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Abstract: Variational Auto-Encoders (VAEs) are deep generative models used for unsupervised 1

learning, however their standard version is not topology-aware in practice since the data topology 2

may not be taken into consideration. In this paper, we propose two different approaches with the aim 3

to preserve the topological structure between the input space and the latent representation of a VAE. 4

Firstly, we introduce InvMap-VAE as a way to turn any dimensionality reduction technique, given 5

an embedding it produces, into a generative model within a VAE framework providing an inverse 6

mapping into original space. Secondly, we propose the Witness Simplicial VAE as an extension 7

of the Simplicial Auto-Encoder to the variational setup using a witness complex for computing 8

the simplicial regularization, and we motivate this method theoretically using tools from algebraic 9

topology. The Witness Simplicial VAE is independent of any dimensionality reduction technique 10

and together with its extension, Isolandmarks Witness Simplicial VAE, preserves the persistent Betti 11

numbers of a data set better than a standard VAE. 12

Keywords: Variational Auto-Encoder; topological machine learning; nonlinear dimensionality reduc- 13

tion; Topological Data Analysis; data visualization; representation learning; Betti number; persistence 14

homology; simplicial complex; simplicial regularization 15

1. Introduction 16

Topological Data Analysis (TDA) is a recent field in data science aiming to study the 17

"shape" of data, or in other words to understand, analyse and exploit the geometric and 18

topological structure of data, in order to get relevant information. For that purpose, it com- 19

bines mathematical notions essentially from algebraic topology, geometry, combinatorics, 20

probability and statistics, with powerful tools and algorithms studied in computational 21

topology. Algebraic topology identifies homeomorphic objects, that is for example objects 22

that we can deform continuously (without breaking) from one to the other, and com- 23

putational topology studies the application of computation to topology by developing 24

algorithms aiming to construct and analyse topological structures. 25

Nowadays, the two most famous deep generative models are the Generative Adversar- 26

ial Network [1] and the Variational Auto-Encoder (VAE) [2] [3]. In this paper we focus on 27

the latter. Merely said the VAE, like its deterministic counter-part the Auto-Encoder (AE), 28

allows to compress high dimensional input data into a lower dimensional space called 29

the latent space, and then reconstructs the output from this compressed representation. In 30

addition to its ability to generate new data, the VAE can thus be used for many applica- 31

tions, especially for dimensionality reduction which is useful for signal compression, high 32

dimensional data visualisation, classification tasks or clustering in a lower dimensional 33

space etc. 34

We investigate here 1 the use of TDA in order to modify the VAE with the hope that 35

it will lead to an improvement of its performances. In particular, we try to improve its 36

1 This paper presents in a more concise way our main work developed during Medbouhi’s master thesis [4] and
provides an extension of the Witness Simplicial VAE method.
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latent representation. A large part of this work is at the intersection between machine 37

learning and TDA, this bridge is an emerging field referred to as "topological machine 38

learning" [5]. Thus, this paper is part of the cross-talk between topologist and machine 39

learning scientist [6]. Although the research carried out here is quite theoretical, it can 40

potentially lead to many concrete applications in very different fields and in particular in 41

robotics. For example, in a robotic context the latent space of a VAE could represent the 42

space of configurations of a robot or the states of a system composed by a robot and its 43

environment. In such case, an interpolation between two points in the latent space can 44

represent a trajectory of the robot. As the input space is generally high dimensional, it 45

might be hard to realize interpolations there. However, with a VAE one can represent the 46

data in the latent space with less dimensions, perform interpolations in this latent space, 47

and then generate the trajectories for motion planning. Thus, having a VAE which takes 48

into account the data topology could help to better perform interpolations in its latent space 49

in order to do robotics motion planning. On one side, preserving 0-homology would allow 50

one to avoid to perform "meaningless" interpolations between two points from different 51

connected components. On the other side, preserving 1-homology enables to keep track of 52

possible "loops" or cyclic structures between the input and the latent space. That is why we 53

are interested in preserving several homology orders. 54

The question we try to answer is: how to preserve the topology of data between 55

the input and the latent spaces of a Variational Auto-Encoder? Our assumption is that 56

preserving the topology should lead to a better latent representation and this would help 57

to perform better interpolations in the latent space. This rises many underlying questions: 58

what exactly do we want to preserve? What kind of topological information should we 59

keep? How do we find relevant topological information in the data? Does that depend on 60

the problem and the data? How to preserve such topological information in a Variational 61

Auto-Encoder framework? Algebraic topology gives topological invariants like the Betti 62

numbers which are discrete whereas training a VAE implies to optimize a loss which 63

needs to be differentiable and thus continuous. So how can we incorporate such discrete 64

topological invariant in a continuous function? 65

2. Notions of Computational Topology 66

In this section, we present briefly some notions of Computational Topology that are 67

relevant to our work. For a complete introduction, we refer the reader to any book of 68

Computational Topology like the one by Edelsbrunner and Harer [7], or to the theoretical 69

background of our master thesis [4] which is self-contained. Computational Topology aims 70

to compute and develop algorithms in order to analyse topological structures, that is the 71

shapes of considered objects. For that purpose, we introduce some notions related to sim- 72

plicial complexes. The latter allow us to decompose a topological space into many simple 73

pieces, namely the simplices, well suited for computation. In particular, we present the 74

simplicial map and the witness complex which provides a topological approximation, both 75

notions are used in our Witness Simplicial VAE. Then, we give high-level understanding of 76

algebraic topological invariants in which we are interested: the Betti numbers. Finally, we 77

see how these notions can be used in Topological Data Analysis, that is when the considered 78

objects are data sets, through the concept of filtration in Persistent Homology which leads 79

to the notion of persistent Betti numbers. 80

2.1. Simplicial complexes 81

The smallest pieces from which we build upon are the simplices, as illustrated in 82

Figure 1. 83

Definition 1. Let u0, u1, ..., uk be points in Rd. A k-simplex σ (or k-dimensional simplex) is the 84

convex hull of k + 1 affinely independent points. We denote σ = [u0, u1, ..., uk] the simplex spanned 85

by the listed vertices. Its dimension is dim(σ) = k and it has k + 1 vertices. 86

A face of a simplex is the convex hull of an arbitrary subset of vertices of this simplex. 87
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Figure 1. Examples of simplices: a point (dimension equal to 0, or 0-simplex), a line segment
(dimension equal to 1, a 1-simplex), a triangle (dimension equal to 2, a 2-simplex) and a tetrahedron
(dimension equal to 3, a 3-simplex). Image from [7].

Under some conditions, several simplices put together can compose a greater structure 88

called simplicial complex. The latter is very practical because it can be complex enough to 89

approximate a more complex topological space, while it is composed by simple pieces (the 90

simplices) which is beneficial for efficient computations. Examples of valid and non-valid 91

geometric simplicial complexes are given in Figure 2. 92

Definition 2. A (geometric) simplicial complex K is a non-empty set of simplices respecting the 93

following conditions: 94

• Each face of any simplex of K is also a simplex of K. 95

• The intersection of any two simplices of K is either empty or a face of both simplices. 96

The dimension of K is the maximum dimension of any of its simplices. The underlying topological 97

space is denoted |K| and is the union of its simplices together with the induced topology (the open 98

sets of Rd) inherited from the ambient Euclidian space in which the simplices belong. 99

(a) A valid (geometric) simpli-
cial complex

(b) A non-valid (ge-
ometric) simplicial
complex

Figure 2. On the left we can see a valid geometric simplicial complex of dimension three (image from
[8]), on the right we can see a non-valid geometric simplicial complex (image from [9]) because the
second condition of the definition 2 is not fulfilled.

Now, we introduce the simplicial map which is a key notion used for the simplicial 100

regularization of our Witness Simplicial VAE method. 101

Definition 3. A simplicial map f : K → L between simplicial complexes K and L is a function 102

f : VertK → VertL from the vertex set of K to that of L such that, if [u0, u1, ..., uq] span a simplex 103

of K then [ f (u0), f (u1), ..., f (uq)] span also a simplex of L. 104

It is important to note here that a simplicial map f between two simplicial com- 105

plexes K and L induces a continuous map f̃ between the underlying topological spaces 106

|K| and |L|. Indeed, for all points x in |K|, because x belongs to the interior of exactly 107

one simplex in K, we can express this simplex by [u0, ..., uq] using its vertices and x can 108

be written as x = ∑
q
i=0 λiui with (λ0, ..., λq) ∈ R

q
+ such that ∑

q
i=0 λi = 1. With these 109

notations, the continuous map f̃ induced by the simplicial map f can be defined as: 110
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f̃ : x 7→ f̃ (x) = f̃ (∑
q
i=0 λiui) = ∑

q
i=0 λi f (ui). It follows that the induced continuous map f̃ 111

is completely determined by f so f̃ and f can actually be identified. The reader can refer to 112

"Section 5: Simplicial Complexes" of the course [10] for the proofs of the continuity of this 113

induced continuous simplicial map. Finally, we can highlight here that a simplicial map 114

between two simplicial complexes is a linear map on the simplices. 115

116

If we think about the topology of a data set, we can notice that usually not all the 117

points are needed to know the underlying topology. Moreover, constructing simplices 118

from just a subset of the data points is less computationally expensive than considering 119

the whole data set. These ideas motivated Vin de Silva and Gunnar Carlsson when they 120

introduced the witness complex in [11]: a subset of the data points, called the landmarks 121

points, is used to construct the simplices "seen" by the witnesses which are the rest of the 122

points of the data set. 123

Definition 4. Let S be a finite set of points in Rd and write Br(x) for the closed d-dimensional ball 124

with center x ∈ Rd and radius r ∈ R. Let L ⊂ S be a subset of the points in S, that we call the 125

landmarks. We define2 the witness complex of S, L and r ∈ R as: 126

Wr(S, L) =
{

σ = [u0, ..., uk] with {u0, ..., uk} ⊂ L |∃w ∈ S s.t. ∀i ∈ J0; kK, ui ∈ Br(w)
}

. 127

Figure 3. Example of the construction of a witness complex Wr(S, L) for a data set S ⊂ R2 of eleven
points using a subset L ⊂ S of five landmarks points and for a given radius r ∈ R.

An example of the construction of a witness complex is given in Figure 3 and we 128

explain it here: 129

On the left we can see the eleven points with the landmarks points in green. The landmarks 130

points are chosen arbitrarily here. Then for a given radius r we check if any of the balls (here 131

2 The reader is invited to look at the mentioned paper [11] for a complete view on witness complexes, because
here we make some simplifications and define the witness complex as a particular case of the original definition.
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the 2-dimensional balls are disks) centered at the points of S contains a set of landmarks. 132

In that case the center of the disk is called a witness (encircled in red), and the set of the 133

corresponding landmarks points form a simplex which is added to Wr(S, L). Here only the 134

balls around the witnesses are represented. 135

On the top right in blue, we can see a simplicial complex built by joining all the points. It is 136

actually the 1-nearest neighbour graph and consists of eleven 0-simplices (all the points 137

of the data set), and eleven 1-simplices (the edges). On the bottom right in green, we can 138

see the Witness complex Wr(S, L) constructed as explained above. This one consists of 139

five 0-simplices (the landmarks points), six 1-simplices (the edges), and one 2-simplex (the 140

triangle). 141

As we see in this example of Figure 3, it is important to note that the witness complex, 142

although being composed of simplices corresponding to vertex sets of only a subset of 143

landmarks points L ⊂ S, can still capture the topology of the whole data set S. However, 144

this is true in this example but it may not be always the case and it mainly depends on 145

the choice of the landmarks L and the radius r. In order to construct a Witness Complex, 146

the landmarks can be chosen for example arbitrarily or randomly (another method called 147

"maxmin" is also given in [11] to select the landmarks in an iterative way). Regarding the 148

choice of the radius r, this is addressed below when we mention the concept of filtration 149

used in Persistent Homology. 150

2.2. Betti numbers 151

A topologist is interested in classifying different objects (topological spaces to be 152

more precise) according to their shape. Two objects are topologically equivalent if there 153

exists a homemorphism between them, that is a continuous map with continuous inverse. 154

Algebraic topology provides the mathematical theory for such classification thanks to 155

algebraic topological invariants. As suggested by their name, the latter do not change 156

between topologically equivalent spaces. Computational topology allows us to compute 157

efficiently such topological invariants, in particular with the help of previously defined 158

notions of simplicial complexes. Examples of algebraic topological invariants in which 159

we are interested are the Betti numbers. We give here the intuition, for the mathematical 160

formalism (rank of the p-th homology group etc.) the reader is invited to look at the 161

references mentioned in the introduction of this section. 162

We can say that the p-th Betti number, denoted βp, counts the number of p-dimensional 163

holes: β0 is the number of connected components, β1 the number of tunnels, β2 the number 164

of voids etc. It is indeed a topological invariant and one can intuitively notice that the 165

Betti numbers of an object do not change when we deform this object continuously, like 166

changing its scale. Thus, they can be used to classify objects of different topologies. For 167

a topologist, a sphere and the surface of a cube are identified to be the same object and 168

their Betti numbers are equal, but the torus is different since it has a different topological 169

structure. This is illustrated in Figure 4.

Figure 4. Different objects and their first Betti numbers (the cube, sphere and torus are empty).
Figures from [12].

170

When it comes to analysing data, since the latter is usually discrete and represented as 171

points in a space, we need to take into account the different possible topologies of a data 172

set accross different scales. This leads us to the concept of filtration in persistent homology. 173

We illustrate this notion in Figure 5 through a simple example where the data is a set of 174

8 points sampled from a circle in a 2-dimensional space. This is a simple example of a 175
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"(Vietoris-Rips) filtration" where we can see that the values of the Betti numbers β0 and β1 176

change depending on the scale from which we consider the data. We can wonder which 177

scale, and thus which values of the Betti numbers, is appropriate to describe the topology 178

of this data set. Persistent homology aims to answer to this question through this notion of 179

filtration.

Figure 5. (Vietoris-Rips) filtration of points sampled from a circle. Images from [12].
180

Figure 6. β1 barcode of the circle data set of Figure 5. Figure from [12].

As illustrated in the above Figure 5, for the simplices of dimension 1 (the edges) and 181

simplices of dimension 2 (the triangles), the process of the "(Vietoris-Rips) filtration" is as 182

follows: around each point we draw disks of a growing diameter ϵ (from left to right in 183

Figure 5 the diameter ϵ is increasing), as soon as two disks have a common non-empty 184

intersection we draw an edge between their center, and as soon as three centers form a 185

triangle with the drawn edges then we draw the triangle. Finally we look at the Betti 186

numbers at each step of the filtration depending on the scale ϵ. In this example of Figure 187

5, we can see that β0, which counts the number of connected components, is decreasing 188

from 8 to 1 when ϵ increases. For β1, which counts the number of 1-dimensional holes, it 189

is different: it goes from 0 to 1 and to 0 again while ϵ is increasing. The values of β1 in 190

function of ϵ are represented in the barcode given in Figure 6. When ϵ is equal to 1, the 191

drawn edges form a fully connected graph and β0 and β1 will not vary anymore. Then 192

we can look at this barcode for ϵ between 0 and 1, and see the values of β1 which persist 193

the most. In this case the "persistent β1" is β1 = 1 since it persists between ϵ = 0.2 and 194

ϵ = 1. Indeed, for this interval of ϵ ∈ [0.2; 0.5], we can recognize the circle from which 195

the points were sampled: the drawn edges or triangles all together form an object with 196

one 1-dimensional hole, which is topologically equivalent to a circle since we can deform 197

continuously this object to get a circle. 198

All the information present in a barcode can be equivalently represented in a persis- 199

tence diagram where can also be visualized the birth and death of different classes. Finally, 200

the witness complex filtration is a similar concept than Vietoris-Rips filtration presented 201

above, except that we consider a witness complex. What that means is that during the 202

filtration, we increase the radius of the balls centered at the witnesses and we connect only 203

the landmarks "seen" by a witness to form the simplices of the witness complex. 204

To conclude, the Betti numbers allow one to analyse and describe the topology of 205

an object, and persistent homology leads to the notions of filtration and persistent Betti 206

numbers to better analyse a data set. Indeed, the filtration process provides a way to 207

recover its underlying topological structure that can be approximated by a witness complex 208

built with a radius corresponding to a persistent Betti number. 209
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3. Related work 210

3.1. Nonlinear dimensionality reduction 211

In order to analyse high dimensional data, it might be convenient to reduce its di- 212

mensionality, in particular for visualization. The traditional methods were based on linear 213

models, the well known archetype being the Principal Component Analysis [13][14]. How- 214

ever, by construction these methods are not efficient to reduce highly nonlinear data 215

without loosing too much important information. That is why, to deal with complex data 216

sets, nonlinear dimensionality reduction methods were developed, this field is known as 217

"manifold learning". An overview of such methods with their advantages and drawbacks is 218

given in [15]. We introduce in this section some famous nonlinear dimensionality reduction 219

methods, among them the ones that inspired us for our work. 220

A classical nonlinear dimensionality reduction method is Isomap (from Isometric 221

mapping) which was introduced in 2000 by Tenenbaum et al. [16]. It maps points of a 222

high-dimensional nonlinear manifold to a lower dimensional space by preserving graph 223

distances. In particular, it consists first of constructing a graph on the manifold of the 224

data considering points which are neighbors regarding some euclidean distance (i.e. the 225

euclidean distance between two neighboring points should be smaller than a threshold, 226

or an alternative is to apply a k-nearest neighbors algorithm). Then, the shortest path on 227

the graph between any pair of points is computed using for example Dijkstra’s algorithm. 228

This gives an approximation of the geodesic distance between any pair of points. Finally, 229

classical multidimensional scaling (MDS) method (see [17][18][19] for references) is applied 230

to the matrix of graph distances in order to embed the data in a smaller dimensional space 231

while preserving these approximated geodesic distances. The advantage of this method 232

is that the geometry of the manifold is generally well preserved under some hypothesis 233

(for some class of manifolds, namely the "developable manifolds" [15]). However, the 234

drawbacks is the costly computation of the (approximated) geodesic distances. 235

Another famous method used in data visualization is t-SNE [20] which allows one to 236

perform nonlinear dimensionality reduction. It was developed in 2008 by van der Maaten 237

and Hinton as a variation of Stochastic Neighbor Embedding [21]. t-SNE aims to better 238

capture global structure, in addition to the local geometry, than previous nonlinear dimen- 239

sionality reduction techniques for high dimensional real world data sets. It is also based on 240

pairwise similarities preservation between the input data space and the embedding. The 241

particularity of this method is that it starts by converting Euclidean pairwise distances into 242

conditional probabilities using Gaussian distributions, that is the similarity of a point to a 243

given point is the conditional probability of being its neighbor under a Gaussian distribu- 244

tion centered at the given point. For the embedding lower dimensional space, the pairwise 245

similarity is constructed in an analogue way except that the authors of [20] use a Student 246

t-distribution instead of a Gaussian. They actually consider the joint probabilities defined as 247

being the symmetrized conditional probabilities. Then, they minimize the Kullback-Leiber 248

divergence between the joint probability distribution of the input data space and the one of 249

the embedding. 250

UMAP (Uniform Manifold Approximation and Projection) is a more recent nonlinear 251

dimensionality reduction method developed in 2018 by McInnes, Healy and Melville [22]. 252

It is based on three assumptions about the data: it should be uniformly distributed on a 253

Riemannian manifold, the Riemannian metric should be approximated as locally constant, 254

and the manifold should be locally connected. The first step of the method is to construct 255

a fuzzy simplicial complex of the data, which is a simplicial complex with probabilities 256

assigned to each simplex. Then, the data is embedded in a lower dimensional space by 257

minimizing an error function (namely the fuzzy set cross entropy [22]) between the fuzzy 258

topological structures of the original data and the embedded data, through a stochastic 259

gradient descent algorithm. Like with Isomap, varying the parameters of the method 260

allows us to choose if we want to preserve more global versus local structure of the data. 261

The advantages of UMAP are that it is scalable to high dimensional data sets and it is fast. 262
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Drawbacks might be that there are two parameters to tune, and that the relative distances 263

between different clusters of a UMAP embedding are meaningless. 264

3.2. Variational Auto-Encoder 265

The Variational Auto-Encoder (VAE) not only allows us to do nonlinear dimensionality 266

reduction, but it has also the particularity to be a generative model. It was simultaneously 267

discovered in 2014 by Kingma and Welling in [2] and Rezende, Mohamed, and Wierstra in 268

[3]. Although it could be seen as a stochastic version of the well known Auto-Encoder, the 269

motivation behind the VAE is completely different since it comes from Bayesian inference. 270

Indeed, the VAE has a generative model and a recognition model or inference model, and 271

both are Bayesian networks. The original papers cited above provide a method using 272

stochastic gradient descent to learn jointly latent variable models whose distributions are 273

parameterized by neural networks and corresponding inference models. The VAE can be 274

used for many different applications like generative modelling, semi-supervised learning, 275

representation learning etc. We refer the reader to the recent introduction to VAEs made by 276

Kingma and Welling in [23] for more complete details. 277

Following the notations of [2], let X =
{

x(i)
}N

i=1
be the data set consisting of N 278

i.i.d. observed samples of some variable x, generated by a random process involving 279

unobserved random variables z called the latent variables. This process consists of two steps: 280

generation of latent variables from a prior distribution pθ∗(z) (the prior), and generation of 281

the observed variables from a conditional distribution pθ∗(x|z) (the likelihood); the true 282

parameters θ∗ and the latent variables are unknown. We assume that the prior and the 283

likelihood are parameterized by θ and their probability distribution functions are almost 284

everywhere differentiable. θ∗ is the optimal set of parameters θ maximizing the probability 285

of generating real data samples x(i). Also, the true posterior density pθ(z|x) is assumed to 286

be intractable. That is why Kingma and Welling [2] introduced a recognition model qϕ(z|x) 287

parameterized by ϕ to approximate the true posterior pθ(z|x). The latent variables z, also 288

called "code", are latent representations of the data. qϕ(z|x) is then called the probabilistic 289

"encoder" because it gives a probability distribution of the latent variables from which the 290

data X could have been generated. This leads us to pθ(x|z) which is called the probabilistic 291

"decoder" because it gives a probability distribution of the data x conditioned on a latent 292

representation z. In our case, θ and ϕ are parameters of artificial neural networks, and 293

the method presented in [2] allows the model to jointly learn θ and ϕ. On one side, the 294

encoder learns to perform nonlinear dimensionality reduction if we take, for the latent 295

representations z, a lower dimension than the original data. On the other side, the decoder 296

allows us to do generative modelling in order to create new realistic data from latent 297

representations. 298

As it is typically done in variational Bayesian methods, a good generative model
should maximize the "log-evidence" which is here the marginal log-likelihood log pθ(x).
The latter is intractable and we have log pθ(x) = Lθ,ϕ(x) + DKL(qϕ(z|x)||pθ(z|x)) with

Lθ,ϕ(x) = Eqϕ(z|x) log pθ(x,z)
qϕ(z|x) the ELBO (evidence lower bound or variational lower bound)

and DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x) log qϕ(z|x)
pθ(z|x)

the Kullback-Leibler (KL) divergence be-
tween qϕ(z|x) and pθ(z|x) (see appendix A.1 for the derivation). The ELBO is indeed a
lower bound of the marginal log-likelihood (Lθ,ϕ(x) ≤ pθ(x)), and maximizing it allows
us to 1) approximately maximize pθ(x) to get a better generative model, and 2) minimize
the KL divergence to get a better approximation qϕ(z|x) of the intractable true posterior
pθ(z|x). Hopefully, the ELBO can be explicited (see appendix A.2 for the derivation) and is
actually the objective function of the VAE:

LVAE = Lθ,ϕ(x) = Eqϕ(z|x) log pθ(x|z)− DKL(qϕ(z|x)||pθ(z)) (1)

Equation 1 shows that the loss of the VAE can be computed through the expected recon- 299

struction error Eqϕ(z|x) log pθ(x|z), and the KL divergence between the encoder qϕ(z|x) and 300
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the prior pθ(z). Typically, the terms in the KL divergence are chosen as Gaussians so that 301

it can be integrated analytically. Otherwise, if the integration is not possible we can do a 302

Monte Carlo estimation. Finally, it was introduced the "reparameterization trick" (Kingma 303

and Welling [2], and Rezende et al. [3]) to efficiently optimize the objective function Lθ,ϕ(x) 304

with respect to the parameters θ and ϕ using stochastic gradient descent. 305

3.3. Topology and Auto-Encoders 306

The use of topology in machine learning is quite new with the development of Topo- 307

logical Data Analysis. Some recent work like the "topology layer" proposed by Gabrielsson 308

et al. [24] focus on preserving the topology of single inputs which can be cloud points 309

or images. However, we want to preserve the topology of the whole data set between 310

the input and the latent space, and particularly in a Variational Auto-Encoder framework. 311

The ability of a standard Auto-Encoder to preserve the topology for data sets composed 312

by rotations of images was investigated by Polianskii [25]. We are now interested in an 313

active control of the topology instead of a passive analysis. The main difficulty is that 314

algebraic topological invariants like the Betti numbers are discrete whereas we need some 315

differentiable function with respect to the neural network parameters in order to be able to 316

perform backpropagation of the gradient. At the time we were working on this problematic, 317

to the best of our knowledge, no previous work was made in the direction of adding to 318

the loss of a VAE a term to preserve the topology except in the appendix of [26] where the 319

authors Moor et al. sketched an extension of their Topological Auto-Encoder to a variational 320

setup. Their Topological Auto-Encoder presents in the loss a differentiable topological con- 321

straint term added to the reconstruction error of an Auto-Encoder. Although this method is 322

generalizable to higher order topological features, they focused on preserving 0-homology. 323

Through persistent homology calculation using Vietoris–Rips complex, their topological 324

constraint aims to align and preserve topologically relevant distances between the input 325

and the latent space. The authors present this "topological loss" as a more generic version 326

than the "connectivity loss" proposed by Hofer et al. [27]. Although the connectivity loss 327

is also obtained by computing persistent 0-homology of mini-batches, on the contrary to 328

the topological loss it operates directly on the latent space of an Auto-Encoder to enforce a 329

single scale connectivity through a parameter denoted η [27]. 330

Another interesting approach combining topology and Auto-Encoders is the "simpli- 331

cial regularization" introduced recently by Gallego-Posada [28][29] as a generalization of 332

the "mixup" regularization ([30] and [31]). Gallego-Posada in his master thesis [28] applies 333

UMAP to the data and computes the Fuzzy simplicial complexes of both the input data and 334

the embedding, and uses these simplicial complexes to compute simplicial regularizations 335

of both the encoder and the decoder, that he adds to the Auto-Encoder loss. The simplicial 336

regularizations aim to "force" the encoder and the decoder to be simplical maps, that is to 337

be linear over the simplices. We wanted to explore this idea in a variational setup with 338

our Witness Simplical VAE (see section 20 for the proposed method) which uses similar 339

simplicial regularizations but computed using a Witness Complex. The latter simplicial 340

complex was introduced by De Silva and Carlsson [11] and allows one to get a topological 341

approximation of the data with a small number of simplices. Lastly, we can mention that 342

the idea of using such Witness Complex came from the "geometry score" developed by 343

Khrulkov and Oseledets [32], which is a method for evaluating a generative model by 344

comparing the topology of the underlying manifold of generated samples with the original 345

data manifold through the computation of witness complexes. 346

Finally, we can mention a completely different approach aiming to capture geometric 347

and topological structure with a VAE that is by having a latent space which is a specific 348

Riemannian manifold instead of an Euclidean space. In this direction Pérez Rey et al. 349

proposed the Diffusion VAE [33] which allows one to choose an arbitrary Riemannian 350

manifold as a latent space like a sphere or a torus for example. However, this approach 351

implies a strong inductive bias on the geometric and topological structure of the data. 352
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4. Implementation details 353

Regarding the implementation we used PyTorch for fast tensor computing via graphics 354

processing units (GPU) and for automatic differentiation of the objective function of the 355

neural networks [34]. In particular, we used the Adam algorithm [35] (with by default 356

learning rate parameter equal to 10−3) provided with PyTorch for the stochastic optimiza- 357

tion of the objective function. The implementation for the witness complex construction 358

uses the code from [36] built on top of the GUDHI library [37] for the provided simplex 359

tree data structure [38]. 360

All the code is publicly available at: https://github.com/anissmedbouhi/master-thesis 361

5. Problem formulation 362

Our research question can be summarized as follows: How to preserve the topology 363

of data between the input and the latent spaces of a Variational Auto-Encoder? 364

We particularly focus on preserving the persistent Betti numbers which are topological in- 365

variants. Indeed, although all the topological information is not contained in the persistent 366

Betti numbers, they do provide relevant information regarding the topological structure of 367

the data. Our goal is thus to have a VAE such that the persistent Betti numbers are equal, 368

between the input data, its latent representation given by the encoder, and ideally also its 369

reconstruction given by the decoder. 370

After showing that this is not the case for a vanilla VAE, we modify the loss of the 371

VAE in order to encourage such preservation. Since we focus on a 2-dimensional latent 372

space, we can directly evaluate visually if this goal is achieved for the two first persistent 373

Betti numbers, namely β0 and β1, without needing to compute the persistent diagrams. In 374

summary, for the two data sets we consider, our goal is to preserve both 0-homology and 375

1-homology. 376

5.1. Data sets 377

For the purpose of our problem, we focus on two synthetic data sets with interesting 378

geometry and topology, embedded in 3 dimensions. We reduce their dimension to a 2- 379

dimensional latent space to visualize directly the impact of our methods. We call the two 380

data sets we used the open cylinder and the swissroll as illustrated in Figure 7. For both we 381

sampled 5000 points: 60% for training, 20% for validation and 20% for testing. 382

To generate the points (x, y, z) ∈ R3 of the open cylinder, we sampled from uniform 383

distributions: z ∼ U[−h/2,h/2]; r ∼ U[r−w/2,r+w/2]; θ ∼ U[0,2π]; with h for "height", r for 384

"radius", and w for "width"; and then we define x = r sin θ, y = r cos θ and z = z. For this 385

open cylinder we used the following parameters: 20 for the height, 1 for the width, and 7 386

for the radius. 387

For the swissroll, its points (x, y, z) ∈ R3 were generated with scikit-learn [39] using an 388

algorithm from [40]. It also works with sampling from uniform distributions: t ∼ 1.5U[π,3π]; 389

y ∼ 21U[0,1]; and then are defined x = t cos t, y = y and z = t sin t. 390

As we can visualize in Figure 7, since β0 counts the number of connected components 391

and β1 the number of 1-dimensional holes, we can say that β
OpenCylinder
0 = βSwissroll

0 = 392

β
OpenCylinder
1 = 1 and βSwissroll

1 = 0. The goal is to preserve these persistent Betti numbers 393

in the latent space of a VAE. 394

5.2. Illustration of the problem 395

In this section we present some results obtained with a standard VAE to illustrate the 396

problem and to have a baseline with which we can compare the methods. By "standard 397

VAE" we mean a VAE with a Gaussian prior which has a standard loss that consists of the 398

reconstruction and the KL-divergence terms. 399

400

Figures 8, 9, 10 and 11 provide representative results of the standard VAE applied to 401

the open cylinder data set, for different random initializations ("pytorchseed") of the neural 402

network weights and a batch size equal to 128. We do not always show the losses since 403
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(a) Data set 1: Open cylinder
β0 = 1, β1 = 1

(b) Data set 2: Swissroll
β0 = 1, β1 = 0

Figure 7. Open cylinder (left) and swissroll (right) training data sets

they look similar for different initializations, but it should be noted that after 500 epochs 404

the learning process is always converging like in Figure 8 (f). The trained VAEs perform 405

similarly on both train and test data leading to the same conclusions. In the figures below, 406

we show the results for the training sets for a better visualization due to larger point set size. 407

We can see that for the standard VAE, there is not much consistency of the representation 408

learning when the random initialization of the neural network weights is changed since 409

the latent representations can appear in very different ways. Most of the time, we observe 410

the first persistent Betti number as β1 = 0 like in Figure 9 or β1 = 2 like in Figure 8, instead 411

of β1 = 1 as it should be for the open cylinder. Sometimes, we can get β1 = 1 but it is 412

not satisfactory from the point of view of latent space interpolation: either because some 413

regions may be separated (see Figure 10), or because the 1-dimensional hole in the latent 414

representation does not really make sense and is not useful for interpolating in the latent 415

space since the "color order" is not preserved (see Figure 11). 416

417

For the swissroll data set, we also get completely different latent representations when 418

the random initialization of the neural network weights is changed, as we can see in Figures 419

12, 13 and 14. Indeed, when different network initializations are used, we can have different 420

persistent Betti numbers which are not the same as the original data set, and we get similar 421

discontinuity problems as for the examples of the open cylinder data set. 422

423

Our testing concludes that in practice the standard VAE does not take the topology of 424

data into account when it learns the latent representation of input data. Moreover, learnt 425

embeddings are not consistent with respect to different weight initialization. 426
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(a) Latent space (b) Reconstruction

(c) Reconstruction (view from a side) (d) Reconstruction (view from another side)

(e) Reconstruction (view from above) (f) Loss (500 epochs)

Figure 8. Standard VAE applied to the open cylinder dataset - pytorchseed=1, trained for 500 epochs.
(a) is the latent representation of the open cylinder in a 2-dimensional space of a standard VAE. We
can see two 1-dimensional holes so β1 = 2 (Betti number 1 is equal to 2) instead of 1. (b), (c), (d) and
(e) are different views of the reconstruction in the original 3-dimensional space.
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(a) Latent space (b) Reconstruction (view from above)

Figure 9. Latent representation (left) and reconstruction (right) of the Standard VAE applied to the
open cylinder - pytorchseed=6, trained for 500 epochs.
In this case we can see that for the latent representation (a) we have β1 = 0 instead of 1. This means
for example that from the latent representation we would not know that it is actually possible to go
from the yellow part to the blue part without passing through the red part, because in this bad latent
representation there is a discontinuity in the green region. In addition to that, the discontinuity in the
green region of the latent space (a) implies a discontinuity in the green region of the reconstructed
cylinder (b) so the reconstruction is also bad.

(a) Latent space (b) Reconstruction (view from a side)

Figure 10. Latent representation (left) and reconstruction (right) of the Standard VAE applied to the
open cylinder - pytorchseed=2, trained for 500 epochs.
We can see that for the latent representation (a) we have β1 = 1 like to the original open cylinder data
set. However we can see three distinct parts for the blue region which is problematic if we want to
interpolate in this region in the latent space, and as we can see in the reconstruction (b) it implies
discontinuities in the blue region of the reconstructed cylinder.
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(a) Latent space (b) Loss after 500 epochs

(c) Reconstruction (view from a side) (d) Reconstruction (view from above)

Figure 11. Latent representation (top left) and reconstruction (down) of the Standard VAE applied to
the open cylinder, trained for 500 epochs.
We can see again that for the latent representation (a) we have β1 = 1 like to the original open cylinder
data set. However, the latent representation is bad because the "color order" is not preserved so this
latent representation would not be useful for interpolations, it is like dividing the cylinder in top and
down regions. Indeed, we can see in (c) that this implies a discontinuity between top part and down
part for example with the orange region. In addition to that, we have also a longitudinal discontinuity
in the green region as shown in (d).
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(a) Latent space (b) Loss (after 500 epochs)

(c) Reconstruction (view from a side) (d) Reconstruction (view from the other side)

Figure 12. Latent representation (top left) and reconstruction (down) of the Standard VAE applied to
the swissroll - pytorchseed=1, trained for 500 epochs.
We can see that after 500 epochs, for the latent representation (a) we have β1 = 2 whereas it is
equal to 0 for the original swissroll data set. Moreover, we can visualize a discontinuity in the latent
representation (a) for all the colors except for the yellow region. This discontinuity is retrieved again
for the reconstruction as seen in (c) and (d).
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(a) Latent space after 100 epochs (b) Reconstruction after 100 epochs

(c) Latent space after 500 epochs (d) Reconstruction after 500 epochs

(e) Latent space after 10000 epochs (f) Reconstruction after 10000 epochs

Figure 13. Latent representation (left column) and corresponding reconstruction (right column) of
the Standard VAE applied to the swissroll - pytorchseed=2, trained for 100, 500 and 10000 epochs.
After 100 epochs we can see an overlapping between the beginning and the end of the swissroll in
the latent representation (a) which has β1 = 1 instead of 0, and the reconstruction is bad (b). Then,
the more the model is trained, the better is the reconstruction as we can see after 10000 epochs for
example (f), but the latent representation (e) is separated in many connected components whereas the
original swissroll has β0 = 1.
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(a) Latent space (after 500 epochs) for a ran-
dom initialization with pytorchseed=3

(b) Reconstruction (after 500 epochs) for a ran-
dom initialization with pytorchseed=3

(c) Latent space (after 500 epochs) for another
random initialization with pytorchseed=4

(d) Reconstruction (after 500 epochs) for the
other random initialization with pytorch-
seed=4

Figure 14. Latent representation (left) and corresponding reconstruction (right) of the Standard VAE
applied to the swissroll for different initializations - pytorchseed=3 (top) and pytorchseed=4 (top),
trained for 500 epochs.
Again, discontinuities in the latent representation are transferred to the reconstructed swissroll. These
representations are not useful for interpolating in the latent space.
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6. InvMap VAE 427

6.1. Method 428

Here, we propose our first method called InvMap-VAE. Given an embedding of the 429

data, this method allows us to get a VAE with a latent representation that is geometri- 430

cally and topologically similar to the given embedding. So this method depends on an 431

embedding which can be given arbitrarily or by any dimensionality reduction technique. 432

The main advantages of InvMap-VAE are that the learned encoder provides a continuous 433

(probabilistic) mapping from the high dimensional data to a latent representation with 434

a structure closed to the embedding, and the decoder provides the continuous inverse 435

mapping, which are both lacking in manifold learning methods like Isomap, t-SNE, UMAP. 436

Below, we present the results of an Isomap-based InvMap-VAE, where we use an embed- 437

ding provided by Isomap, although any other fitting dimensionality reduction technique 438

could be used. 439

440

Let X be the original data, and Zemb the given embedding, for example obtained when
applying a dimensionality reduction technique to X. Let us call Z the latent representation
of a VAE applied to X. Then, to get the loss of the InvMap-VAE, we simply add to the VAE
loss (see equation 1 page 8), the Mean Square Error (MSE) between Z and Zemb multiplied
by a weight denoted wIM:

LInvMapVAE = LVAE + wIM × MSE (Z, Zemb) (2)

In practice, we compute this loss on a batch level as it is done with the Standard VAE to 441

perform "batch gradient descent" [23]. 442

6.2. Results 443

The results of an Isomap-based InvMap-VAE are given in Figure 15 for the open 444

cylinder and Figures 16 and 17 for the swissroll. The neural network weights initializations 445

does not affect these results, meaning that this method is consistent. As we can see, both 446

for the open cylinder and for the swissroll data set, the topology is preserved. This is 447

because Isomap preserved the topology as we can visualize it with the Isomap embed- 448

dings. Furthermore, depending on the parameters chosen for Isomap, Isomap and thus the 449

corresponding InvMap-VAE can either flatten the swissroll like in Figure 16 or preserve 450

the global spiral structure like in Figure 17. See appendix B for extended results with a 451

UMAP-based InvMap-VAE where same conclusions can be drawn. 452

453

We can conclude that InvMap-VAE is consistent, and more importantly, if the given 454

embedding preserves the topology, then the corresponding InvMap-VAE is also topology- 455

aware. This method is a simple way to turn a dimensionality reduction technique into a 456

generative model since the VAE framework allows one to sample from the latent space and 457

generate new data. In the next section, we wanted to develop a topology-aware VAE that 458

does not need any embedding as input. 459
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(a) Original open cylinder data set (b) Isomap embedding (nearest neighbours
parameter set to 10)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 15. Isomap-based InvMap-VAE applied to the open cylinder data set, weightIM = 1 and
trained for 500 epochs
Betti numbers β0 = 1 and β1 = 1 are preserved between the original data set (a), the latent repre-
sentation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test).
Moreover, on the contrary to the Isomap embedding (b), the latent representations are not too thin or
"compressed", which is better for interpolations.
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(a) Original swissroll data set (b) Isomap embedding (nearest neighbours
parameter set to 10)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 16. Isomap-based InvMap-VAE applied to the swissroll data set, weightIM = 1 and trained for
500 epochs
Betti numbers β0 = 1 and β1 = 0 are preserved between the original data set (a), the latent representa-
tion ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test). Moreover,
on the contrary to the Isomap embedding (b), the latent representations do not have empty regions,
which is better for interpolations, although lines appear and are retrieved in the reconstructions. We
can notice that the spacing between these lines is actually related to the curvature of the manifold.
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(a) Original swissroll data set (b) Isomap embedding (nearest neighbours
parameter set to 100)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure 17. Isomap-based InvMap-VAE applied to the swissroll data set, weightIM = 10 and trained
for 1000 epochs
Betti numbers β0 = 1 and β1 = 0 are preserved between the original data set (a), the latent repre-
sentation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test).
Moreover, on the contrary to the Isomap embedding (b), the latent representations are not too thin or
"compressed", which is better for interpolations.
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7. Witness Simplicial VAE 460

We present in this section our second method called "Witness Simplicial VAE", on the 461

contrary to our previous method, this one does not depend on any other dimensionality 462

reduction technique or embedding. It has a pre-processing step where a witness complex is 463

built considering the topological information that should be kept. Then, comes the learning 464

process with a VAE regularized using the constructed Witness Complex. 465

7.1. Method 466

7.1.1. Witness complex construction 467

We propose here to build a witness complex in the original data space, and then 468

try to preserve this simplicial complex structure of the data when going to the latent 469

space of a VAE. Thus, the topology of the witness complex would be preserved. Since the 470

witness complex allows us to do topological approximation, we should build a witness 471

complex relevant to the topological information we want to keep. Also, to construct the 472

witness complex, one should consider only the simplices of dimension lower or equal 473

to the dimension of the latent space, which is good since computations of higher order 474

dimensional simplices are thus avoided. 475

At first, we choose randomly a number of landmarks points and we define all the 476

points of the data as witnesses. The choice of the landmarks is made randomly as suggested 477

in [11], also, a subset of the data could be used for the witnesses for less computations. 478

Then, a witness complex can be built given a radius. To choose a relevant radius, we first 479

perform a witness complex filtration to get a persistence diagram. After that, we choose 480

a radius such that the Betti numbers of the witness complex constructed with this radius, 481

are the persistent Betti numbers given by this persistence diagram. Indeed, we know 482

from Topological Data Analysis that the relevant topological information is given by the 483

persistent Betti numbers. 484

485

Illustrations of this process are given in Figure 18. At first in (a), we perform a witness 486

complex filtration choosing randomly 10 landmarks points (in practice we stopped the 487

filtration after a high enough radius filtration). Then, we look at the persistence diagram 488

(a) and we choose a radius relevant to the problem, that is a filtration radius such that the 489

topological information we want to preserve is present in the witness complex. In this case, 490

we see in (a) at x ∼ 5.9 a blue point corresponding to Betti 1 which persists (because far 491

from the diagonal y = x). This point represents the topology we want to preserve: the 492

"cycle" structure of the open cylinder (the 1-dimensional hole). That is why in (b) we choose 493

a witness complex built from this filtration stopping at r f iltration = 6 and for which we 494

have β1 = 1. (c) and (d) are different views of the 1-simplices (grey edges) of this witness 495

complex. (e) and (f) show the impact of increasing the number of landmarks: we get more 496

simplices which implies more computations and possibly not relevant 1-dimensional holes. 497

However, increasing the number of landmarks should help to get a topological structure 498

more robust to noise and outliers. 499

See appendix C for examples of bad witness complex constructions that should be 500

avoided by being careful to the parameters chosen (landmarks and radius) and by visualiz- 501

ing it if possible. 502

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2023                   doi:10.20944/preprints202301.0093.v1

https://doi.org/10.20944/preprints202301.0093.v1


23

(a) Open cylinder Persistence diagram of a
WC filtration with r f iltration = 10 and 10 land-
marks

(b) Open cylinder Persistence diagram of a
WC filtration with r f iltration = 6 and 10 land-
marks

(c) Open cylinder, 1-simplices of a WC
filtration with r f iltration = 6 and 10 land-
marks, view from above

(d) Open cylinder, 1-simplices
of a WC filtration with
r f iltration = 6 and 10 land-
marks, another view

(e) Open cylinder Persistence diagram of a
WC filtration with r f iltration = 4 and 32 land-
marks

(f) Open cylinder, 1-simplices
of a WC filtration with
r f iltration = 4 and 32 land-
marks

Figure 18. Open cylinder Witness Complex (WC) construction for different filtration parameters
For the persistence diagrams (a, b and d), on the x and y axis are the radius filtration, red points
represent Betti 0 (conected components) and blue points represent Betti 1 (1-dimensional holes). In
images c, d and f are shown only the 1-dimensional simplices (grey edges) of the Witness Complexes.
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7.1.2. Witness complex simplicial regularization 503

Once we have a witness complex built from the original input data, we can define a 504

simplicial regularization by adding a term to the VAE loss. The idea of a simplicial regu- 505

larization combined to an auto-encoder framework was recently introduced first by Jose 506

Gallego-Posada in his master thesis [28] as a generalization of the "mixup" regularization 507

([30] and [31]). We incorporate the simplicial regularization in a Variational Auto-Encoder 508

framework, however, here we use it in a different way than [28] for at least two aspects: 509

1. It does not depend on any embedding whereas in [28] the author was relying on a 510

UMAP embedding for his simplicial regularization of the decoder. 511

2. We use only one witness simplical complex built from the input data whereas the 512

author of [28] was using one fuzzy simplicial complex built from the input data and 513

a second one built from the UMAP embedding and both were built via the fuzzy 514

simplicial set function provided with UMAP (keeping only simplices with highest 515

probabilities). 516

Below is how we define the simplicial regularizations (largely) inspired by [28], for 517

the encoder and the decoder, using a unique simplicial complex which is here a witness 518

complex: 519

LSE(e, K, α) = ∑
σ∈K

Eλj∼Dir(dim(σ)+1,α)MSE

(
e

(
dim(σ)

∑
j=0

λjσj

)
,

dim(σ)

∑
j=0

λje
(
σj
))

(3)

LSD(d, K, α) = ∑
σ∈K

Eλj∼Dir(dim(σ)+1,α)MSE

(
d

(
dim(σ)

∑
j=0

λje(σj)

)
,

dim(σ)

∑
j=0

λjd
(
e(σj)

))
(4)

With: 520

• LSE the simplicial regularization term for the encoder. 521

• LSD the simplicial regularization term for the decoder. 522

• e and d respectively the (probabilistic) encoder and decoder. 523

• K a (witness) simplicial complex built from the input space. 524

• σ a simplex belonging to the simplicial complex K. 525

• σj the vertex number j of the dim(σ)-simplex σ which has exactly dim(σ) + 1 vertices. 526

σj is thus a data point in the input space X. 527

• MSE (a, b) the Mean Square Error between a and b. 528

• Eλj∼Dir(dim(σ)+1,α) the expectation for the (λj)j=0,...,dim(σ) following a symmetric Dirich- 529

let distribution with parameters dim(σ) + 1 and α. When α = 1, which is what we 530

used in practice, the symmetric Dirichlet distribution is equivalent to a uniform distri- 531

bution over the dim(σ)-simplex σ, and as α tends towards 0, the distribution becomes 532

more concentrated on the vertices. 533

Finally, if we note wSE and wSD the weights of the additional terms, the loss of the
Witness Simplicial VAE is:

LWSVAE = LVAE + wSE ×LSE + wSD ×LSD (5)

The motivation is actually, by minimizing LSE and LSD in equation 5, to "force" both 534

the encoder and the decoder to become (continuous) simplicial maps. Indeed, minimizing 535

LSE forces the encoder to be a simplicial map between the witness complex of the input 536

data space and its image by the encoder, and minimizing LSD forces the decoder to be 537

a simplicial map between the latent space and the output reconstruction space. We can 538

actually see that the MSE term both in 3 and 4 measures respectively "how far the encoder 539

and the decoder are from being simplicial maps" [28]. Indeed, if they were simplicial maps 540

then the MSE would be equal to zero by definition of a simplicial map. This should be 541
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true for any (λ0, ..., λdim(σ)) ∈ R
dim(σ)+1
+ such that ∑

dim(σ)
i=0 λi = 1 with σ being any simplex 542

of K. In practice, we do a Monte Carlo estimation, that is we sample a certain number of 543

times (denoted NLambdasSamples) the lambdas from a uniform distribution (i.e. a Dirichlet 544

distribution with parameter α = 1) over the simplex σ and we take the expectation. Given 545

a simplex σ ∈ K, sampling the lambdas coefficients (λ0, ..., λdim(σ)) is equivalent to sample 546

a point in the convex hull spanned by the vertices of σ. Thus, minimizing LSE is equivalent 547

to do data augmentation and "forcing" the image of this point by the encoder to be in the 548

convex hull spanned by the images of the vertices of σ by the encoder and with the same 549

lambdas coefficients. So this "forces" the encoder to be a linear map on the simplices of 550

K, exactly like a simplicial map. The same reasoning can be applied to the decoder when 551

minimizing LSD. 552

In addition to that, we know from algebraic topology that a simplicial map induces 553

well-defined homomorphisms between the homology groups (for details see lemma 6.2 554

page 65 of the Section 6 on "Simplicial Homology Groups" of the course [10]). Further- 555

more, minimizing LVAE in equation 5 implies to minimize the reconstruction error which 556

allows one to get injective encoder and decoder, if we neglect their probabilistic aspect 557

(for example by considering the means instead of the probability distributions). Thus, this 558

should give a bijective simplicial map. So finally the encoder (and decoder) would induce 559

isomorphisms between the homology groups given the simplicial complex, implying that 560

the Betti numbers, and thus the persistent Betti numbers, between the latent representation 561

and the witness complex built from the input data would be the same when the loss LWSVAE 562

is converging. 563

To conclude, this should make the Witness Simplicial VAE topology-aware by preserv- 564

ing relevant topological information (i.e. the persistent Betti numbers) between the input 565

data and its latent representation. 566

7.1.3. Witness Simplicial VAE 567

We can summarize the method of the Witness Simplicial VAE as follows: 568

1. Perform a witness complex filtration of the input data to get a persistence diagram (or 569

a barcode). 570

2. Build a witness complex given the persistence diagram (or the barcode) of this filtra- 571

tion, and potentially any additional information on the Betti numbers which should be 572

preserved according to the problem (number of connected components, 1-dimensional 573

holes...). 574

3. Train the model using this witness complex to compute the loss LWSVAE of equation 5. 575

Steps one and two are pre-processing steps to compute the witness complex, then 576

this same witness complex is used during the whole training process for the learning part 577

which is step three. 578

For the step one we need to choose the landmarks points. The more landmarks we 579

have the more the witness complex will capture the topology of data, but the more the 580

model will be computationally expensive because of a high number of simplices to consider 581

in the summations over simplices when computing the simplicial regularizations. So this 582

choice is a trade-off between "topological precision" and computational complexity. 583

Then for the step two comes the choice of the filtration radius r f iltration, this depends on 584

the problem and which Betti numbers are important to preserve. We assume that the latter 585

are actually the persistent Betti numbers. In our experiments we focused on preserving 586

0-homology and 1-homology since our latent space is 2-dimensional, but the method is not 587

limited to that: any dimensional topological features could in theory be preserved. 588

Lastly, the step three is performed through stochastic gradient descent as for the 589

standard VAE. The correct weights wSE and wSD should be found by grid search, in our 590

experiments we kept wSE = wSD for less possible combinations. The number of samples 591

NLambdasSamples for the estimation of the expectation with the Dirichlet distribution needs 592

also to be chosen, we assumed that NLambdasSamples = 10 should be enough. The choice of 593

NLambdasSamples is also a trade-off between the performance and the computational com- 594
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plexity. Also, if the number of simplices in the witness complex is too high and cannot 595

be reduced, then for less computations one can consider only a subset of the simplices at 596

each batch instead of considering them all, but making sure that (almost) all the subsets are 597

considered within one epoch. 598

599

Finally, we can highlight that we chose to use a Witness complex for its computational 600

efficiency, compared to other usual simplicial complexes like the Čech or Vietoris-Rips 601

complexes. These ones could also be used in theory but would have too many simplices 602

to process in practice for computing the simplicial regularizations whereas the witness 603

complex has less simplices as it provides a topological approximation. 604

7.1.4. Isolandmarks Witness Simplicial VAE 605

Given the results presented in the next section, we developed an extension of the Wit- 606

ness Simplicial VAE to get better latent representations. It consists of adding another term 607

to the loss in order to preserve some distances. Since the witness complex is constructed 608

such that the landmarks points and their edges incorporate the relevant topology, it makes 609

sense to add a term in order to preserve the pairwise approximate geodesic distances 610

between the landmarks points only, instead of considering all the points of the data set to 611

avoid too many computations. We were inspired by the Isomap algorithm [16] and called 612

this new approach "Isolandmarks Witness Simplicial VAE". It can be seen as a Witness 613

Simplicial VAE, combined with Isomap applied to the landmarks points considered in the 614

1-skeleton of the witness complex. More precisely, it consists of the following additional 615

pre-processing step after having constructed the witness complex: compute the approxi- 616

mate geodesic distances between any two landmarks points using the graph of the witness 617

complex (the 1-skeleton) by summing the edges euclidean distances of the shortest path 618

between these two points. Then, we add to the loss of the Witness Simplicial VAE a term to 619

minimize the distance between this approximate geodesic distance matrix of the landmarks 620

points (i.e. in the input space), and the Euclidean distance matrix of the encodings of the 621

landmarks points (i.e. in the latent space). 622

Finally, if we note wiso the weight of the additional term, the loss of Isolandmarks
Witness Simplicial VAE can be written as:

LIWSVAE = LWSVAE + wiso ×
∥K(D∗)− K(D)∥F

l
(6)

With: 623

• LWSVAE the loss of the Witness Simplicial VAE. 624

• l the number of landmarks. 625

• ∥.∥ the Frobenius norm. 626

• D∗ the approximate geodesic distance matrix of the landmarks points in the input 627

space computed once before learning. 628

• D the Euclidean distance matrix of the encodings of the landmarks points computed 629

at each batch. 630

• K the Isomap kernel defined as K(D) = −0.5(I − 1
l A)D2(I − 1

l A) with I the identity 631

matrix and A the matrix composed only by ones. 632

7.2. Results 633

This method is quite consistent when changing the neural network weights initializa- 634

tion as we can see in Figure 19 which shows the results for a model applied to the open 635

cylinder data set trained for only 100 epochs. We can see that the Betti numbers are pre- 636

served (one connected component and one 1-dimensional hole). However there are some 637

discontinuities in the latent representation so the whole topology is not preserved. The 638

impact of this discontinuity on the reconstruction is much less important when the model is 639

trained more like in the Figure 20 (see the blue region). This figure is a representative result 640
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given by a Witness Simplicial VAE trained on 1000 epochs. We can see that the results are 641

similar between the training set and the unseen test set. 642

However, in rare cases with the same hyperparameters than Figures 19 20, we can 643

get much less satisfactory results for some other neural network weights initialization as 644

exposed in appendix D. Although the latent representation and the reconstruction can have 645

discontinuities, the persistent Betti numbers are still preserved (β0 = 1 and β1 = 1). 646

647

For the swissroll data set, the Witness Simplicial VAE with the hyperparameters we 648

have tried fails to preserve the persistent Betti numbers. The best results are similar and 649

look like the ones in Figure 21 which are not satisfactory: the latent representation has 650

β0 = 1 as expected but β1 = 1 instead of 0. Indeed, because of an overlapping between the 651

beginning and the end of the swissroll, we can see that a 1-dimensional hole appeared in the 652

latent representation although the input data does not have that. The reconstruction is bad 653

but this can be explained by the small number of epochs used here. However, we can say 654

again that the method is also consistent with the swissroll data set since the results are not 655

really affected when changing only the neural network weights initialization. Furthermore, 656

the results are very similar to the best we can get with a standard VAE (like in Figure 13). 657

658

Regarding the overlapping problem encountered with the swissroll data set, we can 659

see in Figure 22 that Isolandmarks Witness Simplicial VAE manages to solve it. Indeed, 660

geometric information can help for retrieving the correct topology and with this approach 661

the previously encountered overlapping in the latent representation of the swissroll is better 662

avoided although the reconstruction is not perfect. 663

664

Finally, the main conclusion from these results is that with the Witness Simplicial 665

VAE, the persistent Betti numbers, between the input and the latent space, do not decrease 666

although they can increase. In other words, the holes in the input space are recovered in the 667

latent space, but new holes can appear in the latent space although they were not existing 668

in the input space. However, the extended version, that is Isolandmarks Witness Simplicial 669

VAE, manages to preserve the persistent Betti numbers for the data set considered. 670
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(a) Latent representation (b) Reconstruction

(c) Latent representation (d) Reconstruction

(e) Latent representation (f) Reconstruction

Figure 19. Witness Simplicial VAE applied to the open cylinder after 100 epochs, each row is a
different neural network initialization: latent representations of the training set on the left and
corresponding reconstruction on the right.
Hyper parameters: batch size = 128, 10 landmarks, r f iltration = 6, weights wSE = wSD = 10.
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(a) Latent representation
(training set)

(b) Latent representation
(test set)

(c) Reconstruction view 1
(training set)

(d) Reconstruction view 1
(test set)

(e) Reconstruction view 2
(training set)

(f) Reconstruction view 2
(test set)

Figure 20. Witness Simplicial VAE applied to the open cylinder after 1000 epochs: training set (left)
and test set (right), latent representation (1st row) and reconstruction (2nd and 3rd rows).
Hyper parameters: batch size = 128, pytorchseed = 6, 10 landmarks, r f iltration = 6, weights wSE =

wSD = 10.
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(a) Loss after 100 epochs (b) Latent representation

(c) Reconstruction (view 1) (d) Reconstruction (view 2)

Figure 21. Witness Simplicial VAE applied to the swissroll after 100 epoch: loss (a), latent representa-
tion of the training set (b), and reconstruction of the training set (c) and (d) from different views.
Hyper parameters: batch size = 128, pytorchseed = 1, 32 landmarks, r f iltration = 6, weights
wSE = wSD = 10.
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(a) Loss (b) Latent representation

(c) Reconstruction (view 1) (d) Reconstruction (view 2)

Figure 22. Isolandmarks Witness Simplicial VAE applied to the swissroll after 500 epoch: loss (a),
latent representation of the training set (b), and reconstruction of the training set (c) and (d) from
different views.
Hyper parameters: batch size = 128, pytorchseed = 1, 32 landmarks, r f iltration = 6.12, weights
wSE = wSD = 10 and wiso = 0.001.

8. Discussion 671

As we have seen, our first method "InvMap-VAE" is quite simple and works very well, 672

but relies on a given embedding. This dependence might be problematic for example if this 673

embedding comes from a dimensionality reduction technique that is not scalable or not 674

topology-aware with more complex data sets. Also, it is data-dependent, that is InvMap- 675

VAE trained with the embedding of a particular data set might not give a meaningful latent 676

representation when applied to another data set, although it worked well on unseen test 677

data points sampled from the same distribution than the training set. Thus, for a new data 678

set coming from a different manifold, the embedding of the new data set might need to be 679

given in order to learn the corresponding InvMap-VAE. 680

681

On the other side, our second method "Witness Simplicial VAE" is designed to be a 682

topology-aware VAE independent of any other dimensionality reduction method or any 683

embedding. On the contrary to the Topological AE [26], a limitation of our method is that 684

it does not necessarily allow us to preserve multi-scale topological features, but it aims 685

to preserve the topological features across multiple homology dimensions of a chosen 686
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scale corresponding to the choice of the filtration radius. It is interesting in a theoretical 687

point of view since our method is justified with tools from computational topology that 688

are not commonly used in the machine learning community. However, the work is still 689

on progress since the experimental results are not completely satisfying, in particular for 690

the swissroll data set that is not well unrolled in the latent representation. A difficulty 691

with this method is to find the right hyper parameters: the number of landmarks and how 692

to choose them, the filtration radius to build a relevant witness complex, the number of 693

samples NLambdasSamples for the Monte Carlo estimation of the expectation with the Dirichlet 694

distribution to compute the simplicial regularizations, and the weights wSE and wSD of 695

the latter in the loss. The model can be quite sensitive to these hyper parameters and lead 696

to different latent representations. However, once these hyper parameters are fixed, the 697

model is quite stable to the initialization of the neural network weights on the contrary to 698

the standard VAE. Regarding the choice of the landmarks points, we made it uniformly 699

random among the data points, but if the data density is highly heterogeneous then this 700

could be problematic. In such case we might end up with no landmarks points in low 701

density regions and the topology would not be well captured by the witness complex. That 702

is why a better way of choosing the landmarks points could be investigated. The more 703

landmarks points are used, the more the topology can be captured and preserved, but the 704

more it is computationally expensive. 705

9. Conclusions 706

This paper has presented two different approaches to make Variational Auto-Encoders 707

topology-aware: InvMap-VAE and Witness Simplicial VAE. 708

InvMap-VAE is a VAE with a similar latent representation to a given embedding, 709

the latter can come from any dimensionality reduction technique. This means that if the 710

topology is preserved in the given embedding, then InvMap-VAE is also topology-aware. 711

Indeed, we successfully managed to preserve the topology with a Isomap-based InvMap- 712

VAE for two different manifolds which were the open cylinder and the swissroll data sets. 713

Moreoever, the learned encoder of InvMap-VAE allows one to map a new data point to the 714

embedding, and the learned decoder provides an inverse mapping. Thus, it allows one to 715

turn the dimensionality reduction technique into a generative model from which new data 716

can be sampled. 717

Witness Simplicial VAE is a VAE with a simplicial regularization computed using a 718

Witness Complex built from the input data space. This second method does not depend on 719

any embedding, and is designed such that relevant topological features called persistent 720

Betti numbers should be preserved between the input and the latent spaces. We justified 721

the theoretical foundations of this method using tools from algebraic topology, and noticed 722

that it preserved the persistent Betti numbers for one manifold but not for the other one. 723

For the open cylinder data set the persistent Betti numbers were indeed preserved, but we 724

could notice that this was not enough to preserve the continuity. However, even in the 725

failure case with the swissroll data set, the results were consistent and not as dependent 726

as the standard VAE on the initialization of the neural network weights, providing some 727

stability. Finally, with Isolandmarks Witness Simplicial VAE we proposed an extension of 728

this method that allows to better preserve the persistent Betti numbers with the swissroll 729

data set. We leveraged the topological approximation given by the witness complex to 730

preserve some relevant distances, that is the pairwise approximate geodesic distances of 731

the landmarks points between the input and the latent spaces. 732

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2023                   doi:10.20944/preprints202301.0093.v1

https://doi.org/10.20944/preprints202301.0093.v1


33

Author Contributions: Conceptualization, A.A.M, V.P., A.V. and D.K.; methodology, A.A.M, V.P. 733

and A.V.; software, A.A.M.; validation, A.A.M.; formal analysis, A.A.M.; investigation, A.A.M.; 734

resources, D.K.; data curation, A.A.M.; writing—original draft preparation, A.A.M.; writing—review 735

and editing, A.A.M, V.P. and A.V.; visualization, A.A.M.; supervision, V.P., A.V. and D.K.; project 736

administration, A.V. and D.K.; funding acquisition, D.K. All authors have read and agreed to the 737

published version of the manuscript. 738

Funding: Please add: “This research received no external funding” or “This research was funded 739

by NAME OF FUNDER grant number XXX.” and and “The APC was funded by XXX”. Check 740

carefully that the details given are accurate and use the standard spelling of funding agency names at 741

https://search.crossref.org/funding, any errors may affect your future funding. 742

Institutional Review Board Statement: Not applicable. 743

Informed Consent Statement: Not applicable. 744

Data Availability Statement: The code to generate the data presented in this study is openly available 745

at https://github.com/anissmedbouhi/master-thesis. 746

Acknowledgments: The authors are thankful to Giovanni Lucas Marchetti for all the helpful and 747

inspiring discussions, and his valuable feedback. We thank also Achraf Bzili for his help with technical 748

implementation at the time of the first author’s master thesis. 749

Conflicts of Interest: The authors declare no conflict of interest. 750

Abbreviations 751

The following abbreviations are used in this manuscript: 752

753

AE Auto-Encoder
i.i.d. independant and identically distributed
ELBO Evidence lower bound
Isomap Isometric Mapping
k-nn k-nearest neighbors
MDPI Multidisciplinary Digital Publishing Institute
MSE Mean Square Error
s.t. such that
TDA Topological Data Analysis
UMAP Uniform Manifold Approximation and Projection
VAE Variational Auto-Encoder
WC Witness complex
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Appendix A. Variational Auto-Encoder derivations 755

Appendix A.1. Derivation of the marginal log-likelihood 756

Here is the derivation of the formula of the marginal log-likelihood log pθ(x) to make
the ELBO (evidence lower bound) expression appear like in [23]:

log pθ(x) =
∫

Ωz
qϕ(z|x) log pθ(x)dz

= Eqϕ(z|x) log pθ(x)

= Eqϕ(z|x) log
pθ(x, z)
pθ(z|x)

= Eqϕ(z|x) log
pθ(x, z)qϕ(z|x)
qϕ(z|x)pθ(z|x)

= Eqϕ(z|x) log
pθ(x, z)
qϕ(z|x)

+Eqϕ(z|x) log
qϕ(z|x)
pθ(z|x)

= Lθ,ϕ(x) + DKL(qϕ(z|x)||pθ(z|x))

Appendix A.2. Derivation of the ELBO 757

Below is the derivation of the ELBO expression that explicits the objective function to
optimize in a VAE:

Lθ,ϕ(x) = Eqϕ(z|x) log
pθ(x, z)
qϕ(z|x)

= Eqϕ(z|x) log
pθ(x|z)pθ(z)

qϕ(z|x)

= Eqϕ(z|x) log pθ(x|z) +Eqϕ(z|x) log
pθ(z)

qϕ(z|x)

= Eqϕ(z|x) log pθ(x|z) +
∫

Ωz
qϕ(z|x) log

pθ(z)
qϕ(z|x)

dz

= Eqϕ(z|x) log pθ(x|z)− DKL(qϕ(z|x)||pθ(z))
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Appendix B. UMAP-based InvMap-VAE results 758

(a) Original swissroll data set (b) UMAP embedding (nearest neigh-
bours parameter set to 100)

(c) InvMap-VAE latent space
(training set)

(d) InvMap-VAE reconstruction
(training set)

(e) InvMap-VAE latent space
(test set)

(f) InvMap-VAE reconstruction
(test set)

Figure A1. UMAP-based InvMap-VAE applied to the swissroll data set, weightIM = 10 and trained
for 1000 epochs
Betti numbers β0 = 1 and β1 = 0 are preserved between the original data set (a), the latent represen-
tation ((c) for training and (e) for test), and the reconstruction ((d) for training and (f) for test). Latent
representations are similar to the UMAP embedding.
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Appendix C. Illustration of the importance of the choice of the filtration radius 759

hyperparameter for the witness complex construction 760

(a) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6 and 32 landmarks (view 1)

(b) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6 and 32 landmarks (view 2)

(c) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6.5 and 32 landmarks (view
1)

(d) Swissroll, 1-simplices of a WC filtration
with r f iltration = 6.5 and 32 landmarks (view
2)

Figure A2. Examples of bad Witness Complexes (WC) constructions for the Swissroll
On the top (a and b), the built witness complex is bad because it has two connected components
instead of one. On the bottom (c and d), the witness complex is bad again, but because the radius
filtration chosen is too high.
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Appendix D. Bad neural network weights initialization with Witness Simplicial VAE 761

(a) Latent representation (b) Reconstruction

(c) Latent representation (d) Reconstruction

Figure A3. Worse results of the Witness Simplicial VAE applied to the open cylinder after 200 epochs,
each row is a different neural network initialization: latent representations of the training set on the
left and corresponding reconstruction on the right.
Hyper parameters: batch size = 128, 10 landmarks, r f iltration = 6, weights wSE = wSD = 10.
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