchseed = 1, 32 landmarks, 7jjration = 6.12, weights
Wgg = Wsp = 10 and Wiso = 0.001.

8. Discussion 671

As we have seen, our first method "InvMap-VAE" is quite simple and works very well, 7=
but relies on a given embedding. This dependence might be problematic for example if this e7s
embedding comes from a dimensionality reduction technique that is not scalable or not ez
topology-aware with more complex data sets. Also, it is data-dependent, that is InvMap- s
VAE trained with the embedding of a particular data set might not give a meaningful latent 76
representation when applied to another data set, although it worked well on unseen test o7z
data points sampled from the same distribution than the training set. Thus, for a new data ez
set coming from a different manifold, the embedding of the new data set might need to be 7
given in order to learn the corresponding InvMap-VAE. 680

On the other side, our second method "Witness Simplicial VAE" is designed tobe a  es2
topology-aware VAE independent of any other dimensionality reduction method or any ess
embedding. On the contrary to the Topological AE [26], a limitation of our method is that esa
it does not necessarily allow us to preserve multi-scale topological features, but it aims  ess
to preserve the topological features across multiple homology dimensions of a chosen ess
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scale corresponding to the choice of the filtration radius. It is interesting in a theoretical ez
point of view since our method is justified with tools from computational topology that ess
are not commonly used in the machine learning community. However, the work is still  ess
on progress since the experimental results are not completely satisfying, in particular for eso
the swissroll data set that is not well unrolled in the latent representation. A difficulty e
with this method is to find the right hyper parameters: the number of landmarks and how 62
to choose them, the filtration radius to build a relevant witness complex, the number of ees
samples Ny qubdassamples for the Monte Carlo estimation of the expectation with the Dirichlet esa
distribution to compute the simplicial regularizations, and the weights wsr and wsp of ees
the latter in the loss. The model can be quite sensitive to these hyper parameters and lead ees
to different latent representations. However, once these hyper parameters are fixed, the o7
model is quite stable to the initialization of the neural network weights on the contrary to ess
the standard VAE. Regarding the choice of the landmarks points, we made it uniformly ees
random among the data points, but if the data density is highly heterogeneous then this 7c0
could be problematic. In such case we might end up with no landmarks points in low 70
density regions and the topology would not be well captured by the witness complex. That 702
is why a better way of choosing the landmarks points could be investigated. The more 7os
landmarks points are used, the more the topology can be captured and preserved, but the 704
more it is computationally expensive. 705

9. Conclusions 706

This paper has presented two different approaches to make Variational Auto-Encoders o7
topology-aware: InvMap-VAE and Witness Simplicial VAE. 708

InvMap-VAE is a VAE with a similar latent representation to a given embedding, 7o
the latter can come from any dimensionality reduction technique. This means that if the 710
topology is preserved in the given embedding, then InvMap-VAE is also topology-aware. 71
Indeed, we successfully managed to preserve the topology with a Isomap-based InvMap- 7
VAE for two different manifolds which were the open cylinder and the swissroll data sets. 713
Moreoever, the learned encoder of InvMap-VAE allows one to map a new data point to the 714
embedding, and the learned decoder provides an inverse mapping. Thus, it allows one to 715
turn the dimensionality reduction technique into a generative model from which new data 716
can be sampled. 77

Witness Simplicial VAE is a VAE with a simplicial regularization computed usinga s
Witness Complex built from the input data space. This second method does not depend on 715
any embedding, and is designed such that relevant topological features called persistent 720
Betti numbers should be preserved between the input and the latent spaces. We justified 72
the theoretical foundations of this method using tools from algebraic topology, and noticed 722
that it preserved the persistent Betti numbers for one manifold but not for the other one. 72
For the open cylinder data set the persistent Betti numbers were indeed preserved, but we 724
could notice that this was not enough to preserve the continuity. However, even in the 7z
failure case with the swissroll data set, the results were consistent and not as dependent 7z
as the standard VAE on the initialization of the neural network weights, providing some 727
stability. Finally, with Isolandmarks Witness Simplicial VAE we proposed an extension of 7zs
this method that allows to better preserve the persistent Betti numbers with the swissroll 720
data set. We leveraged the topological approximation given by the witness complex to 730
preserve some relevant distances, that is the pairwise approximate geodesic distances of 7
the landmarks points between the input and the latent spaces. 732
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Abbreviations 751

The following abbreviations are used in this manuscript: 752
753

AE Auto-Encoder

ii.d. independant and identically distributed

ELBO Evidence lower bound

Isomap Isometric Mapping

k-nn k-nearest neighbors

MDPI ~ Multidisciplinary Digital Publishing Institute
MSE Mean Square Error

s.t. such that

TDA Topological Data Analysis

UMAP  Uniform Manifold Approximation and Projection
VAE Variational Auto-Encoder

WC Witness complex
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Appendix A. Variational Auto-Encoder derivations 755
Appendix A.1. Derivation of the marginal log-likelihood 756

Here is the derivation of the formula of the marginal log-likelihood log py(x) to make
the ELBO (evidence lower bound) expression appear like in [23]:

log po(x) :/Q ¢ (z|x) log pe(x)dz

= Eq¢(z|x) log pg (x)

po(x,z)
1z 8 b (2

Po (X, 2)q¢(2|x)
%)
)

=FE z|x) 1O,
7 (20 708 ) p 2]x)

po(x, z

_ qp(z|x)
= Eq¢(z|x) log q(P(le) + E%(Z\x) lo

po(z|x)

= Lg,p(x) + Dxr(q9¢(z]x)[|po(z|x))

Appendix A.2. Derivation of the ELBO 757

Below is the derivation of the ELBO expression that explicits the objective function to
optimize in a VAE:

_ po(x,z)
['G,gb(x) = qup(z\x) log q¢(z|x)
_ Po(x|z)pe(z)
= By, (zIx) 108 99 (2]x)
_ Po(z)
= Eq,p(Z\X) log pg(X|Z) + Eq,p(z\x) log £]¢(Z|X)
pe(2) .

= Eq¢(z\x) log po(x|z) + /Qz q¢(z|x) log q¢(z|x)

= By, (zx) 10g po(x|2) — Dir(q¢(z[x)||pe(z))
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Appendix B. UMAP-based InvMap-VAE results 758

embedding of the training set by UMAP

(a) Original swissroll data set (b) UMAP embedding (nearest neigh-
bours parameter set to 100)

(c) InvMap-VAE latent space (d) InvMap-VAE reconstruction

(training set) (training set)

0 : \15
5 - 10
10 'D 5
(e) InvMap-VAE latent space (f) InvMap-VAE reconstruction
(test set) (test set)

Figure A1l. UMAP-based InvMap-VAE applied to the swissroll data set, weight;y; = 10 and trained

for 1000 epochs
Betti numbers By = 1 and 1 = 0 are preserved between the original data set (a), the latent represen-
tation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test). Latent

representations are similar to the UMAP embedding.
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Appendix C. Illustration of the importance of the choice of the filtration radius
hyperparameter for the witness complex construction 760

(a) Swissroll, 1-simplices of a WC filtration (b) Swissroll, 1-simplices of a WC filtration
with 7 1474170, = 6 and 32 landmarks (view 1) with 7 fij4rati0n = 6 and 32 landmarks (view 2)

(d) Swissroll, 1-simplices of a WC filtration

(c) Swissroll, 1-simplices of a WC filtration
With 7 fijtration = 6.5 and 32 landmarks (view With 7 fijtrarion = 6.5 and 32 landmarks (view
1) 2)

Figure A2. Examples of bad Witness Complexes (WC) constructions for the Swissroll
On the top (a and b), the built witness complex is bad because it has two connected components

instead of one. On the bottom (c and d), the witness complex is bad again, but because the radius

filtration chosen is too high.
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Appendix D. Bad neural network weights initialization with Witness Simplicial VAE 7

embedding of the training set by VAE

(a) Latent representation (b) Reconstruction

embedding of the training set by VAE

10

-5

-2 B 0 i 2

(c) Latent representation (d) Reconstruction

Figure A3. Worse results of the Witness Simplicial VAE applied to the open cylinder after 200 epochs,
each row is a different neural network initialization: latent representations of the training set on the
left and corresponding reconstruction on the right.

Hyper parameters: batch size = 128, 10 landmarks, 7 fjjtra1i0n = 6, weights wsg = wsp = 10.
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