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Abstract: Chaotic systems are systems whose results are sensitive to the initial conditions. Chaotic 

systems generally have nonlinearities that can be difficult to model. One example of a chaotic system 

with nonlinearities is the Lorenz system. The Lorenz system can be used to model weather, wind 

disturbances, and electronic circuit design, among other applications. In this manuscript, the Lorenz 

system is modeled, and various control methods are applied in an effort to dictate the system’s state 

and rate trajectories. The combination of the linear feedback and nonlinear feedforward controllers 

can show over an 80% improvement in state trajectory errors when compared to the baseline run. 

However, the improved state trajectory performance comes at a cost of as much as 1800% error in 

the rate trajectories. 
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1. Introduction 

Research into chaotic mathematical systems is key for studying astrophysics and 

space science. One illustration of applicability to astrophysics and space science is stellar 

dynamics, where some variable stars have slightly similar-looking dynamics. There are 

also dynamo currents generating planetary and stellar magnetic fields. In the case of plan-

etary orbits, chaos plays an interesting role, but since this is not a dissipative system there 

are no real attractors, but rather chaotic regions separated by quasiperiodic orbits. 

Control of chaos refers to a process wherein a tiny perturbation is applied to a chaotic sys-

tem, in order to realize a desirable (chaotic, periodic, or stationary) behavior. [1] 

         
(a)  (b) 

Figure 1. Data of a famous pulsar, neutron stars, the crushed cores of massive suns that destroyed 

themselves when they ran out of fuel, collapsed and exploded. Photo credit NASA's Goddard Space 

Flight Center, (a) credit NASA/DOE/Fermi LAT Collaboration, (b) credit . Taken from [7] in compli-

ance with NASA’s image use policy [8]. 
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In 2000, Boccalettia reviewed the major ideas involved in the control of chaos and 

proposed two methods: the Ott–Grebogi–Yorke (OGY) method and the adaptive method 

both seeking to bring a trajectory to a small neighborhood of a desired location, seeking 

stabilized desired chaotic orbits embedded in a chaotic attractor including a review of 

relevant experimental applications of the techniques [1]. Ott, C. Grebogi and J. A. Yorke 

observed that the infinite number of unstable periodic orbits typically embedded in a cha-

otic attractor could be taken advantage of for the purpose of achieving control by means 

of applying only very small perturbations [1]. Song, et. al, proposed combining feedback 

control with OGY method [2], and this trend to utilize feedforward followed by applica-

tion of feedback might be considered canonical. Back in 1992, Pyragas had already offered 

continuous control of chaos by self-controlling feedback [5]. 

Adaptive methods as offered by Slotine and Li [6] strictly rely on a feedforward im-

plementation augmented by feedback adaption of the feedforward dynamics, but also uti-

lize elements of classical feedback adaption (e.g. the M.I.T. rule [7]) to adapt classical feed-

back control gains and adapt the desired trajectory to eliminate tracking errors. Following 

kinetic improvements to Slotine’s approach by Fossen [8,9] and subsequent researchers 

[10] the approach was experimentally validated in [11]. In 2017, Cooper and Heidlaulf [12] 

proposed extracting the feedforward elements of Slotine’s approach for controlling chaos 

of the famous van der Pol oscillator [13] which has grown to become a benchmark system 

for representing chaotic systems like relaxation oscillators [14], frequency demultiplica-

tion [15], heartbeats [16] and nonlinear electric oscillators in general [17].  

Cooper and Heidlauf’s techniques were initially paired with linear feedback control 

(linear quadratic optimal control), but the combination of feedback and feedforward 

proved ineffective. Smeresky and Rizzo offered 2-norm optimal feedback using 

pseudoinverse in 2020 [18], and the combination proved effective for controlling highly 

nonlinear, coupled (non-chaotic) Euler’s moment equations. The combination of feedfor-

ward and optimal feedback learning was formulated for five-degree of freedom oceanic 

vehicles in [19] and labeled deterministic artificial intelligence. Shortly afterwards, Zhai 

directly compared stochastic artificial intelligence methods: neural networks and physics-

informed deep learning in [20] and [21]. 

This manuscript follows the same lineage of thought for Lorenz systems as just de-

scribed for Euler’s equations and van der Pol systems. The same broad techniques applied 

to the chaotic Lorenz system begins with combining idealized feedforward elements with 

prescribed trajectories to be tracked. Identifying a method to control a chaotic Lorenz sys-

tem could be beneficial to ubiquitous applications, including radar [23]. Linear feedback 

control alone proves ineffective controlling Lorenz system behavior. 

Paralleling the work of Cooper and Heidlauf applied to van der Pol systems, section 

2 of this manuscript develops idealized feedforward elements for chaotic Lorenz systems. 

System linearization is performed to facilitate development of classical linear feedback 

elements. The methods are modeled, and simulation experiments were performed in SIM-

LINK®, where the results are presented in section 3.  

2. Materials and Methods 

The Lorenz system is a chaotic system described by the differential equations (1), (2), 

and (3), where x, y, and z are the state variables and 𝜎, r, and b are the Lorenz parameters. 

Table 1 describes the variables and their definitions used throughout this manuscript. 

The Lorenz parameters were placed in the vector of unknowns, as seen in equation 

(4). The matrix of knowns contains prescribed x, y, and z values. The x, y, and z parameters 

are driven to sinusoids. In this manuscript, the amplitude of the prescribed sinusoids used 

is 500 and the frequency of the prescribed sinusoids is 100. 

The Lorenz system is modeled in MATLAB® Simulink®, according to the topology 

seen in Figure 1. A Runge-Kutta ode4 solver is used for all the simulations in this manu-

script with a fixed step-size of 0.001.  
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Table 1. Proximal Variable Definitions. 

 
1 

r. 

 

 

Figure 1. Lorenz system topology coded in MATLAB/SIMULINK software. The forced Lorenz dif-

ferential equations (1), (2), and (3) are modeled within the Lorenz System Plant, seen in Appendix 

A. The external force is set to a sinusoidal input function based on the current simulation time. The 

linear feedback control and nonlinear feedforward controls can be activated using manual switches. 

The linear feedback and nonlinear feedforward control subsystem blocks are detailed in Appendix 

A. 

The linear feedback controller is an instantiation of a Proportional Derivative (PD) 

Controller. Both proportional gains are applied to the state (x, y, and z) errors, while de-

rivative gains are applied to the rate (dx/dt, dy/dt, and dz/dt) errors. The grouped subsys-

tem topology can be seen in Appendix A. The proportional and velocity gain values, 𝐾𝑝 

and 𝐾𝑑, were set to 2.6818 and 0.4142, respectively. 

The nonlinear feedforward controller is implemented using the matrix of knowns 

and vector of unknowns described in equation (4). Appendix A shows the topology of 

the nonlinear feedforward controller block. 

3. Results 

The model was simulated from zero to one second. Four combinations were simu-

lated: (1) uncontrolled Lorenz system, (2) Lorenz system with linear feedback controller, 

(3) Lorenz system with nonlinear feedforward controller, and (4) Lorenz system with both 

linear feedback controller and nonlinear feedforward controller. The state trajectories are 

evaluated for each type of controller. The initial conditions of the integrators are all set to 
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one. The summary of the error terms is shown in Table 2. Each of the following subsections 

display plots of the trajectories and phase portraits of the controller setups. 

Table 2. Mean and standard deviation error values for state trajectories for each of the controller 

setups. The desired state trajectories are driven by sinusoids. The standard deviations are presented 

in parenthesis. 

Controller Setup 
x  

Error 

dx/dt  

Error 

y  

Error 

dy/dt  

Error 

z  

Error 

dz/dt  

Error 

Uncontrolled -35.5 (357.6) 34.4 (9.1e4) -35.4 (412.5) 101.5 (1.4e5) 778.0 (400.0) 704.5 (1.7e5) 

Linear Feedback -4.4 (532.0) -242.5 (1.5e5) -4.6 (415.3) -666.1 (2.2e5) 818.8 (421.5) 2.06e3 (2.7e5) 

Nonlinear Feedforward 13.8 (717.8) 743.8 (1.2e5) 15.5 (772.5) 466.6 (2.2e5) 1.6e3 (742.0) 2.6e3 (2.4e5) 

Feedback & Feedforward 4.3 (711.2) 683.6 (1.6e5) 5.2 (742.3) 5.4 (3.0e5) 1.6e3 (751.4) 2.8e3 (3.3e5) 
1 𝑒𝑛 notation indicates × 10𝑛 

3.1 Uncontrolled Forced Lorenz System 

A desired zero trajectory is commanded, with no controllers activated. The state tra-

jectories are shown in Figure 2a, 2b, and 2c and the phase portraits are shown in Figure 

2d, 2e, 2f. 

 

Figure 2. Uncontrolled Forced Lorenz System Results, Commanded Zero Trajectory. (a) State Tra-

jectories for state x and dx/dt, (b) state trajectories for state y and dy/dt, (c) state trajectories for state 

z and dz/dt, (d) phase portrait for x, (e) phase portrait for y, (f) phase portrait for z.  

3.2 Lorenz System Dynamics Forced by Linear Feedback Controllers 

The Lorenz system is run with linear feedback control enabled. Figure 3 details the 

results of the linear feedback controller only in the presence of the desired sinusoidal tra-

jectory commands. 
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Figure 3. Uncontrolled Forced Lorenz System Results, Commanded Sinusoidal Trajectory. (a) State 

Trajectories for state x and dx/dt, (b) state trajectories for state y and dy/dt, (c) state trajectories for 

state z and dz/dt, (d) phase portrait for x, (e) phase portrait for y, (f) phase portrait for z.  

3.3 Lorenz System Dynamics Forced by Only Nonlinear Feedforward Controllers 

When the Lorenz system is set to a desired sinusoidal control and subjected to a non-

linear feedforward controller, the results are seen in Figure 4. Each state x, dx/dt, y, dy/dt, 

z and dz/dt are driven to sinusoids. The system is commanded to follow a circular oscil-

lation, though it maintains chaotic behavior. The x state trajectory seems to be almost 180 

degrees out of phase with the desired trajectory. 
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Figure 4. Nonlinear Feedforward Control of Forced Lorenz System Results, Commanded Sinusoidal 

Trajectory. (a) State Trajectories for state x and dx/dt, (b) state trajectories for state y and dy/dt, (c) 

state trajectories for state z and dz/dt, (d) phase portrait for x, (e) phase portrait for y, (f) phase 

portrait for z.  

3.4 Lorenz System Dynamics Forced by Both Linear Feedback and Nonlinear Feedforward 

Controllers 

When the Lorenz system is set to a desired sinusoidal control and subjected to a non-

linear feedforward controller and a linear feedback controller, the results are seen in Fig-

ure 5. Each state x, dx/dt, y, dy/dt, z and dz/dt are driven to sinusoids. The system is com-

manded to follow a circular oscillation, though it maintains chaotic behavior. The behav-

ior is dominated by the linear feedback controller’s response. 

 

Figure 5. Combined Nonlinear Feedforward Control and Linear Feedback Control of Forced Lorenz 

System Results, Commanded Sinusoidal Trajectory. In plots (a), (b), and (c), the desired trajectory 

is shown in dotted orange line. The actual state trajectory is depicted in the solid blue line. (a) State 
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Trajectories for state x and dx/dt, (b) state trajectories for state y and dy/dt, (c) state trajectories for 

state z and dz/dt, (d) phase portrait for x, (e) phase portrait for y, (f) phase portrait for z.  

4. Discussion 

Unlike the van der Pol system investigated in [12], the Lorenz system does not have 

better performance when controlled by the nonlinear feedforward controller. Interest-

ingly, all controllers tested in this manuscript provide significantly worse mean error val-

ues for the derivative state trajectories (dx/dt, dy/dt, and dz/dt) than the baseline. Table 3 

describes the percent error for the state trajectories when compared to the baseline uncon-

trolled setup. 

Table 3. Percent Difference in Mean Error Values for Each Controller Setup. The desired state tra-

jectories are driven by sinusoids. The percentages are compared to the baseline uncontrolled setup. 

The most improved (i.e. most negative) value is bolded in each column. 

Controller Setup 
x  

Error 

dx/dt  

Error 

y  

Error 

dy/dt  

Error 

z  

Error 

dz/dt  

Error 

Uncontrolled --- --- --- --- --- --- 

Linear Feedback -87.58% 604.657% -86.99% 556.43% 5.26% 188.25% 

Nonlinear Feedforward -61.03% 2060.71% -56.18% 359.80% 103.80% 272.81% 

Feedback and Feedforward -87.92% 1885.82% -85.40% -94.68% 104.24% 303.93% 
1 Bold font indicates extreme values. 

The feedback and feedforward combination controller shows improvements in the 

state estimations of the x, y, and dy/dt states. However, it shows degraded performance 

in the dx/dt, z, and dz/dt states. Using any of these controllers will improve x, y, and z 

errors by as much as 94%, but at the cost of more than 2000% degradation in the derivate 

errors.  

4.1 Recommended future research 

Smeresky and Rizzo developed nonlinear optimal feedback learning which proved 

effective for highly nonlinear, coupled equations that were not strictly chaotic, while 

Cooper and Heidlauf illustrated the lack of efficacy of (even optimal) linear feedback ap-

plied to the chaotic van der Pol system. The sequel should develop and evaluate efficacy 

efficacious nonlinear optimal feedback for van der Pol and Lorenz systems. 
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Figure 6. Lorenz Plant Subsystem Topology. Nonlinear differential equations (1), (2), and (3) are 

modeled given an external force input. 

 

Figure 7. Linear Feedback Control Subsystem Topology, PD Controller. Derivative and velocity gain 

values are applied to the difference between the measured and desired (_d) state values. 
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Figure 8. Nonlinear Feedforward Control Subsystem Topology.  
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